2023-01-11 18:54:23 +01:00
|
|
|
import math
|
|
|
|
import numpy as np
|
|
|
|
import matplotlib.pyplot as plt
|
2023-02-22 12:42:54 +01:00
|
|
|
import matplotlib.ticker as mtick
|
|
|
|
from scipy import signal, interpolate
|
2023-01-12 15:18:46 +01:00
|
|
|
from scipy.optimize import curve_fit
|
2023-01-11 18:54:23 +01:00
|
|
|
from astropy import units as u, constants as ac
|
|
|
|
|
2023-02-08 16:58:16 +01:00
|
|
|
#####################################################################
|
|
|
|
# HELPER FUNCTIONS #
|
|
|
|
#####################################################################
|
|
|
|
|
2023-01-12 15:18:46 +01:00
|
|
|
def orderOfMagnitude(number):
|
|
|
|
return math.floor(math.log(number, 10))
|
|
|
|
|
2023-01-11 18:54:23 +01:00
|
|
|
def rotation_matrix(axis, theta):
|
|
|
|
"""
|
|
|
|
Return the rotation matrix associated with counterclockwise rotation about
|
|
|
|
the given axis by theta radians.
|
|
|
|
In 2-D it is just,
|
|
|
|
thetaInRadians = np.radians(theta)
|
|
|
|
c, s = np.cos(thetaInRadians), np.sin(thetaInRadians)
|
|
|
|
R = np.array(((c, -s), (s, c)))
|
|
|
|
In 3-D, one way to do it is use the Euler-Rodrigues Formula as is done here
|
|
|
|
"""
|
|
|
|
axis = np.asarray(axis)
|
|
|
|
axis = axis / math.sqrt(np.dot(axis, axis))
|
|
|
|
a = math.cos(theta / 2.0)
|
|
|
|
b, c, d = -axis * math.sin(theta / 2.0)
|
|
|
|
aa, bb, cc, dd = a * a, b * b, c * c, d * d
|
|
|
|
bc, ad, ac, ab, bd, cd = b * c, a * d, a * c, a * b, b * d, c * d
|
|
|
|
return np.array([[aa + bb - cc - dd, 2 * (bc + ad), 2 * (bd - ac)],
|
|
|
|
[2 * (bc - ad), aa + cc - bb - dd, 2 * (cd + ab)],
|
|
|
|
[2 * (bd + ac), 2 * (cd - ab), aa + dd - bb - cc]])
|
|
|
|
|
2023-02-13 20:43:58 +01:00
|
|
|
def find_nearest(array, value):
|
|
|
|
array = np.asarray(array)
|
|
|
|
idx = (np.abs(array - value)).argmin()
|
|
|
|
return idx
|
|
|
|
|
2023-02-17 12:49:10 +01:00
|
|
|
def modulation_function(mod_amp, n_points, func = 'arccos'):
|
2023-02-17 19:23:53 +01:00
|
|
|
|
|
|
|
if func == 'sin':
|
2023-02-17 12:49:10 +01:00
|
|
|
phi = np.linspace(0, 2*np.pi, n_points)
|
2023-02-17 19:23:53 +01:00
|
|
|
mod_func = mod_amp * np.sin(phi)
|
|
|
|
elif func == 'arccos':
|
2023-02-22 12:42:54 +01:00
|
|
|
# phi = np.linspace(0, 2*np.pi, n_points)
|
|
|
|
# mod_func = mod_amp * (2/np.pi * np.arccos(phi/np.pi-1) - 1)
|
2023-02-17 19:23:53 +01:00
|
|
|
phi = np.linspace(0, 2*np.pi, int(n_points/2))
|
|
|
|
tmp_1 = 2/np.pi * np.arccos(phi/np.pi-1) - 1
|
|
|
|
tmp_2 = np.flip(tmp_1)
|
|
|
|
mod_func = mod_amp * np.concatenate((tmp_1, tmp_2))
|
|
|
|
elif func == 'triangle':
|
|
|
|
phi = np.linspace(0, 2*np.pi, n_points)
|
|
|
|
mod_func = mod_amp * signal.sawtooth(phi, width = 0.5) # width of 0.5 gives symmetric rising triangle ramp
|
|
|
|
elif func == 'square':
|
|
|
|
phi = np.linspace(0, 1.99*np.pi, n_points)
|
|
|
|
mod_func = mod_amp * signal.square(phi, duty = 0.5)
|
2023-02-17 12:49:10 +01:00
|
|
|
else:
|
2023-02-17 19:23:53 +01:00
|
|
|
mod_func = None
|
|
|
|
|
|
|
|
if mod_func is not None:
|
|
|
|
dx = (max(mod_func) - min(mod_func))/(2*n_points)
|
|
|
|
|
|
|
|
return dx, mod_func
|
2023-02-13 20:52:01 +01:00
|
|
|
|
2023-02-08 16:58:16 +01:00
|
|
|
#####################################################################
|
|
|
|
# BEAM PARAMETERS #
|
|
|
|
#####################################################################
|
|
|
|
|
2023-02-17 12:49:10 +01:00
|
|
|
# Rayleigh length
|
|
|
|
def z_R(w_0, lamb)->np.ndarray:
|
2023-01-11 18:54:23 +01:00
|
|
|
return np.pi*w_0**2/lamb
|
|
|
|
|
|
|
|
# Beam Radius
|
|
|
|
def w(pos, w_0, lamb):
|
2023-01-12 19:16:52 +01:00
|
|
|
return w_0*np.sqrt(1+(pos / z_R(w_0, lamb))**2)
|
2023-01-11 18:54:23 +01:00
|
|
|
|
2023-02-08 16:58:16 +01:00
|
|
|
#####################################################################
|
2023-02-13 20:43:58 +01:00
|
|
|
# COLLISION RATES, PSD #
|
2023-02-08 16:58:16 +01:00
|
|
|
#####################################################################
|
|
|
|
|
2023-03-14 17:13:37 +01:00
|
|
|
def calculateAtomNumber(NCount, pixel_size = 5.86 * u.um, magnification = 0.5, eta = 0.5):
|
|
|
|
sigma = 8.468e-14 * (u.m)**(2)
|
|
|
|
return (1/eta * 1/sigma * NCount * pixel_size**2/magnification**2).decompose()
|
|
|
|
|
2023-02-08 16:58:16 +01:00
|
|
|
def meanThermalVelocity(T, m = 164*u.u):
|
|
|
|
return 4 * np.sqrt((ac.k_B * T) /(np.pi * m))
|
|
|
|
|
2023-03-14 19:26:43 +01:00
|
|
|
def particleDensity(w_x, w_z, Power, N, T, m = 164*u.u): # For a thermal cloud
|
|
|
|
v_x = calculateTrapFrequency(w_x, w_z, Power, dir = 'x')
|
|
|
|
v_y = calculateTrapFrequency(w_x, w_z, Power, dir = 'y')
|
|
|
|
v_z = calculateTrapFrequency(w_x, w_z, Power, dir = 'z')
|
2023-03-14 17:13:37 +01:00
|
|
|
return N * (2 * np.pi)**3 * (v_x * v_y * v_z) * (m / (2 * np.pi * ac.k_B * T))**(3/2)
|
2023-02-22 12:42:54 +01:00
|
|
|
|
2023-03-14 17:13:37 +01:00
|
|
|
def calculateParticleDensityFromMeasurements(v_x, dv_x, v_y, dv_y, v_z, dv_z, w_x, w_z, T_x, T_y, dT_x, dT_y, modulation_depth, N, m = 164*u.u):
|
2023-02-22 12:42:54 +01:00
|
|
|
alpha_x = [(v_x[0]/x)**(2/3) for x in v_x]
|
|
|
|
dalpha_x = [alpha_x[i] * np.sqrt((dv_x[0]/v_x[0])**2 + (dv_x[i]/v_x[i])**2) for i in range(len(v_x))]
|
|
|
|
alpha_y = [(v_z[0]/y)**2 for y in v_z]
|
|
|
|
dalpha_y = [alpha_y[i] * np.sqrt((dv_z[0]/v_z[0])**2 + (dv_z[i]/v_z[i])**2) for i in range(len(v_z))]
|
|
|
|
|
|
|
|
avg_alpha = [(g + h) / 2 for g, h in zip(alpha_x, alpha_y)]
|
2023-03-14 17:13:37 +01:00
|
|
|
new_aspect_ratio = (w_x * avg_alpha) / w_z
|
2023-02-22 12:42:54 +01:00
|
|
|
|
|
|
|
avg_T = [(g + h) / 2 for g, h in zip(T_x, T_y)]
|
|
|
|
avg_dT = [0.5 * np.sqrt(g**2 + h**2) for g, h in zip(dT_x, dT_y)]
|
|
|
|
|
2023-03-14 17:13:37 +01:00
|
|
|
pd = np.zeros(len(modulation_depth))
|
|
|
|
dpd = np.zeros(len(modulation_depth))
|
2023-02-22 12:42:54 +01:00
|
|
|
|
2023-03-14 17:13:37 +01:00
|
|
|
for i in range(len(modulation_depth)):
|
|
|
|
particle_density = (N * (2 * np.pi)**3 * (v_x[i] * v_y[i] * v_z[i]) * (m / (2 * np.pi * ac.k_B * avg_T[i]))**(3/2)).decompose()
|
2023-02-22 12:42:54 +01:00
|
|
|
pd[i] = particle_density.value
|
2023-03-14 17:13:37 +01:00
|
|
|
dpd[i] = (((N * (2 * np.pi)**3 * (m / (2 * np.pi * ac.k_B * avg_T[i]))**(3/2)) * ((dv_x[i] * v_y[i] * v_z[i]) + (v_x[i] * dv_y[i] * v_z[i]) + (v_x[i] * v_y[i] * dv_z[i]) - (1.5*(v_x[i] * v_y[i] * v_z[i])*(avg_dT[i]/avg_T[i])))).decompose()).value
|
2023-02-22 12:42:54 +01:00
|
|
|
|
|
|
|
pd = pd*particle_density.unit
|
|
|
|
dpd = dpd*particle_density.unit
|
|
|
|
|
2023-03-14 17:13:37 +01:00
|
|
|
return pd, dpd, avg_T, avg_dT, new_aspect_ratio
|
2023-02-22 12:42:54 +01:00
|
|
|
|
2023-02-08 16:58:16 +01:00
|
|
|
def thermaldeBroglieWavelength(T, m = 164*u.u):
|
|
|
|
return np.sqrt((2*np.pi*ac.hbar**2)/(m*ac.k_B*T))
|
|
|
|
|
2023-02-13 20:43:58 +01:00
|
|
|
def scatteringLength(B, FR_choice = 1, ABKG_choice = 1):
|
|
|
|
# Dy 164 a_s versus B in 0 to 8G range
|
|
|
|
# should match SupMat of PhysRevX.9.021012, fig S5 and descrption
|
|
|
|
# https://journals.aps.org/prx/supplemental/10.1103/PhysRevX.9.021012/Resubmission_Suppmat.pdf
|
2023-02-08 16:58:16 +01:00
|
|
|
|
2023-02-13 20:43:58 +01:00
|
|
|
if FR_choice == 1: # new values
|
|
|
|
|
|
|
|
if ABKG_choice == 1:
|
|
|
|
a_bkg = 85.5 * ac.a0
|
|
|
|
elif ABKG_choice == 2:
|
|
|
|
a_bkg = 93.5 * ac.a0
|
|
|
|
elif ABKG_choice == 3:
|
|
|
|
a_bkg = 77.5 * ac.a0
|
|
|
|
|
|
|
|
#FR resonances
|
|
|
|
#[B11 B12 B2 B3 B4 B51 B52 B53 B6 B71 B72 B81 B82 B83 B9]
|
2023-02-13 20:52:01 +01:00
|
|
|
resonanceB = [1.295, 1.306, 2.174, 2.336, 2.591, 2.74, 2.803, 2.78, 3.357, 4.949, 5.083, 7.172, 7.204, 7.134, 76.9] * u.G #resonance position
|
2023-02-13 20:43:58 +01:00
|
|
|
#[wB11 wB12 wB2 wB3 wB4 wB51 wB52 wB53 wB6 wB71 wB72 wB81 wB82 wB83 wB9]
|
2023-02-13 20:52:01 +01:00
|
|
|
resonancewB = [0.009, 0.010, 0.0005, 0.0005, 0.001, 0.0005, 0.021, 0.015, 0.043, 0.0005, 0.130, 0.024, 0.0005, 0.036, 3.1] * u.G #resonance width
|
2023-02-13 20:43:58 +01:00
|
|
|
|
|
|
|
else: # old values
|
|
|
|
|
|
|
|
if ABKG_choice == 1:
|
|
|
|
a_bkg = 87.2 * ac.a0
|
|
|
|
elif ABKG_choice == 2:
|
|
|
|
a_bkg = 95.2 * ac.a0
|
|
|
|
elif ABKG_choice == 3:
|
|
|
|
a_bkg = 79.2 * ac.a0
|
|
|
|
|
|
|
|
#FR resonances
|
|
|
|
#[B1 B2 B3 B4 B5 B6 B7 B8]
|
2023-02-13 20:52:01 +01:00
|
|
|
resonanceB = [1.298, 2.802, 3.370, 5.092, 7.154, 2.592, 2.338, 2.177] * u.G #resonance position
|
2023-02-13 20:43:58 +01:00
|
|
|
#[wB1 wB2 wB3 wB4 wB5 wB6 wB7 wB8]
|
2023-02-13 20:52:01 +01:00
|
|
|
resonancewB = [0.018, 0.047, 0.048, 0.145, 0.020, 0.008, 0.001, 0.001] * u.G #resonance width
|
2023-02-13 20:43:58 +01:00
|
|
|
|
2023-02-13 20:52:01 +01:00
|
|
|
#Get scattering length
|
|
|
|
np.seterr(divide='ignore')
|
|
|
|
a_s = a_bkg * np.prod([(1 - resonancewB[j] / (B - resonanceB[j])) for j in range(len(resonanceB))])
|
|
|
|
return a_s, a_bkg
|
2023-02-08 16:58:16 +01:00
|
|
|
|
|
|
|
def dipolarLength(mu = 9.93 * ac.muB, m = 164*u.u):
|
2023-02-08 19:46:56 +01:00
|
|
|
return (m * ac.mu0 * mu**2) / (12 * np.pi * ac.hbar**2)
|
2023-02-08 16:58:16 +01:00
|
|
|
|
|
|
|
def scatteringCrossSection(B):
|
2023-02-13 20:43:58 +01:00
|
|
|
return 8 * np.pi * scatteringLength(B)[0]**2 + ((32*np.pi)/45) * dipolarLength()**2
|
2023-02-08 16:58:16 +01:00
|
|
|
|
2023-03-14 19:26:43 +01:00
|
|
|
def calculateElasticCollisionRate(w_x, w_z, Power, N, T, B): #For a 3D Harmonic Trap
|
|
|
|
return (particleDensity(w_x, w_z, Power, N, T) * scatteringCrossSection(B) * meanThermalVelocity(T) / (2 * np.sqrt(2))).decompose()
|
2023-02-08 16:58:16 +01:00
|
|
|
|
2023-03-14 19:26:43 +01:00
|
|
|
def calculatePSD(w_x, w_z, Power, N, T):
|
|
|
|
return (particleDensity(w_x, w_z, Power, N, T) * thermaldeBroglieWavelength(T)**3).decompose()
|
2023-02-08 16:58:16 +01:00
|
|
|
|
2023-02-22 12:42:54 +01:00
|
|
|
def convert_modulation_depth_to_alpha(modulation_depth):
|
|
|
|
fin_mod_dep = [0, 0.5, 0.3, 0.7, 0.9, 0.8, 1.0, 0.6, 0.4, 0.2, 0.1]
|
|
|
|
fx = [3.135, 0.28, 0.690, 0.152, 0.102, 0.127, 0.099, 0.205, 0.404, 1.441, 2.813]
|
|
|
|
dfx = [0.016, 0.006, 0.005, 0.006, 0.003, 0.002, 0.002,0.002, 0.003, 0.006, 0.024]
|
2023-02-27 20:25:07 +01:00
|
|
|
fz = [2.746, 1.278, 1.719, 1.058, 0.923, 0.994, 0.911, 1.157, 1.446, 2.191, 2.643]
|
|
|
|
dfz = [0.014, 0.007, 0.009, 0.007, 0.005, 0.004, 0.004, 0.005, 0.007, 0.009, 0.033]
|
2023-02-22 12:42:54 +01:00
|
|
|
|
|
|
|
alpha_x = [(fx[0]/x)**(2/3) for x in fx]
|
|
|
|
dalpha_x = [alpha_x[i] * np.sqrt((dfx[0]/fx[0])**2 + (dfx[i]/fx[i])**2) for i in range(len(fx))]
|
2023-02-27 20:25:07 +01:00
|
|
|
alpha_z = [(fz[0]/z)**2 for z in fz]
|
|
|
|
dalpha_z = [alpha_z[i] * np.sqrt((dfz[0]/fz[0])**2 + (dfz[i]/fz[i])**2) for i in range(len(fz))]
|
2023-02-22 12:42:54 +01:00
|
|
|
|
2023-02-27 20:25:07 +01:00
|
|
|
avg_alpha = [(g + h) / 2 for g, h in zip(alpha_x, alpha_z)]
|
2023-02-22 12:42:54 +01:00
|
|
|
sorted_fin_mod_dep, sorted_avg_alpha = zip(*sorted(zip(fin_mod_dep, avg_alpha)))
|
|
|
|
|
|
|
|
f = interpolate.interp1d(sorted_fin_mod_dep, sorted_avg_alpha)
|
|
|
|
|
2023-02-27 20:25:07 +01:00
|
|
|
return f(modulation_depth), fin_mod_dep, alpha_x, alpha_z, dalpha_x, dalpha_z
|
2023-02-22 12:42:54 +01:00
|
|
|
|
|
|
|
def convert_modulation_depth_to_temperature(modulation_depth):
|
|
|
|
fin_mod_dep = [1.0, 0.8, 0.6, 0.4, 0.2, 0.0, 0.9, 0.7, 0.5, 0.3, 0.1]
|
|
|
|
T_x = [22.1, 27.9, 31.7, 42.2, 98.8, 145.8, 27.9, 33.8, 42.4, 61.9, 136.1]
|
|
|
|
dT_x = [1.7, 2.6, 2.4, 3.7, 1.1, 0.6, 2.2, 3.2, 1.7, 2.2, 1.2]
|
|
|
|
T_y = [13.13, 14.75, 18.44, 26.31, 52.55, 92.9, 13.54, 16.11, 21.15, 35.81, 85.8]
|
|
|
|
dT_y = [0.05, 0.05, 0.07, 0.16, 0.28, 0.7, 0.04, 0.07, 0.10, 0.21, 0.8]
|
|
|
|
|
|
|
|
avg_T = [(g + h) / 2 for g, h in zip(T_x, T_y)]
|
|
|
|
sorted_fin_mod_dep, sorted_avg_T = zip(*sorted(zip(fin_mod_dep, avg_T)))
|
|
|
|
|
|
|
|
f = interpolate.interp1d(sorted_fin_mod_dep, sorted_avg_T)
|
|
|
|
|
|
|
|
return f(modulation_depth), fin_mod_dep, T_x, T_y, dT_x, dT_y
|
|
|
|
|
2023-02-08 16:58:16 +01:00
|
|
|
#####################################################################
|
|
|
|
# POTENTIALS #
|
|
|
|
#####################################################################
|
2023-01-11 18:54:23 +01:00
|
|
|
|
2023-02-27 20:25:07 +01:00
|
|
|
def gravitational_potential(positions, m):
|
2023-01-11 18:54:23 +01:00
|
|
|
return m * ac.g0 * positions
|
|
|
|
|
2023-03-14 19:26:43 +01:00
|
|
|
def single_gaussian_beam_potential(positions, waists, alpha = 184.4, P=1, wavelength=1.064*u.um):
|
2023-01-11 18:54:23 +01:00
|
|
|
A = 2*P/(np.pi*w(positions[1,:], waists[0], wavelength)*w(positions[1,:], waists[1], wavelength))
|
|
|
|
U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
|
|
|
U = - U_tilde * A * np.exp(-2 * ((positions[0,:]/w(positions[1,:], waists[0], wavelength))**2 + (positions[2,:]/w(positions[1,:], waists[1], wavelength))**2))
|
|
|
|
return U
|
|
|
|
|
2023-03-14 19:26:43 +01:00
|
|
|
def astigmatic_single_gaussian_beam_potential(positions, waists, del_y, alpha = 184.4, P=1, wavelength=1.064*u.um):
|
2023-01-12 19:16:52 +01:00
|
|
|
A = 2*P/(np.pi*w(positions[1,:] - (del_y/2), waists[0], wavelength)*w(positions[1,:] + (del_y/2), waists[1], wavelength))
|
|
|
|
U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
|
|
|
U = - U_tilde * A * np.exp(-2 * ((positions[0,:]/w(positions[1,:] - (del_y/2), waists[0], wavelength))**2 + (positions[2,:]/w(positions[1,:] + (del_y/2), waists[1], wavelength))**2))
|
|
|
|
return U
|
2023-01-12 15:18:46 +01:00
|
|
|
|
2023-03-14 19:26:43 +01:00
|
|
|
def modulated_single_gaussian_beam_potential(positions, waists, alpha = 184.4, P=1, wavelength=1.064*u.um, mod_amp=1):
|
2023-02-17 12:49:10 +01:00
|
|
|
mod_amp = mod_amp * waists[0]
|
2023-02-17 19:23:53 +01:00
|
|
|
n_points = len(positions[0,:])
|
2023-02-17 12:49:10 +01:00
|
|
|
dx, x_mod = modulation_function(mod_amp, n_points, func = 'arccos')
|
|
|
|
A = 2*P/(np.pi*w(positions[1,:], waists[0], wavelength)*w(positions[1,:], waists[1], wavelength))
|
|
|
|
U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
|
|
|
dU = np.zeros(2*n_points)
|
|
|
|
for i in range(len(x_mod)):
|
|
|
|
dU = np.vstack((dU, np.exp(-2 * (np.subtract(x_mod[i], positions[0,:])/w(positions[1,:], waists[0], wavelength))**2)))
|
|
|
|
U = - U_tilde * A * 1/(2*mod_amp) * np.trapz(dU, dx = dx, axis = 0)
|
|
|
|
return U
|
2023-02-13 20:52:01 +01:00
|
|
|
|
2023-02-17 19:23:53 +01:00
|
|
|
def harmonic_potential(pos, v, xoffset, yoffset, m = 164*u.u):
|
|
|
|
U_Harmonic = ((0.5 * m * (2 * np.pi * v*u.Hz)**2 * (pos*u.um - xoffset*u.um)**2)/ac.k_B).to(u.uK) + yoffset*u.uK
|
|
|
|
return U_Harmonic.value
|
|
|
|
|
|
|
|
def gaussian_potential(pos, amp, waist, xoffset, yoffset):
|
|
|
|
U_Gaussian = amp * np.exp(-2 * ((pos + xoffset) / waist)**2) + yoffset
|
|
|
|
return U_Gaussian
|
|
|
|
|
2023-03-14 19:26:43 +01:00
|
|
|
def crossed_beam_potential(positions, theta, waists, P, alpha = 184.4, wavelength=1.064*u.um):
|
2023-02-22 12:42:54 +01:00
|
|
|
|
|
|
|
beam_1_positions = positions
|
|
|
|
A_1 = 2*P[0]/(np.pi*w(beam_1_positions[1,:], waists[0][0], wavelength)*w(beam_1_positions[1,:], waists[0][1], wavelength))
|
|
|
|
U_1_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
|
|
|
U_1 = - U_1_tilde * A_1 * np.exp(-2 * ((beam_1_positions[0,:]/w(beam_1_positions[1,:], waists[0][0], wavelength))**2 + (beam_1_positions[2,:]/w(beam_1_positions[1,:], waists[0][1], wavelength))**2))
|
|
|
|
|
|
|
|
R = rotation_matrix([0, 0, 1], np.radians(theta))
|
|
|
|
beam_2_positions = np.dot(R, beam_1_positions)
|
|
|
|
A_2 = 2*P[1]/(np.pi*w(beam_2_positions[1,:], waists[1][0], wavelength)*w(beam_2_positions[1,:], waists[1][1], wavelength))
|
|
|
|
U_2_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
|
|
|
U_2 = - U_2_tilde * A_2 * np.exp(-2 * ((beam_2_positions[0,:]/w(beam_2_positions[1,:], waists[1][0], wavelength))**2 + (beam_2_positions[2,:]/w(beam_2_positions[1,:], waists[1][1], wavelength))**2))
|
|
|
|
|
|
|
|
U = U_1 + U_2
|
|
|
|
|
|
|
|
return U
|
|
|
|
|
2023-03-14 19:26:43 +01:00
|
|
|
def astigmatic_crossed_beam_potential(positions, theta, waists, P, del_y, alpha = 184.4, wavelength=1.064*u.um):
|
|
|
|
|
|
|
|
del_y_1 = del_y[0]
|
|
|
|
del_y_2 = del_y[1]
|
|
|
|
|
|
|
|
beam_1_positions = positions
|
|
|
|
A_1 = 2*P[0]/(np.pi*w(beam_1_positions[1,:] - (del_y_1/2), waists[0][0], wavelength)*w(beam_1_positions[1,:] + (del_y_1/2), waists[0][1], wavelength))
|
|
|
|
U_1_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
|
|
|
U_1 = - U_1_tilde * A_1 * np.exp(-2 * ((beam_1_positions[0,:]/w(beam_1_positions[1,:] - (del_y_1/2), waists[0][0], wavelength))**2 + (beam_1_positions[2,:]/w(beam_1_positions[1,:] + (del_y_1/2), waists[0][1], wavelength))**2))
|
|
|
|
|
|
|
|
R = rotation_matrix([0, 0, 1], np.radians(theta))
|
|
|
|
beam_2_positions = np.dot(R, beam_1_positions)
|
|
|
|
A_2 = 2*P[1]/(np.pi*w(beam_2_positions[1,:] - (del_y_2/2), waists[1][0], wavelength)*w(beam_2_positions[1,:] + (del_y_2/2), waists[1][1], wavelength))
|
|
|
|
U_2_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
|
|
|
U_2 = - U_2_tilde * A_2 * np.exp(-2 * ((beam_2_positions[0,:]/w(beam_2_positions[1,:] - (del_y_2/2), waists[1][0], wavelength))**2 + (beam_2_positions[2,:]/w(beam_2_positions[1,:] + (del_y_2/2), waists[1][1], wavelength))**2))
|
|
|
|
|
|
|
|
U = U_1 + U_2
|
|
|
|
|
|
|
|
return U
|
|
|
|
|
2023-02-08 16:58:16 +01:00
|
|
|
#####################################################################
|
|
|
|
# COMPUTE/EXTRACT TRAP POTENTIAL AND PARAMETERS #
|
|
|
|
#####################################################################
|
|
|
|
|
2023-03-14 19:26:43 +01:00
|
|
|
def trap_depth(w_1, w_2, P, alpha = 184.4):
|
2023-02-08 16:58:16 +01:00
|
|
|
return 2*P/(np.pi*w_1*w_2) * (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
|
|
|
|
2023-03-14 19:26:43 +01:00
|
|
|
def calculateTrapFrequency(w_x, w_z, Power, dir = 'x', m = 164*u.u):
|
|
|
|
TrapDepth = trap_depth(w_x, w_z, Power)
|
2023-01-13 18:15:36 +01:00
|
|
|
TrapFrequency = np.nan
|
|
|
|
if dir == 'x':
|
|
|
|
TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(4 * TrapDepth / (m*w_x**2))).decompose()
|
2023-02-08 15:58:44 +01:00
|
|
|
elif dir == 'y':
|
|
|
|
zReff = np.sqrt(2) * z_R(w_x, 1.064*u.um) * z_R(w_z, 1.064*u.um) / np.sqrt(z_R(w_x, 1.064*u.um)**2 + z_R(w_z, 1.064*u.um)**2)
|
|
|
|
TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(2 * TrapDepth/ (m*zReff**2))).decompose()
|
2023-01-13 18:15:36 +01:00
|
|
|
elif dir == 'z':
|
|
|
|
TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(4 * TrapDepth/ (m*w_z**2))).decompose()
|
|
|
|
return round(TrapFrequency.value, 2)*u.Hz
|
|
|
|
|
2023-03-14 19:26:43 +01:00
|
|
|
def calculateCrossedBeamTrapFrequency(delta, Waists, Powers, dir = 'x', m = 164*u.u, wavelength=1.064*u.um):
|
2023-03-14 17:13:37 +01:00
|
|
|
|
2023-03-14 19:26:43 +01:00
|
|
|
TrapDepth_1 = trap_depth(Waists[0][0], Waists[1][0], Powers[0])
|
|
|
|
TrapDepth_2 = trap_depth(Waists[0][1], Waists[1][1], Powers[1])
|
2023-03-14 17:13:37 +01:00
|
|
|
|
|
|
|
w_x1 = Waists[0][0]
|
|
|
|
w_z1 = Waists[1][0]
|
|
|
|
|
|
|
|
w_y2 = Waists[0][1]
|
|
|
|
w_z2 = Waists[1][1]
|
|
|
|
|
2023-03-14 19:26:43 +01:00
|
|
|
zReff_1 = np.sqrt(2) * z_R(w_x1, wavelength) * z_R(w_z1, wavelength) / np.sqrt(z_R(w_x1, wavelength)**2 + z_R(w_z1, wavelength)**2)
|
|
|
|
zReff_2 = np.sqrt(2) * z_R(w_y2, wavelength) * z_R(w_z2, wavelength) / np.sqrt(z_R(w_y2, wavelength)**2 + z_R(w_z2, wavelength)**2)
|
2023-03-14 17:13:37 +01:00
|
|
|
|
|
|
|
wy2alpha = np.sqrt(((np.cos(np.radians(90 - delta)) / w_y2)**2 + (np.sin(np.radians(90 - delta)) / (2 * zReff_2))**2)**(-1))
|
|
|
|
zR2alpha = np.sqrt(((np.sin(np.radians(90 - delta)) / w_y2)**2 + (np.cos(np.radians(90 - delta)) / (2 * zReff_2))**2)**(-1))
|
|
|
|
|
|
|
|
TrapFrequency = np.nan
|
|
|
|
if dir == 'x':
|
|
|
|
v_1 = (1/(2 * np.pi)) * np.sqrt(4/m * (TrapDepth_1 / w_x1**2))
|
|
|
|
v_2 = (1/(2 * np.pi)) * np.sqrt(4/m * (TrapDepth_2 / zR2alpha**2))
|
|
|
|
TrapFrequency = (np.sqrt(v_1**2 + v_2**2)).decompose()
|
|
|
|
elif dir == 'y':
|
|
|
|
v_1 = (1/(2 * np.pi)) * np.sqrt(1/m * (2 * TrapDepth_1/ zReff_1**2))
|
|
|
|
v_2 = (1/(2 * np.pi)) * np.sqrt(1/m * (4 * TrapDepth_2/ wy2alpha**2))
|
|
|
|
TrapFrequency = (np.sqrt(v_1**2 + v_2**2)).decompose()
|
|
|
|
elif dir == 'z':
|
|
|
|
v_1 = (1/(2 * np.pi)) * np.sqrt(4/m * (TrapDepth_1 / w_z1**2))
|
|
|
|
v_2 = (1/(2 * np.pi)) * np.sqrt(4/m * (TrapDepth_2 / w_z2**2))
|
|
|
|
TrapFrequency = (np.sqrt(v_1**2 + v_2**2)).decompose()
|
|
|
|
|
|
|
|
return round(TrapFrequency.value, 2)*u.Hz
|
|
|
|
|
2023-02-08 16:58:16 +01:00
|
|
|
def extractTrapFrequency(Positions, TrappingPotential, axis):
|
2023-01-12 15:18:46 +01:00
|
|
|
tmp_pos = Positions[axis, :]
|
|
|
|
tmp_pot = TrappingPotential[axis]
|
2023-02-08 16:58:16 +01:00
|
|
|
center_idx = np.argmin(tmp_pot)
|
2023-03-14 17:13:37 +01:00
|
|
|
lb = int(round(center_idx - len(tmp_pot)/200, 1))
|
|
|
|
ub = int(round(center_idx + len(tmp_pot)/200, 1))
|
2023-02-08 16:58:16 +01:00
|
|
|
xdata = tmp_pos[lb:ub]
|
2023-01-12 15:18:46 +01:00
|
|
|
Potential = tmp_pot[lb:ub]
|
2023-03-14 17:13:37 +01:00
|
|
|
p0 = [1e3, tmp_pos[center_idx].value, -100]
|
2023-01-12 15:18:46 +01:00
|
|
|
popt, pcov = curve_fit(harmonic_potential, xdata, Potential, p0)
|
|
|
|
v = popt[0]
|
|
|
|
dv = pcov[0][0]**0.5
|
|
|
|
return v, dv, popt, pcov
|
|
|
|
|
2023-03-14 19:26:43 +01:00
|
|
|
def computeTrapPotential(w_x, w_z, Power, options):
|
2023-02-08 15:58:44 +01:00
|
|
|
|
|
|
|
axis = options['axis']
|
|
|
|
extent = options['extent']
|
|
|
|
gravity = options['gravity']
|
|
|
|
astigmatism = options['astigmatism']
|
2023-02-13 20:52:01 +01:00
|
|
|
modulation = options['modulation']
|
2023-02-22 12:42:54 +01:00
|
|
|
crossed = options['crossed']
|
2023-02-13 20:52:01 +01:00
|
|
|
|
|
|
|
if modulation:
|
|
|
|
aspect_ratio = options['aspect_ratio']
|
|
|
|
current_ar = w_x/w_z
|
|
|
|
w_x = w_x * (aspect_ratio / current_ar)
|
|
|
|
|
2023-02-08 15:58:44 +01:00
|
|
|
TrappingPotential = []
|
2023-03-14 19:26:43 +01:00
|
|
|
TrapDepth = trap_depth(w_x, w_z, Power)
|
2023-02-08 15:58:44 +01:00
|
|
|
IdealTrapDepthInKelvin = (TrapDepth/ac.k_B).to(u.uK)
|
|
|
|
|
|
|
|
projection_axis = np.array([0, 1, 0]) # default
|
|
|
|
|
|
|
|
if axis == 0:
|
|
|
|
projection_axis = np.array([1, 0, 0]) # radial direction (X-axis)
|
|
|
|
|
|
|
|
elif axis == 1:
|
|
|
|
projection_axis = np.array([0, 1, 0]) # propagation direction (Y-axis)
|
|
|
|
|
|
|
|
elif axis == 2:
|
|
|
|
projection_axis = np.array([0, 0, 1]) # vertical direction (Z-axis)
|
|
|
|
|
2023-02-22 12:42:54 +01:00
|
|
|
else:
|
|
|
|
projection_axis = np.array([1, 1, 1]) # vertical direction (Z-axis)
|
|
|
|
|
2023-02-27 20:25:07 +01:00
|
|
|
x_Positions = np.arange(-extent, extent, 0.05)*u.um
|
|
|
|
y_Positions = np.arange(-extent, extent, 0.05)*u.um
|
|
|
|
z_Positions = np.arange(-extent, extent, 0.05)*u.um
|
2023-02-08 15:58:44 +01:00
|
|
|
Positions = np.vstack((x_Positions, y_Positions, z_Positions)) * projection_axis[:, np.newaxis]
|
|
|
|
|
2023-02-22 12:42:54 +01:00
|
|
|
if not crossed:
|
2023-03-14 19:26:43 +01:00
|
|
|
IdealTrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power)
|
2023-02-22 12:42:54 +01:00
|
|
|
IdealTrappingPotential = IdealTrappingPotential * (np.ones((3, len(IdealTrappingPotential))) * projection_axis[:, np.newaxis])
|
|
|
|
IdealTrappingPotential = (IdealTrappingPotential/ac.k_B).to(u.uK)
|
2023-03-14 19:26:43 +01:00
|
|
|
|
|
|
|
if gravity and not astigmatism:
|
|
|
|
# Influence of Gravity
|
|
|
|
m = 164*u.u
|
|
|
|
gravity_axis = np.array([0, 0, 1])
|
|
|
|
tilt_gravity = options['tilt_gravity']
|
|
|
|
theta = options['theta']
|
|
|
|
tilt_axis = options['tilt_axis']
|
|
|
|
if tilt_gravity:
|
|
|
|
R = rotation_matrix(tilt_axis, np.radians(theta))
|
|
|
|
gravity_axis = np.dot(R, gravity_axis)
|
|
|
|
gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis]
|
|
|
|
TrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power)
|
|
|
|
TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis]) + gravitational_potential(gravity_axis_positions, m)
|
|
|
|
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
|
|
|
|
|
|
|
elif not gravity and astigmatism:
|
|
|
|
# Influence of Astigmatism
|
|
|
|
disp_foci = options['disp_foci']
|
|
|
|
TrappingPotential = astigmatic_single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, del_y = disp_foci)
|
|
|
|
TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis])
|
|
|
|
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
2023-02-08 15:58:44 +01:00
|
|
|
|
2023-03-14 19:26:43 +01:00
|
|
|
elif gravity and astigmatism:
|
|
|
|
# Influence of Gravity and Astigmatism
|
|
|
|
m = 164*u.u
|
|
|
|
gravity_axis = np.array([0, 0, 1])
|
|
|
|
tilt_gravity = options['tilt_gravity']
|
|
|
|
theta = options['theta']
|
|
|
|
tilt_axis = options['tilt_axis']
|
|
|
|
disp_foci = options['disp_foci']
|
|
|
|
if tilt_gravity:
|
|
|
|
R = rotation_matrix(tilt_axis, np.radians(theta))
|
|
|
|
gravity_axis = np.dot(R, gravity_axis)
|
|
|
|
gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis]
|
|
|
|
TrappingPotential = astigmatic_single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, del_y = disp_foci)
|
|
|
|
TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis]) + gravitational_potential(gravity_axis_positions, m)
|
|
|
|
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
2023-03-02 10:08:30 +01:00
|
|
|
|
2023-03-14 19:26:43 +01:00
|
|
|
else:
|
|
|
|
TrappingPotential = IdealTrappingPotential
|
|
|
|
|
2023-03-02 10:08:30 +01:00
|
|
|
infls = np.where(np.diff(np.sign(np.gradient(np.gradient(TrappingPotential[axis].value)))))[0]
|
|
|
|
|
2023-03-14 19:26:43 +01:00
|
|
|
try:
|
|
|
|
if TrappingPotential[axis][0] > TrappingPotential[axis][-1]:
|
|
|
|
EffectiveTrapDepthInKelvin = max(TrappingPotential[axis][infls[1]:-1]) - min(TrappingPotential[axis][infls[0]:infls[1]])
|
|
|
|
elif TrappingPotential[axis][0] < TrappingPotential[axis][-1]:
|
|
|
|
EffectiveTrapDepthInKelvin = max(TrappingPotential[axis][0:infls[0]]) - min(TrappingPotential[axis][infls[0]:infls[1]])
|
|
|
|
else:
|
|
|
|
EffectiveTrapDepthInKelvin = IdealTrapDepthInKelvin
|
|
|
|
except:
|
|
|
|
EffectiveTrapDepthInKelvin = np.nan
|
2023-02-08 15:58:44 +01:00
|
|
|
|
2023-02-22 12:42:54 +01:00
|
|
|
TrapDepthsInKelvin = [IdealTrapDepthInKelvin, EffectiveTrapDepthInKelvin]
|
2023-02-08 15:58:44 +01:00
|
|
|
|
2023-03-14 19:26:43 +01:00
|
|
|
v_x = calculateTrapFrequency(w_x, w_z, Power, dir = 'x')
|
|
|
|
v_y = calculateTrapFrequency(w_x, w_z, Power, dir = 'y')
|
|
|
|
v_z = calculateTrapFrequency(w_x, w_z, Power, dir = 'z')
|
2023-02-22 12:42:54 +01:00
|
|
|
CalculatedTrapFrequencies = [v_x, v_y, v_z]
|
2023-02-08 15:58:44 +01:00
|
|
|
|
2023-02-22 12:42:54 +01:00
|
|
|
v, dv, popt, pcov = extractTrapFrequency(Positions, IdealTrappingPotential, axis)
|
2023-03-02 10:08:30 +01:00
|
|
|
if np.isinf(v):
|
|
|
|
v = np.nan
|
|
|
|
if np.isinf(dv):
|
|
|
|
dv = np.nan
|
2023-02-08 15:58:44 +01:00
|
|
|
|
2023-03-02 10:08:30 +01:00
|
|
|
IdealTrapFrequency = [v, dv]
|
|
|
|
|
|
|
|
if options['extract_trap_frequencies']:
|
|
|
|
v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, axis)
|
|
|
|
if np.isinf(v):
|
|
|
|
v = np.nan
|
|
|
|
if np.isinf(dv):
|
|
|
|
dv = np.nan
|
|
|
|
TrapFrequency = [v, dv]
|
|
|
|
ExtractedTrapFrequencies = [IdealTrapFrequency, TrapFrequency]
|
|
|
|
else:
|
|
|
|
ExtractedTrapFrequencies = [IdealTrapFrequency]
|
|
|
|
|
2023-02-22 12:42:54 +01:00
|
|
|
return Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies
|
|
|
|
|
|
|
|
else:
|
2023-03-14 19:26:43 +01:00
|
|
|
delta = options['delta']
|
|
|
|
waists = np.vstack((np.asarray([w_x[0].value, w_z[0].value])*u.um, np.asarray([w_x[1].value, w_z[1].value])*u.um))
|
|
|
|
IdealTrappingPotential = crossed_beam_potential(Positions, delta, waists, P = Power)
|
|
|
|
IdealTrappingPotential = IdealTrappingPotential * (np.ones((3, len(IdealTrappingPotential))) * projection_axis[:, np.newaxis])
|
|
|
|
IdealTrappingPotential = (IdealTrappingPotential/ac.k_B).to(u.uK)
|
|
|
|
|
|
|
|
if gravity and not astigmatism:
|
|
|
|
# Influence of Gravity
|
|
|
|
m = 164*u.u
|
|
|
|
gravity_axis = np.array([0, 0, 1])
|
|
|
|
tilt_gravity = options['tilt_gravity']
|
|
|
|
theta = options['theta']
|
|
|
|
tilt_axis = options['tilt_axis']
|
|
|
|
if tilt_gravity:
|
|
|
|
R = rotation_matrix(tilt_axis, np.radians(theta))
|
|
|
|
gravity_axis = np.dot(R, gravity_axis)
|
|
|
|
gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis]
|
|
|
|
TrappingPotential = crossed_beam_potential(Positions, delta, waists, P = Power)
|
|
|
|
TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis]) + gravitational_potential(gravity_axis_positions, m)
|
|
|
|
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
|
|
|
|
|
|
|
elif not gravity and astigmatism:
|
|
|
|
# Influence of Astigmatism
|
|
|
|
disp_foci = options['disp_foci_crossed']
|
|
|
|
TrappingPotential = astigmatic_crossed_beam_potential(Positions, delta, waists, P = Power, del_y = disp_foci)
|
|
|
|
TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis])
|
|
|
|
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
|
|
|
|
|
|
|
elif gravity and astigmatism:
|
|
|
|
# Influence of Gravity and Astigmatism
|
|
|
|
m = 164*u.u
|
|
|
|
gravity_axis = np.array([0, 0, 1])
|
|
|
|
tilt_gravity = options['tilt_gravity']
|
|
|
|
theta = options['theta']
|
|
|
|
tilt_axis = options['tilt_axis']
|
|
|
|
disp_foci = options['disp_foci_crossed']
|
|
|
|
if tilt_gravity:
|
|
|
|
R = rotation_matrix(tilt_axis, np.radians(theta))
|
|
|
|
gravity_axis = np.dot(R, gravity_axis)
|
|
|
|
gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis]
|
|
|
|
TrappingPotential = astigmatic_crossed_beam_potential(Positions, delta, waists, P = Power, del_y = disp_foci)
|
|
|
|
TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis]) + gravitational_potential(gravity_axis_positions, m)
|
|
|
|
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
|
|
|
|
|
|
|
else:
|
|
|
|
TrappingPotential = IdealTrappingPotential
|
|
|
|
|
2023-02-27 20:25:07 +01:00
|
|
|
return Positions, TrappingPotential
|
2023-02-08 15:58:44 +01:00
|
|
|
|
2023-02-17 19:23:53 +01:00
|
|
|
def extractWaist(Positions, TrappingPotential):
|
|
|
|
tmp_pos = Positions.value
|
|
|
|
tmp_pot = TrappingPotential.value
|
|
|
|
center_idx = np.argmin(tmp_pot)
|
|
|
|
|
|
|
|
TrapMinimum = tmp_pot[center_idx]
|
|
|
|
TrapCenter = tmp_pos[center_idx]
|
|
|
|
|
2023-02-22 12:42:54 +01:00
|
|
|
lb = int(round(center_idx - len(tmp_pot)/30, 1))
|
|
|
|
ub = int(round(center_idx + len(tmp_pot)/30, 1))
|
2023-02-17 19:23:53 +01:00
|
|
|
xdata = tmp_pos[lb:ub]
|
|
|
|
Potential = tmp_pot[lb:ub]
|
|
|
|
|
|
|
|
p0=[TrapMinimum, 30, TrapCenter, 0]
|
|
|
|
popt, pcov = curve_fit(gaussian_potential, xdata, Potential, p0)
|
|
|
|
return popt, pcov
|
|
|
|
|
2023-03-14 19:26:43 +01:00
|
|
|
def computeIntensityProfileAndPotentials(Power, waists, wavelength, options, alpha = 184.4):
|
2023-02-22 12:42:54 +01:00
|
|
|
w_x = waists[0]
|
|
|
|
w_z = waists[1]
|
|
|
|
extent = options['extent']
|
|
|
|
modulation = options['modulation']
|
|
|
|
mod_func = options['modulation_function']
|
|
|
|
|
|
|
|
if not modulation:
|
|
|
|
extent = 50
|
|
|
|
x_Positions = np.arange(-extent, extent, 1)*u.um
|
|
|
|
y_Positions = np.arange(-extent, extent, 1)*u.um
|
|
|
|
z_Positions = np.arange(-extent, extent, 1)*u.um
|
|
|
|
|
|
|
|
idx = np.where(y_Positions==0)[0][0]
|
|
|
|
|
|
|
|
wavelength = 1.064*u.um
|
|
|
|
|
|
|
|
xm,ym,zm = np.meshgrid(x_Positions, y_Positions, z_Positions, sparse=True, indexing='ij')
|
|
|
|
|
|
|
|
## Single Gaussian Beam
|
|
|
|
A = 2*Power/(np.pi*w(ym, w_x, wavelength)*w(ym, w_z, wavelength))
|
|
|
|
intensity_profile = A * np.exp(-2 * ((xm/w(ym, w_x, wavelength))**2 + (zm/w(ym, w_z, wavelength))**2))
|
|
|
|
I = intensity_profile[:, idx, :].to(u.MW/(u.cm*u.cm))
|
|
|
|
|
|
|
|
U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
|
|
|
U = - U_tilde * I
|
|
|
|
U = (U/ac.k_B).to(u.uK)
|
|
|
|
|
|
|
|
return [x_Positions, z_Positions], [w_x.value, 0, w_z.value, 0], I, U, [0, 0, 0, 0]
|
|
|
|
|
|
|
|
else:
|
|
|
|
mod_amp = options['modulation_amplitude']
|
|
|
|
x_Positions = np.arange(-extent, extent, 1)*u.um
|
|
|
|
y_Positions = np.arange(-extent, extent, 1)*u.um
|
|
|
|
z_Positions = np.arange(-extent, extent, 1)*u.um
|
|
|
|
|
|
|
|
mod_amp = mod_amp * w_x
|
|
|
|
n_points = len(x_Positions)
|
|
|
|
dx, xmod_Positions = modulation_function(mod_amp, n_points, func = mod_func)
|
|
|
|
|
|
|
|
idx = np.where(y_Positions==0)[0][0]
|
|
|
|
|
|
|
|
xm,ym,zm,xmodm = np.meshgrid(x_Positions, y_Positions, z_Positions, xmod_Positions, sparse=True, indexing='ij')
|
|
|
|
|
|
|
|
## Single Modulated Gaussian Beam
|
|
|
|
A = 2*Power/(np.pi*w(y_Positions[idx] , w_x, wavelength)*w(y_Positions[idx], w_z, wavelength))
|
|
|
|
intensity_profile = A * 1/(2*mod_amp) * np.trapz(np.exp(-2 * (((xmodm - xm)/w(ym, w_x, wavelength))**2 + (zm/w(ym, w_z, wavelength))**2)), dx = dx, axis = -1)
|
|
|
|
I = intensity_profile[:, idx, :].to(u.MW/(u.cm*u.cm))
|
|
|
|
|
|
|
|
U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
|
|
|
U = - U_tilde * I
|
|
|
|
U = (U/ac.k_B).to(u.uK)
|
|
|
|
|
|
|
|
poptx, pcovx = extractWaist(x_Positions, U[:, np.where(z_Positions==0)[0][0]])
|
|
|
|
poptz, pcovz = extractWaist(z_Positions, U[np.where(x_Positions==0)[0][0], :])
|
|
|
|
|
|
|
|
extracted_waist_x = poptx[1]
|
|
|
|
dextracted_waist_x = pcovx[1][1]**0.5
|
|
|
|
extracted_waist_z = poptz[1]
|
|
|
|
dextracted_waist_z = pcovz[1][1]**0.5
|
|
|
|
|
|
|
|
return [x_Positions, z_Positions], [extracted_waist_x, dextracted_waist_x, extracted_waist_z, dextracted_waist_z], I, U, [poptx, pcovx, poptz, pcovz]
|
|
|
|
|
2023-02-08 16:58:16 +01:00
|
|
|
#####################################################################
|
2023-02-13 20:52:01 +01:00
|
|
|
# PLOTTING #
|
2023-02-08 16:58:16 +01:00
|
|
|
#####################################################################
|
|
|
|
|
2023-02-22 12:42:54 +01:00
|
|
|
def generate_label(v, dv):
|
|
|
|
unit = 'Hz'
|
|
|
|
if v <= 0.0:
|
|
|
|
v = np.nan
|
|
|
|
dv = np.nan
|
|
|
|
unit = 'Hz'
|
|
|
|
elif v > 0.0 and orderOfMagnitude(v) > 2:
|
|
|
|
v = v / 1e3 # in kHz
|
|
|
|
dv = dv / 1e3 # in kHz
|
|
|
|
unit = 'kHz'
|
|
|
|
tf_label = '\u03BD = %.1f \u00B1 %.2f %s'% tuple([v,dv,unit])
|
|
|
|
return tf_label
|
|
|
|
|
2023-02-08 16:58:16 +01:00
|
|
|
def plotHarmonicFit(Positions, TrappingPotential, TrapDepthsInKelvin, axis, popt, pcov):
|
2023-01-12 15:18:46 +01:00
|
|
|
v = popt[0]
|
|
|
|
dv = pcov[0][0]**0.5
|
|
|
|
happrox = harmonic_potential(Positions[axis, :].value, *popt)
|
2023-02-17 19:23:53 +01:00
|
|
|
fig = plt.figure(figsize=(12, 6))
|
|
|
|
ax = fig.add_subplot(121)
|
|
|
|
ax.set_title('Fit to Potential')
|
2023-01-12 15:18:46 +01:00
|
|
|
plt.plot(Positions[axis, :].value, happrox, '-r', label = '\u03BD = %.1f \u00B1 %.2f Hz'% tuple([v,dv]))
|
|
|
|
plt.plot(Positions[axis, :], TrappingPotential[axis], 'ob', label = 'Gaussian Potential')
|
|
|
|
plt.xlabel('Distance (um)', fontsize= 12, fontweight='bold')
|
|
|
|
plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold')
|
2023-02-08 16:58:16 +01:00
|
|
|
plt.ylim([-TrapDepthsInKelvin[0].value, max(TrappingPotential[axis].value)])
|
2023-02-17 19:23:53 +01:00
|
|
|
plt.grid(visible=1)
|
|
|
|
plt.legend(prop={'size': 12, 'weight': 'bold'})
|
|
|
|
|
|
|
|
bx = fig.add_subplot(122)
|
|
|
|
bx.set_title('Fit Residuals')
|
|
|
|
plt.plot(Positions[axis, :].value, TrappingPotential[axis].value - happrox, 'ob')
|
|
|
|
plt.xlabel('Distance (um)', fontsize= 12, fontweight='bold')
|
|
|
|
plt.ylabel('$U_{trap} - U_{Harmonic}$', fontsize= 12, fontweight='bold')
|
|
|
|
plt.xlim([-10, 10])
|
|
|
|
plt.ylim([-1e-2, 1e-2])
|
|
|
|
plt.grid(visible=1)
|
2023-01-12 15:18:46 +01:00
|
|
|
plt.tight_layout()
|
2023-02-17 19:23:53 +01:00
|
|
|
plt.show()
|
|
|
|
|
|
|
|
def plotGaussianFit(Positions, TrappingPotential, popt, pcov):
|
|
|
|
extracted_waist = popt[1]
|
|
|
|
dextracted_waist = pcov[1][1]**0.5
|
|
|
|
gapprox = gaussian_potential(Positions, *popt)
|
|
|
|
fig = plt.figure(figsize=(12, 6))
|
|
|
|
ax = fig.add_subplot(121)
|
|
|
|
ax.set_title('Fit to Potential')
|
|
|
|
plt.plot(Positions, gapprox, '-r', label = 'waist = %.1f \u00B1 %.2f um'% tuple([extracted_waist,dextracted_waist]))
|
|
|
|
plt.plot(Positions, TrappingPotential, 'ob', label = 'Gaussian Potential')
|
|
|
|
plt.xlabel('Distance (um)', fontsize= 12, fontweight='bold')
|
|
|
|
plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold')
|
|
|
|
plt.ylim([min(TrappingPotential), max(TrappingPotential)])
|
2023-01-12 15:18:46 +01:00
|
|
|
plt.grid(visible=1)
|
|
|
|
plt.legend(prop={'size': 12, 'weight': 'bold'})
|
2023-02-17 19:23:53 +01:00
|
|
|
|
|
|
|
bx = fig.add_subplot(122)
|
|
|
|
bx.set_title('Fit Residuals')
|
|
|
|
plt.plot(Positions, TrappingPotential - gapprox, 'ob')
|
|
|
|
plt.xlabel('Distance (um)', fontsize= 12, fontweight='bold')
|
2023-02-22 12:42:54 +01:00
|
|
|
plt.ylabel('$U_{trap} - U_{Gaussian}$', fontsize= 12, fontweight='bold')
|
2023-02-17 19:23:53 +01:00
|
|
|
plt.xlim([-10, 10])
|
|
|
|
plt.ylim([-1, 1])
|
|
|
|
plt.grid(visible=1)
|
|
|
|
plt.tight_layout()
|
2023-01-12 15:18:46 +01:00
|
|
|
plt.show()
|
2023-01-11 18:54:23 +01:00
|
|
|
|
2023-03-02 10:08:30 +01:00
|
|
|
def plotPotential(Positions, ComputedPotentials, options, Params = [], listToIterateOver = [], save = False):
|
|
|
|
|
|
|
|
axis = options['axis']
|
2023-01-11 18:54:23 +01:00
|
|
|
|
|
|
|
plt.figure(figsize=(9, 7))
|
|
|
|
for i in range(np.size(ComputedPotentials, 0)):
|
2023-02-08 15:58:44 +01:00
|
|
|
|
|
|
|
if i % 2 == 0:
|
|
|
|
j = int(i / 2)
|
|
|
|
else:
|
|
|
|
j = int((i - 1) / 2)
|
|
|
|
|
|
|
|
IdealTrapDepthInKelvin = Params[j][0][0]
|
|
|
|
EffectiveTrapDepthInKelvin = Params[j][0][1]
|
|
|
|
|
|
|
|
idealv = Params[j][2][0][0]
|
|
|
|
idealdv = Params[j][2][0][1]
|
|
|
|
|
2023-03-02 10:08:30 +01:00
|
|
|
if options['extract_trap_frequencies']:
|
|
|
|
v = Params[j][2][1][0]
|
|
|
|
dv = Params[j][2][1][1]
|
|
|
|
else:
|
|
|
|
v = np.nan
|
|
|
|
dv = np.nan
|
2023-02-08 15:58:44 +01:00
|
|
|
|
|
|
|
if listToIterateOver:
|
|
|
|
if np.size(ComputedPotentials, 0) == len(listToIterateOver):
|
|
|
|
plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'Trap Depth = ' + str(round(EffectiveTrapDepthInKelvin.value, 2)) + ' ' + str(EffectiveTrapDepthInKelvin.unit) + '; ' + generate_label(v, dv))
|
|
|
|
else:
|
|
|
|
if i % 2 == 0:
|
|
|
|
plt.plot(Positions[axis], ComputedPotentials[i][axis], '--', label = 'Trap Depth = ' + str(round(IdealTrapDepthInKelvin.value, 2)) + ' ' + str(IdealTrapDepthInKelvin.unit) + '; ' + generate_label(idealv, idealdv))
|
|
|
|
elif i % 2 != 0:
|
2023-03-02 10:08:30 +01:00
|
|
|
plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'Effective Trap Depth = ' + str(round(EffectiveTrapDepthInKelvin.value, 2)) + ' ' + str(EffectiveTrapDepthInKelvin.unit) + '; ' + generate_label(v, dv))
|
2023-01-13 18:15:36 +01:00
|
|
|
else:
|
2023-02-08 15:58:44 +01:00
|
|
|
if i % 2 == 0:
|
|
|
|
plt.plot(Positions[axis], ComputedPotentials[i][axis], '--', label = 'Trap Depth = ' + str(round(IdealTrapDepthInKelvin.value, 2)) + ' ' + str(IdealTrapDepthInKelvin.unit) + '; ' + generate_label(idealv, idealdv))
|
|
|
|
elif i % 2 != 0:
|
|
|
|
plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'Effective Trap Depth = ' + str(round(EffectiveTrapDepthInKelvin.value, 2)) + ' ' + str(EffectiveTrapDepthInKelvin.unit) + '; ' + generate_label(v, dv))
|
2023-01-11 18:54:23 +01:00
|
|
|
if axis == 0:
|
2023-02-17 12:49:10 +01:00
|
|
|
dir = 'X - Horizontal'
|
2023-01-11 18:54:23 +01:00
|
|
|
elif axis == 1:
|
2023-02-17 12:49:10 +01:00
|
|
|
dir = 'Y - Propagation'
|
2023-01-11 18:54:23 +01:00
|
|
|
else:
|
2023-02-17 12:49:10 +01:00
|
|
|
dir = 'Z - Vertical'
|
2023-02-13 20:52:01 +01:00
|
|
|
|
|
|
|
plt.ylim(top = 0)
|
2023-01-11 18:54:23 +01:00
|
|
|
plt.xlabel(dir + ' Direction (um)', fontsize= 12, fontweight='bold')
|
|
|
|
plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold')
|
|
|
|
plt.tight_layout()
|
|
|
|
plt.grid(visible=1)
|
2023-01-12 19:16:52 +01:00
|
|
|
plt.legend(loc=3, prop={'size': 12, 'weight': 'bold'})
|
2023-02-08 15:58:44 +01:00
|
|
|
if save:
|
|
|
|
plt.savefig('pot_' + dir + '.png')
|
2023-01-12 15:18:46 +01:00
|
|
|
plt.show()
|
2023-01-11 18:54:23 +01:00
|
|
|
|
2023-02-22 12:42:54 +01:00
|
|
|
def plotIntensityProfileAndPotentials(positions, waists, I, U):
|
|
|
|
|
|
|
|
x_Positions = positions[0]
|
|
|
|
z_Positions = positions[1]
|
|
|
|
|
|
|
|
w_x = waists[0]
|
|
|
|
dw_x = waists[1]
|
|
|
|
w_z = waists[2]
|
|
|
|
dw_x = waists[3]
|
|
|
|
|
|
|
|
ar = w_x/w_z
|
|
|
|
dar = ar * np.sqrt((dw_x/w_x)**2 + (dw_x/w_z)**2)
|
|
|
|
|
|
|
|
fig = plt.figure(figsize=(12, 6))
|
|
|
|
ax = fig.add_subplot(121)
|
|
|
|
ax.set_title('Intensity Profile ($MW/cm^2$)\n Aspect Ratio = %.2f \u00B1 %.2f um'% tuple([ar,dar]))
|
|
|
|
im = plt.imshow(np.transpose(I.value), cmap="coolwarm", extent=[np.min(x_Positions.value), np.max(x_Positions.value), np.min(z_Positions.value), np.max(z_Positions.value)])
|
|
|
|
plt.xlabel('X - Horizontal (um)', fontsize= 12, fontweight='bold')
|
|
|
|
plt.ylabel('Z - Vertical (um)', fontsize= 12, fontweight='bold')
|
|
|
|
ax.set_aspect('equal')
|
|
|
|
fig.colorbar(im, fraction=0.046, pad=0.04, orientation='vertical')
|
|
|
|
|
|
|
|
bx = fig.add_subplot(122)
|
|
|
|
bx.set_title('Trap Potential')
|
|
|
|
plt.plot(x_Positions, U[:, np.where(z_Positions==0)[0][0]], label = 'X - Horizontal')
|
|
|
|
plt.plot(z_Positions, U[np.where(x_Positions==0)[0][0], :], label = 'Z - Vertical')
|
|
|
|
plt.ylim(top = 0)
|
|
|
|
plt.xlabel('Extent (um)', fontsize= 12, fontweight='bold')
|
|
|
|
plt.ylabel('Depth (uK)', fontsize= 12, fontweight='bold')
|
|
|
|
plt.tight_layout()
|
|
|
|
plt.grid(visible=1)
|
|
|
|
plt.legend(prop={'size': 12, 'weight': 'bold'})
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
def plotAlphas():
|
|
|
|
|
|
|
|
modulation_depth = np.arange(0, 1.1, 0.1)
|
|
|
|
Alphas, fin_mod_dep, alpha_x, alpha_y, dalpha_x, dalpha_y = convert_modulation_depth_to_alpha(modulation_depth)
|
|
|
|
|
|
|
|
plt.figure()
|
2023-02-27 20:25:07 +01:00
|
|
|
plt.errorbar(fin_mod_dep, alpha_x, yerr = dalpha_x, fmt= 'ob', label = 'From Horz TF', markersize=5, capsize=5)
|
|
|
|
plt.errorbar(fin_mod_dep, alpha_y, yerr = dalpha_y, fmt= 'or', label = 'From Vert TF', markersize=5, capsize=5)
|
2023-02-22 12:42:54 +01:00
|
|
|
plt.plot(modulation_depth, Alphas, '--g')
|
|
|
|
plt.xlabel('Modulation depth', fontsize= 12, fontweight='bold')
|
|
|
|
plt.ylabel('$\\alpha$', fontsize= 12, fontweight='bold')
|
|
|
|
plt.tight_layout()
|
|
|
|
plt.grid(visible=1)
|
2023-02-27 20:25:07 +01:00
|
|
|
plt.legend(prop={'size': 12, 'weight': 'bold'})
|
2023-02-22 12:42:54 +01:00
|
|
|
plt.show()
|
|
|
|
|
|
|
|
def plotTemperatures(w_x, w_z, plot_against_mod_depth = True):
|
|
|
|
|
|
|
|
modulation_depth = np.arange(0, 1.1, 0.1)
|
|
|
|
w_xs = w_x * convert_modulation_depth_to_alpha(modulation_depth)[0]
|
|
|
|
new_aspect_ratio = w_xs / w_z
|
|
|
|
Temperatures, fin_mod_dep, T_x, T_y, dT_x, dT_y = convert_modulation_depth_to_temperature(modulation_depth)
|
|
|
|
measured_aspect_ratio = (w_x * convert_modulation_depth_to_alpha(fin_mod_dep)[0]) / w_z
|
|
|
|
|
|
|
|
plt.figure()
|
|
|
|
if plot_against_mod_depth:
|
2023-02-27 20:25:07 +01:00
|
|
|
plt.errorbar(fin_mod_dep, T_x, yerr = dT_x, fmt= 'ob', label = 'Horz direction', markersize=5, capsize=5)
|
|
|
|
plt.errorbar(fin_mod_dep, T_y, yerr = dT_y, fmt= 'or', label = 'Vert direction', markersize=5, capsize=5)
|
2023-02-22 12:42:54 +01:00
|
|
|
plt.plot(modulation_depth, Temperatures, '--g')
|
|
|
|
xlabel = 'Modulation depth'
|
|
|
|
else:
|
2023-02-27 20:25:07 +01:00
|
|
|
plt.errorbar(measured_aspect_ratio, T_x, yerr = dT_x, fmt= 'ob', label = 'Horz direction', markersize=5, capsize=5)
|
|
|
|
plt.errorbar(measured_aspect_ratio, T_y, yerr = dT_y, fmt= 'or', label = 'Vert direction', markersize=5, capsize=5)
|
2023-02-22 12:42:54 +01:00
|
|
|
plt.plot(new_aspect_ratio, Temperatures, '--g')
|
|
|
|
xlabel = 'Aspect Ratio'
|
|
|
|
|
|
|
|
plt.xlabel(xlabel, fontsize= 12, fontweight='bold')
|
|
|
|
plt.ylabel('Temperature (uK)', fontsize= 12, fontweight='bold')
|
|
|
|
plt.tight_layout()
|
|
|
|
plt.grid(visible=1)
|
2023-02-27 20:25:07 +01:00
|
|
|
plt.legend(prop={'size': 12, 'weight': 'bold'})
|
2023-02-22 12:42:54 +01:00
|
|
|
plt.show()
|
|
|
|
|
|
|
|
def plotTrapFrequencies(v_x, v_y, v_z, modulation_depth, new_aspect_ratio, plot_against_mod_depth = True):
|
|
|
|
fig, ax3 = plt.subplots(figsize=(8, 6))
|
|
|
|
|
|
|
|
if plot_against_mod_depth:
|
2023-02-27 20:25:07 +01:00
|
|
|
ln1 = ax3.plot(modulation_depth, v_x, '-or', label = 'v_x')
|
2023-02-22 12:42:54 +01:00
|
|
|
ln2 = ax3.plot(modulation_depth, v_z, '-^b', label = 'v_z')
|
|
|
|
ax4 = ax3.twinx()
|
2023-02-27 20:25:07 +01:00
|
|
|
ln3 = ax4.plot(modulation_depth, v_y, '-*g', label = 'v_y')
|
2023-02-22 12:42:54 +01:00
|
|
|
xlabel = 'Modulation depth'
|
|
|
|
else:
|
2023-02-27 20:25:07 +01:00
|
|
|
ln1 = ax3.plot(new_aspect_ratio, v_x, '-or', label = 'v_x')
|
2023-02-22 12:42:54 +01:00
|
|
|
ln2 = ax3.plot(new_aspect_ratio, v_z, '-^b', label = 'v_z')
|
|
|
|
ax4 = ax3.twinx()
|
2023-02-27 20:25:07 +01:00
|
|
|
ln3 = ax4.plot(new_aspect_ratio, v_y, '-*g', label = 'v_y')
|
2023-02-22 12:42:54 +01:00
|
|
|
xlabel = 'Aspect Ratio'
|
|
|
|
|
|
|
|
ax3.set_xlabel(xlabel, fontsize= 12, fontweight='bold')
|
|
|
|
ax3.set_ylabel('Trap Frequency (Hz)', fontsize= 12, fontweight='bold')
|
|
|
|
ax3.tick_params(axis="y", labelcolor='b')
|
|
|
|
ax4.set_ylabel('Trap Frequency (Hz)', fontsize= 12, fontweight='bold')
|
2023-02-27 20:25:07 +01:00
|
|
|
ax4.tick_params(axis="y", labelcolor='g')
|
2023-02-22 12:42:54 +01:00
|
|
|
plt.tight_layout()
|
|
|
|
plt.grid(visible=1)
|
|
|
|
lns = ln1+ln2+ln3
|
|
|
|
labs = [l.get_label() for l in lns]
|
|
|
|
ax3.legend(lns, labs, prop={'size': 12, 'weight': 'bold'})
|
|
|
|
plt.show()
|
|
|
|
|
2023-03-14 17:13:37 +01:00
|
|
|
def plotMeasuredTrapFrequencies(fx, dfx, fy, dfy, fz, dfz, modulation_depth_radial, modulation_depth_axial, w_x, w_z, plot_against_mod_depth = True):
|
|
|
|
|
2023-02-22 12:42:54 +01:00
|
|
|
alpha_x = [(fx[0]/x)**(2/3) for x in fx]
|
|
|
|
dalpha_x = [alpha_x[i] * np.sqrt((dfx[0]/fx[0])**2 + (dfx[i]/fx[i])**2) for i in range(len(fx))]
|
|
|
|
alpha_y = [(fy[0]/y)**2 for y in fy]
|
|
|
|
dalpha_y = [alpha_y[i] * np.sqrt((dfy[0]/fy[0])**2 + (dfy[i]/fy[i])**2) for i in range(len(fy))]
|
|
|
|
|
|
|
|
avg_alpha = [(g + h) / 2 for g, h in zip(alpha_x, alpha_y)]
|
|
|
|
new_aspect_ratio = (w_x * avg_alpha) / w_z
|
|
|
|
|
|
|
|
|
|
|
|
if plot_against_mod_depth:
|
|
|
|
fig, ax1 = plt.subplots(figsize=(8, 6))
|
|
|
|
ax2 = ax1.twinx()
|
2023-03-14 17:13:37 +01:00
|
|
|
ax1.errorbar(modulation_depth_radial, fx, yerr = dfx, fmt= 'or', label = 'v_x', markersize=5, capsize=5)
|
|
|
|
ax2.errorbar(modulation_depth_axial, fy, yerr = dfy, fmt= '*g', label = 'v_y', markersize=5, capsize=5)
|
|
|
|
ax1.errorbar(modulation_depth_radial, fz, yerr = dfz, fmt= '^b', label = 'v_z', markersize=5, capsize=5)
|
2023-02-22 12:42:54 +01:00
|
|
|
ax1.set_xlabel('Modulation depth', fontsize= 12, fontweight='bold')
|
|
|
|
ax1.set_ylabel('Trap Frequency (kHz)', fontsize= 12, fontweight='bold')
|
|
|
|
ax1.tick_params(axis="y", labelcolor='b')
|
|
|
|
ax2.set_ylabel('Trap Frequency (Hz)', fontsize= 12, fontweight='bold')
|
2023-02-27 20:25:07 +01:00
|
|
|
ax2.tick_params(axis="y", labelcolor='g')
|
2023-02-22 12:42:54 +01:00
|
|
|
h1, l1 = ax1.get_legend_handles_labels()
|
|
|
|
h2, l2 = ax2.get_legend_handles_labels()
|
2023-02-27 20:25:07 +01:00
|
|
|
ax1.legend(h1+h2, l1+l2, loc=0, prop={'size': 12, 'weight': 'bold'})
|
2023-02-22 12:42:54 +01:00
|
|
|
else:
|
|
|
|
plt.figure()
|
|
|
|
plt.errorbar(new_aspect_ratio, fx, yerr = dfx, fmt= 'or', label = 'v_x', markersize=5, capsize=5)
|
|
|
|
plt.errorbar(new_aspect_ratio, fz, yerr = dfz, fmt= '^b', label = 'v_z', markersize=5, capsize=5)
|
|
|
|
plt.xlabel('Aspect Ratio', fontsize= 12, fontweight='bold')
|
|
|
|
plt.ylabel('Trap Frequency (kHz)', fontsize= 12, fontweight='bold')
|
|
|
|
plt.legend(prop={'size': 12, 'weight': 'bold'})
|
|
|
|
|
|
|
|
plt.tight_layout()
|
|
|
|
plt.grid(visible=1)
|
|
|
|
plt.show()
|
|
|
|
|
2023-03-14 17:13:37 +01:00
|
|
|
def plotRatioOfTrapFrequencies(fx, fy, fz, dfx, dfy, dfz, v_x, v_y, v_z, modulation_depth, w_x, w_z, plot_against_mod_depth = True):
|
|
|
|
|
2023-02-22 12:42:54 +01:00
|
|
|
w_xs = w_x * convert_modulation_depth_to_alpha(modulation_depth)[0]
|
|
|
|
new_aspect_ratio = w_xs / w_z
|
|
|
|
|
|
|
|
plt.figure()
|
|
|
|
|
|
|
|
if plot_against_mod_depth:
|
|
|
|
plt.errorbar(modulation_depth, fx/v_x, yerr = dfx/v_x, fmt= 'or', label = 'b/w horz TF', markersize=5, capsize=5)
|
|
|
|
plt.errorbar(modulation_depth, fy/v_y, yerr = dfy/v_y, fmt= '*g', label = 'b/w axial TF', markersize=5, capsize=5)
|
|
|
|
plt.errorbar(modulation_depth, fz/v_z, yerr = dfz/v_z, fmt= '^b', label = 'b/w vert TF', markersize=5, capsize=5)
|
|
|
|
xlabel = 'Modulation depth'
|
|
|
|
else:
|
|
|
|
plt.errorbar(new_aspect_ratio, fx/v_x, yerr = dfx/v_x, fmt= 'or', label = 'b/w horz TF', markersize=5, capsize=5)
|
|
|
|
plt.errorbar(new_aspect_ratio, fy/v_y, yerr = dfy/v_y, fmt= '*g', label = 'b/w axial TF', markersize=5, capsize=5)
|
|
|
|
plt.errorbar(new_aspect_ratio, fz/v_z, yerr = dfz/v_z, fmt= '^b', label = 'b/w vert TF', markersize=5, capsize=5)
|
|
|
|
xlabel = 'Aspect Ratio'
|
|
|
|
|
|
|
|
plt.xlabel(xlabel, fontsize= 12, fontweight='bold')
|
|
|
|
plt.ylabel('Ratio', fontsize= 12, fontweight='bold')
|
|
|
|
plt.tight_layout()
|
|
|
|
plt.grid(visible=1)
|
|
|
|
plt.legend(prop={'size': 12, 'weight': 'bold'})
|
|
|
|
plt.show()
|
2023-02-17 12:49:10 +01:00
|
|
|
|
2023-02-27 20:25:07 +01:00
|
|
|
def plotScatteringLengths(B_range = [0, 2.59]):
|
|
|
|
BField = np.arange(B_range[0], B_range[1], 1e-3) * u.G
|
2023-02-13 20:52:01 +01:00
|
|
|
a_s_array = np.zeros(len(BField)) * ac.a0
|
|
|
|
for idx in range(len(BField)):
|
|
|
|
a_s_array[idx], a_bkg = scatteringLength(BField[idx])
|
|
|
|
rmelmIdx = [i for i, x in enumerate(np.isinf(a_s_array.value)) if x]
|
|
|
|
for x in rmelmIdx:
|
|
|
|
a_s_array[x-1] = np.inf * ac.a0
|
|
|
|
|
|
|
|
plt.figure(figsize=(9, 7))
|
|
|
|
plt.plot(BField, a_s_array/ac.a0, '-b')
|
|
|
|
plt.axhline(y = a_bkg/ac.a0, color = 'r', linestyle = '--')
|
|
|
|
plt.text(min(BField.value) + 0.5, (a_bkg/ac.a0).value + 1, '$a_{bkg}$ = %.2f a0' %((a_bkg/ac.a0).value), fontsize=14, fontweight='bold')
|
|
|
|
plt.xlim([min(BField.value), max(BField.value)])
|
|
|
|
plt.ylim([65, 125])
|
|
|
|
plt.xlabel('B field (G)', fontsize= 12, fontweight='bold')
|
|
|
|
plt.ylabel('Scattering length (a0)', fontsize= 12, fontweight='bold')
|
|
|
|
plt.tight_layout()
|
|
|
|
plt.grid(visible=1)
|
|
|
|
plt.show()
|
|
|
|
|
2023-02-22 12:42:54 +01:00
|
|
|
def plotCollisionRatesAndPSD(Gamma_elastic, PSD, modulation_depth, new_aspect_ratio, plot_against_mod_depth = True):
|
|
|
|
fig, ax1 = plt.subplots(figsize=(8, 6))
|
|
|
|
ax2 = ax1.twinx()
|
|
|
|
|
|
|
|
if plot_against_mod_depth:
|
|
|
|
ax1.plot(modulation_depth, Gamma_elastic, '-ob')
|
|
|
|
ax2.plot(modulation_depth, PSD, '-*r')
|
|
|
|
ax2.yaxis.set_major_formatter(mtick.FormatStrFormatter('%.1e'))
|
|
|
|
xlabel = 'Modulation depth'
|
|
|
|
else:
|
|
|
|
ax1.plot(new_aspect_ratio, Gamma_elastic, '-ob')
|
|
|
|
ax2.plot(new_aspect_ratio, PSD, '-*r')
|
|
|
|
ax2.yaxis.set_major_formatter(mtick.FormatStrFormatter('%.1e'))
|
|
|
|
xlabel = 'Aspect Ratio'
|
|
|
|
|
|
|
|
ax1.set_xlabel(xlabel, fontsize= 12, fontweight='bold')
|
|
|
|
ax1.set_ylabel('Elastic Collision Rate', fontsize= 12, fontweight='bold')
|
|
|
|
ax1.tick_params(axis="y", labelcolor='b')
|
|
|
|
ax2.set_ylabel('Phase Space Density', fontsize= 12, fontweight='bold')
|
|
|
|
ax2.tick_params(axis="y", labelcolor='r')
|
|
|
|
plt.tight_layout()
|
|
|
|
plt.grid(visible=1)
|
|
|
|
plt.show()
|
|
|
|
|
2023-03-14 19:26:43 +01:00
|
|
|
#####################################################################
|
|
|
|
|
|
|
|
#Polarizability = 184.4 # in a.u, most precise measured value of Dy polarizability
|