Added astigmatic crossed dipole trap, corrected inconsistency in the naming and usage of the variable for polarizability.
This commit is contained in:
parent
2fdf592dda
commit
6f018c0281
File diff suppressed because one or more lines are too long
@ -87,10 +87,10 @@ def calculateAtomNumber(NCount, pixel_size = 5.86 * u.um, magnification = 0.5, e
|
||||
def meanThermalVelocity(T, m = 164*u.u):
|
||||
return 4 * np.sqrt((ac.k_B * T) /(np.pi * m))
|
||||
|
||||
def particleDensity(w_x, w_z, Power, Polarizability, N, T, m = 164*u.u): # For a thermal cloud
|
||||
v_x = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'x')
|
||||
v_y = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'y')
|
||||
v_z = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'z')
|
||||
def particleDensity(w_x, w_z, Power, N, T, m = 164*u.u): # For a thermal cloud
|
||||
v_x = calculateTrapFrequency(w_x, w_z, Power, dir = 'x')
|
||||
v_y = calculateTrapFrequency(w_x, w_z, Power, dir = 'y')
|
||||
v_z = calculateTrapFrequency(w_x, w_z, Power, dir = 'z')
|
||||
return N * (2 * np.pi)**3 * (v_x * v_y * v_z) * (m / (2 * np.pi * ac.k_B * T))**(3/2)
|
||||
|
||||
def calculateParticleDensityFromMeasurements(v_x, dv_x, v_y, dv_y, v_z, dv_z, w_x, w_z, T_x, T_y, dT_x, dT_y, modulation_depth, N, m = 164*u.u):
|
||||
@ -167,11 +167,11 @@ def dipolarLength(mu = 9.93 * ac.muB, m = 164*u.u):
|
||||
def scatteringCrossSection(B):
|
||||
return 8 * np.pi * scatteringLength(B)[0]**2 + ((32*np.pi)/45) * dipolarLength()**2
|
||||
|
||||
def calculateElasticCollisionRate(w_x, w_z, Power, Polarizability, N, T, B): #For a 3D Harmonic Trap
|
||||
return (particleDensity(w_x, w_z, Power, Polarizability, N, T) * scatteringCrossSection(B) * meanThermalVelocity(T) / (2 * np.sqrt(2))).decompose()
|
||||
def calculateElasticCollisionRate(w_x, w_z, Power, N, T, B): #For a 3D Harmonic Trap
|
||||
return (particleDensity(w_x, w_z, Power, N, T) * scatteringCrossSection(B) * meanThermalVelocity(T) / (2 * np.sqrt(2))).decompose()
|
||||
|
||||
def calculatePSD(w_x, w_z, Power, Polarizability, N, T):
|
||||
return (particleDensity(w_x, w_z, Power, Polarizability, N, T, m = 164*u.u) * thermaldeBroglieWavelength(T)**3).decompose()
|
||||
def calculatePSD(w_x, w_z, Power, N, T):
|
||||
return (particleDensity(w_x, w_z, Power, N, T) * thermaldeBroglieWavelength(T)**3).decompose()
|
||||
|
||||
def convert_modulation_depth_to_alpha(modulation_depth):
|
||||
fin_mod_dep = [0, 0.5, 0.3, 0.7, 0.9, 0.8, 1.0, 0.6, 0.4, 0.2, 0.1]
|
||||
@ -213,19 +213,19 @@ def convert_modulation_depth_to_temperature(modulation_depth):
|
||||
def gravitational_potential(positions, m):
|
||||
return m * ac.g0 * positions
|
||||
|
||||
def single_gaussian_beam_potential(positions, waists, alpha, P=1, wavelength=1.064*u.um):
|
||||
def single_gaussian_beam_potential(positions, waists, alpha = 184.4, P=1, wavelength=1.064*u.um):
|
||||
A = 2*P/(np.pi*w(positions[1,:], waists[0], wavelength)*w(positions[1,:], waists[1], wavelength))
|
||||
U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
||||
U = - U_tilde * A * np.exp(-2 * ((positions[0,:]/w(positions[1,:], waists[0], wavelength))**2 + (positions[2,:]/w(positions[1,:], waists[1], wavelength))**2))
|
||||
return U
|
||||
|
||||
def astigmatic_single_gaussian_beam_potential(positions, waists, del_y, alpha, P=1, wavelength=1.064*u.um):
|
||||
def astigmatic_single_gaussian_beam_potential(positions, waists, del_y, alpha = 184.4, P=1, wavelength=1.064*u.um):
|
||||
A = 2*P/(np.pi*w(positions[1,:] - (del_y/2), waists[0], wavelength)*w(positions[1,:] + (del_y/2), waists[1], wavelength))
|
||||
U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
||||
U = - U_tilde * A * np.exp(-2 * ((positions[0,:]/w(positions[1,:] - (del_y/2), waists[0], wavelength))**2 + (positions[2,:]/w(positions[1,:] + (del_y/2), waists[1], wavelength))**2))
|
||||
return U
|
||||
|
||||
def modulated_single_gaussian_beam_potential(positions, waists, alpha, P=1, wavelength=1.064*u.um, mod_amp=1):
|
||||
def modulated_single_gaussian_beam_potential(positions, waists, alpha = 184.4, P=1, wavelength=1.064*u.um, mod_amp=1):
|
||||
mod_amp = mod_amp * waists[0]
|
||||
n_points = len(positions[0,:])
|
||||
dx, x_mod = modulation_function(mod_amp, n_points, func = 'arccos')
|
||||
@ -245,7 +245,7 @@ def gaussian_potential(pos, amp, waist, xoffset, yoffset):
|
||||
U_Gaussian = amp * np.exp(-2 * ((pos + xoffset) / waist)**2) + yoffset
|
||||
return U_Gaussian
|
||||
|
||||
def crossed_beam_potential(positions, theta, waists, P, alpha, wavelength=1.064*u.um):
|
||||
def crossed_beam_potential(positions, theta, waists, P, alpha = 184.4, wavelength=1.064*u.um):
|
||||
|
||||
beam_1_positions = positions
|
||||
A_1 = 2*P[0]/(np.pi*w(beam_1_positions[1,:], waists[0][0], wavelength)*w(beam_1_positions[1,:], waists[0][1], wavelength))
|
||||
@ -262,15 +262,35 @@ def crossed_beam_potential(positions, theta, waists, P, alpha, wavelength=1.064*
|
||||
|
||||
return U
|
||||
|
||||
def astigmatic_crossed_beam_potential(positions, theta, waists, P, del_y, alpha = 184.4, wavelength=1.064*u.um):
|
||||
|
||||
del_y_1 = del_y[0]
|
||||
del_y_2 = del_y[1]
|
||||
|
||||
beam_1_positions = positions
|
||||
A_1 = 2*P[0]/(np.pi*w(beam_1_positions[1,:] - (del_y_1/2), waists[0][0], wavelength)*w(beam_1_positions[1,:] + (del_y_1/2), waists[0][1], wavelength))
|
||||
U_1_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
||||
U_1 = - U_1_tilde * A_1 * np.exp(-2 * ((beam_1_positions[0,:]/w(beam_1_positions[1,:] - (del_y_1/2), waists[0][0], wavelength))**2 + (beam_1_positions[2,:]/w(beam_1_positions[1,:] + (del_y_1/2), waists[0][1], wavelength))**2))
|
||||
|
||||
R = rotation_matrix([0, 0, 1], np.radians(theta))
|
||||
beam_2_positions = np.dot(R, beam_1_positions)
|
||||
A_2 = 2*P[1]/(np.pi*w(beam_2_positions[1,:] - (del_y_2/2), waists[1][0], wavelength)*w(beam_2_positions[1,:] + (del_y_2/2), waists[1][1], wavelength))
|
||||
U_2_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
||||
U_2 = - U_2_tilde * A_2 * np.exp(-2 * ((beam_2_positions[0,:]/w(beam_2_positions[1,:] - (del_y_2/2), waists[1][0], wavelength))**2 + (beam_2_positions[2,:]/w(beam_2_positions[1,:] + (del_y_2/2), waists[1][1], wavelength))**2))
|
||||
|
||||
U = U_1 + U_2
|
||||
|
||||
return U
|
||||
|
||||
#####################################################################
|
||||
# COMPUTE/EXTRACT TRAP POTENTIAL AND PARAMETERS #
|
||||
#####################################################################
|
||||
|
||||
def trap_depth(w_1, w_2, P, alpha):
|
||||
def trap_depth(w_1, w_2, P, alpha = 184.4):
|
||||
return 2*P/(np.pi*w_1*w_2) * (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
||||
|
||||
def calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'x', m = 164*u.u):
|
||||
TrapDepth = trap_depth(w_x, w_z, Power, alpha=Polarizability)
|
||||
def calculateTrapFrequency(w_x, w_z, Power, dir = 'x', m = 164*u.u):
|
||||
TrapDepth = trap_depth(w_x, w_z, Power)
|
||||
TrapFrequency = np.nan
|
||||
if dir == 'x':
|
||||
TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(4 * TrapDepth / (m*w_x**2))).decompose()
|
||||
@ -281,10 +301,10 @@ def calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'x', m = 164*u
|
||||
TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(4 * TrapDepth/ (m*w_z**2))).decompose()
|
||||
return round(TrapFrequency.value, 2)*u.Hz
|
||||
|
||||
def calculateCrossedBeamTrapFrequency(delta, Waists, Powers, dir = 'x', m = 164*u.u, Polarizability = 184.4, wavelength=1.064*u.um):
|
||||
def calculateCrossedBeamTrapFrequency(delta, Waists, Powers, dir = 'x', m = 164*u.u, wavelength=1.064*u.um):
|
||||
|
||||
TrapDepth_1 = trap_depth(Waists[0][0], Waists[1][0], Powers[0], alpha=Polarizability)
|
||||
TrapDepth_2 = trap_depth(Waists[0][1], Waists[1][1], Powers[1], alpha=Polarizability)
|
||||
TrapDepth_1 = trap_depth(Waists[0][0], Waists[1][0], Powers[0])
|
||||
TrapDepth_2 = trap_depth(Waists[0][1], Waists[1][1], Powers[1])
|
||||
|
||||
w_x1 = Waists[0][0]
|
||||
w_z1 = Waists[1][0]
|
||||
@ -292,8 +312,8 @@ def calculateCrossedBeamTrapFrequency(delta, Waists, Powers, dir = 'x', m = 164*
|
||||
w_y2 = Waists[0][1]
|
||||
w_z2 = Waists[1][1]
|
||||
|
||||
zReff_1 = np.sqrt(2) * z_R(w_x1, 1.064*u.um) * z_R(w_z1, 1.064*u.um) / np.sqrt(z_R(w_x1, 1.064*u.um)**2 + z_R(w_z1, 1.064*u.um)**2)
|
||||
zReff_2 = np.sqrt(2) * z_R(w_y2, 1.064*u.um) * z_R(w_z2, 1.064*u.um) / np.sqrt(z_R(w_y2, 1.064*u.um)**2 + z_R(w_z2, 1.064*u.um)**2)
|
||||
zReff_1 = np.sqrt(2) * z_R(w_x1, wavelength) * z_R(w_z1, wavelength) / np.sqrt(z_R(w_x1, wavelength)**2 + z_R(w_z1, wavelength)**2)
|
||||
zReff_2 = np.sqrt(2) * z_R(w_y2, wavelength) * z_R(w_z2, wavelength) / np.sqrt(z_R(w_y2, wavelength)**2 + z_R(w_z2, wavelength)**2)
|
||||
|
||||
wy2alpha = np.sqrt(((np.cos(np.radians(90 - delta)) / w_y2)**2 + (np.sin(np.radians(90 - delta)) / (2 * zReff_2))**2)**(-1))
|
||||
zR2alpha = np.sqrt(((np.sin(np.radians(90 - delta)) / w_y2)**2 + (np.cos(np.radians(90 - delta)) / (2 * zReff_2))**2)**(-1))
|
||||
@ -328,7 +348,7 @@ def extractTrapFrequency(Positions, TrappingPotential, axis):
|
||||
dv = pcov[0][0]**0.5
|
||||
return v, dv, popt, pcov
|
||||
|
||||
def computeTrapPotential(w_x, w_z, Power, Polarizability, options):
|
||||
def computeTrapPotential(w_x, w_z, Power, options):
|
||||
|
||||
axis = options['axis']
|
||||
extent = options['extent']
|
||||
@ -343,7 +363,7 @@ def computeTrapPotential(w_x, w_z, Power, Polarizability, options):
|
||||
w_x = w_x * (aspect_ratio / current_ar)
|
||||
|
||||
TrappingPotential = []
|
||||
TrapDepth = trap_depth(w_x, w_z, Power, alpha=Polarizability)
|
||||
TrapDepth = trap_depth(w_x, w_z, Power)
|
||||
IdealTrapDepthInKelvin = (TrapDepth/ac.k_B).to(u.uK)
|
||||
|
||||
projection_axis = np.array([0, 1, 0]) # default
|
||||
@ -366,74 +386,68 @@ def computeTrapPotential(w_x, w_z, Power, Polarizability, options):
|
||||
Positions = np.vstack((x_Positions, y_Positions, z_Positions)) * projection_axis[:, np.newaxis]
|
||||
|
||||
if not crossed:
|
||||
IdealTrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, alpha = Polarizability)
|
||||
IdealTrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power)
|
||||
IdealTrappingPotential = IdealTrappingPotential * (np.ones((3, len(IdealTrappingPotential))) * projection_axis[:, np.newaxis])
|
||||
IdealTrappingPotential = (IdealTrappingPotential/ac.k_B).to(u.uK)
|
||||
|
||||
else:
|
||||
delta = options['delta']
|
||||
waists = np.vstack((np.asarray([w_x[0].value, w_z[0].value])*u.um, np.asarray([w_x[1].value, w_z[1].value])*u.um))
|
||||
IdealTrappingPotential = crossed_beam_potential(Positions, delta, waists, P = Power, alpha = Polarizability)
|
||||
IdealTrappingPotential = IdealTrappingPotential * (np.ones((3, len(IdealTrappingPotential))) * projection_axis[:, np.newaxis])
|
||||
IdealTrappingPotential = (IdealTrappingPotential/ac.k_B).to(u.uK)
|
||||
|
||||
if gravity and not astigmatism:
|
||||
# Influence of Gravity
|
||||
m = 164*u.u
|
||||
gravity_axis = np.array([0, 0, 1])
|
||||
tilt_gravity = options['tilt_gravity']
|
||||
theta = options['theta']
|
||||
tilt_axis = options['tilt_axis']
|
||||
if tilt_gravity:
|
||||
R = rotation_matrix(tilt_axis, np.radians(theta))
|
||||
gravity_axis = np.dot(R, gravity_axis)
|
||||
gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis]
|
||||
TrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, alpha = Polarizability)
|
||||
TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis]) + gravitational_potential(gravity_axis_positions, m)
|
||||
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
||||
|
||||
if gravity and not astigmatism:
|
||||
# Influence of Gravity
|
||||
m = 164*u.u
|
||||
gravity_axis = np.array([0, 0, 1])
|
||||
tilt_gravity = options['tilt_gravity']
|
||||
theta = options['theta']
|
||||
tilt_axis = options['tilt_axis']
|
||||
if tilt_gravity:
|
||||
R = rotation_matrix(tilt_axis, np.radians(theta))
|
||||
gravity_axis = np.dot(R, gravity_axis)
|
||||
gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis]
|
||||
TrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power)
|
||||
TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis]) + gravitational_potential(gravity_axis_positions, m)
|
||||
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
||||
|
||||
elif not gravity and astigmatism:
|
||||
# Influence of Astigmatism
|
||||
disp_foci = options['disp_foci']
|
||||
TrappingPotential = astigmatic_single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, del_y = disp_foci)
|
||||
TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis])
|
||||
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
||||
|
||||
elif not gravity and astigmatism:
|
||||
# Influence of Astigmatism
|
||||
disp_foci = options['disp_foci']
|
||||
TrappingPotential = astigmatic_single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, del_y = disp_foci, alpha = Polarizability)
|
||||
TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis])
|
||||
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
||||
|
||||
elif gravity and astigmatism:
|
||||
# Influence of Gravity and Astigmatism
|
||||
m = 164*u.u
|
||||
gravity_axis = np.array([0, 0, 1])
|
||||
tilt_gravity = options['tilt_gravity']
|
||||
theta = options['theta']
|
||||
tilt_axis = options['tilt_axis']
|
||||
disp_foci = options['disp_foci']
|
||||
if tilt_gravity:
|
||||
R = rotation_matrix(tilt_axis, np.radians(theta))
|
||||
gravity_axis = np.dot(R, gravity_axis)
|
||||
gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis]
|
||||
TrappingPotential = astigmatic_single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, del_y = disp_foci, alpha = Polarizability)
|
||||
TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis]) + gravitational_potential(gravity_axis_positions, m)
|
||||
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
||||
|
||||
else:
|
||||
TrappingPotential = IdealTrappingPotential
|
||||
|
||||
if not crossed:
|
||||
elif gravity and astigmatism:
|
||||
# Influence of Gravity and Astigmatism
|
||||
m = 164*u.u
|
||||
gravity_axis = np.array([0, 0, 1])
|
||||
tilt_gravity = options['tilt_gravity']
|
||||
theta = options['theta']
|
||||
tilt_axis = options['tilt_axis']
|
||||
disp_foci = options['disp_foci']
|
||||
if tilt_gravity:
|
||||
R = rotation_matrix(tilt_axis, np.radians(theta))
|
||||
gravity_axis = np.dot(R, gravity_axis)
|
||||
gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis]
|
||||
TrappingPotential = astigmatic_single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, del_y = disp_foci)
|
||||
TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis]) + gravitational_potential(gravity_axis_positions, m)
|
||||
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
||||
|
||||
else:
|
||||
TrappingPotential = IdealTrappingPotential
|
||||
|
||||
infls = np.where(np.diff(np.sign(np.gradient(np.gradient(TrappingPotential[axis].value)))))[0]
|
||||
|
||||
if TrappingPotential[axis][0] > TrappingPotential[axis][-1]:
|
||||
EffectiveTrapDepthInKelvin = max(TrappingPotential[axis][infls[1]:-1]) - min(TrappingPotential[axis][infls[0]:infls[1]])
|
||||
elif TrappingPotential[axis][0] < TrappingPotential[axis][-1]:
|
||||
EffectiveTrapDepthInKelvin = max(TrappingPotential[axis][0:infls[0]]) - min(TrappingPotential[axis][infls[0]:infls[1]])
|
||||
else:
|
||||
EffectiveTrapDepthInKelvin = IdealTrapDepthInKelvin
|
||||
try:
|
||||
if TrappingPotential[axis][0] > TrappingPotential[axis][-1]:
|
||||
EffectiveTrapDepthInKelvin = max(TrappingPotential[axis][infls[1]:-1]) - min(TrappingPotential[axis][infls[0]:infls[1]])
|
||||
elif TrappingPotential[axis][0] < TrappingPotential[axis][-1]:
|
||||
EffectiveTrapDepthInKelvin = max(TrappingPotential[axis][0:infls[0]]) - min(TrappingPotential[axis][infls[0]:infls[1]])
|
||||
else:
|
||||
EffectiveTrapDepthInKelvin = IdealTrapDepthInKelvin
|
||||
except:
|
||||
EffectiveTrapDepthInKelvin = np.nan
|
||||
|
||||
TrapDepthsInKelvin = [IdealTrapDepthInKelvin, EffectiveTrapDepthInKelvin]
|
||||
|
||||
v_x = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'x')
|
||||
v_y = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'y')
|
||||
v_z = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'z')
|
||||
v_x = calculateTrapFrequency(w_x, w_z, Power, dir = 'x')
|
||||
v_y = calculateTrapFrequency(w_x, w_z, Power, dir = 'y')
|
||||
v_z = calculateTrapFrequency(w_x, w_z, Power, dir = 'z')
|
||||
CalculatedTrapFrequencies = [v_x, v_y, v_z]
|
||||
|
||||
v, dv, popt, pcov = extractTrapFrequency(Positions, IdealTrappingPotential, axis)
|
||||
@ -458,6 +472,53 @@ def computeTrapPotential(w_x, w_z, Power, Polarizability, options):
|
||||
return Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies
|
||||
|
||||
else:
|
||||
delta = options['delta']
|
||||
waists = np.vstack((np.asarray([w_x[0].value, w_z[0].value])*u.um, np.asarray([w_x[1].value, w_z[1].value])*u.um))
|
||||
IdealTrappingPotential = crossed_beam_potential(Positions, delta, waists, P = Power)
|
||||
IdealTrappingPotential = IdealTrappingPotential * (np.ones((3, len(IdealTrappingPotential))) * projection_axis[:, np.newaxis])
|
||||
IdealTrappingPotential = (IdealTrappingPotential/ac.k_B).to(u.uK)
|
||||
|
||||
if gravity and not astigmatism:
|
||||
# Influence of Gravity
|
||||
m = 164*u.u
|
||||
gravity_axis = np.array([0, 0, 1])
|
||||
tilt_gravity = options['tilt_gravity']
|
||||
theta = options['theta']
|
||||
tilt_axis = options['tilt_axis']
|
||||
if tilt_gravity:
|
||||
R = rotation_matrix(tilt_axis, np.radians(theta))
|
||||
gravity_axis = np.dot(R, gravity_axis)
|
||||
gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis]
|
||||
TrappingPotential = crossed_beam_potential(Positions, delta, waists, P = Power)
|
||||
TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis]) + gravitational_potential(gravity_axis_positions, m)
|
||||
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
||||
|
||||
elif not gravity and astigmatism:
|
||||
# Influence of Astigmatism
|
||||
disp_foci = options['disp_foci_crossed']
|
||||
TrappingPotential = astigmatic_crossed_beam_potential(Positions, delta, waists, P = Power, del_y = disp_foci)
|
||||
TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis])
|
||||
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
||||
|
||||
elif gravity and astigmatism:
|
||||
# Influence of Gravity and Astigmatism
|
||||
m = 164*u.u
|
||||
gravity_axis = np.array([0, 0, 1])
|
||||
tilt_gravity = options['tilt_gravity']
|
||||
theta = options['theta']
|
||||
tilt_axis = options['tilt_axis']
|
||||
disp_foci = options['disp_foci_crossed']
|
||||
if tilt_gravity:
|
||||
R = rotation_matrix(tilt_axis, np.radians(theta))
|
||||
gravity_axis = np.dot(R, gravity_axis)
|
||||
gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis]
|
||||
TrappingPotential = astigmatic_crossed_beam_potential(Positions, delta, waists, P = Power, del_y = disp_foci)
|
||||
TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis]) + gravitational_potential(gravity_axis_positions, m)
|
||||
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
||||
|
||||
else:
|
||||
TrappingPotential = IdealTrappingPotential
|
||||
|
||||
return Positions, TrappingPotential
|
||||
|
||||
def extractWaist(Positions, TrappingPotential):
|
||||
@ -477,7 +538,7 @@ def extractWaist(Positions, TrappingPotential):
|
||||
popt, pcov = curve_fit(gaussian_potential, xdata, Potential, p0)
|
||||
return popt, pcov
|
||||
|
||||
def computeIntensityProfileAndPotentials(Power, waists, alpha, wavelength, options):
|
||||
def computeIntensityProfileAndPotentials(Power, waists, wavelength, options, alpha = 184.4):
|
||||
w_x = waists[0]
|
||||
w_z = waists[1]
|
||||
extent = options['extent']
|
||||
@ -492,7 +553,6 @@ def computeIntensityProfileAndPotentials(Power, waists, alpha, wavelength, optio
|
||||
|
||||
idx = np.where(y_Positions==0)[0][0]
|
||||
|
||||
alpha = Polarizability
|
||||
wavelength = 1.064*u.um
|
||||
|
||||
xm,ym,zm = np.meshgrid(x_Positions, y_Positions, z_Positions, sparse=True, indexing='ij')
|
||||
@ -877,4 +937,6 @@ def plotCollisionRatesAndPSD(Gamma_elastic, PSD, modulation_depth, new_aspect_ra
|
||||
plt.grid(visible=1)
|
||||
plt.show()
|
||||
|
||||
#####################################################################
|
||||
#####################################################################
|
||||
|
||||
#Polarizability = 184.4 # in a.u, most precise measured value of Dy polarizability
|
Loading…
Reference in New Issue
Block a user