151 lines
7.1 KiB
Python
151 lines
7.1 KiB
Python
|
import math
|
||
|
import numpy as np
|
||
|
import matplotlib.pyplot as plt
|
||
|
from astropy import units as u, constants as ac
|
||
|
|
||
|
def rotation_matrix(axis, theta):
|
||
|
"""
|
||
|
Return the rotation matrix associated with counterclockwise rotation about
|
||
|
the given axis by theta radians.
|
||
|
|
||
|
In 2-D it is just,
|
||
|
thetaInRadians = np.radians(theta)
|
||
|
c, s = np.cos(thetaInRadians), np.sin(thetaInRadians)
|
||
|
R = np.array(((c, -s), (s, c)))
|
||
|
|
||
|
In 3-D, one way to do it is use the Euler-Rodrigues Formula as is done here
|
||
|
"""
|
||
|
axis = np.asarray(axis)
|
||
|
axis = axis / math.sqrt(np.dot(axis, axis))
|
||
|
a = math.cos(theta / 2.0)
|
||
|
b, c, d = -axis * math.sin(theta / 2.0)
|
||
|
aa, bb, cc, dd = a * a, b * b, c * c, d * d
|
||
|
bc, ad, ac, ab, bd, cd = b * c, a * d, a * c, a * b, b * d, c * d
|
||
|
return np.array([[aa + bb - cc - dd, 2 * (bc + ad), 2 * (bd - ac)],
|
||
|
[2 * (bc - ad), aa + cc - bb - dd, 2 * (cd + ab)],
|
||
|
[2 * (bd + ac), 2 * (cd - ab), aa + dd - bb - cc]])
|
||
|
|
||
|
# Rayleigh range
|
||
|
def z_R(w_0:np.ndarray, lamb:float)->np.ndarray:
|
||
|
return np.pi*w_0**2/lamb
|
||
|
|
||
|
# Beam Radius
|
||
|
def w(pos, w_0, lamb):
|
||
|
return w_0*np.sqrt(1+(pos*lamb/(np.pi*w_0**2))**2)
|
||
|
|
||
|
def trap_depth(w_1:"float|u.quantity.Quantity", w_2:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity", alpha:float)->"float|u.quantity.Quantity":
|
||
|
return 2*P/(np.pi*w_1*w_2) * (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
||
|
|
||
|
def gravitational_potential(positions: "np.ndarray|u.quantity.Quantity", m:"float|u.quantity.Quantity"):
|
||
|
return m * ac.g0 * positions
|
||
|
|
||
|
def single_gaussian_beam_potential(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", P:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um, alpha:"float|u.quantity.Quantity"=184.4)->np.ndarray:
|
||
|
A = 2*P/(np.pi*w(positions[1,:], waists[0], wavelength)*w(positions[1,:], waists[1], wavelength))
|
||
|
U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
||
|
U = - U_tilde * A * np.exp(-2 * ((positions[0,:]/w(positions[1,:], waists[0], wavelength))**2 + (positions[2,:]/w(positions[1,:], waists[1], wavelength))**2))
|
||
|
return U
|
||
|
|
||
|
def single_gaussian_beam_potential_harmonic_approximation(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", depth:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um)->np.ndarray:
|
||
|
U = - depth * (1 - (2 * (positions[0,:]/waists[0])**2) - (2 * (positions[2,:]/waists[1])**2) - (0.5 * positions[1,:]**2 * np.sum(np.reciprocal(z_R(waists, wavelength)))**2))
|
||
|
return U
|
||
|
|
||
|
def plotPotential(Positions, Powers, ComputedPotentials, axis, TrapDepthLabels):
|
||
|
|
||
|
## plot of the measured parameter vs. scan parameter
|
||
|
plt.figure(figsize=(9, 7))
|
||
|
for i in range(np.size(ComputedPotentials, 0)):
|
||
|
plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'P = ' + str(Powers[i]) + ' W; ' + TrapDepthLabels[i])
|
||
|
if axis == 0:
|
||
|
dir = 'X'
|
||
|
elif axis == 1:
|
||
|
dir = 'Y'
|
||
|
else:
|
||
|
dir = 'Z'
|
||
|
# maxPotentialValue = max(ComputedPotentials.flatten())
|
||
|
# minPotentialValue = min(ComputedPotentials.flatten())
|
||
|
# PotentialValueRange = maxPotentialValue - minPotentialValue
|
||
|
# upperlimit = 5
|
||
|
# if maxPotentialValue > 0:
|
||
|
# upperlimit = maxPotentialValue
|
||
|
# lowerlimit = min(ComputedPotentials.flatten()) - PotentialValueRange/6
|
||
|
# plt.ylim([lowerlimit, upperlimit])
|
||
|
plt.xlabel(dir + ' Direction (um)', fontsize= 12, fontweight='bold')
|
||
|
plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold')
|
||
|
plt.tight_layout()
|
||
|
plt.grid(visible=1)
|
||
|
plt.legend(prop={'size': 12, 'weight': 'bold'})
|
||
|
plt.tight_layout()
|
||
|
# plt.show()
|
||
|
plt.savefig('pot_' + dir + '.png')
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
|
||
|
# Powers = [0.1, 0.5, 2]
|
||
|
# Powers = [5, 10, 20, 30, 40]
|
||
|
Powers = [40]
|
||
|
Polarizability = 160 # in a.u., should we use alpha = 136 or 160 or 184.4?
|
||
|
# w_x, w_z = 34*u.um, 27.5*u.um # Beam Waists in the x and y directions
|
||
|
w_x, w_z = 35*u.um, 35*u.um # Beam Waists in the x and y directions
|
||
|
# w_x, w_z = 20.5*u.um, 20.5*u.um
|
||
|
|
||
|
axis = 1 # axis referenced to the beam along which you want the dipole trap potential
|
||
|
extent = 1e4 # range of spatial coordinates in one direction to calculate trap potential over
|
||
|
|
||
|
TrappingPotential = []
|
||
|
ComputedPotentials = []
|
||
|
TrapDepthLabels = []
|
||
|
|
||
|
gravity = False
|
||
|
astigmatism = False
|
||
|
|
||
|
tilt_gravity = True
|
||
|
theta = 0 # in degrees
|
||
|
tilt_axis = [1, 0, 0] # lab space coordinates are rotated about x-axis in reference frame of beam
|
||
|
|
||
|
for p in Powers:
|
||
|
|
||
|
Power = p*u.W # Single Beam Power
|
||
|
|
||
|
TrapDepth = trap_depth(w_x, w_z, Power, alpha=Polarizability)
|
||
|
TrapDepthInKelvin = (TrapDepth/ac.k_B).to(u.uK)
|
||
|
TrapDepthLabels.append("Trap Depth = " + str(round(TrapDepthInKelvin.value, 2)) + " " + str(TrapDepthInKelvin.unit))
|
||
|
|
||
|
projection_axis = np.array([0, 1, 0]) # default
|
||
|
if axis == 0:
|
||
|
projection_axis = np.array([1, 0, 0]) # radial direction (X-axis)
|
||
|
elif axis == 1:
|
||
|
projection_axis = np.array([0, 1, 0]) # propagation direction (Y-axis)
|
||
|
elif axis == 2:
|
||
|
projection_axis = np.array([0, 0, 1]) # vertical direction (Z-axis)
|
||
|
|
||
|
x_Positions = np.arange(-extent, extent, 1)*u.um
|
||
|
y_Positions = np.arange(-extent, extent, 1)*u.um
|
||
|
z_Positions = np.arange(-extent, extent, 1)*u.um
|
||
|
Positions = np.vstack((x_Positions, y_Positions, z_Positions)) * projection_axis[:, np.newaxis]
|
||
|
|
||
|
if not gravity and not astigmatism:
|
||
|
TrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, alpha = Polarizability)
|
||
|
TrappingPotential = TrappingPotential + np.zeros((3, len(TrappingPotential))) * TrappingPotential.unit
|
||
|
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
||
|
|
||
|
elif gravity and not astigmatism:
|
||
|
# Influence of Gravity
|
||
|
m = 164*u.u
|
||
|
gravity_axis = np.array([0, 0, 1])
|
||
|
if tilt_gravity:
|
||
|
R = rotation_matrix(tilt_axis, np.radians(theta))
|
||
|
gravity_axis = np.dot(R, gravity_axis)
|
||
|
gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis]
|
||
|
TrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, alpha = Polarizability) + gravitational_potential(gravity_axis_positions, m)
|
||
|
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
||
|
|
||
|
ComputedPotentials.append(TrappingPotential)
|
||
|
|
||
|
ComputedPotentials = np.asarray(ComputedPotentials)
|
||
|
plotPotential(Positions, Powers, ComputedPotentials, axis, TrapDepthLabels)
|
||
|
|
||
|
# Influence of Astigmatism
|
||
|
|
||
|
# TrappingPotential = single_gaussian_beam_potential_harmonic_approximation(Positions, np.asarray([w_x.value, w_z.value])*u.um, depth = TrapDepth)
|
||
|
# TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
||
|
|