Calculations/calculateDipoleTrapPotential.py

151 lines
7.1 KiB
Python
Raw Normal View History

import math
import numpy as np
import matplotlib.pyplot as plt
from astropy import units as u, constants as ac
def rotation_matrix(axis, theta):
"""
Return the rotation matrix associated with counterclockwise rotation about
the given axis by theta radians.
In 2-D it is just,
thetaInRadians = np.radians(theta)
c, s = np.cos(thetaInRadians), np.sin(thetaInRadians)
R = np.array(((c, -s), (s, c)))
In 3-D, one way to do it is use the Euler-Rodrigues Formula as is done here
"""
axis = np.asarray(axis)
axis = axis / math.sqrt(np.dot(axis, axis))
a = math.cos(theta / 2.0)
b, c, d = -axis * math.sin(theta / 2.0)
aa, bb, cc, dd = a * a, b * b, c * c, d * d
bc, ad, ac, ab, bd, cd = b * c, a * d, a * c, a * b, b * d, c * d
return np.array([[aa + bb - cc - dd, 2 * (bc + ad), 2 * (bd - ac)],
[2 * (bc - ad), aa + cc - bb - dd, 2 * (cd + ab)],
[2 * (bd + ac), 2 * (cd - ab), aa + dd - bb - cc]])
# Rayleigh range
def z_R(w_0:np.ndarray, lamb:float)->np.ndarray:
return np.pi*w_0**2/lamb
# Beam Radius
def w(pos, w_0, lamb):
return w_0*np.sqrt(1+(pos*lamb/(np.pi*w_0**2))**2)
def trap_depth(w_1:"float|u.quantity.Quantity", w_2:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity", alpha:float)->"float|u.quantity.Quantity":
return 2*P/(np.pi*w_1*w_2) * (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
def gravitational_potential(positions: "np.ndarray|u.quantity.Quantity", m:"float|u.quantity.Quantity"):
return m * ac.g0 * positions
def single_gaussian_beam_potential(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", P:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um, alpha:"float|u.quantity.Quantity"=184.4)->np.ndarray:
A = 2*P/(np.pi*w(positions[1,:], waists[0], wavelength)*w(positions[1,:], waists[1], wavelength))
U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
U = - U_tilde * A * np.exp(-2 * ((positions[0,:]/w(positions[1,:], waists[0], wavelength))**2 + (positions[2,:]/w(positions[1,:], waists[1], wavelength))**2))
return U
def single_gaussian_beam_potential_harmonic_approximation(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", depth:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um)->np.ndarray:
U = - depth * (1 - (2 * (positions[0,:]/waists[0])**2) - (2 * (positions[2,:]/waists[1])**2) - (0.5 * positions[1,:]**2 * np.sum(np.reciprocal(z_R(waists, wavelength)))**2))
return U
def plotPotential(Positions, Powers, ComputedPotentials, axis, TrapDepthLabels):
## plot of the measured parameter vs. scan parameter
plt.figure(figsize=(9, 7))
for i in range(np.size(ComputedPotentials, 0)):
plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'P = ' + str(Powers[i]) + ' W; ' + TrapDepthLabels[i])
if axis == 0:
dir = 'X'
elif axis == 1:
dir = 'Y'
else:
dir = 'Z'
# maxPotentialValue = max(ComputedPotentials.flatten())
# minPotentialValue = min(ComputedPotentials.flatten())
# PotentialValueRange = maxPotentialValue - minPotentialValue
# upperlimit = 5
# if maxPotentialValue > 0:
# upperlimit = maxPotentialValue
# lowerlimit = min(ComputedPotentials.flatten()) - PotentialValueRange/6
# plt.ylim([lowerlimit, upperlimit])
plt.xlabel(dir + ' Direction (um)', fontsize= 12, fontweight='bold')
plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold')
plt.tight_layout()
plt.grid(visible=1)
plt.legend(prop={'size': 12, 'weight': 'bold'})
plt.tight_layout()
# plt.show()
plt.savefig('pot_' + dir + '.png')
if __name__ == '__main__':
# Powers = [0.1, 0.5, 2]
# Powers = [5, 10, 20, 30, 40]
Powers = [40]
Polarizability = 160 # in a.u., should we use alpha = 136 or 160 or 184.4?
# w_x, w_z = 34*u.um, 27.5*u.um # Beam Waists in the x and y directions
w_x, w_z = 35*u.um, 35*u.um # Beam Waists in the x and y directions
# w_x, w_z = 20.5*u.um, 20.5*u.um
axis = 1 # axis referenced to the beam along which you want the dipole trap potential
extent = 1e4 # range of spatial coordinates in one direction to calculate trap potential over
TrappingPotential = []
ComputedPotentials = []
TrapDepthLabels = []
gravity = False
astigmatism = False
tilt_gravity = True
theta = 0 # in degrees
tilt_axis = [1, 0, 0] # lab space coordinates are rotated about x-axis in reference frame of beam
for p in Powers:
Power = p*u.W # Single Beam Power
TrapDepth = trap_depth(w_x, w_z, Power, alpha=Polarizability)
TrapDepthInKelvin = (TrapDepth/ac.k_B).to(u.uK)
TrapDepthLabels.append("Trap Depth = " + str(round(TrapDepthInKelvin.value, 2)) + " " + str(TrapDepthInKelvin.unit))
projection_axis = np.array([0, 1, 0]) # default
if axis == 0:
projection_axis = np.array([1, 0, 0]) # radial direction (X-axis)
elif axis == 1:
projection_axis = np.array([0, 1, 0]) # propagation direction (Y-axis)
elif axis == 2:
projection_axis = np.array([0, 0, 1]) # vertical direction (Z-axis)
x_Positions = np.arange(-extent, extent, 1)*u.um
y_Positions = np.arange(-extent, extent, 1)*u.um
z_Positions = np.arange(-extent, extent, 1)*u.um
Positions = np.vstack((x_Positions, y_Positions, z_Positions)) * projection_axis[:, np.newaxis]
if not gravity and not astigmatism:
TrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, alpha = Polarizability)
TrappingPotential = TrappingPotential + np.zeros((3, len(TrappingPotential))) * TrappingPotential.unit
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
elif gravity and not astigmatism:
# Influence of Gravity
m = 164*u.u
gravity_axis = np.array([0, 0, 1])
if tilt_gravity:
R = rotation_matrix(tilt_axis, np.radians(theta))
gravity_axis = np.dot(R, gravity_axis)
gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis]
TrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, alpha = Polarizability) + gravitational_potential(gravity_axis_positions, m)
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
ComputedPotentials.append(TrappingPotential)
ComputedPotentials = np.asarray(ComputedPotentials)
plotPotential(Positions, Powers, ComputedPotentials, axis, TrapDepthLabels)
# Influence of Astigmatism
# TrappingPotential = single_gaussian_beam_potential_harmonic_approximation(Positions, np.asarray([w_x.value, w_z.value])*u.um, depth = TrapDepth)
# TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)