import math import numpy as np import matplotlib.pyplot as plt from astropy import units as u, constants as ac def rotation_matrix(axis, theta): """ Return the rotation matrix associated with counterclockwise rotation about the given axis by theta radians. In 2-D it is just, thetaInRadians = np.radians(theta) c, s = np.cos(thetaInRadians), np.sin(thetaInRadians) R = np.array(((c, -s), (s, c))) In 3-D, one way to do it is use the Euler-Rodrigues Formula as is done here """ axis = np.asarray(axis) axis = axis / math.sqrt(np.dot(axis, axis)) a = math.cos(theta / 2.0) b, c, d = -axis * math.sin(theta / 2.0) aa, bb, cc, dd = a * a, b * b, c * c, d * d bc, ad, ac, ab, bd, cd = b * c, a * d, a * c, a * b, b * d, c * d return np.array([[aa + bb - cc - dd, 2 * (bc + ad), 2 * (bd - ac)], [2 * (bc - ad), aa + cc - bb - dd, 2 * (cd + ab)], [2 * (bd + ac), 2 * (cd - ab), aa + dd - bb - cc]]) # Rayleigh range def z_R(w_0:np.ndarray, lamb:float)->np.ndarray: return np.pi*w_0**2/lamb # Beam Radius def w(pos, w_0, lamb): return w_0*np.sqrt(1+(pos*lamb/(np.pi*w_0**2))**2) def trap_depth(w_1:"float|u.quantity.Quantity", w_2:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity", alpha:float)->"float|u.quantity.Quantity": return 2*P/(np.pi*w_1*w_2) * (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3) def gravitational_potential(positions: "np.ndarray|u.quantity.Quantity", m:"float|u.quantity.Quantity"): return m * ac.g0 * positions def single_gaussian_beam_potential(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", P:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um, alpha:"float|u.quantity.Quantity"=184.4)->np.ndarray: A = 2*P/(np.pi*w(positions[1,:], waists[0], wavelength)*w(positions[1,:], waists[1], wavelength)) U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3) U = - U_tilde * A * np.exp(-2 * ((positions[0,:]/w(positions[1,:], waists[0], wavelength))**2 + (positions[2,:]/w(positions[1,:], waists[1], wavelength))**2)) return U def single_gaussian_beam_potential_harmonic_approximation(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", depth:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um)->np.ndarray: U = - depth * (1 - (2 * (positions[0,:]/waists[0])**2) - (2 * (positions[2,:]/waists[1])**2) - (0.5 * positions[1,:]**2 * np.sum(np.reciprocal(z_R(waists, wavelength)))**2)) return U def plotPotential(Positions, Powers, ComputedPotentials, axis, TrapDepthLabels): ## plot of the measured parameter vs. scan parameter plt.figure(figsize=(9, 7)) for i in range(np.size(ComputedPotentials, 0)): plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'P = ' + str(Powers[i]) + ' W; ' + TrapDepthLabels[i]) if axis == 0: dir = 'X' elif axis == 1: dir = 'Y' else: dir = 'Z' # maxPotentialValue = max(ComputedPotentials.flatten()) # minPotentialValue = min(ComputedPotentials.flatten()) # PotentialValueRange = maxPotentialValue - minPotentialValue # upperlimit = 5 # if maxPotentialValue > 0: # upperlimit = maxPotentialValue # lowerlimit = min(ComputedPotentials.flatten()) - PotentialValueRange/6 # plt.ylim([lowerlimit, upperlimit]) plt.xlabel(dir + ' Direction (um)', fontsize= 12, fontweight='bold') plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold') plt.tight_layout() plt.grid(visible=1) plt.legend(prop={'size': 12, 'weight': 'bold'}) plt.tight_layout() # plt.show() plt.savefig('pot_' + dir + '.png') if __name__ == '__main__': # Powers = [0.1, 0.5, 2] # Powers = [5, 10, 20, 30, 40] Powers = [40] Polarizability = 160 # in a.u., should we use alpha = 136 or 160 or 184.4? # w_x, w_z = 34*u.um, 27.5*u.um # Beam Waists in the x and y directions w_x, w_z = 35*u.um, 35*u.um # Beam Waists in the x and y directions # w_x, w_z = 20.5*u.um, 20.5*u.um axis = 1 # axis referenced to the beam along which you want the dipole trap potential extent = 1e4 # range of spatial coordinates in one direction to calculate trap potential over TrappingPotential = [] ComputedPotentials = [] TrapDepthLabels = [] gravity = False astigmatism = False tilt_gravity = True theta = 0 # in degrees tilt_axis = [1, 0, 0] # lab space coordinates are rotated about x-axis in reference frame of beam for p in Powers: Power = p*u.W # Single Beam Power TrapDepth = trap_depth(w_x, w_z, Power, alpha=Polarizability) TrapDepthInKelvin = (TrapDepth/ac.k_B).to(u.uK) TrapDepthLabels.append("Trap Depth = " + str(round(TrapDepthInKelvin.value, 2)) + " " + str(TrapDepthInKelvin.unit)) projection_axis = np.array([0, 1, 0]) # default if axis == 0: projection_axis = np.array([1, 0, 0]) # radial direction (X-axis) elif axis == 1: projection_axis = np.array([0, 1, 0]) # propagation direction (Y-axis) elif axis == 2: projection_axis = np.array([0, 0, 1]) # vertical direction (Z-axis) x_Positions = np.arange(-extent, extent, 1)*u.um y_Positions = np.arange(-extent, extent, 1)*u.um z_Positions = np.arange(-extent, extent, 1)*u.um Positions = np.vstack((x_Positions, y_Positions, z_Positions)) * projection_axis[:, np.newaxis] if not gravity and not astigmatism: TrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, alpha = Polarizability) TrappingPotential = TrappingPotential + np.zeros((3, len(TrappingPotential))) * TrappingPotential.unit TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK) elif gravity and not astigmatism: # Influence of Gravity m = 164*u.u gravity_axis = np.array([0, 0, 1]) if tilt_gravity: R = rotation_matrix(tilt_axis, np.radians(theta)) gravity_axis = np.dot(R, gravity_axis) gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis] TrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, alpha = Polarizability) + gravitational_potential(gravity_axis_positions, m) TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK) ComputedPotentials.append(TrappingPotential) ComputedPotentials = np.asarray(ComputedPotentials) plotPotential(Positions, Powers, ComputedPotentials, axis, TrapDepthLabels) # Influence of Astigmatism # TrappingPotential = single_gaussian_beam_potential_harmonic_approximation(Positions, np.asarray([w_x.value, w_z.value])*u.um, depth = TrapDepth) # TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)