Corrected how the effective trap depth is calculated, minor changes to code for plotting of the potentials.
This commit is contained in:
parent
69ba21b1e6
commit
4714556ab4
@ -407,10 +407,13 @@ def computeTrapPotential(w_x, w_z, Power, Polarizability, options):
|
||||
TrappingPotential = IdealTrappingPotential
|
||||
|
||||
if not crossed:
|
||||
|
||||
infls = np.where(np.diff(np.sign(np.gradient(np.gradient(TrappingPotential[axis].value)))))[0]
|
||||
|
||||
if TrappingPotential[axis][0] > TrappingPotential[axis][-1]:
|
||||
EffectiveTrapDepthInKelvin = TrappingPotential[axis][-1] - min(TrappingPotential[axis])
|
||||
EffectiveTrapDepthInKelvin = max(TrappingPotential[axis][infls[1]:-1]) - min(TrappingPotential[axis][infls[0]:infls[1]])
|
||||
elif TrappingPotential[axis][0] < TrappingPotential[axis][-1]:
|
||||
EffectiveTrapDepthInKelvin = TrappingPotential[axis][0] - min(TrappingPotential[axis])
|
||||
EffectiveTrapDepthInKelvin = max(TrappingPotential[axis][0:infls[0]]) - min(TrappingPotential[axis][infls[0]:infls[1]])
|
||||
else:
|
||||
EffectiveTrapDepthInKelvin = IdealTrapDepthInKelvin
|
||||
|
||||
@ -422,11 +425,24 @@ def computeTrapPotential(w_x, w_z, Power, Polarizability, options):
|
||||
CalculatedTrapFrequencies = [v_x, v_y, v_z]
|
||||
|
||||
v, dv, popt, pcov = extractTrapFrequency(Positions, IdealTrappingPotential, axis)
|
||||
IdealTrapFrequency = [v, dv]
|
||||
v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, axis)
|
||||
TrapFrequency = [v, dv]
|
||||
ExtractedTrapFrequencies = [IdealTrapFrequency, TrapFrequency]
|
||||
if np.isinf(v):
|
||||
v = np.nan
|
||||
if np.isinf(dv):
|
||||
dv = np.nan
|
||||
|
||||
IdealTrapFrequency = [v, dv]
|
||||
|
||||
if options['extract_trap_frequencies']:
|
||||
v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, axis)
|
||||
if np.isinf(v):
|
||||
v = np.nan
|
||||
if np.isinf(dv):
|
||||
dv = np.nan
|
||||
TrapFrequency = [v, dv]
|
||||
ExtractedTrapFrequencies = [IdealTrapFrequency, TrapFrequency]
|
||||
else:
|
||||
ExtractedTrapFrequencies = [IdealTrapFrequency]
|
||||
|
||||
return Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies
|
||||
|
||||
else:
|
||||
@ -582,7 +598,9 @@ def plotGaussianFit(Positions, TrappingPotential, popt, pcov):
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
|
||||
def plotPotential(Positions, ComputedPotentials, axis, Params = [], listToIterateOver = [], save = False):
|
||||
def plotPotential(Positions, ComputedPotentials, options, Params = [], listToIterateOver = [], save = False):
|
||||
|
||||
axis = options['axis']
|
||||
|
||||
plt.figure(figsize=(9, 7))
|
||||
for i in range(np.size(ComputedPotentials, 0)):
|
||||
@ -598,8 +616,12 @@ def plotPotential(Positions, ComputedPotentials, axis, Params = [], listToIterat
|
||||
idealv = Params[j][2][0][0]
|
||||
idealdv = Params[j][2][0][1]
|
||||
|
||||
v = Params[j][2][1][0]
|
||||
dv = Params[j][2][1][1]
|
||||
if options['extract_trap_frequencies']:
|
||||
v = Params[j][2][1][0]
|
||||
dv = Params[j][2][1][1]
|
||||
else:
|
||||
v = np.nan
|
||||
dv = np.nan
|
||||
|
||||
if listToIterateOver:
|
||||
if np.size(ComputedPotentials, 0) == len(listToIterateOver):
|
||||
@ -608,7 +630,7 @@ def plotPotential(Positions, ComputedPotentials, axis, Params = [], listToIterat
|
||||
if i % 2 == 0:
|
||||
plt.plot(Positions[axis], ComputedPotentials[i][axis], '--', label = 'Trap Depth = ' + str(round(IdealTrapDepthInKelvin.value, 2)) + ' ' + str(IdealTrapDepthInKelvin.unit) + '; ' + generate_label(idealv, idealdv))
|
||||
elif i % 2 != 0:
|
||||
plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'Effective Trap Depth = ' + str(round(EffectiveTrapDepthInKelvin.value, 2)) + ' ' + str(EffectiveTrapDepthInKelvin.unit) + '; ' + generate_label(v, dv))
|
||||
plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'Effective Trap Depth = ' + str(round(EffectiveTrapDepthInKelvin.value, 2)) + ' ' + str(EffectiveTrapDepthInKelvin.unit) + '; ' + generate_label(v, dv))
|
||||
else:
|
||||
if i % 2 == 0:
|
||||
plt.plot(Positions[axis], ComputedPotentials[i][axis], '--', label = 'Trap Depth = ' + str(round(IdealTrapDepthInKelvin.value, 2)) + ' ' + str(IdealTrapDepthInKelvin.unit) + '; ' + generate_label(idealv, idealdv))
|
||||
@ -874,41 +896,43 @@ def plotCollisionRatesAndPSD(Gamma_elastic, PSD, modulation_depth, new_aspect_ra
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# Power = 40*u.W
|
||||
# Polarizability = 184.4 # in a.u, most precise measured value of Dy polarizability
|
||||
# Wavelength = 1.064*u.um
|
||||
# w_x, w_z = 27.5*u.um, 33.8*u.um # Beam Waists in the x and y directions
|
||||
Power = 0.420*u.W
|
||||
Polarizability = 184.4 # in a.u, most precise measured value of Dy polarizability
|
||||
Wavelength = 1.064*u.um
|
||||
w_x, w_z = 30*u.um, 30*u.um # Beam Waists in the x and y directions
|
||||
|
||||
# Power = 11*u.W
|
||||
# Polarizability = 184.4 # in a.u, most precise measured value of Dy polarizability
|
||||
# w_x, w_z = 54.0*u.um, 54.0*u.um # Beam Waists in the x and y directions
|
||||
"""
|
||||
|
||||
options = {
|
||||
'axis': 2, # axis referenced to the beam along which you want the dipole trap potential
|
||||
'extent': 3e2, # range of spatial coordinates in one direction to calculate trap potential over
|
||||
'axis': 1, # axis referenced to the beam along which you want the dipole trap potential
|
||||
'extent': 1e4, # range of spatial coordinates in one direction to calculate trap potential over
|
||||
'crossed': False,
|
||||
'theta': 0,
|
||||
'modulation': True,
|
||||
'aspect_ratio': 1,
|
||||
'delta': 70, # angle between arms in degrees
|
||||
'modulation': False,
|
||||
'aspect_ratio': 4, # required aspect ratio of modulated arm
|
||||
'gravity': True,
|
||||
'tilt_gravity': True,
|
||||
'theta': 0.5, # in degrees
|
||||
'theta': 0.1, # gravity tilt angle in degrees
|
||||
'tilt_axis': [1, 0, 0], # lab space coordinates are rotated about x-axis in reference frame of beam
|
||||
'astigmatism': True,
|
||||
'disp_foci': 0.9 * z_R(w_0 = np.asarray([30]), lamb = 1.064)[0]*u.um # difference in position of the foci along the propagation direction (Astigmatism)
|
||||
'astigmatism': False,
|
||||
'disp_foci': 0.9 * z_R(w_0 = np.asarray([30]), lamb = 1.064)[0]*u.um, # difference in position of the foci along the propagation direction (Astigmatism)
|
||||
'extract_trap_frequencies': True
|
||||
}
|
||||
"""
|
||||
"""Plot ideal trap potential resulting for given parameters only"""
|
||||
# ComputedPotentials = []
|
||||
# Params = []
|
||||
|
||||
# """Plot ideal trap potential resulting for given parameters only"""
|
||||
|
||||
ComputedPotentials = []
|
||||
Params = []
|
||||
|
||||
# Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies = computeTrapPotential(w_x, w_z, Power, Polarizability, options)
|
||||
# ComputedPotentials.append(IdealTrappingPotential)
|
||||
# ComputedPotentials.append(TrappingPotential)
|
||||
# Params.append([TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies])
|
||||
Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies = computeTrapPotential(w_x, w_z, Power, Polarizability, options)
|
||||
ComputedPotentials.append(IdealTrappingPotential)
|
||||
ComputedPotentials.append(TrappingPotential)
|
||||
Params.append([TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies])
|
||||
|
||||
# ComputedPotentials = np.asarray(ComputedPotentials)
|
||||
# plotPotential(Positions, ComputedPotentials, options['axis'], Params)
|
||||
ComputedPotentials = np.asarray(ComputedPotentials)
|
||||
plotPotential(Positions, ComputedPotentials, options, Params)
|
||||
|
||||
"""Plot harmonic fit for trap potential resulting for given parameters only"""
|
||||
# v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, options['axis'])
|
||||
@ -925,7 +949,7 @@ if __name__ == '__main__':
|
||||
# Params.append([TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies])
|
||||
|
||||
# ComputedPotentials = np.asarray(ComputedPotentials)
|
||||
# plotPotential(Positions, ComputedPotentials, options['axis'], Params)
|
||||
# plotPotential(Positions, ComputedPotentials, options, Params)
|
||||
|
||||
"""Plot transverse intensity profile and trap potential resulting for given parameters only"""
|
||||
# options = {
|
||||
@ -1058,85 +1082,85 @@ if __name__ == '__main__':
|
||||
# plt.show()
|
||||
|
||||
""" Investigate deviation in alpha"""
|
||||
|
||||
Power = 40*u.W
|
||||
Polarizability = 184.4 # in a.u, most precise measured value of Dy polarizability
|
||||
Wavelength = 1.064*u.um
|
||||
w_x, w_z = 27.5*u.um, 33.8*u.um
|
||||
|
||||
options = {
|
||||
'axis': 0, # axis referenced to the beam along which you want the dipole trap potential
|
||||
'extent': 3e2, # range of spatial coordinates in one direction to calculate trap potential over
|
||||
'crossed': False,
|
||||
'theta': 0,
|
||||
'modulation': False,
|
||||
'gravity': True,
|
||||
'tilt_gravity': True,
|
||||
'theta': 10, # in degrees
|
||||
'tilt_axis': [1, 0, 0], # lab space coordinates are rotated about x-axis in reference frame of beam
|
||||
'astigmatism': True,
|
||||
'disp_foci': 0.9 * z_R(w_0 = np.asarray([30]), lamb = 1.064)[0]*u.um # difference in position of the foci along the propagation direction (Astigmatism)
|
||||
}
|
||||
|
||||
modulation_depth = np.arange(0, 1.1, 0.1)
|
||||
Alphas, fin_mod_dep, meas_alpha_x, meas_alpha_z, dalpha_x, dalpha_z = convert_modulation_depth_to_alpha(modulation_depth)
|
||||
meas_alpha_deviation = [(g - h) for g, h in zip(meas_alpha_x, meas_alpha_z)]
|
||||
sorted_fin_mod_dep, sorted_meas_alpha_deviation = zip(*sorted(zip(fin_mod_dep, meas_alpha_deviation)))
|
||||
avg_alpha = [(g + h) / 2 for g, h in zip(meas_alpha_x, meas_alpha_z)]
|
||||
sorted_fin_mod_dep, new_aspect_ratio = zip(*sorted(zip(fin_mod_dep, (w_x * avg_alpha) / w_z)))
|
||||
# Power = 40*u.W
|
||||
# Polarizability = 184.4 # in a.u, most precise measured value of Dy polarizability
|
||||
# Wavelength = 1.064*u.um
|
||||
# w_x, w_z = 27.5*u.um, 33.8*u.um
|
||||
|
||||
current_ar = w_x/w_z
|
||||
aspect_ratio = np.arange(current_ar, 10*current_ar, 0.8)
|
||||
w_x = w_x * (aspect_ratio / current_ar)
|
||||
# options = {
|
||||
# 'axis': 0, # axis referenced to the beam along which you want the dipole trap potential
|
||||
# 'extent': 3e2, # range of spatial coordinates in one direction to calculate trap potential over
|
||||
# 'crossed': False,
|
||||
# 'theta': 0,
|
||||
# 'modulation': False,
|
||||
# 'gravity': True,
|
||||
# 'tilt_gravity': True,
|
||||
# 'theta': 10, # in degrees
|
||||
# 'tilt_axis': [1, 0, 0], # lab space coordinates are rotated about x-axis in reference frame of beam
|
||||
# 'astigmatism': True,
|
||||
# 'disp_foci': 0.9 * z_R(w_0 = np.asarray([30]), lamb = 1.064)[0]*u.um # difference in position of the foci along the propagation direction (Astigmatism)
|
||||
# }
|
||||
|
||||
# modulation_depth = np.arange(0, 1.1, 0.1)
|
||||
# Alphas, fin_mod_dep, meas_alpha_x, meas_alpha_z, dalpha_x, dalpha_z = convert_modulation_depth_to_alpha(modulation_depth)
|
||||
# meas_alpha_deviation = [(g - h) for g, h in zip(meas_alpha_x, meas_alpha_z)]
|
||||
# sorted_fin_mod_dep, sorted_meas_alpha_deviation = zip(*sorted(zip(fin_mod_dep, meas_alpha_deviation)))
|
||||
# avg_alpha = [(g + h) / 2 for g, h in zip(meas_alpha_x, meas_alpha_z)]
|
||||
# sorted_fin_mod_dep, new_aspect_ratio = zip(*sorted(zip(fin_mod_dep, (w_x * avg_alpha) / w_z)))
|
||||
|
||||
v_x = np.zeros(len(w_x))
|
||||
#v_y = np.zeros(len(w_x))
|
||||
v_z = np.zeros(len(w_x))
|
||||
# current_ar = w_x/w_z
|
||||
# aspect_ratio = np.arange(current_ar, 10*current_ar, 0.8)
|
||||
# w_x = w_x * (aspect_ratio / current_ar)
|
||||
|
||||
for i in range(len(w_x)):
|
||||
options['axis'] = 0
|
||||
ExtractedTrapFrequencies = computeTrapPotential(w_x[i], w_z, Power, Polarizability, options)[5]
|
||||
tmp = ExtractedTrapFrequencies[1][0]
|
||||
v_x[i] = tmp if not np.isinf(tmp) else np.nan
|
||||
#options['axis'] = 1
|
||||
#ExtractedTrapFrequencies = computeTrapPotential(w_x[i], w_z, Power, Polarizability, options)[5]
|
||||
#tmp = ExtractedTrapFrequencies[1][0]
|
||||
#v_y[i] = tmp if not np.isinf(tmp) else np.nan
|
||||
options['axis'] = 2
|
||||
ExtractedTrapFrequencies = computeTrapPotential(w_x[i], w_z, Power, Polarizability, options)[5]
|
||||
tmp = ExtractedTrapFrequencies[1][0]
|
||||
v_z[i] = tmp if not np.isinf(tmp) else np.nan
|
||||
# v_x = np.zeros(len(w_x))
|
||||
# #v_y = np.zeros(len(w_x))
|
||||
# v_z = np.zeros(len(w_x))
|
||||
|
||||
#v_x[i] = calculateTrapFrequency(w_x[i], w_z, Power, Polarizability, dir = 'x').value
|
||||
#v_y[i] = calculateTrapFrequency(w_x[i], w_z, Power, Polarizability, dir = 'y').value
|
||||
#v_z[i] = calculateTrapFrequency(w_x[i], w_z, Power, Polarizability, dir = 'z').value
|
||||
# for i in range(len(w_x)):
|
||||
# options['axis'] = 0
|
||||
# ExtractedTrapFrequencies = computeTrapPotential(w_x[i], w_z, Power, Polarizability, options)[5]
|
||||
# tmp = ExtractedTrapFrequencies[1][0]
|
||||
# v_x[i] = tmp if not np.isinf(tmp) else np.nan
|
||||
# #options['axis'] = 1
|
||||
# #ExtractedTrapFrequencies = computeTrapPotential(w_x[i], w_z, Power, Polarizability, options)[5]
|
||||
# #tmp = ExtractedTrapFrequencies[1][0]
|
||||
# #v_y[i] = tmp if not np.isinf(tmp) else np.nan
|
||||
# options['axis'] = 2
|
||||
# ExtractedTrapFrequencies = computeTrapPotential(w_x[i], w_z, Power, Polarizability, options)[5]
|
||||
# tmp = ExtractedTrapFrequencies[1][0]
|
||||
# v_z[i] = tmp if not np.isinf(tmp) else np.nan
|
||||
|
||||
alpha_x = [(v_x[0]/v)**(2/3) for v in v_x]
|
||||
alpha_z = [(v_z[0]/v)**2 for v in v_z]
|
||||
# #v_x[i] = calculateTrapFrequency(w_x[i], w_z, Power, Polarizability, dir = 'x').value
|
||||
# #v_y[i] = calculateTrapFrequency(w_x[i], w_z, Power, Polarizability, dir = 'y').value
|
||||
# #v_z[i] = calculateTrapFrequency(w_x[i], w_z, Power, Polarizability, dir = 'z').value
|
||||
|
||||
calc_alpha_deviation = [(g - h) for g, h in zip(alpha_x, alpha_z)]
|
||||
# alpha_x = [(v_x[0]/v)**(2/3) for v in v_x]
|
||||
# alpha_z = [(v_z[0]/v)**2 for v in v_z]
|
||||
|
||||
plt.figure()
|
||||
plt.plot(aspect_ratio, alpha_x, '-o', label = 'From horz TF')
|
||||
plt.plot(aspect_ratio, alpha_z, '-^', label = 'From vert TF')
|
||||
plt.xlabel('Aspect Ratio', fontsize= 12, fontweight='bold')
|
||||
plt.ylabel('$\\alpha$', fontsize= 12, fontweight='bold')
|
||||
plt.tight_layout()
|
||||
plt.grid(visible=1)
|
||||
plt.legend(prop={'size': 12, 'weight': 'bold'})
|
||||
plt.show()
|
||||
# calc_alpha_deviation = [(g - h) for g, h in zip(alpha_x, alpha_z)]
|
||||
|
||||
plt.figure()
|
||||
plt.plot(aspect_ratio, calc_alpha_deviation, '--ob', label = 'Extracted')
|
||||
plt.plot(new_aspect_ratio, sorted_meas_alpha_deviation, '-or', label = 'Measured')
|
||||
plt.xlabel('Aspect Ratio', fontsize= 12, fontweight='bold')
|
||||
plt.ylabel('$\\Delta \\alpha$', fontsize= 12, fontweight='bold')
|
||||
plt.ylim([-0.5, 1])
|
||||
plt.tight_layout()
|
||||
plt.grid(visible=1)
|
||||
plt.legend(prop={'size': 12, 'weight': 'bold'})
|
||||
plt.show()
|
||||
# plt.figure()
|
||||
# plt.plot(aspect_ratio, alpha_x, '-o', label = 'From horz TF')
|
||||
# plt.plot(aspect_ratio, alpha_z, '-^', label = 'From vert TF')
|
||||
# plt.xlabel('Aspect Ratio', fontsize= 12, fontweight='bold')
|
||||
# plt.ylabel('$\\alpha$', fontsize= 12, fontweight='bold')
|
||||
# plt.tight_layout()
|
||||
# plt.grid(visible=1)
|
||||
# plt.legend(prop={'size': 12, 'weight': 'bold'})
|
||||
# plt.show()
|
||||
|
||||
# plt.figure()
|
||||
# plt.plot(aspect_ratio, calc_alpha_deviation, '--ob', label = 'Extracted')
|
||||
# plt.plot(new_aspect_ratio, sorted_meas_alpha_deviation, '-or', label = 'Measured')
|
||||
# plt.xlabel('Aspect Ratio', fontsize= 12, fontweight='bold')
|
||||
# plt.ylabel('$\\Delta \\alpha$', fontsize= 12, fontweight='bold')
|
||||
# plt.ylim([-0.5, 1])
|
||||
# plt.tight_layout()
|
||||
# plt.grid(visible=1)
|
||||
# plt.legend(prop={'size': 12, 'weight': 'bold'})
|
||||
# plt.show()
|
||||
|
||||
"""Plot ideal crossed beam trap potential resulting for given parameters only"""
|
||||
|
||||
# Powers = [40, 10] * u.W
|
||||
@ -1180,6 +1204,4 @@ if __name__ == '__main__':
|
||||
# plt.xlim([-500, 500])
|
||||
# plt.ylim([-1800, -200])
|
||||
# plt.legend()
|
||||
# plt.show()
|
||||
|
||||
|
||||
# plt.show()
|
Loading…
Reference in New Issue
Block a user