2023-01-11 18:54:23 +01:00
import math
import numpy as np
import matplotlib . pyplot as plt
2023-02-22 12:42:54 +01:00
import matplotlib . ticker as mtick
from scipy import signal , interpolate
2023-01-12 15:18:46 +01:00
from scipy . optimize import curve_fit
2023-01-11 18:54:23 +01:00
from astropy import units as u , constants as ac
2023-02-08 16:58:16 +01:00
#####################################################################
# HELPER FUNCTIONS #
#####################################################################
2023-01-12 15:18:46 +01:00
def orderOfMagnitude ( number ) :
return math . floor ( math . log ( number , 10 ) )
2023-01-11 18:54:23 +01:00
def rotation_matrix ( axis , theta ) :
"""
Return the rotation matrix associated with counterclockwise rotation about
the given axis by theta radians .
In 2 - D it is just ,
thetaInRadians = np . radians ( theta )
c , s = np . cos ( thetaInRadians ) , np . sin ( thetaInRadians )
R = np . array ( ( ( c , - s ) , ( s , c ) ) )
In 3 - D , one way to do it is use the Euler - Rodrigues Formula as is done here
"""
axis = np . asarray ( axis )
axis = axis / math . sqrt ( np . dot ( axis , axis ) )
a = math . cos ( theta / 2.0 )
b , c , d = - axis * math . sin ( theta / 2.0 )
aa , bb , cc , dd = a * a , b * b , c * c , d * d
bc , ad , ac , ab , bd , cd = b * c , a * d , a * c , a * b , b * d , c * d
return np . array ( [ [ aa + bb - cc - dd , 2 * ( bc + ad ) , 2 * ( bd - ac ) ] ,
[ 2 * ( bc - ad ) , aa + cc - bb - dd , 2 * ( cd + ab ) ] ,
[ 2 * ( bd + ac ) , 2 * ( cd - ab ) , aa + dd - bb - cc ] ] )
2023-02-13 20:43:58 +01:00
def find_nearest ( array , value ) :
array = np . asarray ( array )
idx = ( np . abs ( array - value ) ) . argmin ( )
return idx
2023-02-17 12:49:10 +01:00
def modulation_function ( mod_amp , n_points , func = ' arccos ' ) :
2023-02-17 19:23:53 +01:00
if func == ' sin ' :
2023-02-17 12:49:10 +01:00
phi = np . linspace ( 0 , 2 * np . pi , n_points )
2023-02-17 19:23:53 +01:00
mod_func = mod_amp * np . sin ( phi )
elif func == ' arccos ' :
2023-02-22 12:42:54 +01:00
# phi = np.linspace(0, 2*np.pi, n_points)
# mod_func = mod_amp * (2/np.pi * np.arccos(phi/np.pi-1) - 1)
2023-02-17 19:23:53 +01:00
phi = np . linspace ( 0 , 2 * np . pi , int ( n_points / 2 ) )
tmp_1 = 2 / np . pi * np . arccos ( phi / np . pi - 1 ) - 1
tmp_2 = np . flip ( tmp_1 )
mod_func = mod_amp * np . concatenate ( ( tmp_1 , tmp_2 ) )
elif func == ' triangle ' :
phi = np . linspace ( 0 , 2 * np . pi , n_points )
mod_func = mod_amp * signal . sawtooth ( phi , width = 0.5 ) # width of 0.5 gives symmetric rising triangle ramp
elif func == ' square ' :
phi = np . linspace ( 0 , 1.99 * np . pi , n_points )
mod_func = mod_amp * signal . square ( phi , duty = 0.5 )
2023-02-17 12:49:10 +01:00
else :
2023-02-17 19:23:53 +01:00
mod_func = None
if mod_func is not None :
dx = ( max ( mod_func ) - min ( mod_func ) ) / ( 2 * n_points )
return dx , mod_func
2023-02-13 20:52:01 +01:00
2023-02-08 16:58:16 +01:00
#####################################################################
# BEAM PARAMETERS #
#####################################################################
2023-02-17 12:49:10 +01:00
# Rayleigh length
def z_R ( w_0 , lamb ) - > np . ndarray :
2023-01-11 18:54:23 +01:00
return np . pi * w_0 * * 2 / lamb
# Beam Radius
def w ( pos , w_0 , lamb ) :
2023-01-12 19:16:52 +01:00
return w_0 * np . sqrt ( 1 + ( pos / z_R ( w_0 , lamb ) ) * * 2 )
2023-01-11 18:54:23 +01:00
2023-02-08 16:58:16 +01:00
#####################################################################
2023-02-13 20:43:58 +01:00
# COLLISION RATES, PSD #
2023-02-08 16:58:16 +01:00
#####################################################################
def meanThermalVelocity ( T , m = 164 * u . u ) :
return 4 * np . sqrt ( ( ac . k_B * T ) / ( np . pi * m ) )
2023-02-22 12:42:54 +01:00
def particleDensity ( w_x , w_z , Power , Polarizability , N , T , m = 164 * u . u , use_measured_tf = False ) : # For a thermal cloud
if not use_measured_tf :
v_x = calculateTrapFrequency ( w_x , w_z , Power , Polarizability , dir = ' x ' )
v_y = calculateTrapFrequency ( w_x , w_z , Power , Polarizability , dir = ' y ' )
v_z = calculateTrapFrequency ( w_x , w_z , Power , Polarizability , dir = ' z ' )
return N * ( 2 * np . pi ) * * 3 * ( v_x * v_y * v_z ) * ( m / ( 2 * np . pi * ac . k_B * T ) ) * * ( 3 / 2 )
else :
fin_mod_dep = [ 0.5 , 0.3 , 0.7 , 0.9 , 0.8 , 1.0 , 0.6 , 0.4 , 0.2 , 0.1 ]
v_x = [ 0.28 , 0.690 , 0.152 , 0.102 , 0.127 , 0.099 , 0.205 , 0.404 , 1.441 , 2.813 ] * u . kHz
dv_x = [ 0.006 , 0.005 , 0.006 , 0.003 , 0.002 , 0.002 , 0.002 , 0.003 , 0.006 , 0.024 ] * u . kHz
v_z = [ 1.278 , 1.719 , 1.058 , 0.923 , 0.994 , 0.911 , 1.157 , 1.446 , 2.191 , 2.643 ] * u . kHz
dv_z = [ 0.007 , 0.009 , 0.007 , 0.005 , 0.004 , 0.004 , 0.005 , 0.007 , 0.009 , 0.033 ] * u . kHz
sorted_fin_mod_dep , sorted_v_x = zip ( * sorted ( zip ( fin_mod_dep , v_x ) ) )
sorted_fin_mod_dep , sorted_dv_x = zip ( * sorted ( zip ( fin_mod_dep , dv_x ) ) )
sorted_fin_mod_dep , sorted_v_z = zip ( * sorted ( zip ( fin_mod_dep , v_z ) ) )
sorted_fin_mod_dep , sorted_dv_z = zip ( * sorted ( zip ( fin_mod_dep , dv_z ) ) )
fin_mod_dep = [ 1 , 0.9 , 0.8 , 0.7 , 0.6 , 0.5 , 0.4 , 0.3 , 0.2 , 0.1 ]
v_y = [ 3.08 , 3.13 , 3.27 , 3.46 , 3.61 , 3.82 , 3.51 , 3.15 , 3.11 , 3.02 ] * u . Hz
dv_y = [ 0.03 , 0.04 , 0.04 , 0.05 , 0.07 , 0.06 , 0.11 , 0.07 , 0.1 , 1.31 ] * u . Hz
sorted_fin_mod_dep , sorted_v_y = zip ( * sorted ( zip ( fin_mod_dep , v_y ) ) )
sorted_fin_mod_dep , sorted_dv_y = zip ( * sorted ( zip ( fin_mod_dep , dv_y ) ) )
alpha_x = [ ( v_x [ 0 ] / x ) * * ( 2 / 3 ) for x in v_x ]
dalpha_x = [ alpha_x [ i ] * np . sqrt ( ( dv_x [ 0 ] / v_x [ 0 ] ) * * 2 + ( dv_x [ i ] / v_x [ i ] ) * * 2 ) for i in range ( len ( v_x ) ) ]
alpha_y = [ ( v_z [ 0 ] / y ) * * 2 for y in v_z ]
dalpha_y = [ alpha_y [ i ] * np . sqrt ( ( dv_z [ 0 ] / v_z [ 0 ] ) * * 2 + ( dv_z [ i ] / v_z [ i ] ) * * 2 ) for i in range ( len ( v_z ) ) ]
avg_alpha = [ ( g + h ) / 2 for g , h in zip ( alpha_x , alpha_y ) ]
sorted_fin_mod_dep , new_aspect_ratio = zip ( * sorted ( zip ( fin_mod_dep , ( w_x * avg_alpha ) / w_z ) ) )
fin_mod_dep = [ 1.0 , 0.8 , 0.6 , 0.4 , 0.2 , 0.9 , 0.7 , 0.5 , 0.3 , 0.1 ]
T_x = [ 22.1 , 27.9 , 31.7 , 42.2 , 145.8 , 27.9 , 33.8 , 42.4 , 61.9 , 136.1 ] * u . uK
dT_x = [ 1.7 , 2.6 , 2.4 , 3.7 , 1.1 , 2.2 , 3.2 , 1.7 , 2.2 , 1.2 ] * u . uK
T_y = [ 13.13 , 14.75 , 18.44 , 26.31 , 52.55 , 13.54 , 16.11 , 21.15 , 35.81 , 85.8 ] * u . uK
dT_y = [ 0.05 , 0.05 , 0.07 , 0.16 , 0.28 , 0.04 , 0.07 , 0.10 , 0.21 , 0.8 ] * u . uK
avg_T = [ ( g + h ) / 2 for g , h in zip ( T_x , T_y ) ]
avg_dT = [ 0.5 * np . sqrt ( g * * 2 + h * * 2 ) for g , h in zip ( dT_x , dT_y ) ]
sorted_fin_mod_dep , sorted_avg_T = zip ( * sorted ( zip ( fin_mod_dep , avg_T ) ) )
sorted_fin_mod_dep , sorted_avg_dT = zip ( * sorted ( zip ( fin_mod_dep , avg_dT ) ) )
pd = np . zeros ( len ( fin_mod_dep ) )
dpd = np . zeros ( len ( fin_mod_dep ) )
for i in range ( len ( fin_mod_dep ) ) :
particle_density = ( N * ( 2 * np . pi ) * * 3 * ( sorted_v_x [ i ] * sorted_v_y [ i ] * sorted_v_z [ i ] ) * ( m / ( 2 * np . pi * ac . k_B * sorted_avg_T [ i ] ) ) * * ( 3 / 2 ) ) . decompose ( )
pd [ i ] = particle_density . value
dpd [ i ] = ( ( ( N * ( 2 * np . pi ) * * 3 * ( m / ( 2 * np . pi * ac . k_B * sorted_avg_T [ i ] ) ) * * ( 3 / 2 ) ) * ( ( sorted_dv_x [ i ] * sorted_v_y [ i ] * sorted_v_z [ i ] ) + ( sorted_v_x [ i ] * sorted_dv_y [ i ] * sorted_v_z [ i ] ) + ( sorted_v_x [ i ] * sorted_v_y [ i ] * sorted_dv_z [ i ] ) - ( 1.5 * ( sorted_v_x [ i ] * sorted_v_y [ i ] * sorted_v_z [ i ] ) * ( sorted_avg_dT [ i ] / sorted_avg_T [ i ] ) ) ) ) . decompose ( ) ) . value
pd = pd * particle_density . unit
dpd = dpd * particle_density . unit
return pd , dpd , sorted_avg_T , sorted_avg_dT , new_aspect_ratio , sorted_fin_mod_dep
2023-02-08 16:58:16 +01:00
def thermaldeBroglieWavelength ( T , m = 164 * u . u ) :
return np . sqrt ( ( 2 * np . pi * ac . hbar * * 2 ) / ( m * ac . k_B * T ) )
2023-02-13 20:43:58 +01:00
def scatteringLength ( B , FR_choice = 1 , ABKG_choice = 1 ) :
# Dy 164 a_s versus B in 0 to 8G range
# should match SupMat of PhysRevX.9.021012, fig S5 and descrption
# https://journals.aps.org/prx/supplemental/10.1103/PhysRevX.9.021012/Resubmission_Suppmat.pdf
2023-02-08 16:58:16 +01:00
2023-02-13 20:43:58 +01:00
if FR_choice == 1 : # new values
if ABKG_choice == 1 :
a_bkg = 85.5 * ac . a0
elif ABKG_choice == 2 :
a_bkg = 93.5 * ac . a0
elif ABKG_choice == 3 :
a_bkg = 77.5 * ac . a0
#FR resonances
#[B11 B12 B2 B3 B4 B51 B52 B53 B6 B71 B72 B81 B82 B83 B9]
2023-02-13 20:52:01 +01:00
resonanceB = [ 1.295 , 1.306 , 2.174 , 2.336 , 2.591 , 2.74 , 2.803 , 2.78 , 3.357 , 4.949 , 5.083 , 7.172 , 7.204 , 7.134 , 76.9 ] * u . G #resonance position
2023-02-13 20:43:58 +01:00
#[wB11 wB12 wB2 wB3 wB4 wB51 wB52 wB53 wB6 wB71 wB72 wB81 wB82 wB83 wB9]
2023-02-13 20:52:01 +01:00
resonancewB = [ 0.009 , 0.010 , 0.0005 , 0.0005 , 0.001 , 0.0005 , 0.021 , 0.015 , 0.043 , 0.0005 , 0.130 , 0.024 , 0.0005 , 0.036 , 3.1 ] * u . G #resonance width
2023-02-13 20:43:58 +01:00
else : # old values
if ABKG_choice == 1 :
a_bkg = 87.2 * ac . a0
elif ABKG_choice == 2 :
a_bkg = 95.2 * ac . a0
elif ABKG_choice == 3 :
a_bkg = 79.2 * ac . a0
#FR resonances
#[B1 B2 B3 B4 B5 B6 B7 B8]
2023-02-13 20:52:01 +01:00
resonanceB = [ 1.298 , 2.802 , 3.370 , 5.092 , 7.154 , 2.592 , 2.338 , 2.177 ] * u . G #resonance position
2023-02-13 20:43:58 +01:00
#[wB1 wB2 wB3 wB4 wB5 wB6 wB7 wB8]
2023-02-13 20:52:01 +01:00
resonancewB = [ 0.018 , 0.047 , 0.048 , 0.145 , 0.020 , 0.008 , 0.001 , 0.001 ] * u . G #resonance width
2023-02-13 20:43:58 +01:00
2023-02-13 20:52:01 +01:00
#Get scattering length
np . seterr ( divide = ' ignore ' )
a_s = a_bkg * np . prod ( [ ( 1 - resonancewB [ j ] / ( B - resonanceB [ j ] ) ) for j in range ( len ( resonanceB ) ) ] )
return a_s , a_bkg
2023-02-08 16:58:16 +01:00
def dipolarLength ( mu = 9.93 * ac . muB , m = 164 * u . u ) :
2023-02-08 19:46:56 +01:00
return ( m * ac . mu0 * mu * * 2 ) / ( 12 * np . pi * ac . hbar * * 2 )
2023-02-08 16:58:16 +01:00
def scatteringCrossSection ( B ) :
2023-02-13 20:43:58 +01:00
return 8 * np . pi * scatteringLength ( B ) [ 0 ] * * 2 + ( ( 32 * np . pi ) / 45 ) * dipolarLength ( ) * * 2
2023-02-08 16:58:16 +01:00
def calculateElasticCollisionRate ( w_x , w_z , Power , Polarizability , N , T , B ) : #For a 3D Harmonic Trap
return ( particleDensity ( w_x , w_z , Power , Polarizability , N , T ) * scatteringCrossSection ( B ) * meanThermalVelocity ( T ) / ( 2 * np . sqrt ( 2 ) ) ) . decompose ( )
def calculatePSD ( w_x , w_z , Power , Polarizability , N , T ) :
return ( particleDensity ( w_x , w_z , Power , Polarizability , N , T , m = 164 * u . u ) * thermaldeBroglieWavelength ( T ) * * 3 ) . decompose ( )
2023-02-22 12:42:54 +01:00
def convert_modulation_depth_to_alpha ( modulation_depth ) :
fin_mod_dep = [ 0 , 0.5 , 0.3 , 0.7 , 0.9 , 0.8 , 1.0 , 0.6 , 0.4 , 0.2 , 0.1 ]
fx = [ 3.135 , 0.28 , 0.690 , 0.152 , 0.102 , 0.127 , 0.099 , 0.205 , 0.404 , 1.441 , 2.813 ]
dfx = [ 0.016 , 0.006 , 0.005 , 0.006 , 0.003 , 0.002 , 0.002 , 0.002 , 0.003 , 0.006 , 0.024 ]
fy = [ 2.746 , 1.278 , 1.719 , 1.058 , 0.923 , 0.994 , 0.911 , 1.157 , 1.446 , 2.191 , 2.643 ]
dfy = [ 0.014 , 0.007 , 0.009 , 0.007 , 0.005 , 0.004 , 0.004 , 0.005 , 0.007 , 0.009 , 0.033 ]
alpha_x = [ ( fx [ 0 ] / x ) * * ( 2 / 3 ) for x in fx ]
dalpha_x = [ alpha_x [ i ] * np . sqrt ( ( dfx [ 0 ] / fx [ 0 ] ) * * 2 + ( dfx [ i ] / fx [ i ] ) * * 2 ) for i in range ( len ( fx ) ) ]
alpha_y = [ ( fy [ 0 ] / y ) * * 2 for y in fy ]
dalpha_y = [ alpha_y [ i ] * np . sqrt ( ( dfy [ 0 ] / fy [ 0 ] ) * * 2 + ( dfy [ i ] / fy [ i ] ) * * 2 ) for i in range ( len ( fy ) ) ]
avg_alpha = [ ( g + h ) / 2 for g , h in zip ( alpha_x , alpha_y ) ]
sorted_fin_mod_dep , sorted_avg_alpha = zip ( * sorted ( zip ( fin_mod_dep , avg_alpha ) ) )
f = interpolate . interp1d ( sorted_fin_mod_dep , sorted_avg_alpha )
return f ( modulation_depth ) , fin_mod_dep , alpha_x , alpha_y , dalpha_x , dalpha_y
def convert_modulation_depth_to_temperature ( modulation_depth ) :
fin_mod_dep = [ 1.0 , 0.8 , 0.6 , 0.4 , 0.2 , 0.0 , 0.9 , 0.7 , 0.5 , 0.3 , 0.1 ]
T_x = [ 22.1 , 27.9 , 31.7 , 42.2 , 98.8 , 145.8 , 27.9 , 33.8 , 42.4 , 61.9 , 136.1 ]
dT_x = [ 1.7 , 2.6 , 2.4 , 3.7 , 1.1 , 0.6 , 2.2 , 3.2 , 1.7 , 2.2 , 1.2 ]
T_y = [ 13.13 , 14.75 , 18.44 , 26.31 , 52.55 , 92.9 , 13.54 , 16.11 , 21.15 , 35.81 , 85.8 ]
dT_y = [ 0.05 , 0.05 , 0.07 , 0.16 , 0.28 , 0.7 , 0.04 , 0.07 , 0.10 , 0.21 , 0.8 ]
avg_T = [ ( g + h ) / 2 for g , h in zip ( T_x , T_y ) ]
sorted_fin_mod_dep , sorted_avg_T = zip ( * sorted ( zip ( fin_mod_dep , avg_T ) ) )
f = interpolate . interp1d ( sorted_fin_mod_dep , sorted_avg_T )
return f ( modulation_depth ) , fin_mod_dep , T_x , T_y , dT_x , dT_y
2023-02-08 16:58:16 +01:00
#####################################################################
# POTENTIALS #
#####################################################################
2023-01-11 18:54:23 +01:00
def gravitational_potential ( positions : " np.ndarray|u.quantity.Quantity " , m : " float|u.quantity.Quantity " ) :
return m * ac . g0 * positions
2023-01-12 15:18:46 +01:00
def single_gaussian_beam_potential ( positions : " np.ndarray|u.quantity.Quantity " , waists : " np.ndarray|u.quantity.Quantity " , alpha : " float|u.quantity.Quantity " , P : " float|u.quantity.Quantity " = 1 , wavelength : " float|u.quantity.Quantity " = 1.064 * u . um ) - > np . ndarray :
2023-01-11 18:54:23 +01:00
A = 2 * P / ( np . pi * w ( positions [ 1 , : ] , waists [ 0 ] , wavelength ) * w ( positions [ 1 , : ] , waists [ 1 ] , wavelength ) )
U_tilde = ( 1 / ( 2 * ac . eps0 * ac . c ) ) * alpha * ( 4 * np . pi * ac . eps0 * ac . a0 * * 3 )
U = - U_tilde * A * np . exp ( - 2 * ( ( positions [ 0 , : ] / w ( positions [ 1 , : ] , waists [ 0 ] , wavelength ) ) * * 2 + ( positions [ 2 , : ] / w ( positions [ 1 , : ] , waists [ 1 ] , wavelength ) ) * * 2 ) )
return U
2023-01-12 19:16:52 +01:00
def astigmatic_single_gaussian_beam_potential ( positions : " np.ndarray|u.quantity.Quantity " , waists : " np.ndarray|u.quantity.Quantity " , del_y : " float|u.quantity.Quantity " , alpha : " float|u.quantity.Quantity " , P : " float|u.quantity.Quantity " = 1 , wavelength : " float|u.quantity.Quantity " = 1.064 * u . um ) - > np . ndarray :
A = 2 * P / ( np . pi * w ( positions [ 1 , : ] - ( del_y / 2 ) , waists [ 0 ] , wavelength ) * w ( positions [ 1 , : ] + ( del_y / 2 ) , waists [ 1 ] , wavelength ) )
U_tilde = ( 1 / ( 2 * ac . eps0 * ac . c ) ) * alpha * ( 4 * np . pi * ac . eps0 * ac . a0 * * 3 )
U = - U_tilde * A * np . exp ( - 2 * ( ( positions [ 0 , : ] / w ( positions [ 1 , : ] - ( del_y / 2 ) , waists [ 0 ] , wavelength ) ) * * 2 + ( positions [ 2 , : ] / w ( positions [ 1 , : ] + ( del_y / 2 ) , waists [ 1 ] , wavelength ) ) * * 2 ) )
return U
2023-01-12 15:18:46 +01:00
2023-02-17 12:49:10 +01:00
def modulated_single_gaussian_beam_potential ( positions : " np.ndarray|u.quantity.Quantity " , waists : " np.ndarray|u.quantity.Quantity " , alpha : " float|u.quantity.Quantity " , P : " float|u.quantity.Quantity " = 1 , wavelength : " float|u.quantity.Quantity " = 1.064 * u . um , mod_amp : " float|u.quantity.Quantity " = 1 ) - > np . ndarray :
mod_amp = mod_amp * waists [ 0 ]
2023-02-17 19:23:53 +01:00
n_points = len ( positions [ 0 , : ] )
2023-02-17 12:49:10 +01:00
dx , x_mod = modulation_function ( mod_amp , n_points , func = ' arccos ' )
A = 2 * P / ( np . pi * w ( positions [ 1 , : ] , waists [ 0 ] , wavelength ) * w ( positions [ 1 , : ] , waists [ 1 ] , wavelength ) )
U_tilde = ( 1 / ( 2 * ac . eps0 * ac . c ) ) * alpha * ( 4 * np . pi * ac . eps0 * ac . a0 * * 3 )
dU = np . zeros ( 2 * n_points )
for i in range ( len ( x_mod ) ) :
dU = np . vstack ( ( dU , np . exp ( - 2 * ( np . subtract ( x_mod [ i ] , positions [ 0 , : ] ) / w ( positions [ 1 , : ] , waists [ 0 ] , wavelength ) ) * * 2 ) ) )
U = - U_tilde * A * 1 / ( 2 * mod_amp ) * np . trapz ( dU , dx = dx , axis = 0 )
return U
2023-02-13 20:52:01 +01:00
2023-02-17 19:23:53 +01:00
def harmonic_potential ( pos , v , xoffset , yoffset , m = 164 * u . u ) :
U_Harmonic = ( ( 0.5 * m * ( 2 * np . pi * v * u . Hz ) * * 2 * ( pos * u . um - xoffset * u . um ) * * 2 ) / ac . k_B ) . to ( u . uK ) + yoffset * u . uK
return U_Harmonic . value
def gaussian_potential ( pos , amp , waist , xoffset , yoffset ) :
U_Gaussian = amp * np . exp ( - 2 * ( ( pos + xoffset ) / waist ) * * 2 ) + yoffset
return U_Gaussian
2023-02-22 12:42:54 +01:00
def crossed_beam_potential ( positions , theta , waists , P , alpha , wavelength = 1.064 * u . um ) :
beam_1_positions = positions
A_1 = 2 * P [ 0 ] / ( np . pi * w ( beam_1_positions [ 1 , : ] , waists [ 0 ] [ 0 ] , wavelength ) * w ( beam_1_positions [ 1 , : ] , waists [ 0 ] [ 1 ] , wavelength ) )
U_1_tilde = ( 1 / ( 2 * ac . eps0 * ac . c ) ) * alpha * ( 4 * np . pi * ac . eps0 * ac . a0 * * 3 )
U_1 = - U_1_tilde * A_1 * np . exp ( - 2 * ( ( beam_1_positions [ 0 , : ] / w ( beam_1_positions [ 1 , : ] , waists [ 0 ] [ 0 ] , wavelength ) ) * * 2 + ( beam_1_positions [ 2 , : ] / w ( beam_1_positions [ 1 , : ] , waists [ 0 ] [ 1 ] , wavelength ) ) * * 2 ) )
R = rotation_matrix ( [ 0 , 0 , 1 ] , np . radians ( theta ) )
beam_2_positions = np . dot ( R , beam_1_positions )
A_2 = 2 * P [ 1 ] / ( np . pi * w ( beam_2_positions [ 1 , : ] , waists [ 1 ] [ 0 ] , wavelength ) * w ( beam_2_positions [ 1 , : ] , waists [ 1 ] [ 1 ] , wavelength ) )
U_2_tilde = ( 1 / ( 2 * ac . eps0 * ac . c ) ) * alpha * ( 4 * np . pi * ac . eps0 * ac . a0 * * 3 )
U_2 = - U_2_tilde * A_2 * np . exp ( - 2 * ( ( beam_2_positions [ 0 , : ] / w ( beam_2_positions [ 1 , : ] , waists [ 1 ] [ 0 ] , wavelength ) ) * * 2 + ( beam_2_positions [ 2 , : ] / w ( beam_2_positions [ 1 , : ] , waists [ 1 ] [ 1 ] , wavelength ) ) * * 2 ) )
U = U_1 + U_2
return U
2023-02-08 16:58:16 +01:00
#####################################################################
# COMPUTE/EXTRACT TRAP POTENTIAL AND PARAMETERS #
#####################################################################
def trap_depth ( w_1 : " float|u.quantity.Quantity " , w_2 : " float|u.quantity.Quantity " , P : " float|u.quantity.Quantity " , alpha : float ) - > " float|u.quantity.Quantity " :
return 2 * P / ( np . pi * w_1 * w_2 ) * ( 1 / ( 2 * ac . eps0 * ac . c ) ) * alpha * ( 4 * np . pi * ac . eps0 * ac . a0 * * 3 )
2023-01-13 18:15:36 +01:00
def calculateTrapFrequency ( w_x , w_z , Power , Polarizability , m = 164 * u . u , dir = ' x ' ) :
TrapDepth = trap_depth ( w_x , w_z , Power , alpha = Polarizability )
TrapFrequency = np . nan
if dir == ' x ' :
TrapFrequency = ( ( 1 / ( 2 * np . pi ) ) * np . sqrt ( 4 * TrapDepth / ( m * w_x * * 2 ) ) ) . decompose ( )
2023-02-08 15:58:44 +01:00
elif dir == ' y ' :
zReff = np . sqrt ( 2 ) * z_R ( w_x , 1.064 * u . um ) * z_R ( w_z , 1.064 * u . um ) / np . sqrt ( z_R ( w_x , 1.064 * u . um ) * * 2 + z_R ( w_z , 1.064 * u . um ) * * 2 )
TrapFrequency = ( ( 1 / ( 2 * np . pi ) ) * np . sqrt ( 2 * TrapDepth / ( m * zReff * * 2 ) ) ) . decompose ( )
2023-01-13 18:15:36 +01:00
elif dir == ' z ' :
TrapFrequency = ( ( 1 / ( 2 * np . pi ) ) * np . sqrt ( 4 * TrapDepth / ( m * w_z * * 2 ) ) ) . decompose ( )
return round ( TrapFrequency . value , 2 ) * u . Hz
2023-02-08 16:58:16 +01:00
def extractTrapFrequency ( Positions , TrappingPotential , axis ) :
2023-01-12 15:18:46 +01:00
tmp_pos = Positions [ axis , : ]
tmp_pot = TrappingPotential [ axis ]
2023-02-08 16:58:16 +01:00
center_idx = np . argmin ( tmp_pot )
lb = int ( round ( center_idx - len ( tmp_pot ) / 150 , 1 ) )
ub = int ( round ( center_idx + len ( tmp_pot ) / 150 , 1 ) )
xdata = tmp_pos [ lb : ub ]
2023-01-12 15:18:46 +01:00
Potential = tmp_pot [ lb : ub ]
2023-02-08 16:58:16 +01:00
p0 = [ 1e3 , tmp_pos [ center_idx ] . value , np . argmin ( tmp_pot . value ) ]
2023-01-12 15:18:46 +01:00
popt , pcov = curve_fit ( harmonic_potential , xdata , Potential , p0 )
v = popt [ 0 ]
dv = pcov [ 0 ] [ 0 ] * * 0.5
return v , dv , popt , pcov
2023-02-08 15:58:44 +01:00
def computeTrapPotential ( w_x , w_z , Power , Polarizability , options ) :
axis = options [ ' axis ' ]
extent = options [ ' extent ' ]
gravity = options [ ' gravity ' ]
astigmatism = options [ ' astigmatism ' ]
2023-02-13 20:52:01 +01:00
modulation = options [ ' modulation ' ]
2023-02-22 12:42:54 +01:00
crossed = options [ ' crossed ' ]
2023-02-13 20:52:01 +01:00
if modulation :
aspect_ratio = options [ ' aspect_ratio ' ]
current_ar = w_x / w_z
w_x = w_x * ( aspect_ratio / current_ar )
2023-02-08 15:58:44 +01:00
TrappingPotential = [ ]
TrapDepth = trap_depth ( w_x , w_z , Power , alpha = Polarizability )
IdealTrapDepthInKelvin = ( TrapDepth / ac . k_B ) . to ( u . uK )
projection_axis = np . array ( [ 0 , 1 , 0 ] ) # default
if axis == 0 :
projection_axis = np . array ( [ 1 , 0 , 0 ] ) # radial direction (X-axis)
elif axis == 1 :
projection_axis = np . array ( [ 0 , 1 , 0 ] ) # propagation direction (Y-axis)
elif axis == 2 :
projection_axis = np . array ( [ 0 , 0 , 1 ] ) # vertical direction (Z-axis)
2023-02-22 12:42:54 +01:00
else :
projection_axis = np . array ( [ 1 , 1 , 1 ] ) # vertical direction (Z-axis)
2023-02-08 15:58:44 +01:00
x_Positions = np . arange ( - extent , extent , 1 ) * u . um
y_Positions = np . arange ( - extent , extent , 1 ) * u . um
z_Positions = np . arange ( - extent , extent , 1 ) * u . um
Positions = np . vstack ( ( x_Positions , y_Positions , z_Positions ) ) * projection_axis [ : , np . newaxis ]
2023-02-22 12:42:54 +01:00
if not crossed :
IdealTrappingPotential = single_gaussian_beam_potential ( Positions , np . asarray ( [ w_x . value , w_z . value ] ) * u . um , P = Power , alpha = Polarizability )
IdealTrappingPotential = IdealTrappingPotential * ( np . ones ( ( 3 , len ( IdealTrappingPotential ) ) ) * projection_axis [ : , np . newaxis ] )
IdealTrappingPotential = ( IdealTrappingPotential / ac . k_B ) . to ( u . uK )
else :
theta = options [ ' theta ' ]
waists = np . vstack ( ( np . asarray ( [ w_x [ 0 ] . value , w_z [ 0 ] . value ] ) * u . um , np . asarray ( [ w_x [ 1 ] . value , w_z [ 1 ] . value ] ) * u . um ) )
IdealTrappingPotential = crossed_beam_potential ( Positions , theta , waists , P = Power , alpha = Polarizability )
IdealTrappingPotential = IdealTrappingPotential * ( np . ones ( ( 3 , len ( IdealTrappingPotential ) ) ) * projection_axis [ : , np . newaxis ] )
IdealTrappingPotential = ( IdealTrappingPotential / ac . k_B ) . to ( u . uK )
2023-02-08 15:58:44 +01:00
if gravity and not astigmatism :
# Influence of Gravity
m = 164 * u . u
gravity_axis = np . array ( [ 0 , 0 , 1 ] )
tilt_gravity = options [ ' tilt_gravity ' ]
theta = options [ ' theta ' ]
tilt_axis = options [ ' tilt_axis ' ]
if tilt_gravity :
R = rotation_matrix ( tilt_axis , np . radians ( theta ) )
gravity_axis = np . dot ( R , gravity_axis )
gravity_axis_positions = np . vstack ( ( x_Positions , y_Positions , z_Positions ) ) * gravity_axis [ : , np . newaxis ]
TrappingPotential = single_gaussian_beam_potential ( Positions , np . asarray ( [ w_x . value , w_z . value ] ) * u . um , P = Power , alpha = Polarizability )
TrappingPotential = TrappingPotential * ( np . ones ( ( 3 , len ( TrappingPotential ) ) ) * projection_axis [ : , np . newaxis ] ) + gravitational_potential ( gravity_axis_positions , m )
TrappingPotential = ( TrappingPotential / ac . k_B ) . to ( u . uK )
elif not gravity and astigmatism :
# Influence of Astigmatism
disp_foci = options [ ' disp_foci ' ]
TrappingPotential = astigmatic_single_gaussian_beam_potential ( Positions , np . asarray ( [ w_x . value , w_z . value ] ) * u . um , P = Power , del_y = disp_foci , alpha = Polarizability )
TrappingPotential = TrappingPotential * ( np . ones ( ( 3 , len ( TrappingPotential ) ) ) * projection_axis [ : , np . newaxis ] )
TrappingPotential = ( TrappingPotential / ac . k_B ) . to ( u . uK )
elif gravity and astigmatism :
# Influence of Gravity and Astigmatism
m = 164 * u . u
gravity_axis = np . array ( [ 0 , 0 , 1 ] )
tilt_gravity = options [ ' tilt_gravity ' ]
theta = options [ ' theta ' ]
tilt_axis = options [ ' tilt_axis ' ]
disp_foci = options [ ' disp_foci ' ]
if tilt_gravity :
R = rotation_matrix ( tilt_axis , np . radians ( theta ) )
gravity_axis = np . dot ( R , gravity_axis )
gravity_axis_positions = np . vstack ( ( x_Positions , y_Positions , z_Positions ) ) * gravity_axis [ : , np . newaxis ]
TrappingPotential = astigmatic_single_gaussian_beam_potential ( Positions , np . asarray ( [ w_x . value , w_z . value ] ) * u . um , P = Power , del_y = disp_foci , alpha = Polarizability )
TrappingPotential = TrappingPotential * ( np . ones ( ( 3 , len ( TrappingPotential ) ) ) * projection_axis [ : , np . newaxis ] ) + gravitational_potential ( gravity_axis_positions , m )
TrappingPotential = ( TrappingPotential / ac . k_B ) . to ( u . uK )
else :
TrappingPotential = IdealTrappingPotential
2023-02-13 20:52:01 +01:00
2023-02-22 12:42:54 +01:00
if not crossed :
if TrappingPotential [ axis ] [ 0 ] > TrappingPotential [ axis ] [ - 1 ] :
EffectiveTrapDepthInKelvin = TrappingPotential [ axis ] [ - 1 ] - min ( TrappingPotential [ axis ] )
elif TrappingPotential [ axis ] [ 0 ] < TrappingPotential [ axis ] [ - 1 ] :
EffectiveTrapDepthInKelvin = TrappingPotential [ axis ] [ 0 ] - min ( TrappingPotential [ axis ] )
else :
EffectiveTrapDepthInKelvin = IdealTrapDepthInKelvin
2023-02-08 15:58:44 +01:00
2023-02-22 12:42:54 +01:00
TrapDepthsInKelvin = [ IdealTrapDepthInKelvin , EffectiveTrapDepthInKelvin ]
2023-02-08 15:58:44 +01:00
2023-02-22 12:42:54 +01:00
v_x = calculateTrapFrequency ( w_x , w_z , Power , Polarizability , dir = ' x ' )
v_y = calculateTrapFrequency ( w_x , w_z , Power , Polarizability , dir = ' y ' )
v_z = calculateTrapFrequency ( w_x , w_z , Power , Polarizability , dir = ' z ' )
CalculatedTrapFrequencies = [ v_x , v_y , v_z ]
2023-02-08 15:58:44 +01:00
2023-02-22 12:42:54 +01:00
v , dv , popt , pcov = extractTrapFrequency ( Positions , IdealTrappingPotential , axis )
IdealTrapFrequency = [ v , dv ]
v , dv , popt , pcov = extractTrapFrequency ( Positions , TrappingPotential , axis )
TrapFrequency = [ v , dv ]
ExtractedTrapFrequencies = [ IdealTrapFrequency , TrapFrequency ]
2023-02-08 15:58:44 +01:00
2023-02-22 12:42:54 +01:00
return Positions , IdealTrappingPotential , TrappingPotential , TrapDepthsInKelvin , CalculatedTrapFrequencies , ExtractedTrapFrequencies
else :
return TrappingPotential
2023-02-08 15:58:44 +01:00
2023-02-17 19:23:53 +01:00
def extractWaist ( Positions , TrappingPotential ) :
tmp_pos = Positions . value
tmp_pot = TrappingPotential . value
center_idx = np . argmin ( tmp_pot )
TrapMinimum = tmp_pot [ center_idx ]
TrapCenter = tmp_pos [ center_idx ]
2023-02-22 12:42:54 +01:00
lb = int ( round ( center_idx - len ( tmp_pot ) / 30 , 1 ) )
ub = int ( round ( center_idx + len ( tmp_pot ) / 30 , 1 ) )
2023-02-17 19:23:53 +01:00
xdata = tmp_pos [ lb : ub ]
Potential = tmp_pot [ lb : ub ]
p0 = [ TrapMinimum , 30 , TrapCenter , 0 ]
popt , pcov = curve_fit ( gaussian_potential , xdata , Potential , p0 )
return popt , pcov
2023-02-22 12:42:54 +01:00
def computeIntensityProfileAndPotentials ( Power , waists , alpha , wavelength , options ) :
w_x = waists [ 0 ]
w_z = waists [ 1 ]
extent = options [ ' extent ' ]
modulation = options [ ' modulation ' ]
mod_func = options [ ' modulation_function ' ]
if not modulation :
extent = 50
x_Positions = np . arange ( - extent , extent , 1 ) * u . um
y_Positions = np . arange ( - extent , extent , 1 ) * u . um
z_Positions = np . arange ( - extent , extent , 1 ) * u . um
idx = np . where ( y_Positions == 0 ) [ 0 ] [ 0 ]
alpha = Polarizability
wavelength = 1.064 * u . um
xm , ym , zm = np . meshgrid ( x_Positions , y_Positions , z_Positions , sparse = True , indexing = ' ij ' )
## Single Gaussian Beam
A = 2 * Power / ( np . pi * w ( ym , w_x , wavelength ) * w ( ym , w_z , wavelength ) )
intensity_profile = A * np . exp ( - 2 * ( ( xm / w ( ym , w_x , wavelength ) ) * * 2 + ( zm / w ( ym , w_z , wavelength ) ) * * 2 ) )
I = intensity_profile [ : , idx , : ] . to ( u . MW / ( u . cm * u . cm ) )
U_tilde = ( 1 / ( 2 * ac . eps0 * ac . c ) ) * alpha * ( 4 * np . pi * ac . eps0 * ac . a0 * * 3 )
U = - U_tilde * I
U = ( U / ac . k_B ) . to ( u . uK )
return [ x_Positions , z_Positions ] , [ w_x . value , 0 , w_z . value , 0 ] , I , U , [ 0 , 0 , 0 , 0 ]
else :
mod_amp = options [ ' modulation_amplitude ' ]
x_Positions = np . arange ( - extent , extent , 1 ) * u . um
y_Positions = np . arange ( - extent , extent , 1 ) * u . um
z_Positions = np . arange ( - extent , extent , 1 ) * u . um
mod_amp = mod_amp * w_x
n_points = len ( x_Positions )
dx , xmod_Positions = modulation_function ( mod_amp , n_points , func = mod_func )
idx = np . where ( y_Positions == 0 ) [ 0 ] [ 0 ]
xm , ym , zm , xmodm = np . meshgrid ( x_Positions , y_Positions , z_Positions , xmod_Positions , sparse = True , indexing = ' ij ' )
## Single Modulated Gaussian Beam
A = 2 * Power / ( np . pi * w ( y_Positions [ idx ] , w_x , wavelength ) * w ( y_Positions [ idx ] , w_z , wavelength ) )
intensity_profile = A * 1 / ( 2 * mod_amp ) * np . trapz ( np . exp ( - 2 * ( ( ( xmodm - xm ) / w ( ym , w_x , wavelength ) ) * * 2 + ( zm / w ( ym , w_z , wavelength ) ) * * 2 ) ) , dx = dx , axis = - 1 )
I = intensity_profile [ : , idx , : ] . to ( u . MW / ( u . cm * u . cm ) )
U_tilde = ( 1 / ( 2 * ac . eps0 * ac . c ) ) * alpha * ( 4 * np . pi * ac . eps0 * ac . a0 * * 3 )
U = - U_tilde * I
U = ( U / ac . k_B ) . to ( u . uK )
poptx , pcovx = extractWaist ( x_Positions , U [ : , np . where ( z_Positions == 0 ) [ 0 ] [ 0 ] ] )
poptz , pcovz = extractWaist ( z_Positions , U [ np . where ( x_Positions == 0 ) [ 0 ] [ 0 ] , : ] )
extracted_waist_x = poptx [ 1 ]
dextracted_waist_x = pcovx [ 1 ] [ 1 ] * * 0.5
extracted_waist_z = poptz [ 1 ]
dextracted_waist_z = pcovz [ 1 ] [ 1 ] * * 0.5
return [ x_Positions , z_Positions ] , [ extracted_waist_x , dextracted_waist_x , extracted_waist_z , dextracted_waist_z ] , I , U , [ poptx , pcovx , poptz , pcovz ]
2023-02-08 16:58:16 +01:00
#####################################################################
2023-02-13 20:52:01 +01:00
# PLOTTING #
2023-02-08 16:58:16 +01:00
#####################################################################
2023-02-22 12:42:54 +01:00
def generate_label ( v , dv ) :
unit = ' Hz '
if v < = 0.0 :
v = np . nan
dv = np . nan
unit = ' Hz '
elif v > 0.0 and orderOfMagnitude ( v ) > 2 :
v = v / 1e3 # in kHz
dv = dv / 1e3 # in kHz
unit = ' kHz '
tf_label = ' \u03BD = %.1f \u00B1 %.2f %s ' % tuple ( [ v , dv , unit ] )
return tf_label
2023-02-08 16:58:16 +01:00
def plotHarmonicFit ( Positions , TrappingPotential , TrapDepthsInKelvin , axis , popt , pcov ) :
2023-01-12 15:18:46 +01:00
v = popt [ 0 ]
dv = pcov [ 0 ] [ 0 ] * * 0.5
happrox = harmonic_potential ( Positions [ axis , : ] . value , * popt )
2023-02-17 19:23:53 +01:00
fig = plt . figure ( figsize = ( 12 , 6 ) )
ax = fig . add_subplot ( 121 )
ax . set_title ( ' Fit to Potential ' )
2023-01-12 15:18:46 +01:00
plt . plot ( Positions [ axis , : ] . value , happrox , ' -r ' , label = ' \u03BD = %.1f \u00B1 %.2f Hz ' % tuple ( [ v , dv ] ) )
plt . plot ( Positions [ axis , : ] , TrappingPotential [ axis ] , ' ob ' , label = ' Gaussian Potential ' )
plt . xlabel ( ' Distance (um) ' , fontsize = 12 , fontweight = ' bold ' )
plt . ylabel ( ' Trap Potential (uK) ' , fontsize = 12 , fontweight = ' bold ' )
2023-02-08 16:58:16 +01:00
plt . ylim ( [ - TrapDepthsInKelvin [ 0 ] . value , max ( TrappingPotential [ axis ] . value ) ] )
2023-02-17 19:23:53 +01:00
plt . grid ( visible = 1 )
plt . legend ( prop = { ' size ' : 12 , ' weight ' : ' bold ' } )
bx = fig . add_subplot ( 122 )
bx . set_title ( ' Fit Residuals ' )
plt . plot ( Positions [ axis , : ] . value , TrappingPotential [ axis ] . value - happrox , ' ob ' )
plt . xlabel ( ' Distance (um) ' , fontsize = 12 , fontweight = ' bold ' )
plt . ylabel ( ' $U_ {trap} - U_ {Harmonic} $ ' , fontsize = 12 , fontweight = ' bold ' )
plt . xlim ( [ - 10 , 10 ] )
plt . ylim ( [ - 1e-2 , 1e-2 ] )
plt . grid ( visible = 1 )
2023-01-12 15:18:46 +01:00
plt . tight_layout ( )
2023-02-17 19:23:53 +01:00
plt . show ( )
def plotGaussianFit ( Positions , TrappingPotential , popt , pcov ) :
extracted_waist = popt [ 1 ]
dextracted_waist = pcov [ 1 ] [ 1 ] * * 0.5
gapprox = gaussian_potential ( Positions , * popt )
fig = plt . figure ( figsize = ( 12 , 6 ) )
ax = fig . add_subplot ( 121 )
ax . set_title ( ' Fit to Potential ' )
plt . plot ( Positions , gapprox , ' -r ' , label = ' waist = %.1f \u00B1 %.2f um ' % tuple ( [ extracted_waist , dextracted_waist ] ) )
plt . plot ( Positions , TrappingPotential , ' ob ' , label = ' Gaussian Potential ' )
plt . xlabel ( ' Distance (um) ' , fontsize = 12 , fontweight = ' bold ' )
plt . ylabel ( ' Trap Potential (uK) ' , fontsize = 12 , fontweight = ' bold ' )
plt . ylim ( [ min ( TrappingPotential ) , max ( TrappingPotential ) ] )
2023-01-12 15:18:46 +01:00
plt . grid ( visible = 1 )
plt . legend ( prop = { ' size ' : 12 , ' weight ' : ' bold ' } )
2023-02-17 19:23:53 +01:00
bx = fig . add_subplot ( 122 )
bx . set_title ( ' Fit Residuals ' )
plt . plot ( Positions , TrappingPotential - gapprox , ' ob ' )
plt . xlabel ( ' Distance (um) ' , fontsize = 12 , fontweight = ' bold ' )
2023-02-22 12:42:54 +01:00
plt . ylabel ( ' $U_ {trap} - U_ {Gaussian} $ ' , fontsize = 12 , fontweight = ' bold ' )
2023-02-17 19:23:53 +01:00
plt . xlim ( [ - 10 , 10 ] )
plt . ylim ( [ - 1 , 1 ] )
plt . grid ( visible = 1 )
plt . tight_layout ( )
2023-01-12 15:18:46 +01:00
plt . show ( )
2023-01-11 18:54:23 +01:00
2023-02-08 15:58:44 +01:00
def plotPotential ( Positions , ComputedPotentials , axis , Params = [ ] , listToIterateOver = [ ] , save = False ) :
2023-01-11 18:54:23 +01:00
plt . figure ( figsize = ( 9 , 7 ) )
for i in range ( np . size ( ComputedPotentials , 0 ) ) :
2023-02-08 15:58:44 +01:00
if i % 2 == 0 :
j = int ( i / 2 )
else :
j = int ( ( i - 1 ) / 2 )
IdealTrapDepthInKelvin = Params [ j ] [ 0 ] [ 0 ]
EffectiveTrapDepthInKelvin = Params [ j ] [ 0 ] [ 1 ]
idealv = Params [ j ] [ 2 ] [ 0 ] [ 0 ]
idealdv = Params [ j ] [ 2 ] [ 0 ] [ 1 ]
v = Params [ j ] [ 2 ] [ 1 ] [ 0 ]
dv = Params [ j ] [ 2 ] [ 1 ] [ 1 ]
if listToIterateOver :
if np . size ( ComputedPotentials , 0 ) == len ( listToIterateOver ) :
plt . plot ( Positions [ axis ] , ComputedPotentials [ i ] [ axis ] , label = ' Trap Depth = ' + str ( round ( EffectiveTrapDepthInKelvin . value , 2 ) ) + ' ' + str ( EffectiveTrapDepthInKelvin . unit ) + ' ; ' + generate_label ( v , dv ) )
else :
if i % 2 == 0 :
plt . plot ( Positions [ axis ] , ComputedPotentials [ i ] [ axis ] , ' -- ' , label = ' Trap Depth = ' + str ( round ( IdealTrapDepthInKelvin . value , 2 ) ) + ' ' + str ( IdealTrapDepthInKelvin . unit ) + ' ; ' + generate_label ( idealv , idealdv ) )
elif i % 2 != 0 :
plt . plot ( Positions [ axis ] , ComputedPotentials [ i ] [ axis ] , label = ' Effective Trap Depth = ' + str ( round ( EffectiveTrapDepthInKelvin . value , 2 ) ) + ' ' + str ( EffectiveTrapDepthInKelvin . unit ) + ' ; ' + generate_label ( v , dv ) )
2023-01-13 18:15:36 +01:00
else :
2023-02-08 15:58:44 +01:00
if i % 2 == 0 :
plt . plot ( Positions [ axis ] , ComputedPotentials [ i ] [ axis ] , ' -- ' , label = ' Trap Depth = ' + str ( round ( IdealTrapDepthInKelvin . value , 2 ) ) + ' ' + str ( IdealTrapDepthInKelvin . unit ) + ' ; ' + generate_label ( idealv , idealdv ) )
elif i % 2 != 0 :
plt . plot ( Positions [ axis ] , ComputedPotentials [ i ] [ axis ] , label = ' Effective Trap Depth = ' + str ( round ( EffectiveTrapDepthInKelvin . value , 2 ) ) + ' ' + str ( EffectiveTrapDepthInKelvin . unit ) + ' ; ' + generate_label ( v , dv ) )
2023-01-11 18:54:23 +01:00
if axis == 0 :
2023-02-17 12:49:10 +01:00
dir = ' X - Horizontal '
2023-01-11 18:54:23 +01:00
elif axis == 1 :
2023-02-17 12:49:10 +01:00
dir = ' Y - Propagation '
2023-01-11 18:54:23 +01:00
else :
2023-02-17 12:49:10 +01:00
dir = ' Z - Vertical '
2023-02-13 20:52:01 +01:00
plt . ylim ( top = 0 )
2023-01-11 18:54:23 +01:00
plt . xlabel ( dir + ' Direction (um) ' , fontsize = 12 , fontweight = ' bold ' )
plt . ylabel ( ' Trap Potential (uK) ' , fontsize = 12 , fontweight = ' bold ' )
plt . tight_layout ( )
plt . grid ( visible = 1 )
2023-01-12 19:16:52 +01:00
plt . legend ( loc = 3 , prop = { ' size ' : 12 , ' weight ' : ' bold ' } )
2023-02-08 15:58:44 +01:00
if save :
plt . savefig ( ' pot_ ' + dir + ' .png ' )
2023-01-12 15:18:46 +01:00
plt . show ( )
2023-01-11 18:54:23 +01:00
2023-02-22 12:42:54 +01:00
def plotIntensityProfileAndPotentials ( positions , waists , I , U ) :
x_Positions = positions [ 0 ]
z_Positions = positions [ 1 ]
w_x = waists [ 0 ]
dw_x = waists [ 1 ]
w_z = waists [ 2 ]
dw_x = waists [ 3 ]
ar = w_x / w_z
dar = ar * np . sqrt ( ( dw_x / w_x ) * * 2 + ( dw_x / w_z ) * * 2 )
fig = plt . figure ( figsize = ( 12 , 6 ) )
ax = fig . add_subplot ( 121 )
ax . set_title ( ' Intensity Profile ($MW/cm^2$) \n Aspect Ratio = %.2f \u00B1 %.2f um ' % tuple ( [ ar , dar ] ) )
im = plt . imshow ( np . transpose ( I . value ) , cmap = " coolwarm " , extent = [ np . min ( x_Positions . value ) , np . max ( x_Positions . value ) , np . min ( z_Positions . value ) , np . max ( z_Positions . value ) ] )
plt . xlabel ( ' X - Horizontal (um) ' , fontsize = 12 , fontweight = ' bold ' )
plt . ylabel ( ' Z - Vertical (um) ' , fontsize = 12 , fontweight = ' bold ' )
ax . set_aspect ( ' equal ' )
fig . colorbar ( im , fraction = 0.046 , pad = 0.04 , orientation = ' vertical ' )
bx = fig . add_subplot ( 122 )
bx . set_title ( ' Trap Potential ' )
plt . plot ( x_Positions , U [ : , np . where ( z_Positions == 0 ) [ 0 ] [ 0 ] ] , label = ' X - Horizontal ' )
plt . plot ( z_Positions , U [ np . where ( x_Positions == 0 ) [ 0 ] [ 0 ] , : ] , label = ' Z - Vertical ' )
plt . ylim ( top = 0 )
plt . xlabel ( ' Extent (um) ' , fontsize = 12 , fontweight = ' bold ' )
plt . ylabel ( ' Depth (uK) ' , fontsize = 12 , fontweight = ' bold ' )
plt . tight_layout ( )
plt . grid ( visible = 1 )
plt . legend ( prop = { ' size ' : 12 , ' weight ' : ' bold ' } )
plt . show ( )
def plotAlphas ( ) :
modulation_depth = np . arange ( 0 , 1.1 , 0.1 )
Alphas , fin_mod_dep , alpha_x , alpha_y , dalpha_x , dalpha_y = convert_modulation_depth_to_alpha ( modulation_depth )
plt . figure ( )
plt . errorbar ( fin_mod_dep , alpha_x , yerr = dalpha_x , fmt = ' ob ' , markersize = 5 , capsize = 5 )
plt . errorbar ( fin_mod_dep , alpha_y , yerr = dalpha_y , fmt = ' or ' , markersize = 5 , capsize = 5 )
plt . plot ( modulation_depth , Alphas , ' --g ' )
plt . xlabel ( ' Modulation depth ' , fontsize = 12 , fontweight = ' bold ' )
plt . ylabel ( ' $ \\ alpha$ ' , fontsize = 12 , fontweight = ' bold ' )
plt . tight_layout ( )
plt . grid ( visible = 1 )
plt . show ( )
def plotTemperatures ( w_x , w_z , plot_against_mod_depth = True ) :
modulation_depth = np . arange ( 0 , 1.1 , 0.1 )
w_xs = w_x * convert_modulation_depth_to_alpha ( modulation_depth ) [ 0 ]
new_aspect_ratio = w_xs / w_z
Temperatures , fin_mod_dep , T_x , T_y , dT_x , dT_y = convert_modulation_depth_to_temperature ( modulation_depth )
measured_aspect_ratio = ( w_x * convert_modulation_depth_to_alpha ( fin_mod_dep ) [ 0 ] ) / w_z
plt . figure ( )
if plot_against_mod_depth :
plt . errorbar ( fin_mod_dep , T_x , yerr = dT_x , fmt = ' ob ' , markersize = 5 , capsize = 5 )
plt . errorbar ( fin_mod_dep , T_y , yerr = dT_y , fmt = ' or ' , markersize = 5 , capsize = 5 )
plt . plot ( modulation_depth , Temperatures , ' --g ' )
xlabel = ' Modulation depth '
else :
plt . errorbar ( measured_aspect_ratio , T_x , yerr = dT_x , fmt = ' ob ' , markersize = 5 , capsize = 5 )
plt . errorbar ( measured_aspect_ratio , T_y , yerr = dT_y , fmt = ' or ' , markersize = 5 , capsize = 5 )
plt . plot ( new_aspect_ratio , Temperatures , ' --g ' )
xlabel = ' Aspect Ratio '
plt . xlabel ( xlabel , fontsize = 12 , fontweight = ' bold ' )
plt . ylabel ( ' Temperature (uK) ' , fontsize = 12 , fontweight = ' bold ' )
plt . tight_layout ( )
plt . grid ( visible = 1 )
plt . show ( )
def plotTrapFrequencies ( v_x , v_y , v_z , modulation_depth , new_aspect_ratio , plot_against_mod_depth = True ) :
fig , ax3 = plt . subplots ( figsize = ( 8 , 6 ) )
if plot_against_mod_depth :
ln1 = ax3 . plot ( modulation_depth , v_x , ' -ob ' , label = ' v_x ' )
ln2 = ax3 . plot ( modulation_depth , v_z , ' -^b ' , label = ' v_z ' )
ax4 = ax3 . twinx ( )
ln3 = ax4 . plot ( modulation_depth , v_y , ' -*r ' , label = ' v_y ' )
xlabel = ' Modulation depth '
else :
ln1 = ax3 . plot ( new_aspect_ratio , v_x , ' -ob ' , label = ' v_x ' )
ln2 = ax3 . plot ( new_aspect_ratio , v_z , ' -^b ' , label = ' v_z ' )
ax4 = ax3 . twinx ( )
ln3 = ax4 . plot ( new_aspect_ratio , v_y , ' -*r ' , label = ' v_y ' )
xlabel = ' Aspect Ratio '
ax3 . set_xlabel ( xlabel , fontsize = 12 , fontweight = ' bold ' )
ax3 . set_ylabel ( ' Trap Frequency (Hz) ' , fontsize = 12 , fontweight = ' bold ' )
ax3 . tick_params ( axis = " y " , labelcolor = ' b ' )
ax4 . set_ylabel ( ' Trap Frequency (Hz) ' , fontsize = 12 , fontweight = ' bold ' )
ax4 . tick_params ( axis = " y " , labelcolor = ' r ' )
plt . tight_layout ( )
plt . grid ( visible = 1 )
lns = ln1 + ln2 + ln3
labs = [ l . get_label ( ) for l in lns ]
ax3 . legend ( lns , labs , prop = { ' size ' : 12 , ' weight ' : ' bold ' } )
plt . show ( )
def plotMeasuredTrapFrequencies ( w_x , w_z , plot_against_mod_depth = True ) :
fin_mod_dep = [ 0 , 0.5 , 0.3 , 0.7 , 0.9 , 0.8 , 1.0 , 0.6 , 0.4 , 0.2 , 0.1 ]
fx = [ 3.135 , 0.28 , 0.690 , 0.152 , 0.102 , 0.127 , 0.099 , 0.205 , 0.404 , 1.441 , 2.813 ]
dfx = [ 0.016 , 0.006 , 0.005 , 0.006 , 0.003 , 0.002 , 0.002 , 0.002 , 0.003 , 0.006 , 0.024 ]
fz = [ 2.746 , 1.278 , 1.719 , 1.058 , 0.923 , 0.994 , 0.911 , 1.157 , 1.446 , 2.191 , 2.643 ]
dfz = [ 0.014 , 0.007 , 0.009 , 0.007 , 0.005 , 0.004 , 0.004 , 0.005 , 0.007 , 0.009 , 0.033 ]
fin_mod_dep_y = [ 1 , 0.9 , 0.8 , 0.7 , 0.6 , 0.5 , 0.4 , 0.3 , 0.2 , 0.1 ]
fy = [ 3.08 , 3.13 , 3.27 , 3.46 , 3.61 , 3.82 , 3.51 , 3.15 , 3.11 , 3.02 ]
dfy = [ 0.03 , 0.04 , 0.04 , 0.05 , 0.07 , 0.06 , 0.11 , 0.07 , 0.1 , 1.31 ]
alpha_x = [ ( fx [ 0 ] / x ) * * ( 2 / 3 ) for x in fx ]
dalpha_x = [ alpha_x [ i ] * np . sqrt ( ( dfx [ 0 ] / fx [ 0 ] ) * * 2 + ( dfx [ i ] / fx [ i ] ) * * 2 ) for i in range ( len ( fx ) ) ]
alpha_y = [ ( fy [ 0 ] / y ) * * 2 for y in fy ]
dalpha_y = [ alpha_y [ i ] * np . sqrt ( ( dfy [ 0 ] / fy [ 0 ] ) * * 2 + ( dfy [ i ] / fy [ i ] ) * * 2 ) for i in range ( len ( fy ) ) ]
avg_alpha = [ ( g + h ) / 2 for g , h in zip ( alpha_x , alpha_y ) ]
new_aspect_ratio = ( w_x * avg_alpha ) / w_z
if plot_against_mod_depth :
fig , ax1 = plt . subplots ( figsize = ( 8 , 6 ) )
ax2 = ax1 . twinx ( )
ax1 . errorbar ( fin_mod_dep , fx , yerr = dfx , fmt = ' or ' , label = ' v_x ' , markersize = 5 , capsize = 5 )
ax2 . errorbar ( fin_mod_dep_y , fy , yerr = dfy , fmt = ' *g ' , label = ' v_y ' , markersize = 5 , capsize = 5 )
ax1 . errorbar ( fin_mod_dep , fz , yerr = dfz , fmt = ' ^b ' , label = ' v_z ' , markersize = 5 , capsize = 5 )
ax1 . set_xlabel ( ' Modulation depth ' , fontsize = 12 , fontweight = ' bold ' )
ax1 . set_ylabel ( ' Trap Frequency (kHz) ' , fontsize = 12 , fontweight = ' bold ' )
ax1 . tick_params ( axis = " y " , labelcolor = ' b ' )
ax2 . set_ylabel ( ' Trap Frequency (Hz) ' , fontsize = 12 , fontweight = ' bold ' )
ax2 . tick_params ( axis = " y " , labelcolor = ' r ' )
h1 , l1 = ax1 . get_legend_handles_labels ( )
h2 , l2 = ax2 . get_legend_handles_labels ( )
ax1 . legend ( h1 + h2 , l1 + l2 , loc = 0 )
else :
plt . figure ( )
plt . errorbar ( new_aspect_ratio , fx , yerr = dfx , fmt = ' or ' , label = ' v_x ' , markersize = 5 , capsize = 5 )
plt . errorbar ( new_aspect_ratio , fz , yerr = dfz , fmt = ' ^b ' , label = ' v_z ' , markersize = 5 , capsize = 5 )
plt . xlabel ( ' Aspect Ratio ' , fontsize = 12 , fontweight = ' bold ' )
plt . ylabel ( ' Trap Frequency (kHz) ' , fontsize = 12 , fontweight = ' bold ' )
plt . legend ( prop = { ' size ' : 12 , ' weight ' : ' bold ' } )
plt . tight_layout ( )
plt . grid ( visible = 1 )
plt . show ( )
def plotRatioOfTrapFrequencies ( plot_against_mod_depth = True ) :
modulation_depth = [ 0.5 , 0.3 , 0.7 , 0.9 , 0.8 , 1.0 , 0.6 , 0.4 , 0.2 , 0.1 ]
w_xs = w_x * convert_modulation_depth_to_alpha ( modulation_depth ) [ 0 ]
new_aspect_ratio = w_xs / w_z
v_x = np . zeros ( len ( modulation_depth ) )
v_y = np . zeros ( len ( modulation_depth ) )
v_z = np . zeros ( len ( modulation_depth ) )
for i in range ( len ( modulation_depth ) ) :
v_x [ i ] = calculateTrapFrequency ( w_xs [ i ] , w_z , Power , Polarizability , dir = ' x ' ) . value / 1e3
v_y [ i ] = calculateTrapFrequency ( w_xs [ i ] , w_z , Power , Polarizability , dir = ' y ' ) . value
v_z [ i ] = calculateTrapFrequency ( w_xs [ i ] , w_z , Power , Polarizability , dir = ' z ' ) . value / 1e3
fx = [ 0.28 , 0.690 , 0.152 , 0.102 , 0.127 , 0.099 , 0.205 , 0.404 , 1.441 , 2.813 ]
dfx = [ 0.006 , 0.005 , 0.006 , 0.003 , 0.002 , 0.002 , 0.002 , 0.003 , 0.006 , 0.024 ]
fy = [ 3.08 , 3.13 , 3.27 , 3.46 , 3.61 , 3.82 , 3.51 , 3.15 , 3.11 , 3.02 ]
dfy = [ 0.03 , 0.04 , 0.04 , 0.05 , 0.07 , 0.06 , 0.11 , 0.07 , 0.1 , 1.31 ]
fz = [ 1.278 , 1.719 , 1.058 , 0.923 , 0.994 , 0.911 , 1.157 , 1.446 , 2.191 , 2.643 ]
dfz = [ 0.007 , 0.009 , 0.007 , 0.005 , 0.004 , 0.004 , 0.005 , 0.007 , 0.009 , 0.033 ]
plt . figure ( )
if plot_against_mod_depth :
plt . errorbar ( modulation_depth , fx / v_x , yerr = dfx / v_x , fmt = ' or ' , label = ' b/w horz TF ' , markersize = 5 , capsize = 5 )
plt . errorbar ( modulation_depth , fy / v_y , yerr = dfy / v_y , fmt = ' *g ' , label = ' b/w axial TF ' , markersize = 5 , capsize = 5 )
plt . errorbar ( modulation_depth , fz / v_z , yerr = dfz / v_z , fmt = ' ^b ' , label = ' b/w vert TF ' , markersize = 5 , capsize = 5 )
xlabel = ' Modulation depth '
else :
plt . errorbar ( new_aspect_ratio , fx / v_x , yerr = dfx / v_x , fmt = ' or ' , label = ' b/w horz TF ' , markersize = 5 , capsize = 5 )
plt . errorbar ( new_aspect_ratio , fy / v_y , yerr = dfy / v_y , fmt = ' *g ' , label = ' b/w axial TF ' , markersize = 5 , capsize = 5 )
plt . errorbar ( new_aspect_ratio , fz / v_z , yerr = dfz / v_z , fmt = ' ^b ' , label = ' b/w vert TF ' , markersize = 5 , capsize = 5 )
xlabel = ' Aspect Ratio '
plt . xlabel ( xlabel , fontsize = 12 , fontweight = ' bold ' )
plt . ylabel ( ' Ratio ' , fontsize = 12 , fontweight = ' bold ' )
plt . tight_layout ( )
plt . grid ( visible = 1 )
plt . legend ( prop = { ' size ' : 12 , ' weight ' : ' bold ' } )
plt . show ( )
2023-02-17 12:49:10 +01:00
2023-02-13 20:52:01 +01:00
def plotScatteringLengths ( ) :
BField = np . arange ( 0 , 2.59 , 1e-3 ) * u . G
a_s_array = np . zeros ( len ( BField ) ) * ac . a0
for idx in range ( len ( BField ) ) :
a_s_array [ idx ] , a_bkg = scatteringLength ( BField [ idx ] )
rmelmIdx = [ i for i , x in enumerate ( np . isinf ( a_s_array . value ) ) if x ]
for x in rmelmIdx :
a_s_array [ x - 1 ] = np . inf * ac . a0
plt . figure ( figsize = ( 9 , 7 ) )
plt . plot ( BField , a_s_array / ac . a0 , ' -b ' )
plt . axhline ( y = a_bkg / ac . a0 , color = ' r ' , linestyle = ' -- ' )
plt . text ( min ( BField . value ) + 0.5 , ( a_bkg / ac . a0 ) . value + 1 , ' $a_ {bkg} $ = %.2f a0 ' % ( ( a_bkg / ac . a0 ) . value ) , fontsize = 14 , fontweight = ' bold ' )
plt . xlim ( [ min ( BField . value ) , max ( BField . value ) ] )
plt . ylim ( [ 65 , 125 ] )
plt . xlabel ( ' B field (G) ' , fontsize = 12 , fontweight = ' bold ' )
plt . ylabel ( ' Scattering length (a0) ' , fontsize = 12 , fontweight = ' bold ' )
plt . tight_layout ( )
plt . grid ( visible = 1 )
plt . show ( )
2023-02-22 12:42:54 +01:00
def plotCollisionRatesAndPSD ( Gamma_elastic , PSD , modulation_depth , new_aspect_ratio , plot_against_mod_depth = True ) :
fig , ax1 = plt . subplots ( figsize = ( 8 , 6 ) )
ax2 = ax1 . twinx ( )
if plot_against_mod_depth :
ax1 . plot ( modulation_depth , Gamma_elastic , ' -ob ' )
ax2 . plot ( modulation_depth , PSD , ' -*r ' )
ax2 . yaxis . set_major_formatter ( mtick . FormatStrFormatter ( ' %.1e ' ) )
xlabel = ' Modulation depth '
else :
ax1 . plot ( new_aspect_ratio , Gamma_elastic , ' -ob ' )
ax2 . plot ( new_aspect_ratio , PSD , ' -*r ' )
ax2 . yaxis . set_major_formatter ( mtick . FormatStrFormatter ( ' %.1e ' ) )
xlabel = ' Aspect Ratio '
ax1 . set_xlabel ( xlabel , fontsize = 12 , fontweight = ' bold ' )
ax1 . set_ylabel ( ' Elastic Collision Rate ' , fontsize = 12 , fontweight = ' bold ' )
ax1 . tick_params ( axis = " y " , labelcolor = ' b ' )
ax2 . set_ylabel ( ' Phase Space Density ' , fontsize = 12 , fontweight = ' bold ' )
ax2 . tick_params ( axis = " y " , labelcolor = ' r ' )
plt . tight_layout ( )
plt . grid ( visible = 1 )
plt . show ( )
2023-02-08 16:58:16 +01:00
#####################################################################
2023-02-13 20:52:01 +01:00
# RUN SCRIPT WITH OPTIONS BELOW #
2023-02-08 16:58:16 +01:00
#####################################################################
2023-02-08 15:58:44 +01:00
if __name__ == ' __main__ ' :
2023-01-11 18:54:23 +01:00
2023-02-08 15:58:44 +01:00
Power = 40 * u . W
2023-01-12 15:18:46 +01:00
Polarizability = 184.4 # in a.u, most precise measured value of Dy polarizability
2023-02-17 12:49:10 +01:00
Wavelength = 1.064 * u . um
2023-02-08 15:58:44 +01:00
w_x , w_z = 27.5 * u . um , 33.8 * u . um # Beam Waists in the x and y directions
2023-02-17 12:49:10 +01:00
# Power = 11*u.W
# Polarizability = 184.4 # in a.u, most precise measured value of Dy polarizability
# w_x, w_z = 54.0*u.um, 54.0*u.um # Beam Waists in the x and y directions
2023-02-08 15:58:44 +01:00
2023-02-22 12:42:54 +01:00
# options = {
# 'axis': 0, # axis referenced to the beam along which you want the dipole trap potential
# 'extent': 3e2, # range of spatial coordinates in one direction to calculate trap potential over
# 'crossed': False,
# 'theta': 0,
# 'modulation': True,
# 'aspect_ratio': 3.67,
# 'gravity': False,
# 'tilt_gravity': False,
# 'theta': 5, # in degrees
# 'tilt_axis': [1, 0, 0], # lab space coordinates are rotated about x-axis in reference frame of beam
# 'astigmatism': False,
# 'disp_foci': 3 * z_R(w_0 = np.asarray([30]), lamb = 1.064)[0]*u.um # difference in position of the foci along the propagation direction (Astigmatism)
# }
""" Plot ideal trap potential resulting for given parameters only """
2023-02-17 12:49:10 +01:00
# ComputedPotentials = []
# Params = []
# Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies = computeTrapPotential(w_x, w_z, Power, Polarizability, options)
# ComputedPotentials.append(IdealTrappingPotential)
# ComputedPotentials.append(TrappingPotential)
# Params.append([TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies])
# ComputedPotentials = np.asarray(ComputedPotentials)
# plotPotential(Positions, ComputedPotentials, options['axis'], Params)
""" Plot harmonic fit for trap potential resulting for given parameters only """
# v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, options['axis'])
# plotHarmonicFit(Positions, TrappingPotential, TrapDepthsInKelvin, options['axis'], popt, pcov)
""" Plot trap potential resulting for given parameters (with one parameter being a list of values and the potential being computed for each of these values) only """
# ComputedPotentials = []
# Params = []
# Power = [10, 20, 25, 30, 35, 40]*u.W # Single Beam Power
# for p in Power:
# Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies = computeTrapPotential(w_x, w_z, p, Polarizability, options)
# ComputedPotentials.append(IdealTrappingPotential)
# ComputedPotentials.append(TrappingPotential)
# Params.append([TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies])
# ComputedPotentials = np.asarray(ComputedPotentials)
# plotPotential(Positions, ComputedPotentials, options['axis'], Params)
2023-01-12 19:16:52 +01:00
2023-02-17 12:49:10 +01:00
""" Plot transverse intensity profile and trap potential resulting for given parameters only """
# options = {
2023-02-22 12:42:54 +01:00
# 'extent': 60, # range of spatial coordinates in one direction to calculate trap potential over
2023-02-17 12:49:10 +01:00
# 'modulation': True,
2023-02-17 19:23:53 +01:00
# 'modulation_function': 'arccos',
2023-02-22 12:42:54 +01:00
# 'modulation_amplitude': 2.16
2023-02-17 12:49:10 +01:00
# }
2023-02-08 19:46:56 +01:00
2023-02-22 12:42:54 +01:00
# positions, waists, I, U, p = computeIntensityProfileAndPotentials(Power, [w_x, w_z], Polarizability, Wavelength, options)
# plotIntensityProfileAndPotentials(positions, waists, I, U)
2023-02-08 19:46:56 +01:00
2023-02-17 19:23:53 +01:00
""" Plot gaussian fit for trap potential resulting from modulation for given parameters only """
2023-02-22 12:42:54 +01:00
# x_Positions = positions[0].value
# z_Positions = positions[1].value
# x_Potential = U[:, np.where(z_Positions==0)[0][0]].value
# z_Potential = U[np.where(x_Positions==0)[0][0], :].value
# poptx, pcovx = p[0], p[1]
# poptz, pcovz = p[2], p[3]
2023-02-17 19:23:53 +01:00
# plotGaussianFit(x_Positions, x_Potential, poptx, pcovx)
2023-02-22 12:42:54 +01:00
# plotGaussianFit(z_Positions, z_Potential, poptz, pcovz)
2023-02-17 12:49:10 +01:00
""" Calculate relevant parameters for evaporative cooling """
2023-02-22 12:42:54 +01:00
# AtomNumber = 1.00 * 1e7
# BField = 2.5 * u.G
# modulation = True
# if modulation:
# modulation_depth = 0.6
# w_x = w_x * convert_modulation_depth_to_alpha(modulation_depth)[0]
# Temperature = convert_modulation_depth_to_temperature(modulation_depth)[0] * u.uK
# else:
# modulation_depth = 0.0
# Temperature = convert_modulation_depth_to_temperature(modulation_depth)[0] * u.uK
# n = particleDensity(w_x, w_z, Power, Polarizability, N = AtomNumber, T = Temperature, m = 164*u.u).decompose().to(u.cm**(-3))
# Gamma_elastic = calculateElasticCollisionRate(w_x, w_z, Power, Polarizability, N = AtomNumber, T = Temperature, B = BField)
# PSD = calculatePSD(w_x, w_z, Power, Polarizability, N = AtomNumber, T = Temperature).decompose()
# print('Particle Density = %.2E ' % (n.value) + str(n.unit))
# print('Elastic Collision Rate = %.2f ' % (Gamma_elastic.value) + str(Gamma_elastic.unit))
# print('PSD = %.2E ' % (PSD.value))
# v_x = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'x')
# v_y = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'y')
# v_z = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'z')
# print('v_x = %.2f ' %(v_x.value) + str(v_x.unit))
# print('v_y = %.2f ' %(v_y.value) + str(v_y.unit))
# print('v_z = %.2f ' %(v_z.value) + str(v_z.unit))
# print('a_s = %.2f ' %(scatteringLength(BField)[0] / ac.a0))
""" Calculate relevant parameters for evaporative cooling for different modulation depths, temperatures """
2023-02-17 19:23:53 +01:00
AtomNumber = 1.00 * 1e7
2023-02-22 12:42:54 +01:00
BField = 1.4 * u . G
# modulation_depth = np.arange(0, 1.0, 0.02)
# w_xs = w_x * convert_modulation_depth_to_alpha(modulation_depth)[0]
# new_aspect_ratio = w_xs / w_z
# Temperatures = convert_modulation_depth_to_temperature(modulation_depth)[0] * u.uK
2023-02-17 12:49:10 +01:00
2023-02-22 12:42:54 +01:00
plot_against_mod_depth = True
# # n = np.zeros(len(modulation_depth))
# Gamma_elastic = np.zeros(len(modulation_depth))
# PSD = np.zeros(len(modulation_depth))
# v_x = np.zeros(len(modulation_depth))
# v_y = np.zeros(len(modulation_depth))
# v_z = np.zeros(len(modulation_depth))
# for i in range(len(modulation_depth)):
# # n[i] = particleDensity(w_xs[i], w_z, Power, Polarizability, N = AtomNumber, T = Temperatures[i], m = 164*u.u).decompose().to(u.cm**(-3))
# Gamma_elastic[i] = calculateElasticCollisionRate(w_xs[i], w_z, Power, Polarizability, N = AtomNumber, T = Temperatures[i], B = BField).value
# PSD[i] = calculatePSD(w_xs[i], w_z, Power, Polarizability, N = AtomNumber, T = Temperatures[i]).decompose().value
# v_x[i] = calculateTrapFrequency(w_xs[i], w_z, Power, Polarizability, dir = 'x').value
# v_y[i] = calculateTrapFrequency(w_xs[i], w_z, Power, Polarizability, dir = 'y').value
# v_z[i] = calculateTrapFrequency(w_xs[i], w_z, Power, Polarizability, dir = 'z').value
""" Plot alphas """
2023-02-08 19:46:56 +01:00
2023-02-22 12:42:54 +01:00
# plotAlphas()
2023-02-08 19:46:56 +01:00
2023-02-22 12:42:54 +01:00
""" Plot Temperatures """
2023-02-08 19:46:56 +01:00
2023-02-22 12:42:54 +01:00
# plotTemperatures(w_x, w_z, plot_against_mod_depth = plot_against_mod_depth)
2023-01-11 18:54:23 +01:00
2023-02-22 12:42:54 +01:00
""" Plot trap frequencies """
2023-02-13 20:43:58 +01:00
2023-02-22 12:42:54 +01:00
# plotTrapFrequencies(v_x, v_y, v_z, modulation_depth, new_aspect_ratio, plot_against_mod_depth = plot_against_mod_depth)
# plotMeasuredTrapFrequencies(w_x, w_z, plot_against_mod_depth = plot_against_mod_depth)
plotRatioOfTrapFrequencies ( plot_against_mod_depth = plot_against_mod_depth )
""" Plot Feshbach Resonances """
2023-02-13 20:52:01 +01:00
# plotScatteringLengths()
2023-02-22 12:42:54 +01:00
""" Plot Collision Rates and PSD """
2023-02-13 20:52:01 +01:00
2023-02-22 12:42:54 +01:00
# plotCollisionRatesAndPSD(Gamma_elastic, PSD, modulation_depth, new_aspect_ratio, plot_against_mod_depth = plot_against_mod_depth)
""" Plot Collision Rates and PSD from only measured trap frequencies """
pd , dpd , T , dT , new_aspect_ratio , modulation_depth = particleDensity ( w_x , w_z , Power , Polarizability , AtomNumber , 0 , m = 164 * u . u , use_measured_tf = True )
2023-02-17 19:23:53 +01:00
2023-02-22 12:42:54 +01:00
Gamma_elastic = [ ( pd [ i ] * scatteringCrossSection ( BField ) * meanThermalVelocity ( T [ i ] ) / ( 2 * np . sqrt ( 2 ) ) ) . decompose ( ) for i in range ( len ( pd ) ) ]
Gamma_elastic_values = [ ( Gamma_elastic [ i ] ) . value for i in range ( len ( Gamma_elastic ) ) ]
dGamma_elastic = [ ( Gamma_elastic [ i ] * ( ( dpd [ i ] / pd [ i ] ) + ( dT [ i ] / ( 2 * T [ i ] ) ) ) ) . decompose ( ) for i in range ( len ( Gamma_elastic ) ) ]
dGamma_elastic_values = [ ( dGamma_elastic [ i ] ) . value for i in range ( len ( dGamma_elastic ) ) ]
PSD = [ ( ( pd [ i ] * thermaldeBroglieWavelength ( T [ i ] ) * * 3 ) . decompose ( ) ) . value for i in range ( len ( pd ) ) ]
dPSD = [ ( ( PSD [ i ] * ( ( dpd [ i ] / pd [ i ] ) - ( 1.5 * dT [ i ] / T [ i ] ) ) ) . decompose ( ) ) . value for i in range ( len ( Gamma_elastic ) ) ]
fig , ax1 = plt . subplots ( figsize = ( 8 , 6 ) )
ax2 = ax1 . twinx ( )
ax1 . errorbar ( modulation_depth , Gamma_elastic_values , yerr = dGamma_elastic_values , fmt = ' ob ' , markersize = 5 , capsize = 5 )
ax2 . errorbar ( modulation_depth , PSD , yerr = dPSD , fmt = ' -^r ' , markersize = 5 , capsize = 5 )
ax2 . yaxis . set_major_formatter ( mtick . FormatStrFormatter ( ' %.1e ' ) )
ax1 . set_xlabel ( ' Modulation depth ' , fontsize = 12 , fontweight = ' bold ' )
ax1 . set_ylabel ( ' Elastic Collision Rate ( ' + str ( Gamma_elastic [ 0 ] . unit ) + ' ) ' , fontsize = 12 , fontweight = ' bold ' )
ax1 . tick_params ( axis = " y " , labelcolor = ' b ' )
ax2 . set_ylabel ( ' Phase Space Density ' , fontsize = 12 , fontweight = ' bold ' )
ax2 . tick_params ( axis = " y " , labelcolor = ' r ' )
plt . tight_layout ( )
plt . grid ( visible = 1 )
plt . show ( )
""" Plot ideal crossed beam trap potential resulting for given parameters only """
# Powers = [40, 11] * u.W
# Polarizability = 184.4 # in a.u, most precise measured value of Dy polarizability
# Wavelength = 1.064*u.um
# w_x = [27.5, 54]*u.um # Beam Waists in the x direction
# w_z = [33.8, 54]*u.um # Beam Waists in the y direction
# options = {
# 'axis': 3, # axis referenced to the beam along which you want the dipole trap potential
# 'extent': 1e2, # range of spatial coordinates in one direction to calculate trap potential over
# 'crossed': True,
# 'theta': 70,
# 'modulation': False,
# 'aspect_ratio': 5,
# 'gravity': False,
# 'tilt_gravity': False,
# 'theta': 5, # in degrees
# 'tilt_axis': [1, 0, 0], # lab space coordinates are rotated about x-axis in reference frame of beam
# 'astigmatism': False,
# 'disp_foci': 3 * z_R(w_0 = np.asarray([30]), lamb = 1.064)[0]*u.um # difference in position of the foci along the propagation direction (Astigmatism)
# }
# TrapPotential = computeTrapPotential(w_x, w_z, Powers, Polarizability, options)
# # plt.rcParams["figure.figsize"] = [7.00, 3.50]
# # plt.rcParams["figure.autolayout"] = True
# # fig = plt.figure()
# # ax = fig.add_subplot(111, projection='3d')
# # ax.scatter(TrapPotential[0], TrapPotential[1], TrapPotential[2], c=TrapPotential[2], alpha=1)
# # plt.show()
# plt.figure()
# plt.plot(TrapPotential[0])
# plt.show()
2023-02-17 12:49:10 +01:00