Added harmonic fit to extract trap frequency of potential, corrected few bugs.
This commit is contained in:
parent
435fbccbfa
commit
30e6a8b7a4
@ -1,18 +1,20 @@
|
||||
import math
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from scipy.optimize import curve_fit
|
||||
from astropy import units as u, constants as ac
|
||||
|
||||
def orderOfMagnitude(number):
|
||||
return math.floor(math.log(number, 10))
|
||||
|
||||
def rotation_matrix(axis, theta):
|
||||
"""
|
||||
Return the rotation matrix associated with counterclockwise rotation about
|
||||
the given axis by theta radians.
|
||||
|
||||
In 2-D it is just,
|
||||
thetaInRadians = np.radians(theta)
|
||||
c, s = np.cos(thetaInRadians), np.sin(thetaInRadians)
|
||||
R = np.array(((c, -s), (s, c)))
|
||||
|
||||
In 3-D, one way to do it is use the Euler-Rodrigues Formula as is done here
|
||||
"""
|
||||
axis = np.asarray(axis)
|
||||
@ -39,7 +41,7 @@ def trap_depth(w_1:"float|u.quantity.Quantity", w_2:"float|u.quantity.Quantity",
|
||||
def gravitational_potential(positions: "np.ndarray|u.quantity.Quantity", m:"float|u.quantity.Quantity"):
|
||||
return m * ac.g0 * positions
|
||||
|
||||
def single_gaussian_beam_potential(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", P:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um, alpha:"float|u.quantity.Quantity"=184.4)->np.ndarray:
|
||||
def single_gaussian_beam_potential(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", alpha:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um)->np.ndarray:
|
||||
A = 2*P/(np.pi*w(positions[1,:], waists[0], wavelength)*w(positions[1,:], waists[1], wavelength))
|
||||
U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
||||
U = - U_tilde * A * np.exp(-2 * ((positions[0,:]/w(positions[1,:], waists[0], wavelength))**2 + (positions[2,:]/w(positions[1,:], waists[1], wavelength))**2))
|
||||
@ -48,44 +50,79 @@ def single_gaussian_beam_potential(positions: "np.ndarray|u.quantity.Quantity",
|
||||
def single_gaussian_beam_potential_harmonic_approximation(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", depth:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um)->np.ndarray:
|
||||
U = - depth * (1 - (2 * (positions[0,:]/waists[0])**2) - (2 * (positions[2,:]/waists[1])**2) - (0.5 * positions[1,:]**2 * np.sum(np.reciprocal(z_R(waists, wavelength)))**2))
|
||||
return U
|
||||
|
||||
def harmonic_potential(pos, v, offset):
|
||||
U_Harmonic = ((0.5 * 164*u.u * (2 * np.pi * v*u.Hz)**2 * (pos*u.um)**2)/ac.k_B).to(u.uK) + offset*u.uK
|
||||
return U_Harmonic.value
|
||||
|
||||
def extractTrapFrequency(Positions, TrappingPotential, TrapDepthInKelvin, axis):
|
||||
tmp_pos = Positions[axis, :]
|
||||
center_idx = np.where(tmp_pos == 0)[0][0]
|
||||
lb = int(round(center_idx - len(tmp_pos)/20, 1))
|
||||
ub = int(round(center_idx + len(tmp_pos)/20, 1))
|
||||
xdata = tmp_pos[lb:ub]
|
||||
tmp_pot = TrappingPotential[axis]
|
||||
Potential = tmp_pot[lb:ub]
|
||||
p0=[1e3, -TrapDepthInKelvin.value]
|
||||
popt, pcov = curve_fit(harmonic_potential, xdata, Potential, p0)
|
||||
v = popt[0]
|
||||
dv = pcov[0][0]**0.5
|
||||
return v, dv, popt, pcov
|
||||
|
||||
def plotHarmonicFit(Positions, TrappingPotential, TrapDepthInKelvin, axis, popt, pcov):
|
||||
v = popt[0]
|
||||
dv = pcov[0][0]**0.5
|
||||
happrox = harmonic_potential(Positions[axis, :].value, *popt)
|
||||
plt.figure()
|
||||
plt.plot(Positions[axis, :].value, happrox, '-r', label = '\u03BD = %.1f \u00B1 %.2f Hz'% tuple([v,dv]))
|
||||
plt.plot(Positions[axis, :], TrappingPotential[axis], 'ob', label = 'Gaussian Potential')
|
||||
plt.xlabel('Distance (um)', fontsize= 12, fontweight='bold')
|
||||
plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold')
|
||||
plt.ylim([-TrapDepthInKelvin.value, max(TrappingPotential[axis].value)])
|
||||
plt.tight_layout()
|
||||
plt.grid(visible=1)
|
||||
plt.legend(prop={'size': 12, 'weight': 'bold'})
|
||||
plt.show()
|
||||
|
||||
def plotPotential(Positions, Powers, ComputedPotentials, axis, TrapDepthLabels):
|
||||
|
||||
## plot of the measured parameter vs. scan parameter
|
||||
plt.figure(figsize=(9, 7))
|
||||
for i in range(np.size(ComputedPotentials, 0)):
|
||||
plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'P = ' + str(Powers[i]) + ' W; ' + TrapDepthLabels[i])
|
||||
v, dv, popt, pcov = extractTrapFrequency(Positions, ComputedPotentials[i], TrapDepthInKelvin, axis)
|
||||
unit = 'Hz'
|
||||
if v <= 0:
|
||||
v = np.nan
|
||||
dv = np.nan
|
||||
unit = 'Hz'
|
||||
elif v > 0 and orderOfMagnitude(v) > 2:
|
||||
v = v / 1e3 # in kHz
|
||||
dv = dv / 1e3 # in kHz
|
||||
unit = 'kHz'
|
||||
tf_label = '\u03BD = %.1f \u00B1 %.2f %s'% tuple([v,dv,unit])
|
||||
plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'P = ' + str(Powers[i]) + ' W; ' + TrapDepthLabels[i] + '; ' + tf_label)
|
||||
if axis == 0:
|
||||
dir = 'X'
|
||||
elif axis == 1:
|
||||
dir = 'Y'
|
||||
else:
|
||||
dir = 'Z'
|
||||
# maxPotentialValue = max(ComputedPotentials.flatten())
|
||||
# minPotentialValue = min(ComputedPotentials.flatten())
|
||||
# PotentialValueRange = maxPotentialValue - minPotentialValue
|
||||
# upperlimit = 5
|
||||
# if maxPotentialValue > 0:
|
||||
# upperlimit = maxPotentialValue
|
||||
# lowerlimit = min(ComputedPotentials.flatten()) - PotentialValueRange/6
|
||||
# plt.ylim([lowerlimit, upperlimit])
|
||||
plt.xlabel(dir + ' Direction (um)', fontsize= 12, fontweight='bold')
|
||||
plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold')
|
||||
plt.tight_layout()
|
||||
plt.grid(visible=1)
|
||||
plt.legend(prop={'size': 12, 'weight': 'bold'})
|
||||
plt.tight_layout()
|
||||
# plt.show()
|
||||
plt.savefig('pot_' + dir + '.png')
|
||||
plt.show()
|
||||
# plt.savefig('pot_' + dir + '.png')
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# Powers = [0.1, 0.5, 2]
|
||||
# Powers = [5, 10, 20, 30, 40]
|
||||
Powers = [40]
|
||||
Polarizability = 160 # in a.u., should we use alpha = 136 or 160 or 184.4?
|
||||
# w_x, w_z = 34*u.um, 27.5*u.um # Beam Waists in the x and y directions
|
||||
w_x, w_z = 35*u.um, 35*u.um # Beam Waists in the x and y directions
|
||||
Polarizability = 184.4 # in a.u, most precise measured value of Dy polarizability
|
||||
w_x, w_z = 34*u.um, 27.5*u.um # Beam Waists in the x and y directions
|
||||
# w_x, w_z = 70*u.um, 70*u.um # Beam Waists in the x and y directions
|
||||
# w_x, w_z = 20.5*u.um, 20.5*u.um
|
||||
|
||||
axis = 1 # axis referenced to the beam along which you want the dipole trap potential
|
||||
@ -95,11 +132,11 @@ if __name__ == '__main__':
|
||||
ComputedPotentials = []
|
||||
TrapDepthLabels = []
|
||||
|
||||
gravity = False
|
||||
gravity = True
|
||||
astigmatism = False
|
||||
|
||||
tilt_gravity = True
|
||||
theta = 0 # in degrees
|
||||
theta = 1 # in degrees
|
||||
tilt_axis = [1, 0, 0] # lab space coordinates are rotated about x-axis in reference frame of beam
|
||||
|
||||
for p in Powers:
|
||||
@ -111,10 +148,13 @@ if __name__ == '__main__':
|
||||
TrapDepthLabels.append("Trap Depth = " + str(round(TrapDepthInKelvin.value, 2)) + " " + str(TrapDepthInKelvin.unit))
|
||||
|
||||
projection_axis = np.array([0, 1, 0]) # default
|
||||
|
||||
if axis == 0:
|
||||
projection_axis = np.array([1, 0, 0]) # radial direction (X-axis)
|
||||
|
||||
elif axis == 1:
|
||||
projection_axis = np.array([0, 1, 0]) # propagation direction (Y-axis)
|
||||
|
||||
elif axis == 2:
|
||||
projection_axis = np.array([0, 0, 1]) # vertical direction (Z-axis)
|
||||
|
||||
@ -138,14 +178,19 @@ if __name__ == '__main__':
|
||||
gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis]
|
||||
TrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, alpha = Polarizability) + gravitational_potential(gravity_axis_positions, m)
|
||||
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
||||
|
||||
elif not gravity and astigmatism:
|
||||
# Influence of Astigmatism
|
||||
pass
|
||||
|
||||
else:
|
||||
# Influence of Gravity and Astigmatism
|
||||
pass
|
||||
|
||||
# v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, TrapDepthInKelvin, axis)
|
||||
# plotHarmonicFit(Positions, TrappingPotential, TrapDepthInKelvin, axis, popt, pcov)
|
||||
|
||||
ComputedPotentials.append(TrappingPotential)
|
||||
|
||||
ComputedPotentials = np.asarray(ComputedPotentials)
|
||||
plotPotential(Positions, Powers, ComputedPotentials, axis, TrapDepthLabels)
|
||||
|
||||
# Influence of Astigmatism
|
||||
|
||||
# TrappingPotential = single_gaussian_beam_potential_harmonic_approximation(Positions, np.asarray([w_x.value, w_z.value])*u.um, depth = TrapDepth)
|
||||
# TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
||||
|
||||
plotPotential(Positions, Powers, ComputedPotentials, axis, TrapDepthLabels)
|
Loading…
Reference in New Issue
Block a user