diff --git a/calculateDipoleTrapPotential.py b/calculateDipoleTrapPotential.py index 1e26835..f6beff7 100644 --- a/calculateDipoleTrapPotential.py +++ b/calculateDipoleTrapPotential.py @@ -1,18 +1,20 @@ import math import numpy as np import matplotlib.pyplot as plt +from scipy.optimize import curve_fit from astropy import units as u, constants as ac +def orderOfMagnitude(number): + return math.floor(math.log(number, 10)) + def rotation_matrix(axis, theta): """ Return the rotation matrix associated with counterclockwise rotation about the given axis by theta radians. - In 2-D it is just, thetaInRadians = np.radians(theta) c, s = np.cos(thetaInRadians), np.sin(thetaInRadians) R = np.array(((c, -s), (s, c))) - In 3-D, one way to do it is use the Euler-Rodrigues Formula as is done here """ axis = np.asarray(axis) @@ -39,7 +41,7 @@ def trap_depth(w_1:"float|u.quantity.Quantity", w_2:"float|u.quantity.Quantity", def gravitational_potential(positions: "np.ndarray|u.quantity.Quantity", m:"float|u.quantity.Quantity"): return m * ac.g0 * positions -def single_gaussian_beam_potential(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", P:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um, alpha:"float|u.quantity.Quantity"=184.4)->np.ndarray: +def single_gaussian_beam_potential(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", alpha:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um)->np.ndarray: A = 2*P/(np.pi*w(positions[1,:], waists[0], wavelength)*w(positions[1,:], waists[1], wavelength)) U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3) U = - U_tilde * A * np.exp(-2 * ((positions[0,:]/w(positions[1,:], waists[0], wavelength))**2 + (positions[2,:]/w(positions[1,:], waists[1], wavelength))**2)) @@ -48,44 +50,79 @@ def single_gaussian_beam_potential(positions: "np.ndarray|u.quantity.Quantity", def single_gaussian_beam_potential_harmonic_approximation(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", depth:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um)->np.ndarray: U = - depth * (1 - (2 * (positions[0,:]/waists[0])**2) - (2 * (positions[2,:]/waists[1])**2) - (0.5 * positions[1,:]**2 * np.sum(np.reciprocal(z_R(waists, wavelength)))**2)) return U + +def harmonic_potential(pos, v, offset): + U_Harmonic = ((0.5 * 164*u.u * (2 * np.pi * v*u.Hz)**2 * (pos*u.um)**2)/ac.k_B).to(u.uK) + offset*u.uK + return U_Harmonic.value + +def extractTrapFrequency(Positions, TrappingPotential, TrapDepthInKelvin, axis): + tmp_pos = Positions[axis, :] + center_idx = np.where(tmp_pos == 0)[0][0] + lb = int(round(center_idx - len(tmp_pos)/20, 1)) + ub = int(round(center_idx + len(tmp_pos)/20, 1)) + xdata = tmp_pos[lb:ub] + tmp_pot = TrappingPotential[axis] + Potential = tmp_pot[lb:ub] + p0=[1e3, -TrapDepthInKelvin.value] + popt, pcov = curve_fit(harmonic_potential, xdata, Potential, p0) + v = popt[0] + dv = pcov[0][0]**0.5 + return v, dv, popt, pcov + +def plotHarmonicFit(Positions, TrappingPotential, TrapDepthInKelvin, axis, popt, pcov): + v = popt[0] + dv = pcov[0][0]**0.5 + happrox = harmonic_potential(Positions[axis, :].value, *popt) + plt.figure() + plt.plot(Positions[axis, :].value, happrox, '-r', label = '\u03BD = %.1f \u00B1 %.2f Hz'% tuple([v,dv])) + plt.plot(Positions[axis, :], TrappingPotential[axis], 'ob', label = 'Gaussian Potential') + plt.xlabel('Distance (um)', fontsize= 12, fontweight='bold') + plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold') + plt.ylim([-TrapDepthInKelvin.value, max(TrappingPotential[axis].value)]) + plt.tight_layout() + plt.grid(visible=1) + plt.legend(prop={'size': 12, 'weight': 'bold'}) + plt.show() def plotPotential(Positions, Powers, ComputedPotentials, axis, TrapDepthLabels): ## plot of the measured parameter vs. scan parameter plt.figure(figsize=(9, 7)) for i in range(np.size(ComputedPotentials, 0)): - plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'P = ' + str(Powers[i]) + ' W; ' + TrapDepthLabels[i]) + v, dv, popt, pcov = extractTrapFrequency(Positions, ComputedPotentials[i], TrapDepthInKelvin, axis) + unit = 'Hz' + if v <= 0: + v = np.nan + dv = np.nan + unit = 'Hz' + elif v > 0 and orderOfMagnitude(v) > 2: + v = v / 1e3 # in kHz + dv = dv / 1e3 # in kHz + unit = 'kHz' + tf_label = '\u03BD = %.1f \u00B1 %.2f %s'% tuple([v,dv,unit]) + plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'P = ' + str(Powers[i]) + ' W; ' + TrapDepthLabels[i] + '; ' + tf_label) if axis == 0: dir = 'X' elif axis == 1: dir = 'Y' else: dir = 'Z' - # maxPotentialValue = max(ComputedPotentials.flatten()) - # minPotentialValue = min(ComputedPotentials.flatten()) - # PotentialValueRange = maxPotentialValue - minPotentialValue - # upperlimit = 5 - # if maxPotentialValue > 0: - # upperlimit = maxPotentialValue - # lowerlimit = min(ComputedPotentials.flatten()) - PotentialValueRange/6 - # plt.ylim([lowerlimit, upperlimit]) plt.xlabel(dir + ' Direction (um)', fontsize= 12, fontweight='bold') plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold') plt.tight_layout() plt.grid(visible=1) plt.legend(prop={'size': 12, 'weight': 'bold'}) - plt.tight_layout() - # plt.show() - plt.savefig('pot_' + dir + '.png') + plt.show() + # plt.savefig('pot_' + dir + '.png') if __name__ == '__main__': # Powers = [0.1, 0.5, 2] # Powers = [5, 10, 20, 30, 40] Powers = [40] - Polarizability = 160 # in a.u., should we use alpha = 136 or 160 or 184.4? - # w_x, w_z = 34*u.um, 27.5*u.um # Beam Waists in the x and y directions - w_x, w_z = 35*u.um, 35*u.um # Beam Waists in the x and y directions + Polarizability = 184.4 # in a.u, most precise measured value of Dy polarizability + w_x, w_z = 34*u.um, 27.5*u.um # Beam Waists in the x and y directions + # w_x, w_z = 70*u.um, 70*u.um # Beam Waists in the x and y directions # w_x, w_z = 20.5*u.um, 20.5*u.um axis = 1 # axis referenced to the beam along which you want the dipole trap potential @@ -95,11 +132,11 @@ if __name__ == '__main__': ComputedPotentials = [] TrapDepthLabels = [] - gravity = False + gravity = True astigmatism = False tilt_gravity = True - theta = 0 # in degrees + theta = 1 # in degrees tilt_axis = [1, 0, 0] # lab space coordinates are rotated about x-axis in reference frame of beam for p in Powers: @@ -111,10 +148,13 @@ if __name__ == '__main__': TrapDepthLabels.append("Trap Depth = " + str(round(TrapDepthInKelvin.value, 2)) + " " + str(TrapDepthInKelvin.unit)) projection_axis = np.array([0, 1, 0]) # default + if axis == 0: projection_axis = np.array([1, 0, 0]) # radial direction (X-axis) + elif axis == 1: projection_axis = np.array([0, 1, 0]) # propagation direction (Y-axis) + elif axis == 2: projection_axis = np.array([0, 0, 1]) # vertical direction (Z-axis) @@ -138,14 +178,19 @@ if __name__ == '__main__': gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis] TrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, alpha = Polarizability) + gravitational_potential(gravity_axis_positions, m) TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK) + + elif not gravity and astigmatism: + # Influence of Astigmatism + pass + else: + # Influence of Gravity and Astigmatism + pass + + # v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, TrapDepthInKelvin, axis) + # plotHarmonicFit(Positions, TrappingPotential, TrapDepthInKelvin, axis, popt, pcov) + ComputedPotentials.append(TrappingPotential) ComputedPotentials = np.asarray(ComputedPotentials) - plotPotential(Positions, Powers, ComputedPotentials, axis, TrapDepthLabels) - -# Influence of Astigmatism - -# TrappingPotential = single_gaussian_beam_potential_harmonic_approximation(Positions, np.asarray([w_x.value, w_z.value])*u.um, depth = TrapDepth) -# TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK) - \ No newline at end of file + plotPotential(Positions, Powers, ComputedPotentials, axis, TrapDepthLabels) \ No newline at end of file