Calculations/calculateDipoleTrapPotential.py

680 lines
33 KiB
Python
Raw Normal View History

import math
import numpy as np
import matplotlib.pyplot as plt
from scipy import signal
from scipy.optimize import curve_fit
from astropy import units as u, constants as ac
#####################################################################
# HELPER FUNCTIONS #
#####################################################################
def orderOfMagnitude(number):
return math.floor(math.log(number, 10))
def rotation_matrix(axis, theta):
"""
Return the rotation matrix associated with counterclockwise rotation about
the given axis by theta radians.
In 2-D it is just,
thetaInRadians = np.radians(theta)
c, s = np.cos(thetaInRadians), np.sin(thetaInRadians)
R = np.array(((c, -s), (s, c)))
In 3-D, one way to do it is use the Euler-Rodrigues Formula as is done here
"""
axis = np.asarray(axis)
axis = axis / math.sqrt(np.dot(axis, axis))
a = math.cos(theta / 2.0)
b, c, d = -axis * math.sin(theta / 2.0)
aa, bb, cc, dd = a * a, b * b, c * c, d * d
bc, ad, ac, ab, bd, cd = b * c, a * d, a * c, a * b, b * d, c * d
return np.array([[aa + bb - cc - dd, 2 * (bc + ad), 2 * (bd - ac)],
[2 * (bc - ad), aa + cc - bb - dd, 2 * (cd + ab)],
[2 * (bd + ac), 2 * (cd - ab), aa + dd - bb - cc]])
2023-02-13 20:43:58 +01:00
def find_nearest(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return idx
def modulation_function(mod_amp, n_points, func = 'arccos'):
if func == 'sin':
phi = np.linspace(0, 2*np.pi, n_points)
mod_func = mod_amp * np.sin(phi)
elif func == 'arccos':
phi = np.linspace(0, 2*np.pi, int(n_points/2))
tmp_1 = 2/np.pi * np.arccos(phi/np.pi-1) - 1
tmp_2 = np.flip(tmp_1)
mod_func = mod_amp * np.concatenate((tmp_1, tmp_2))
elif func == 'triangle':
phi = np.linspace(0, 2*np.pi, n_points)
mod_func = mod_amp * signal.sawtooth(phi, width = 0.5) # width of 0.5 gives symmetric rising triangle ramp
elif func == 'square':
phi = np.linspace(0, 1.99*np.pi, n_points)
mod_func = mod_amp * signal.square(phi, duty = 0.5)
else:
mod_func = None
if mod_func is not None:
dx = (max(mod_func) - min(mod_func))/(2*n_points)
return dx, mod_func
#####################################################################
# BEAM PARAMETERS #
#####################################################################
# Rayleigh length
def z_R(w_0, lamb)->np.ndarray:
return np.pi*w_0**2/lamb
# Beam Radius
def w(pos, w_0, lamb):
return w_0*np.sqrt(1+(pos / z_R(w_0, lamb))**2)
#####################################################################
2023-02-13 20:43:58 +01:00
# COLLISION RATES, PSD #
#####################################################################
def meanThermalVelocity(T, m = 164*u.u):
return 4 * np.sqrt((ac.k_B * T) /(np.pi * m))
def particleDensity(w_x, w_z, Power, Polarizability, N, T, m = 164*u.u): # For a thermal cloud
v_x = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'x')
v_y = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'y')
v_z = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'z')
return N * (2 * np.pi)**3 * (v_x * v_y * v_z) * (m / (2 * np.pi * ac.k_B * T))**(3/2)
def thermaldeBroglieWavelength(T, m = 164*u.u):
return np.sqrt((2*np.pi*ac.hbar**2)/(m*ac.k_B*T))
2023-02-13 20:43:58 +01:00
def scatteringLength(B, FR_choice = 1, ABKG_choice = 1):
# Dy 164 a_s versus B in 0 to 8G range
# should match SupMat of PhysRevX.9.021012, fig S5 and descrption
# https://journals.aps.org/prx/supplemental/10.1103/PhysRevX.9.021012/Resubmission_Suppmat.pdf
2023-02-13 20:43:58 +01:00
if FR_choice == 1: # new values
if ABKG_choice == 1:
a_bkg = 85.5 * ac.a0
elif ABKG_choice == 2:
a_bkg = 93.5 * ac.a0
elif ABKG_choice == 3:
a_bkg = 77.5 * ac.a0
#FR resonances
#[B11 B12 B2 B3 B4 B51 B52 B53 B6 B71 B72 B81 B82 B83 B9]
resonanceB = [1.295, 1.306, 2.174, 2.336, 2.591, 2.74, 2.803, 2.78, 3.357, 4.949, 5.083, 7.172, 7.204, 7.134, 76.9] * u.G #resonance position
2023-02-13 20:43:58 +01:00
#[wB11 wB12 wB2 wB3 wB4 wB51 wB52 wB53 wB6 wB71 wB72 wB81 wB82 wB83 wB9]
resonancewB = [0.009, 0.010, 0.0005, 0.0005, 0.001, 0.0005, 0.021, 0.015, 0.043, 0.0005, 0.130, 0.024, 0.0005, 0.036, 3.1] * u.G #resonance width
2023-02-13 20:43:58 +01:00
else: # old values
if ABKG_choice == 1:
a_bkg = 87.2 * ac.a0
elif ABKG_choice == 2:
a_bkg = 95.2 * ac.a0
elif ABKG_choice == 3:
a_bkg = 79.2 * ac.a0
#FR resonances
#[B1 B2 B3 B4 B5 B6 B7 B8]
resonanceB = [1.298, 2.802, 3.370, 5.092, 7.154, 2.592, 2.338, 2.177] * u.G #resonance position
2023-02-13 20:43:58 +01:00
#[wB1 wB2 wB3 wB4 wB5 wB6 wB7 wB8]
resonancewB = [0.018, 0.047, 0.048, 0.145, 0.020, 0.008, 0.001, 0.001] * u.G #resonance width
2023-02-13 20:43:58 +01:00
#Get scattering length
np.seterr(divide='ignore')
a_s = a_bkg * np.prod([(1 - resonancewB[j] / (B - resonanceB[j])) for j in range(len(resonanceB))])
return a_s, a_bkg
def dipolarLength(mu = 9.93 * ac.muB, m = 164*u.u):
return (m * ac.mu0 * mu**2) / (12 * np.pi * ac.hbar**2)
def scatteringCrossSection(B):
2023-02-13 20:43:58 +01:00
return 8 * np.pi * scatteringLength(B)[0]**2 + ((32*np.pi)/45) * dipolarLength()**2
def calculateElasticCollisionRate(w_x, w_z, Power, Polarizability, N, T, B): #For a 3D Harmonic Trap
return (particleDensity(w_x, w_z, Power, Polarizability, N, T) * scatteringCrossSection(B) * meanThermalVelocity(T) / (2 * np.sqrt(2))).decompose()
def calculatePSD(w_x, w_z, Power, Polarizability, N, T):
return (particleDensity(w_x, w_z, Power, Polarizability, N, T, m = 164*u.u) * thermaldeBroglieWavelength(T)**3).decompose()
#####################################################################
# POTENTIALS #
#####################################################################
def gravitational_potential(positions: "np.ndarray|u.quantity.Quantity", m:"float|u.quantity.Quantity"):
return m * ac.g0 * positions
def single_gaussian_beam_potential(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", alpha:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um)->np.ndarray:
A = 2*P/(np.pi*w(positions[1,:], waists[0], wavelength)*w(positions[1,:], waists[1], wavelength))
U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
U = - U_tilde * A * np.exp(-2 * ((positions[0,:]/w(positions[1,:], waists[0], wavelength))**2 + (positions[2,:]/w(positions[1,:], waists[1], wavelength))**2))
return U
def astigmatic_single_gaussian_beam_potential(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", del_y:"float|u.quantity.Quantity", alpha:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um)->np.ndarray:
A = 2*P/(np.pi*w(positions[1,:] - (del_y/2), waists[0], wavelength)*w(positions[1,:] + (del_y/2), waists[1], wavelength))
U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
U = - U_tilde * A * np.exp(-2 * ((positions[0,:]/w(positions[1,:] - (del_y/2), waists[0], wavelength))**2 + (positions[2,:]/w(positions[1,:] + (del_y/2), waists[1], wavelength))**2))
return U
def modulated_single_gaussian_beam_potential(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", alpha:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um, mod_amp:"float|u.quantity.Quantity"=1)->np.ndarray:
mod_amp = mod_amp * waists[0]
n_points = len(positions[0,:])
dx, x_mod = modulation_function(mod_amp, n_points, func = 'arccos')
A = 2*P/(np.pi*w(positions[1,:], waists[0], wavelength)*w(positions[1,:], waists[1], wavelength))
U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
dU = np.zeros(2*n_points)
for i in range(len(x_mod)):
dU = np.vstack((dU, np.exp(-2 * (np.subtract(x_mod[i], positions[0,:])/w(positions[1,:], waists[0], wavelength))**2)))
U = - U_tilde * A * 1/(2*mod_amp) * np.trapz(dU, dx = dx, axis = 0)
return U
def harmonic_potential(pos, v, xoffset, yoffset, m = 164*u.u):
U_Harmonic = ((0.5 * m * (2 * np.pi * v*u.Hz)**2 * (pos*u.um - xoffset*u.um)**2)/ac.k_B).to(u.uK) + yoffset*u.uK
return U_Harmonic.value
def gaussian_potential(pos, amp, waist, xoffset, yoffset):
U_Gaussian = amp * np.exp(-2 * ((pos + xoffset) / waist)**2) + yoffset
return U_Gaussian
#####################################################################
# COMPUTE/EXTRACT TRAP POTENTIAL AND PARAMETERS #
#####################################################################
def trap_depth(w_1:"float|u.quantity.Quantity", w_2:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity", alpha:float)->"float|u.quantity.Quantity":
return 2*P/(np.pi*w_1*w_2) * (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
def calculateTrapFrequency(w_x, w_z, Power, Polarizability, m = 164*u.u, dir = 'x'):
TrapDepth = trap_depth(w_x, w_z, Power, alpha=Polarizability)
TrapFrequency = np.nan
if dir == 'x':
TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(4 * TrapDepth / (m*w_x**2))).decompose()
elif dir == 'y':
zReff = np.sqrt(2) * z_R(w_x, 1.064*u.um) * z_R(w_z, 1.064*u.um) / np.sqrt(z_R(w_x, 1.064*u.um)**2 + z_R(w_z, 1.064*u.um)**2)
TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(2 * TrapDepth/ (m*zReff**2))).decompose()
elif dir == 'z':
TrapFrequency = ((1/(2 * np.pi)) * np.sqrt(4 * TrapDepth/ (m*w_z**2))).decompose()
return round(TrapFrequency.value, 2)*u.Hz
def extractTrapFrequency(Positions, TrappingPotential, axis):
tmp_pos = Positions[axis, :]
tmp_pot = TrappingPotential[axis]
center_idx = np.argmin(tmp_pot)
lb = int(round(center_idx - len(tmp_pot)/150, 1))
ub = int(round(center_idx + len(tmp_pot)/150, 1))
xdata = tmp_pos[lb:ub]
Potential = tmp_pot[lb:ub]
p0=[1e3, tmp_pos[center_idx].value, np.argmin(tmp_pot.value)]
popt, pcov = curve_fit(harmonic_potential, xdata, Potential, p0)
v = popt[0]
dv = pcov[0][0]**0.5
return v, dv, popt, pcov
def computeTrapPotential(w_x, w_z, Power, Polarizability, options):
axis = options['axis']
extent = options['extent']
gravity = options['gravity']
astigmatism = options['astigmatism']
modulation = options['modulation']
if modulation:
aspect_ratio = options['aspect_ratio']
current_ar = w_x/w_z
w_x = w_x * (aspect_ratio / current_ar)
TrappingPotential = []
TrapDepth = trap_depth(w_x, w_z, Power, alpha=Polarizability)
IdealTrapDepthInKelvin = (TrapDepth/ac.k_B).to(u.uK)
projection_axis = np.array([0, 1, 0]) # default
if axis == 0:
projection_axis = np.array([1, 0, 0]) # radial direction (X-axis)
elif axis == 1:
projection_axis = np.array([0, 1, 0]) # propagation direction (Y-axis)
elif axis == 2:
projection_axis = np.array([0, 0, 1]) # vertical direction (Z-axis)
x_Positions = np.arange(-extent, extent, 1)*u.um
y_Positions = np.arange(-extent, extent, 1)*u.um
z_Positions = np.arange(-extent, extent, 1)*u.um
Positions = np.vstack((x_Positions, y_Positions, z_Positions)) * projection_axis[:, np.newaxis]
IdealTrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, alpha = Polarizability)
IdealTrappingPotential = IdealTrappingPotential * (np.ones((3, len(IdealTrappingPotential))) * projection_axis[:, np.newaxis])
IdealTrappingPotential = (IdealTrappingPotential/ac.k_B).to(u.uK)
if gravity and not astigmatism:
# Influence of Gravity
m = 164*u.u
gravity_axis = np.array([0, 0, 1])
tilt_gravity = options['tilt_gravity']
theta = options['theta']
tilt_axis = options['tilt_axis']
if tilt_gravity:
R = rotation_matrix(tilt_axis, np.radians(theta))
gravity_axis = np.dot(R, gravity_axis)
gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis]
TrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, alpha = Polarizability)
TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis]) + gravitational_potential(gravity_axis_positions, m)
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
elif not gravity and astigmatism:
# Influence of Astigmatism
disp_foci = options['disp_foci']
TrappingPotential = astigmatic_single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, del_y = disp_foci, alpha = Polarizability)
TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis])
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
elif gravity and astigmatism:
# Influence of Gravity and Astigmatism
m = 164*u.u
gravity_axis = np.array([0, 0, 1])
tilt_gravity = options['tilt_gravity']
theta = options['theta']
tilt_axis = options['tilt_axis']
disp_foci = options['disp_foci']
if tilt_gravity:
R = rotation_matrix(tilt_axis, np.radians(theta))
gravity_axis = np.dot(R, gravity_axis)
gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis]
TrappingPotential = astigmatic_single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, del_y = disp_foci, alpha = Polarizability)
TrappingPotential = TrappingPotential * (np.ones((3, len(TrappingPotential))) * projection_axis[:, np.newaxis]) + gravitational_potential(gravity_axis_positions, m)
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
else:
TrappingPotential = IdealTrappingPotential
if TrappingPotential[axis][0] > TrappingPotential[axis][-1]:
EffectiveTrapDepthInKelvin = TrappingPotential[axis][-1] - min(TrappingPotential[axis])
elif TrappingPotential[axis][0] < TrappingPotential[axis][-1]:
EffectiveTrapDepthInKelvin = TrappingPotential[axis][0] - min(TrappingPotential[axis])
else:
EffectiveTrapDepthInKelvin = IdealTrapDepthInKelvin
TrapDepthsInKelvin = [IdealTrapDepthInKelvin, EffectiveTrapDepthInKelvin]
v_x = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'x')
v_y = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'y')
v_z = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'z')
CalculatedTrapFrequencies = [v_x, v_y, v_z]
v, dv, popt, pcov = extractTrapFrequency(Positions, IdealTrappingPotential, axis)
IdealTrapFrequency = [v, dv]
v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, axis)
TrapFrequency = [v, dv]
ExtractedTrapFrequencies = [IdealTrapFrequency, TrapFrequency]
return Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies
def extractWaist(Positions, TrappingPotential):
tmp_pos = Positions.value
tmp_pot = TrappingPotential.value
center_idx = np.argmin(tmp_pot)
TrapMinimum = tmp_pot[center_idx]
TrapCenter = tmp_pos[center_idx]
lb = int(round(center_idx - len(tmp_pot)/10, 1))
ub = int(round(center_idx + len(tmp_pot)/10, 1))
xdata = tmp_pos[lb:ub]
Potential = tmp_pot[lb:ub]
p0=[TrapMinimum, 30, TrapCenter, 0]
popt, pcov = curve_fit(gaussian_potential, xdata, Potential, p0)
return popt, pcov
#####################################################################
# PLOTTING #
#####################################################################
def plotHarmonicFit(Positions, TrappingPotential, TrapDepthsInKelvin, axis, popt, pcov):
v = popt[0]
dv = pcov[0][0]**0.5
happrox = harmonic_potential(Positions[axis, :].value, *popt)
fig = plt.figure(figsize=(12, 6))
ax = fig.add_subplot(121)
ax.set_title('Fit to Potential')
plt.plot(Positions[axis, :].value, happrox, '-r', label = '\u03BD = %.1f \u00B1 %.2f Hz'% tuple([v,dv]))
plt.plot(Positions[axis, :], TrappingPotential[axis], 'ob', label = 'Gaussian Potential')
plt.xlabel('Distance (um)', fontsize= 12, fontweight='bold')
plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold')
plt.ylim([-TrapDepthsInKelvin[0].value, max(TrappingPotential[axis].value)])
plt.grid(visible=1)
plt.legend(prop={'size': 12, 'weight': 'bold'})
bx = fig.add_subplot(122)
bx.set_title('Fit Residuals')
plt.plot(Positions[axis, :].value, TrappingPotential[axis].value - happrox, 'ob')
plt.xlabel('Distance (um)', fontsize= 12, fontweight='bold')
plt.ylabel('$U_{trap} - U_{Harmonic}$', fontsize= 12, fontweight='bold')
plt.xlim([-10, 10])
plt.ylim([-1e-2, 1e-2])
plt.grid(visible=1)
plt.tight_layout()
plt.show()
def plotGaussianFit(Positions, TrappingPotential, popt, pcov):
extracted_waist = popt[1]
dextracted_waist = pcov[1][1]**0.5
gapprox = gaussian_potential(Positions, *popt)
fig = plt.figure(figsize=(12, 6))
ax = fig.add_subplot(121)
ax.set_title('Fit to Potential')
plt.plot(Positions, gapprox, '-r', label = 'waist = %.1f \u00B1 %.2f um'% tuple([extracted_waist,dextracted_waist]))
plt.plot(Positions, TrappingPotential, 'ob', label = 'Gaussian Potential')
plt.xlabel('Distance (um)', fontsize= 12, fontweight='bold')
plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold')
plt.ylim([min(TrappingPotential), max(TrappingPotential)])
plt.grid(visible=1)
plt.legend(prop={'size': 12, 'weight': 'bold'})
bx = fig.add_subplot(122)
bx.set_title('Fit Residuals')
plt.plot(Positions, TrappingPotential - gapprox, 'ob')
plt.xlabel('Distance (um)', fontsize= 12, fontweight='bold')
plt.ylabel('$U_{trap} - U_{Harmonic}$', fontsize= 12, fontweight='bold')
plt.xlim([-10, 10])
plt.ylim([-1, 1])
plt.grid(visible=1)
plt.tight_layout()
plt.show()
def generate_label(v, dv):
unit = 'Hz'
if v <= 0.0:
v = np.nan
dv = np.nan
unit = 'Hz'
elif v > 0.0 and orderOfMagnitude(v) > 2:
v = v / 1e3 # in kHz
dv = dv / 1e3 # in kHz
unit = 'kHz'
tf_label = '\u03BD = %.1f \u00B1 %.2f %s'% tuple([v,dv,unit])
return tf_label
def plotPotential(Positions, ComputedPotentials, axis, Params = [], listToIterateOver = [], save = False):
plt.figure(figsize=(9, 7))
for i in range(np.size(ComputedPotentials, 0)):
if i % 2 == 0:
j = int(i / 2)
else:
j = int((i - 1) / 2)
IdealTrapDepthInKelvin = Params[j][0][0]
EffectiveTrapDepthInKelvin = Params[j][0][1]
idealv = Params[j][2][0][0]
idealdv = Params[j][2][0][1]
v = Params[j][2][1][0]
dv = Params[j][2][1][1]
if listToIterateOver:
if np.size(ComputedPotentials, 0) == len(listToIterateOver):
plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'Trap Depth = ' + str(round(EffectiveTrapDepthInKelvin.value, 2)) + ' ' + str(EffectiveTrapDepthInKelvin.unit) + '; ' + generate_label(v, dv))
else:
if i % 2 == 0:
plt.plot(Positions[axis], ComputedPotentials[i][axis], '--', label = 'Trap Depth = ' + str(round(IdealTrapDepthInKelvin.value, 2)) + ' ' + str(IdealTrapDepthInKelvin.unit) + '; ' + generate_label(idealv, idealdv))
elif i % 2 != 0:
plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'Effective Trap Depth = ' + str(round(EffectiveTrapDepthInKelvin.value, 2)) + ' ' + str(EffectiveTrapDepthInKelvin.unit) + '; ' + generate_label(v, dv))
else:
if i % 2 == 0:
plt.plot(Positions[axis], ComputedPotentials[i][axis], '--', label = 'Trap Depth = ' + str(round(IdealTrapDepthInKelvin.value, 2)) + ' ' + str(IdealTrapDepthInKelvin.unit) + '; ' + generate_label(idealv, idealdv))
elif i % 2 != 0:
plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'Effective Trap Depth = ' + str(round(EffectiveTrapDepthInKelvin.value, 2)) + ' ' + str(EffectiveTrapDepthInKelvin.unit) + '; ' + generate_label(v, dv))
if axis == 0:
dir = 'X - Horizontal'
elif axis == 1:
dir = 'Y - Propagation'
else:
dir = 'Z - Vertical'
plt.ylim(top = 0)
plt.xlabel(dir + ' Direction (um)', fontsize= 12, fontweight='bold')
plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold')
plt.tight_layout()
plt.grid(visible=1)
plt.legend(loc=3, prop={'size': 12, 'weight': 'bold'})
if save:
plt.savefig('pot_' + dir + '.png')
plt.show()
def plotIntensityProfileAndPotentials(Power, waists, alpha, wavelength, options):
w_x = waists[0]
w_z = waists[1]
extent = options['extent']
modulation = options['modulation']
mod_func = options['modulation_function']
if not modulation:
extent = 50
x_Positions = np.arange(-extent, extent, 1)*u.um
y_Positions = np.arange(-extent, extent, 1)*u.um
z_Positions = np.arange(-extent, extent, 1)*u.um
idx = np.where(y_Positions==0)[0][0]
alpha = Polarizability
wavelength = 1.064*u.um
xm,ym,zm = np.meshgrid(x_Positions, y_Positions, z_Positions, sparse=True, indexing='ij')
## Single Gaussian Beam
A = 2*Power/(np.pi*w(ym, w_x, wavelength)*w(ym, w_z, wavelength))
I = A * np.exp(-2 * ((xm/w(ym, w_x, wavelength))**2 + (zm/w(ym, w_z, wavelength))**2))
I = np.transpose(I.to(u.MW/(u.cm*u.cm)))
U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
U = - U_tilde * I
U = (U/ac.k_B).to(u.uK)
fig = plt.figure(figsize=(12, 6))
ax = fig.add_subplot(121)
ax.set_title('Intensity Profile ($MW/cm^2$)\n Aspect Ratio = %.2f' %(w_x/w_z))
im = plt.imshow(I[:,idx,:].value, cmap="coolwarm", extent=[np.min(x_Positions.value), np.max(x_Positions.value), np.min(z_Positions.value), np.max(z_Positions.value)])
plt.xlabel('X - Horizontal (um)', fontsize= 12, fontweight='bold')
plt.ylabel('Z - Vertical (um)', fontsize= 12, fontweight='bold')
ax.set_aspect('equal')
fig.colorbar(im, fraction=0.046, pad=0.04, orientation='vertical')
bx = fig.add_subplot(122)
bx.set_title('Trap Potential')
plt.plot(x_Positions, U[np.where(x_Positions==0)[0][0], idx, :], label = 'X - Horizontal')
plt.plot(z_Positions, U[:, idx, np.where(z_Positions==0)[0][0]], label = 'Z - Vertical')
plt.ylim(top = 0)
plt.xlabel('Extent (um)', fontsize= 12, fontweight='bold')
plt.ylabel('Depth (uK)', fontsize= 12, fontweight='bold')
plt.tight_layout()
plt.grid(visible=1)
plt.legend(prop={'size': 12, 'weight': 'bold'})
plt.show()
else:
mod_amp = options['modulation_amplitude']
x_Positions = np.arange(-extent, extent, 1)*u.um
y_Positions = np.arange(-extent, extent, 1)*u.um
z_Positions = np.arange(-extent, extent, 1)*u.um
mod_amp = mod_amp * w_x
n_points = len(x_Positions)
dx, xmod_Positions = modulation_function(mod_amp, n_points, func = mod_func)
idx = np.where(y_Positions==0)[0][0]
xm,ym,zm,xmodm = np.meshgrid(x_Positions, y_Positions, z_Positions, xmod_Positions, sparse=True, indexing='ij')
## Single Modulated Gaussian Beam
A = 2*Power/(np.pi*w(y_Positions[idx] , w_x, wavelength)*w(y_Positions[idx], w_z, wavelength))
intensity_profile = A * 1/(2*mod_amp) * np.trapz(np.exp(-2 * (((xmodm - xm)/w(ym, w_x, wavelength))**2 + (zm/w(ym, w_z, wavelength))**2)), dx = dx, axis = -1)
I = intensity_profile[:, idx, :].to(u.MW/(u.cm*u.cm))
U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
U = - U_tilde * I
U = (U/ac.k_B).to(u.uK)
poptx, pcovx = extractWaist(x_Positions, U[:, np.where(z_Positions==0)[0][0]])
poptz, pcovz = extractWaist(z_Positions, U[np.where(x_Positions==0)[0][0], :])
extracted_waist_x = poptx[1]
dextracted_waist_x = pcovx[1][1]**0.5
extracted_waist_z = poptz[1]
dextracted_waist_z = pcovz[1][1]**0.5
ar = extracted_waist_x/extracted_waist_z
dar = ar * np.sqrt((dextracted_waist_x/extracted_waist_x)**2 + (dextracted_waist_z/extracted_waist_z)**2)
fig = plt.figure(figsize=(12, 6))
ax = fig.add_subplot(121)
ax.set_title('Intensity Profile ($MW/cm^2$)\n Aspect Ratio = %.2f \u00B1 %.2f um'% tuple([ar,dar]))
im = plt.imshow(np.transpose(I.value), cmap="coolwarm", extent=[np.min(x_Positions.value), np.max(x_Positions.value), np.min(z_Positions.value), np.max(z_Positions.value)])
plt.xlabel('X - Horizontal (um)', fontsize= 12, fontweight='bold')
plt.ylabel('Z - Vertical (um)', fontsize= 12, fontweight='bold')
ax.set_aspect('equal')
fig.colorbar(im, fraction=0.046, pad=0.04, orientation='vertical')
bx = fig.add_subplot(122)
bx.set_title('Trap Potential')
plt.plot(x_Positions, U[:, np.where(z_Positions==0)[0][0]], label = 'X - Horizontal')
plt.plot(z_Positions, U[np.where(x_Positions==0)[0][0], :], label = 'Z - Vertical')
plt.ylim(top = 0)
plt.xlabel('Extent (um)', fontsize= 12, fontweight='bold')
plt.ylabel('Depth (uK)', fontsize= 12, fontweight='bold')
plt.tight_layout()
plt.grid(visible=1)
plt.legend(prop={'size': 12, 'weight': 'bold'})
plt.show()
def plotScatteringLengths():
BField = np.arange(0, 2.59, 1e-3) * u.G
a_s_array = np.zeros(len(BField)) * ac.a0
for idx in range(len(BField)):
a_s_array[idx], a_bkg = scatteringLength(BField[idx])
rmelmIdx = [i for i, x in enumerate(np.isinf(a_s_array.value)) if x]
for x in rmelmIdx:
a_s_array[x-1] = np.inf * ac.a0
plt.figure(figsize=(9, 7))
plt.plot(BField, a_s_array/ac.a0, '-b')
plt.axhline(y = a_bkg/ac.a0, color = 'r', linestyle = '--')
plt.text(min(BField.value) + 0.5, (a_bkg/ac.a0).value + 1, '$a_{bkg}$ = %.2f a0' %((a_bkg/ac.a0).value), fontsize=14, fontweight='bold')
plt.xlim([min(BField.value), max(BField.value)])
plt.ylim([65, 125])
plt.xlabel('B field (G)', fontsize= 12, fontweight='bold')
plt.ylabel('Scattering length (a0)', fontsize= 12, fontweight='bold')
plt.tight_layout()
plt.grid(visible=1)
plt.show()
#####################################################################
# RUN SCRIPT WITH OPTIONS BELOW #
#####################################################################
if __name__ == '__main__':
Power = 40*u.W
Polarizability = 184.4 # in a.u, most precise measured value of Dy polarizability
Wavelength = 1.064*u.um
w_x, w_z = 27.5*u.um, 33.8*u.um # Beam Waists in the x and y directions
# Power = 11*u.W
# Polarizability = 184.4 # in a.u, most precise measured value of Dy polarizability
# w_x, w_z = 54.0*u.um, 54.0*u.um # Beam Waists in the x and y directions
options = {
'axis': 0, # axis referenced to the beam along which you want the dipole trap potential
'extent': 3e2, # range of spatial coordinates in one direction to calculate trap potential over
2023-02-13 20:43:58 +01:00
'modulation': True,
'aspect_ratio': 3.67,
'gravity': False,
'tilt_gravity': False,
'theta': 5, # in degrees
'tilt_axis': [1, 0, 0], # lab space coordinates are rotated about x-axis in reference frame of beam
2023-02-13 20:43:58 +01:00
'astigmatism': False,
'disp_foci': 3 * z_R(w_0 = np.asarray([30]), lamb = 1.064)[0]*u.um # difference in position of the foci along the propagation direction (Astigmatism)
}
"""Plot ideal and trap potential resulting for given parameters only"""
# ComputedPotentials = []
# Params = []
# Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies = computeTrapPotential(w_x, w_z, Power, Polarizability, options)
# ComputedPotentials.append(IdealTrappingPotential)
# ComputedPotentials.append(TrappingPotential)
# Params.append([TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies])
# ComputedPotentials = np.asarray(ComputedPotentials)
# plotPotential(Positions, ComputedPotentials, options['axis'], Params)
"""Plot harmonic fit for trap potential resulting for given parameters only"""
# v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, options['axis'])
# plotHarmonicFit(Positions, TrappingPotential, TrapDepthsInKelvin, options['axis'], popt, pcov)
"""Plot trap potential resulting for given parameters (with one parameter being a list of values and the potential being computed for each of these values) only"""
# ComputedPotentials = []
# Params = []
# Power = [10, 20, 25, 30, 35, 40]*u.W # Single Beam Power
# for p in Power:
# Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies = computeTrapPotential(w_x, w_z, p, Polarizability, options)
# ComputedPotentials.append(IdealTrappingPotential)
# ComputedPotentials.append(TrappingPotential)
# Params.append([TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies])
# ComputedPotentials = np.asarray(ComputedPotentials)
# plotPotential(Positions, ComputedPotentials, options['axis'], Params)
"""Plot transverse intensity profile and trap potential resulting for given parameters only"""
# options = {
# 'extent': 50, # range of spatial coordinates in one direction to calculate trap potential over
# 'modulation': True,
# 'modulation_function': 'arccos',
# 'modulation_amplitude': 2.12
# }
# plotIntensityProfileAndPotentials(Power, [w_x, w_z], Polarizability, Wavelength, options)
"""Plot gaussian fit for trap potential resulting from modulation for given parameters only"""
# plotGaussianFit(x_Positions, x_Potential, poptx, pcovx)
# plotGaussianFit(z_Positions, z_Potential, poptx, pcovx)
"""Calculate relevant parameters for evaporative cooling"""
AtomNumber = 1.00 * 1e7
BField = 2.5 * u.G
modulation = True
if modulation:
aspect_ratio = 3.67
init_ar = w_x / w_z
w_x = w_x * (aspect_ratio / init_ar)
Temperature = 20 * u.uK
else:
Temperature = 100 * u.uK
n = particleDensity(w_x, w_z, Power, Polarizability, N = AtomNumber, T = Temperature, m = 164*u.u).decompose().to(u.cm**(-3))
Gamma_elastic = calculateElasticCollisionRate(w_x, w_z, Power, Polarizability, N = AtomNumber, T = Temperature, B = BField)
PSD = calculatePSD(w_x, w_z, Power, Polarizability, N = AtomNumber, T = Temperature).decompose()
2023-02-13 20:43:58 +01:00
print('Particle Density = %.2E ' % (n.value) + str(n.unit))
print('Elastic Collision Rate = %.2f ' % (Gamma_elastic.value) + str(Gamma_elastic.unit))
print('PSD = %.2E ' % (PSD.value))
v_x = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'x')
v_y = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'y')
v_z = calculateTrapFrequency(w_x, w_z, Power, Polarizability, dir = 'z')
2023-02-13 20:43:58 +01:00
print('v_x = %.2f ' %(v_x.value) + str(v_x.unit))
print('v_y = %.2f ' %(v_y.value) + str(v_y.unit))
print('v_z = %.2f ' %(v_z.value) + str(v_z.unit))
print('a_s = %.2f ' %(scatteringLength(BField)[0] / ac.a0))
# plotScatteringLengths()