Added functionality to compute the modulated single Gaussian beam and did some other cleanup and refactoring.
This commit is contained in:
parent
4336a657a4
commit
e7d2255ac9
@ -36,18 +36,23 @@ def find_nearest(array, value):
|
||||
idx = (np.abs(array - value)).argmin()
|
||||
return idx
|
||||
|
||||
def arccos_modulation(mod_amp, n_points):
|
||||
phi = np.linspace(0, 2*np.pi, n_points)
|
||||
first_half = 2/np.pi * np.arccos(phi/np.pi-1) - 1
|
||||
second_half = np.flip(first_half)
|
||||
return mod_amp * np.concatenate((first_half, second_half))
|
||||
def modulation_function(mod_amp, n_points, func = 'arccos'):
|
||||
if func == 'arccos':
|
||||
phi = np.linspace(0, 2*np.pi, n_points)
|
||||
first_half = 2/np.pi * np.arccos(phi/np.pi-1) - 1
|
||||
second_half = np.flip(first_half)
|
||||
mod_func = mod_amp * np.concatenate((first_half, second_half))
|
||||
dx = (max(mod_func) - min(mod_func))/(2*n_points)
|
||||
return dx, mod_func
|
||||
else:
|
||||
return None
|
||||
|
||||
#####################################################################
|
||||
# BEAM PARAMETERS #
|
||||
#####################################################################
|
||||
|
||||
# Rayleigh range
|
||||
def z_R(w_0:np.ndarray, lamb:float)->np.ndarray:
|
||||
# Rayleigh length
|
||||
def z_R(w_0, lamb)->np.ndarray:
|
||||
return np.pi*w_0**2/lamb
|
||||
|
||||
# Beam Radius
|
||||
@ -145,14 +150,17 @@ def harmonic_potential(pos, v, xoffset, yoffset, m = 164*u.u):
|
||||
U_Harmonic = ((0.5 * m * (2 * np.pi * v*u.Hz)**2 * (pos*u.um - xoffset*u.um)**2)/ac.k_B).to(u.uK) + yoffset*u.uK
|
||||
return U_Harmonic.value
|
||||
|
||||
# def modulated_single_gaussian_beam_potential(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", alpha:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um)->np.ndarray:
|
||||
# mod_amp = 0.5 * waists[0]
|
||||
# n_points = int(len(positions[0,:])/2)
|
||||
# x_mod = arccos_modulation(mod_amp, n_points)
|
||||
# A = 2*P/(np.pi*w(positions[1,:], waists[0], wavelength)*w(positions[1,:], waists[1], wavelength))
|
||||
# U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
||||
# U = - U_tilde * A * np.trapz(np.exp(-2 * (np.subtract(x_mod, positions[0,:])/w(positions[1,:], waists[0], wavelength))**2))
|
||||
# return U
|
||||
def modulated_single_gaussian_beam_potential(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", alpha:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um, mod_amp:"float|u.quantity.Quantity"=1)->np.ndarray:
|
||||
mod_amp = mod_amp * waists[0]
|
||||
n_points = int(len(positions[0,:])/2)
|
||||
dx, x_mod = modulation_function(mod_amp, n_points, func = 'arccos')
|
||||
A = 2*P/(np.pi*w(positions[1,:], waists[0], wavelength)*w(positions[1,:], waists[1], wavelength))
|
||||
U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
||||
dU = np.zeros(2*n_points)
|
||||
for i in range(len(x_mod)):
|
||||
dU = np.vstack((dU, np.exp(-2 * (np.subtract(x_mod[i], positions[0,:])/w(positions[1,:], waists[0], wavelength))**2)))
|
||||
U = - U_tilde * A * 1/(2*mod_amp) * np.trapz(dU, dx = dx, axis = 0)
|
||||
return U
|
||||
|
||||
#####################################################################
|
||||
# COMPUTE/EXTRACT TRAP POTENTIAL AND PARAMETERS #
|
||||
@ -352,11 +360,11 @@ def plotPotential(Positions, ComputedPotentials, axis, Params = [], listToIterat
|
||||
elif i % 2 != 0:
|
||||
plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'Effective Trap Depth = ' + str(round(EffectiveTrapDepthInKelvin.value, 2)) + ' ' + str(EffectiveTrapDepthInKelvin.unit) + '; ' + generate_label(v, dv))
|
||||
if axis == 0:
|
||||
dir = 'X'
|
||||
dir = 'X - Horizontal'
|
||||
elif axis == 1:
|
||||
dir = 'Y'
|
||||
dir = 'Y - Propagation'
|
||||
else:
|
||||
dir = 'Z'
|
||||
dir = 'Z - Vertical'
|
||||
|
||||
plt.ylim(top = 0)
|
||||
plt.xlabel(dir + ' Direction (um)', fontsize= 12, fontweight='bold')
|
||||
@ -368,6 +376,96 @@ def plotPotential(Positions, ComputedPotentials, axis, Params = [], listToIterat
|
||||
plt.savefig('pot_' + dir + '.png')
|
||||
plt.show()
|
||||
|
||||
def plotIntensityProfileAndPotentials(Power, waists, alpha, wavelength, options):
|
||||
w_x = waists[0]
|
||||
w_z = waists[1]
|
||||
extent = options['extent']
|
||||
modulation = options['modulation']
|
||||
|
||||
if not modulation:
|
||||
extent = 50
|
||||
x_Positions = np.arange(-extent, extent, 1)*u.um
|
||||
y_Positions = np.arange(-extent, extent, 1)*u.um
|
||||
z_Positions = np.arange(-extent, extent, 1)*u.um
|
||||
|
||||
idx = np.where(y_Positions==0)[0][0]
|
||||
|
||||
alpha = Polarizability
|
||||
wavelength = 1.064*u.um
|
||||
|
||||
xm,ym,zm = np.meshgrid(x_Positions, y_Positions, z_Positions, sparse=True, indexing='ij')
|
||||
|
||||
## Single Gaussian Beam
|
||||
A = 2*Power/(np.pi*w(ym, w_x, wavelength)*w(ym, w_z, wavelength))
|
||||
I = A * np.exp(-2 * ((xm/w(ym, w_x, wavelength))**2 + (zm/w(ym, w_z, wavelength))**2))
|
||||
I = np.transpose(I.to(u.MW/(u.cm*u.cm)))
|
||||
|
||||
U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
||||
U = - U_tilde * I
|
||||
U = (U/ac.k_B).to(u.uK)
|
||||
|
||||
fig = plt.figure(figsize=(12, 6))
|
||||
ax = fig.add_subplot(121)
|
||||
ax.set_title('Intensity Profile ($MW/cm^2$)\n Aspect Ratio = %.2f' %(w_x/w_z))
|
||||
im = plt.imshow(I[:,idx,:].value, cmap="coolwarm", extent=[np.min(x_Positions.value), np.max(x_Positions.value), np.min(z_Positions.value), np.max(z_Positions.value)])
|
||||
plt.xlabel('X - Horizontal (um)', fontsize= 12, fontweight='bold')
|
||||
plt.ylabel('Z - Vertical (um)', fontsize= 12, fontweight='bold')
|
||||
ax.set_aspect('equal')
|
||||
fig.colorbar(im, fraction=0.046, pad=0.04, orientation='vertical')
|
||||
|
||||
bx = fig.add_subplot(122)
|
||||
bx.set_title('Trap Potential')
|
||||
plt.plot(x_Positions, U[np.where(x_Positions==0)[0][0], idx, :], label = 'X - Horizontal')
|
||||
plt.plot(z_Positions, U[:, idx, np.where(z_Positions==0)[0][0]], label = 'Z - Vertical')
|
||||
plt.ylim(top = 0)
|
||||
plt.xlabel('Extent (um)', fontsize= 12, fontweight='bold')
|
||||
plt.ylabel('Depth (uK)', fontsize= 12, fontweight='bold')
|
||||
plt.tight_layout()
|
||||
plt.grid(visible=1)
|
||||
plt.legend(prop={'size': 12, 'weight': 'bold'})
|
||||
plt.show()
|
||||
else:
|
||||
mod_amp = options['modulation_amplitude']
|
||||
x_Positions = np.arange(-extent, extent, 1)*u.um
|
||||
y_Positions = np.arange(-extent, extent, 1)*u.um
|
||||
z_Positions = np.arange(-extent, extent, 1)*u.um
|
||||
|
||||
mod_amp = mod_amp * w_x
|
||||
n_points = int(len(x_Positions)/2)
|
||||
dx, xmod_Positions = modulation_function(mod_amp, n_points, func = 'arccos')
|
||||
|
||||
idx = np.where(y_Positions==0)[0][0]
|
||||
|
||||
xm,ym,zm,xmodm = np.meshgrid(x_Positions, y_Positions, z_Positions, xmod_Positions, sparse=True, indexing='ij')
|
||||
A = 2*Power/(np.pi*w(0*u.um , w_x, wavelength)*w(0*u.um , w_z, wavelength))
|
||||
intensity_profile = A * 1/(2*mod_amp) * np.trapz(np.exp(-2 * (((xmodm - xm)/w(ym, w_x, wavelength))**2 + (zm/w(ym, w_z, wavelength))**2)), dx = dx, axis = -1)
|
||||
I = np.transpose(intensity_profile[:, idx, :].to(u.MW/(u.cm*u.cm)))
|
||||
|
||||
U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
||||
U = - U_tilde * I
|
||||
U = (U/ac.k_B).to(u.uK)
|
||||
|
||||
fig = plt.figure(figsize=(12, 6))
|
||||
ax = fig.add_subplot(121)
|
||||
ax.set_title('Intensity Profile ($MW/cm^2$)')
|
||||
im = plt.imshow(I.value, cmap="coolwarm", extent=[np.min(x_Positions.value), np.max(x_Positions.value), np.min(z_Positions.value), np.max(z_Positions.value)])
|
||||
plt.xlabel('X - Horizontal (um)', fontsize= 12, fontweight='bold')
|
||||
plt.ylabel('Z - Vertical (um)', fontsize= 12, fontweight='bold')
|
||||
ax.set_aspect('equal')
|
||||
fig.colorbar(im, fraction=0.046, pad=0.04, orientation='vertical')
|
||||
|
||||
bx = fig.add_subplot(122)
|
||||
bx.set_title('Trap Potential')
|
||||
plt.plot(x_Positions, U[np.where(x_Positions==0)[0][0], :], label = 'X - Horizontal')
|
||||
plt.plot(z_Positions, U[:, np.where(z_Positions==0)[0][0]], label = 'Z - Vertical')
|
||||
plt.ylim(top = 0)
|
||||
plt.xlabel('Extent (um)', fontsize= 12, fontweight='bold')
|
||||
plt.ylabel('Depth (uK)', fontsize= 12, fontweight='bold')
|
||||
plt.tight_layout()
|
||||
plt.grid(visible=1)
|
||||
plt.legend(prop={'size': 12, 'weight': 'bold'})
|
||||
plt.show()
|
||||
|
||||
def plotScatteringLengths():
|
||||
BField = np.arange(0, 2.59, 1e-3) * u.G
|
||||
a_s_array = np.zeros(len(BField)) * ac.a0
|
||||
@ -397,7 +495,12 @@ if __name__ == '__main__':
|
||||
|
||||
Power = 40*u.W
|
||||
Polarizability = 184.4 # in a.u, most precise measured value of Dy polarizability
|
||||
Wavelength = 1.064*u.um
|
||||
w_x, w_z = 27.5*u.um, 33.8*u.um # Beam Waists in the x and y directions
|
||||
|
||||
# Power = 11*u.W
|
||||
# Polarizability = 184.4 # in a.u, most precise measured value of Dy polarizability
|
||||
# w_x, w_z = 54.0*u.um, 54.0*u.um # Beam Waists in the x and y directions
|
||||
|
||||
options = {
|
||||
'axis': 0, # axis referenced to the beam along which you want the dipole trap potential
|
||||
@ -412,24 +515,55 @@ if __name__ == '__main__':
|
||||
'disp_foci': 3 * z_R(w_0 = np.asarray([30]), lamb = 1.064)[0]*u.um # difference in position of the foci along the propagation direction (Astigmatism)
|
||||
}
|
||||
|
||||
ComputedPotentials = []
|
||||
Params = []
|
||||
"""Plot ideal and trap potential resulting for given parameters only"""
|
||||
# ComputedPotentials = []
|
||||
# Params = []
|
||||
|
||||
Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies = computeTrapPotential(w_x, w_z, Power, Polarizability, options)
|
||||
ComputedPotentials.append(IdealTrappingPotential)
|
||||
ComputedPotentials.append(TrappingPotential)
|
||||
Params.append([TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies])
|
||||
# Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies = computeTrapPotential(w_x, w_z, Power, Polarizability, options)
|
||||
# ComputedPotentials.append(IdealTrappingPotential)
|
||||
# ComputedPotentials.append(TrappingPotential)
|
||||
# Params.append([TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies])
|
||||
|
||||
ComputedPotentials = np.asarray(ComputedPotentials)
|
||||
plotPotential(Positions, ComputedPotentials, options['axis'], Params)
|
||||
# ComputedPotentials = np.asarray(ComputedPotentials)
|
||||
# plotPotential(Positions, ComputedPotentials, options['axis'], Params)
|
||||
|
||||
"""Plot harmonic fit for trap potential resulting for given parameters only"""
|
||||
# v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, options['axis'])
|
||||
# plotHarmonicFit(Positions, TrappingPotential, TrapDepthsInKelvin, options['axis'], popt, pcov)
|
||||
|
||||
"""Plot trap potential resulting for given parameters (with one parameter being a list of values and the potential being computed for each of these values) only"""
|
||||
# ComputedPotentials = []
|
||||
# Params = []
|
||||
# Power = [10, 20, 25, 30, 35, 40]*u.W # Single Beam Power
|
||||
# for p in Power:
|
||||
# Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies = computeTrapPotential(w_x, w_z, p, Polarizability, options)
|
||||
# ComputedPotentials.append(IdealTrappingPotential)
|
||||
# ComputedPotentials.append(TrappingPotential)
|
||||
# Params.append([TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies])
|
||||
|
||||
# ComputedPotentials = np.asarray(ComputedPotentials)
|
||||
# plotPotential(Positions, ComputedPotentials, options['axis'], Params)
|
||||
|
||||
"""Plot transverse intensity profile and trap potential resulting for given parameters only"""
|
||||
# options = {
|
||||
# 'extent': 70, # range of spatial coordinates in one direction to calculate trap potential over
|
||||
# 'modulation': True,
|
||||
# 'modulation_amplitude': 4.37
|
||||
# }
|
||||
|
||||
# plotIntensityProfileAndPotentials(Power, [w_x, w_z], Polarizability, Wavelength, options)
|
||||
|
||||
|
||||
"""Calculate relevant parameters for evaporative cooling"""
|
||||
AtomNumber = 1.13 * 1e7
|
||||
Temperature = 30 * u.uK
|
||||
Temperature = 100 * u.uK
|
||||
BField = 2.1 * u.G
|
||||
|
||||
aspect_ratio = 3.67
|
||||
init_ar = w_x / w_z
|
||||
w_x = w_x * (aspect_ratio / init_ar)
|
||||
modulation = False
|
||||
|
||||
if modulation:
|
||||
aspect_ratio = 3.67
|
||||
init_ar = w_x / w_z
|
||||
w_x = w_x * (aspect_ratio / init_ar)
|
||||
|
||||
n = particleDensity(w_x, w_z, Power, Polarizability, N = AtomNumber, T = Temperature, m = 164*u.u).decompose().to(u.cm**(-3))
|
||||
Gamma_elastic = calculateElasticCollisionRate(w_x, w_z, Power, Polarizability, N = AtomNumber, T = Temperature, B = BField)
|
||||
@ -451,15 +585,4 @@ if __name__ == '__main__':
|
||||
|
||||
# plotScatteringLengths()
|
||||
|
||||
# v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, options['axis'])
|
||||
# plotHarmonicFit(Positions, TrappingPotential, TrapDepthsInKelvin, options['axis'], popt, pcov)
|
||||
|
||||
# Power = [10, 20, 25, 30, 35, 40]*u.W # Single Beam Power
|
||||
# for p in Power:
|
||||
# Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies = computeTrapPotential(w_x, w_z, p, Polarizability, options)
|
||||
# ComputedPotentials.append(IdealTrappingPotential)
|
||||
# ComputedPotentials.append(TrappingPotential)
|
||||
# Params.append([TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies])
|
||||
|
||||
# ComputedPotentials = np.asarray(ComputedPotentials)
|
||||
# plotPotential(Positions, ComputedPotentials, options['axis'], Params)
|
||||
|
Loading…
Reference in New Issue
Block a user