Compare commits

..

36 Commits

Author SHA1 Message Date
c2e6420243 Inconsequential numeric changes. 2021-07-11 14:51:49 +02:00
f789a7ad6a Modified to determine the distance between atom and the z-axis and checked to see if that is within the diameter of the beams - this makes sense since the beams are crossed and the condition that the distance be smaller than the beam diameter holds only along the y-axis. 2021-07-11 14:51:17 +02:00
5b91c20246 Major changes - rewrote how autocorrelation, resampling and determination of loading rate is done. 2021-07-11 14:47:13 +02:00
8327652883 Shifted some calculations in to other functions. 2021-07-11 14:46:19 +02:00
5e933b0324 Changed variable names. 2021-07-11 14:45:18 +02:00
f658890daa Correction of expression. 2021-07-11 14:44:43 +02:00
a41ae74cb7 Cosmetic changes only, changed a few variable names, dynamical quantities for all atoms across the full simulation time are now returned instead of just the final values. 2021-07-11 14:43:36 +02:00
bc10c207f6 Cosmetic changes only. 2021-07-11 14:42:09 +02:00
f7f48bd623 Cosmetic changes, a few new additions. 2021-07-11 14:41:40 +02:00
b4e28e09db Wrapped the calculation of the "reduced" Clausing factor - which is the probability of an atom exiting from the oven within a smaller solid angle as determined by the apertures/orifices along the way. 2021-07-11 14:40:43 +02:00
bb5f70ce7f Wrapped the calculation of the collision event probability in its own function. 2021-07-11 14:39:26 +02:00
951c2e3935 Determines the distribution of times spent by atom in the MOT interaction volume to be used to compute the collision probability between the incoming hot atoms and the atoms slowed near the center of the MOT. 2021-07-11 14:38:37 +02:00
b6d56e9e7b Wrapped the exit condition in to its own function now checking if the position, velocity meet certain criteria and account for collision events. 2021-07-11 14:35:54 +02:00
058fa0fb19 Change of variable names, new properties included along with their getters and setters, increased limit on number of trajectories to be computed, corrections to formulae calculating saturation parameters and average velocity. 2021-07-11 14:34:19 +02:00
e16ac42415 Moved calculations of capture velocity, cut-off, reduced Clausing factor and reduced flux to here, changed the condition for the velocity sampling to correctly sample from the normalized probability distributions. 2021-07-11 06:40:19 +02:00
47a93001c8 Added a switch to change between 2D and 3D MOT cases to allow for this code to be expanded and generalized in the future. 2021-07-11 06:36:49 +02:00
e17015d181 Added the option to save the Confidence Interval of the obtained loading rate for each scan point. 2021-07-11 06:34:51 +02:00
5f97d975de Added the option to plot the confidence interval. 2021-07-11 06:31:30 +02:00
64216d2086 Wrapped the distance between a point and a line calculation in a Helper function. 2021-07-11 06:30:06 +02:00
04b395b6ad Removed the multiplication of the full Clausing Factor since the correct flux coming out of the oven is obtained by accounting for the clipping by the aperture which is done by numerically integrating the angular distribution till the exit divergence angle that is limited by the aperture to obtain what is called the "reduced" Clausing Factor. This is calculated in the initialVelocitySampling and multiplied to this flux to get the "reduced" flux. 2021-07-11 06:28:50 +02:00
94067499f2 Includes calculation of the Clausing Factor from an analytic expression (obtained from the Etienne Staub Master thesis) and an approximation. 2021-07-11 06:24:27 +02:00
c8218c1bc4 Major change how the loading rate is calculated from the raw output of the simulator - Zero crossing of the autocorrelation of the time series - which is the number of loaded atoms at each time step - is used to determine the length of each of a 1000 bootstrap samples obtained by sampling with replacement. Mean in each sample is calculated and a sampling distribution of means obtained. The capture ratio is the mean of this distribution which when multiplied by the "reduced" flux gives the loading rate. Standard Error and 95% confidence interval are also calculated from the sampling distribution. 2021-07-11 06:22:44 +02:00
1a8975c218 Added a switch to change between 2D and 3D MOT cases to allow for this code to be expanded and generalized in the future. 2021-07-11 06:18:21 +02:00
ba621f3c32 No major change. 2021-07-11 06:15:49 +02:00
960bd02f8b Cosmetic changes like the change of variable names to reflect their correct definition and use. 2021-07-11 06:15:02 +02:00
4096e685a1 Corrected errors in the formula for the acceleration due to the push beam. 2021-07-11 06:13:49 +02:00
4f28af7e10 New functions to calculate the distance of a point from a line and find all zero crossings from a vector/1-D array. 2021-07-11 06:10:23 +02:00
1ef2cf4ae0 Some cosmetic changes and additions to showcase the use of newly included plotting routines. 2021-07-11 06:08:48 +02:00
ae0b19fef0 Plots velocity sampling in terms of its magnitude (up to the cut-off) and direction (up to the exit divergence). 2021-07-11 06:07:17 +02:00
a2138c1f95 Plots the confidence interval as a shaded region. 2021-07-11 06:05:59 +02:00
271b180d27 Included the option for removing outliers and indicate the confidence interval as a shaded region. 2021-07-11 06:05:24 +02:00
2743854bb9 Cosmetic changes only. 2021-07-11 06:03:59 +02:00
48463a9d0c Cosmetic changes only. 2021-07-11 06:03:27 +02:00
b3a6f61d75 Modified to have the "reduced" Clausing Factor calculated from the angular distributions for different beta multiplied to the total flux. 2021-07-11 06:02:53 +02:00
e80c68ef2a Changed sampling of angle such that it is up to NozzleExitDivergence not MOTExitDivergence, made some other cosmetic changes. 2021-07-11 06:00:08 +02:00
f0e2bea4f5 Changed distribution to one for transition flow. 2021-07-11 05:58:10 +02:00
35 changed files with 601 additions and 403 deletions

View File

@ -0,0 +1,10 @@
function ret = calculateDistanceFromPointToLine(p0 , p1, p2)
p01 = p0 - p1;
p12 = p2 - p1;
CrossProduct = [p01(2)*p12(3) - p01(3)*p12(2), p01(3)*p12(1) - p01(1)*p12(3), p01(1)*p12(2) - p01(2)*p12(1)];
ret = rssq(CrossProduct) / rssq(p12);
%Height of parallelogram (Distance between point and line) = Area of parallelogram / Base
%Area = One side of parallelogram X Base
%ret = norm(cross(one side, base))./ norm(base);
end

View File

@ -0,0 +1,18 @@
function ret = findAllZeroCrossings(x,y)
% Finds all Zero-crossing of the function y = f(x)
zci = @(v) find(v(:).*circshift(v(:), [-1 0]) <= 0); % Returns Approximate Zero-Crossing Indices Of Argument Vector
zxidx = zci(y);
if ~isempty(zxidx)
for k1 = 1:numel(zxidx)
idxrng = max([1 zxidx(k1)-1]):min([zxidx(k1)+1 numel(y)]);
xrng = x(idxrng);
yrng = y(idxrng);
[yrng2, ~, jyrng] = unique(yrng); %yrng is a new array containing the unique values of yrng. jyrng contains the indices in yrng that correspond to the original vector. yrng = yrng2(jyrng)
xrng2 = accumarray(jyrng, xrng, [], @mean); %This function creates a new array "xrng2" by applying the function "@mean" to all elements in "xrng" that have identical indices in "jyrng". Any elements with identical X values will have identical indices in jyrng. Thus, this function creates a new array by averaging values with identical X values in the original array.
ret(k1) = interp1( yrng2(:), xrng2(:), 0, 'linear', 'extrap' );
end
else
warning('No zero crossings found!')
ret = nan;
end
end

View File

@ -64,7 +64,7 @@ function plotAngularDistributionForDifferentBeta(obj, Beta)
leg = legend;
hXLabel = xlabel('\theta (rad)');
hYLabel = ylabel('J(\theta)');
hTitle = sgtitle('Angular Distribution (Free Molecular Flow)');
hTitle = sgtitle('Angular Distribution (Transition Flow)');
set([hXLabel, hYLabel, leg] , ...
'FontSize' , 14 );

View File

@ -1,6 +1,6 @@
function plotCaptureVelocityVsAngle(obj)
theta = linspace(0, obj.MOTExitDivergence, 40);
theta = linspace(0, obj.NozzleExitDivergence, 1000);
CaptureVelocity = zeros(length(theta),3);
for i=1:length(theta)
@ -20,16 +20,16 @@ function plotCaptureVelocityVsAngle(obj)
screensize = get(0,'ScreenSize');
f_h.Position = [[screensize(3)/3.5 screensize(4)/3.5] 750 600];
plot(theta, sqrt(CaptureVelocity(:,1).^2+CaptureVelocity(:,2).^2+CaptureVelocity(:,3).^2), 'Linewidth', 1.5)
plot(theta .* 1e+03, sqrt(CaptureVelocity(:,1).^2+CaptureVelocity(:,2).^2+CaptureVelocity(:,3).^2), 'Linewidth', 1.5)
hXLabel = xlabel('\theta (rad)');
hXLabel = xlabel('\theta (mrad)');
hYLabel = ylabel('Velocity (m/s)');
hTitle = sgtitle('Capture Velocity of an atomic beam from (0,0,0)');
hTitle = sgtitle('Capture velocity for different angles of divergence');
set([hXLabel, hYLabel] , ...
'FontSize' , 14 );
set( hTitle , ...
'FontSize' , 18 );
'FontSize' , 14 );
grid on
Helper.bringFiguresWithTagInForeground();

View File

@ -0,0 +1,18 @@
function plotConfidenceIntervalRegion(x, y1, y2)
% draws two lines on a plot and shades the area between those
% lines to indicate confidence interval.
hold on
X_interpolated = linspace(min(x), max(x), 100);
Y1_interpolated = interp1(x,y1,X_interpolated);
Y2_interpolated = interp1(x,y2,X_interpolated);
%Plot the line edges
%plot(X_interpolated, Y1_interpolated, 'LineWidth', 0.5, 'LineStyle', '--', 'Color', '#FE1A1A');
%plot(X_interpolated, Y2_interpolated, 'LineWidth', 0.5, 'LineStyle', '--', 'Color', '#FE1A1A');
fill([X_interpolated fliplr(X_interpolated)], [Y1_interpolated fliplr(Y2_interpolated)], [0 71 138] ./ 255, 'EdgeColor', 'none', 'FaceAlpha', 0.2);
hold off
end

View File

@ -17,21 +17,22 @@ function plotFreeMolecularFluxVsTemp(obj, Temperature)
for i=1:length(Temperature)
beta = linspace(0.01,0.5,200);
L = 2*obj.NozzleRadius./beta;
obj.OvenTemperature = Temperature(i);
flux = zeros(1,length(L));
for j=1:length(L)
obj.NozzleLength = L(j);
flux(j) = obj.calculateFreeMolecularRegimeFlux();
flux = zeros(1,length(beta));
for j=1:length(beta)
obj.Beta = beta(j);
[ReducedClausingFactor, ~] = obj.calculateReducedClausingFactor();
flux(j) = ReducedClausingFactor * obj.calculateFreeMolecularRegimeFlux();
end
plot(beta, flux, 'DisplayName', sprintf('T = %.1f ', Temperature(i)), 'Linewidth', 1.5)
end
set(gca,'yscale','log')
obj.reinitializeSimulator();
[ReducedClausingFactor, ~] = obj.calculateReducedClausingFactor();
xline(obj.Beta, 'k--','Linewidth', 0.5);
fmf = obj.calculateFreeMolecularRegimeFlux();
fmf = ReducedClausingFactor * obj.calculateFreeMolecularRegimeFlux();
yline(fmf, 'k--', 'Linewidth', 1.5);
textstring = [sprintf('%1.e',fmf) ' atoms/s for ' '$$ \beta $$ = ' num2str(obj.Beta, '%.2f') sprintf(' @ %.2f K', obj.OvenTemperatureinKelvin)];
txt = text((obj.Beta + 0.05*obj.Beta), (max(fmf) + 0.2*fmf), textstring, 'Interpreter','latex');

View File

@ -0,0 +1,74 @@
function plotInitialVeloctiySamplingVsAngle(obj, NumberOfBins)
n = obj.NumberOfAtoms;
obj.setInitialConditions();
VelocitySamples = initialVelocitySampling(obj);
Speeds = zeros(length(VelocitySamples),1);
Angles = zeros(length(VelocitySamples),1);
for i=1:length(VelocitySamples)
Speeds(i) = sqrt(VelocitySamples(i,1)^2+VelocitySamples(i,2)^2+VelocitySamples(i,3)^2);
Angles(i) = acos(VelocitySamples(i,1)/Speeds(i));
end
SpeedsArray = linspace(0,obj.VelocityCutoff,5000);
SpeedBinSize = obj.VelocityCutoff / NumberOfBins;
VelocityDistribution = @(velocity) sqrt(2 / pi) * sqrt(Helper.PhysicsConstants.Dy164Mass/(Helper.PhysicsConstants.BoltzmannConstant * obj.OvenTemperatureinKelvin))^3 ...
* velocity.^3 .* exp(-velocity.^2 .* (Helper.PhysicsConstants.Dy164Mass / (2 * Helper.PhysicsConstants.BoltzmannConstant ...
* obj.OvenTemperatureinKelvin)));
c = integral(VelocityDistribution, 0, obj.VelocityCutoff);
AnglesArray = linspace(0, obj.NozzleExitDivergence,1000);
AngleBinSize = obj.NozzleExitDivergence / NumberOfBins;
dtheta = AnglesArray(2)-AnglesArray(1);
AngularDistribution = zeros(1,length(AnglesArray));
d = 0;
for i = 1:length(AnglesArray)
AngularDistribution(i) = obj.angularDistributionFunction(AnglesArray(i));
d = d + (2 * pi * AngularDistribution(i) * sin(AnglesArray(i)) * dtheta);
end
AngularDistribution = AngularDistribution .* (2 * pi .* sin(AnglesArray));
f_h = Helper.getFigureByTag('Velocity Sampling');
set(groot,'CurrentFigure',f_h);
a_h = get(f_h, 'CurrentAxes');
if ~isempty(get(a_h, 'Children'))
clf(f_h);
end
f_h.Name = 'Velocity Sampling';
f_h.Units = 'pixels';
set(0,'units','pixels');
screensize = get(0,'ScreenSize');
f_h.Position = [[screensize(3)/10 screensize(4)/4] 1570,600];
subplot(1,2,1)
h_1 = histogram(Speeds, NumberOfBins,'FaceAlpha',0.4, 'EdgeAlpha',0.4);
hold on
plot(SpeedsArray, n/c * SpeedBinSize .* VelocityDistribution(SpeedsArray),'--', 'Linewidth',1.5)
xline(obj.VelocityCutoff, 'k--', 'Linewidth', 1.5);
text((obj.VelocityCutoff - 0.2 * obj.VelocityCutoff), max(h_1.Values) + 0.01 * max(h_1.Values), 'Cut-Off ---------->');
hXLabel_1 = xlabel('Magnitudes (m/s)');
hYLabel_1 = ylabel('Counts');
hold off
subplot(1,2,2)
histogram(Angles .* 1e+03, NumberOfBins,'FaceAlpha',0.4, 'EdgeAlpha',0.4)
hold on
plot(AnglesArray .* 1e+03, (n/d * AngleBinSize .* AngularDistribution),'--', 'Linewidth',1.5)
xline(obj.NozzleExitDivergence.* 1e+03, 'k--', 'Linewidth', 1.5);
text((obj.NozzleExitDivergence - 0.5 * obj.NozzleExitDivergence).* 1e+03, max(h_1.Values) - 0.45 * max(h_1.Values), 'Maximum Allowed Divergence ----------->');
hXLabel_2 = xlabel(' Directions (mrad)');
hYLabel_2 = ylabel('Counts');
hold off
hTitle = sgtitle('Sampled Velocities');
set([hXLabel_1, hXLabel_2, hYLabel_1, hYLabel_2] , ...
'FontSize' , 14 );
set( hTitle , ...
'FontSize' , 18 );
Helper.bringFiguresWithTagInForeground();
end

View File

@ -50,20 +50,20 @@ function plotPhaseSpaceWithAccelerationField(obj, MaximumVelocity, NumberOfBins,
%-------------------------------------------------------------------------
Y = linspace(0,MaximumVelocity,N);
Trajectories = zeros(length(Y),int64(T/tau),9);
ParticleDynamicalQuantities = zeros(length(Y),int64(T/tau),6);
for i=1:length(Y)
x =-L/2;
vx = Y(i)*cos(Theta);
vz = Y(i)*sin(Theta);
r = [x,0,z];
v = [vx,0,vz];
[Trajectories(i,:,:),~] = obj.solver(r, v);
ParticleDynamicalQuantities(i,:,:) = obj.solver(r, v);
end
hold on
for i=1:length(Y)
plot(Trajectories(i,:,1),Trajectories(i,:,4),'w','linewidth',1.3)
plot(ParticleDynamicalQuantities(i,:,1),ParticleDynamicalQuantities(i,:,4),'w','linewidth',1.3)
end
hold off

View File

@ -41,14 +41,14 @@ function plotPositionAndVelocitySampling(obj, NumberOfBins)
legend('FontSize', 14)
subplot(3,2,4)
histogram(initialVelocities(:, 2)*1e3,NumberOfBins, 'LineStyle', 'none', 'DisplayName','y-Component')
xlabel('Velocities (mm/s)','FontSize', 14)
histogram(initialVelocities(:, 2),NumberOfBins, 'LineStyle', 'none', 'DisplayName','y-Component')
xlabel('Velocities (m/s)','FontSize', 14)
ylabel('Counts','FontSize', 14)
legend('FontSize', 14)
subplot(3,2,6)
histogram(initialVelocities(:, 3)*1e3,NumberOfBins, 'LineStyle', 'none', 'DisplayName','z-Component')
xlabel('Velocities (mm/s)','FontSize', 14)
histogram(initialVelocities(:, 3),NumberOfBins, 'LineStyle', 'none', 'DisplayName','z-Component')
xlabel('Velocities (m/s)','FontSize', 14)
ylabel('Counts','FontSize', 14)
legend('FontSize', 14)

View File

@ -10,7 +10,10 @@ function plotResultForOneParameterScan(XParameter, YQuantity, varargin)
addParameter(p, 'XLabelString', 'X parameter', @ischar)
addParameter(p, 'ErrorsForYQuantity', false, @islogical)
addParameter(p, 'ErrorsArray', [], @isvector)
addParameter(p, 'CIForYQuantity', false, @islogical)
addParameter(p, 'CIArray', [], @ismatrix)
addParameter(p, 'RescalingFactorForYQuantity', 1, @isscalar)
addParameter(p, 'RemoveOutliers', false, @islogical)
addParameter(p, 'YLabelString', 'Y parameter', @ischar)
addParameter(p, 'TitleString', 'One-Parameter Scan', @ischar)
@ -22,7 +25,10 @@ function plotResultForOneParameterScan(XParameter, YQuantity, varargin)
YQuantity = p.Results.QuantityOfInterestArray;
ErrorsForYQuantity = p.Results.ErrorsForYQuantity;
ErrorsArray = p.Results.ErrorsArray;
CIForYQuantity = p.Results.CIForYQuantity;
CIArray = p.Results.CIArray;
RescalingFactorForYQuantity = p.Results.RescalingFactorForYQuantity;
RemoveOutliers = p.Results.RemoveOutliers;
YLabelString = p.Results.YLabelString;
TitleString = p.Results.TitleString;
@ -39,16 +45,37 @@ function plotResultForOneParameterScan(XParameter, YQuantity, varargin)
screensize = get(0,'ScreenSize');
f_h.Position = [[screensize(3)/3.5 screensize(4)/3.5] 750 600];
if RemoveOutliers
[YQuantity,TF] = rmoutliers(YQuantity);
XParameter = XParameter(~TF);
ErrorsArray = ErrorsArray(~TF);
ClippedCIArray(:,1) = CIArray(~TF,1);
ClippedCIArray(:,2) = CIArray(~TF,2);
CIArray = ClippedCIArray;
end
RescaledXParameter = XParameter .* RescalingFactorForXParameter;
RescaledYQuantity = YQuantity .* RescalingFactorForYQuantity;
hold on
if ErrorsForYQuantity
RescaledErrorsArray = ErrorsArray .* RescalingFactorForYQuantity;
errorbar(RescaledXParameter, RescaledYQuantity, RescaledErrorsArray)
errorbar(RescaledXParameter, RescaledYQuantity, RescaledErrorsArray, 'o', 'Linewidth', 1.5, 'MarkerFaceColor', '#0071BB')
else
plot(RescaledXParameter, RescaledYQuantity, '--o', 'Linewidth', 1.5);
end
if CIForYQuantity
RescaledCIArray = CIArray .* RescalingFactorForYQuantity;
Plotting.plotConfidenceIntervalRegion(RescaledXParameter, RescaledCIArray(:,1), RescaledCIArray(:,2));
end
hold off
xlim([0 inf])
ylim([0 inf])
hXLabel = xlabel(XLabelString);
hYLabel = ylabel(YLabelString);
hTitle = sgtitle(TitleString);
@ -58,5 +85,6 @@ function plotResultForOneParameterScan(XParameter, YQuantity, varargin)
set( hTitle , ...
'FontSize' , 18 );
grid on
Helper.bringFiguresWithTagInForeground();
end

View File

@ -24,18 +24,18 @@ classdef MOTSimulator < handle & matlab.mixin.Copyable
BlueDetuning;
BlueBeamRadius;
BlueBeamWaist;
BlueWaveVector;
BlueWaveNumber;
BlueSaturationIntensity;
OrangePower;
OrangeDetuning;
OrangeBeamRadius;
OrangeBeamWaist;
OrangeWaveVector;
OrangeWaveNumber;
OrangeSaturationIntensity;
CoolingBeamPower;
CoolingBeamWaveVector;
CoolingBeamWaveNumber;
CoolingBeamLinewidth;
CoolingBeamDetuning;
CoolingBeamRadius;
@ -49,7 +49,7 @@ classdef MOTSimulator < handle & matlab.mixin.Copyable
SidebandBeamSaturationIntensity;
PushBeamPower;
PushBeamWaveVector;
PushBeamWaveNumber;
PushBeamLinewidth;
PushBeamDetuning;
PushBeamRadius;
@ -71,16 +71,16 @@ classdef MOTSimulator < handle & matlab.mixin.Copyable
CaptureVelocity;
VelocityCutoff;
ClausingFactor;
ThetaArray;
AngularDistribution;
NormalizationConstantForAngularDistribution;
ReducedClausingFactor;
ReducedFlux;
TimeSpentInInteractionRegion;
%Flags
SpontaneousEmission;
Sideband;
ZeemanSlowerBeam;
Gravity;
AtomicBeamCollision;
BackgroundCollision;
DebugMode;
DoSave;
@ -124,7 +124,7 @@ classdef MOTSimulator < handle & matlab.mixin.Copyable
@islogical);
addParameter(p, 'Gravity', false,...
@islogical);
addParameter(p, 'AtomicBeamCollision', true,...
addParameter(p, 'BackgroundCollision', false,...
@islogical);
addParameter(p, 'DebugMode', false,...
@islogical);
@ -144,7 +144,7 @@ classdef MOTSimulator < handle & matlab.mixin.Copyable
s.Sideband = p.Results.Sideband;
s.ZeemanSlowerBeam = p.Results.ZeemanSlowerBeam;
s.Gravity = p.Results.Gravity;
s.AtomicBeamCollision = p.Results.AtomicBeamCollision;
s.BackgroundCollision = p.Results.BackgroundCollision;
s.DebugMode = p.Results.DebugMode;
s.DoSave = p.Results.SaveData;
@ -177,7 +177,7 @@ classdef MOTSimulator < handle & matlab.mixin.Copyable
ret = this.SimulationTime;
end
function set.NumberOfAtoms(this, val)
assert(val <= 10000, 'Not time efficient to compute for atom numbers larger than 10,000!');
assert(val <= 20000, 'Not time efficient to compute for atom numbers larger than 20,000!');
this.NumberOfAtoms = val;
end
function ret = get.NumberOfAtoms(this)
@ -282,11 +282,11 @@ classdef MOTSimulator < handle & matlab.mixin.Copyable
function ret = get.BlueBeamWaist(this)
ret = this.BlueBeamWaist;
end
function set.BlueWaveVector(this, val)
this.BlueWaveVector = val;
function set.BlueWaveNumber(this, val)
this.BlueWaveNumber = val;
end
function ret = get.BlueWaveVector(this)
ret = this.BlueWaveVector;
function ret = get.BlueWaveNumber(this)
ret = this.BlueWaveNumber;
end
function set.BlueSaturationIntensity(this, val)
this.BlueSaturationIntensity = val;
@ -319,11 +319,11 @@ classdef MOTSimulator < handle & matlab.mixin.Copyable
function ret = get.OrangeBeamWaist(this)
ret = this.OrangeBeamWaist;
end
function set.OrangeWaveVector(this, val)
this.OrangeWaveVector = val;
function set.OrangeWaveNumber(this, val)
this.OrangeWaveNumber = val;
end
function ret = get.OrangeWaveVector(this)
ret = this.OrangeWaveVector;
function ret = get.OrangeWaveNumber(this)
ret = this.OrangeWaveNumber;
end
function set.OrangeSaturationIntensity(this, val)
this.OrangeSaturationIntensity = val;
@ -356,11 +356,11 @@ classdef MOTSimulator < handle & matlab.mixin.Copyable
function ret = get.CoolingBeamWaist(this)
ret = this.CoolingBeamWaist;
end
function set.CoolingBeamWaveVector(this, val)
this.CoolingBeamWaveVector = val;
function set.CoolingBeamWaveNumber(this, val)
this.CoolingBeamWaveNumber = val;
end
function ret = get.CoolingBeamWaveVector(this)
ret = this.CoolingBeamWaveVector;
function ret = get.CoolingBeamWaveNumber(this)
ret = this.CoolingBeamWaveNumber;
end
function set.CoolingBeamLinewidth(this, val)
this.CoolingBeamLinewidth = val;
@ -430,11 +430,11 @@ classdef MOTSimulator < handle & matlab.mixin.Copyable
function ret = get.PushBeamWaist(this)
ret = this.PushBeamWaist;
end
function set.PushBeamWaveVector(this, val)
this.PushBeamWaveVector = val;
function set.PushBeamWaveNumber(this, val)
this.PushBeamWaveNumber= val;
end
function ret = get.PushBeamWaveVector(this)
ret = this.PushBeamWaveVector;
function ret = get.PushBeamWaveNumber(this)
ret = this.PushBeamWaveNumber;
end
function set.PushBeamLinewidth(this, val)
this.PushBeamLinewidth = val;
@ -529,31 +529,23 @@ classdef MOTSimulator < handle & matlab.mixin.Copyable
function ret = get.ClausingFactor(this)
ret = this.ClausingFactor;
end
function set.AngularDistribution(this,val)
this.AngularDistribution = val;
function set.ReducedClausingFactor(this,val)
this.ReducedClausingFactor = val;
end
function ret = get.AngularDistribution(this)
ret = this.AngularDistribution;
function ret = get.ReducedClausingFactor(this)
ret = this.ReducedClausingFactor;
end
function set.ThetaArray(this,val)
this.ThetaArray = val;
function set.ReducedFlux(this,val)
this.ReducedFlux = val;
end
function ret = get.ThetaArray(this)
ret = this.ThetaArray;
function ret = get.ReducedFlux(this)
ret = this.ReducedFlux;
end
function set.NormalizationConstantForAngularDistribution(this,val)
this.NormalizationConstantForAngularDistribution = val;
function set.TimeSpentInInteractionRegion(this,val)
this.TimeSpentInInteractionRegion = val;
end
function ret = get.NormalizationConstantForAngularDistribution(this)
ret = this.NormalizationConstantForAngularDistribution;
end
function set.AtomicBeamCollision(this,val)
this.AtomicBeamCollision=val;
end
function ret=get.AtomicBeamCollision(this)
ret=this.AtomicBeamCollision;
function ret = get.TimeSpentInInteractionRegion(this)
ret = this.TimeSpentInInteractionRegion;
end
function set.DebugMode(this, val)
@ -586,19 +578,19 @@ classdef MOTSimulator < handle & matlab.mixin.Copyable
methods
function ret = get.CoolingBeamSaturationParameter(this)
ret = 4* this.CoolingBeamPower/(pi*this.CoolingBeamWaist^2)/this.CoolingBeamSaturationIntensity/10; % two beams are reflected
ret = 0.1 * (4 * this.CoolingBeamPower) / (pi*this.CoolingBeamWaist^2 * this.CoolingBeamSaturationIntensity); % two beams are reflected
end
function ret = get.SidebandSaturationParameter(this)
ret = 4*this.SidebandPower/(pi*this.SidebandBeamWaist^2)/this.SidebandBeamSaturationIntensity/10;
ret = 0.1 * (4 * this.SidebandPower) / (pi*this.SidebandBeamWaist^2 * this.SidebandBeamSaturationIntensity);
end
function ret = get.PushBeamSaturationParameter(this)
ret = this.PushBeamPower/(pi*this.PushBeamWaist^2)/this.PushBeamSaturationIntensity/10;
ret = 0.1 * this.PushBeamPower/(pi * this.PushBeamWaist^2 * this.PushBeamSaturationIntensity);
end
function ret = get.ZeemanSlowerBeamSaturationParameter(this)
ret = this.ZeemanSlowerBeamPower/(pi*this.ZeemanSlowerBeamWaist^2)/this.ZeemanSlowerBeamSaturationIntensity/10;
ret = 0.1 * this.ZeemanSlowerBeamPower / (pi * this.ZeemanSlowerBeamWaist^2 * this.ZeemanSlowerBeamSaturationIntensity);
end
function ret = get.OvenTemperatureinKelvin(this)
@ -607,7 +599,7 @@ classdef MOTSimulator < handle & matlab.mixin.Copyable
function ret = get.AverageVelocity(this)
%See Background collision probability section in Barbiero
ret = sqrt(((8*pi)/9) * ((Helper.PhysicsConstants.BoltzmannConstant * this.OvenTemperatureinKelvin)/Helper.PhysicsConstants.Dy164Mass));
ret = sqrt((8*Helper.PhysicsConstants.BoltzmannConstant*this.OvenTemperatureinKelvin)/ (pi*Helper.PhysicsConstants.Dy164Mass));
end
function ret = get.AtomicBeamDensity(this)

View File

@ -4,17 +4,17 @@ function ret = accelerationDueToPushBeam(this, PositionVector, VelocityVector)
WaveVectorEndPoint = WaveVectorEndPoint./norm(WaveVectorEndPoint);
Origin=[0,0,0];
SaturationIntensity = this.calculateLocalSaturationIntensity(this.PushBeamSaturationIntensity, PositionVector, Origin, WaveVectorEndPoint, this.PushBeamRadius, this.PushBeamWaist);
SaturationIntensity = this.calculateLocalSaturationIntensity(this.PushBeamSaturationParameter, PositionVector, Origin, WaveVectorEndPoint, this.PushBeamRadius, this.PushBeamWaist);
DopplerShift = (VelocityVector * WaveVectorEndPoint(1:3)') * this.PushBeamWaveVector;
DopplerShift = (VelocityVector * WaveVectorEndPoint(1:3)') * this.PushBeamWaveNumber;
Detuning = this.PushBeamDetuning - DopplerShift;
a_push = (Helper.PhysicsConstants.PlanckConstantReduced * this.PushBeamWaveVector * WaveVectorEndPoint(1:3)/Helper.PhysicsConstants.Dy164Mass).*(this.PushBeamLinewidth * 0.5) .* ...
(SaturationIntensity/(1 + SaturationIntensity + (4 * (Detuning./this.PushBeamLinewidth).^2)));
s_push = SaturationIntensity/(1 + SaturationIntensity + (4 * (Detuning./this.PushBeamLinewidth).^2));
a_push = (Helper.PhysicsConstants.PlanckConstantReduced * this.PushBeamWaveNumber * WaveVectorEndPoint(1:3)/Helper.PhysicsConstants.Dy164Mass).*(this.PushBeamLinewidth * 0.5) .* (s_push/(1+s_push));
if this.SpontaneousEmission
a_scatter = this.accelerationDueToSpontaneousEmissionProcess(SaturationIntensity, SaturationIntensity, Detuning, this.PushBeamLinewidth, this.PushBeamWaveVector);
a_scatter = this.accelerationDueToSpontaneousEmissionProcess(s_push, s_push, Detuning, this.PushBeamLinewidth, this.PushBeamWaveNumber);
else
a_scatter = [0,0,0];
end

View File

@ -1,12 +1,12 @@
function ret = accelerationDueToSpontaneousEmissionProcess(this, SaturationIntensity, TotalSaturationIntensity, Detuning, Linewidth, WaveVector)
function ret = accelerationDueToSpontaneousEmissionProcess(this, SaturationParameter, TotalSaturationParameter, Detuning, Linewidth, WaveNumber)
Vector = [2*rand(1)-1,2*rand(1)-1,2*rand(1)-1];
Vector = Vector./norm(Vector);
ScatteringRate = (0.5 * SaturationIntensity * Linewidth) / (1 + TotalSaturationIntensity + (4 * (Detuning/Linewidth)^2));
ScatteringRate = (0.5 * SaturationParameter * Linewidth) / (1 + TotalSaturationParameter + (4 * (Detuning / Linewidth)^2));
NumberOfScatteringEvents = floor(ScatteringRate * this.TimeStep);
if NumberOfScatteringEvents > 0
ret = Vector.*((Helper.PhysicsConstants.PlanckConstantReduced * WaveVector) / ...
ret = Vector.*((Helper.PhysicsConstants.PlanckConstantReduced * WaveNumber) / ...
(Helper.PhysicsConstants.Dy164Mass * this.TimeStep)).* sqrt(NumberOfScatteringEvents);
else
ret = zeros(1,3);

View File

@ -4,7 +4,7 @@ function ret = angularDistributionFunction(this, theta)
KnudsenNumber = this.MeanFreePath/this.NozzleLength;
alpha=0.5 - (3*this.Beta^2)^-1 * ...
alpha = 0.5 - (3*this.Beta^2)^-1 * ...
((1 - (2*this.Beta^3) + ((2*this.Beta^2) - 1) * sqrt(1+this.Beta^2)) / ...
(sqrt(1+this.Beta^2) - (this.Beta^2 * asinh((this.Beta^2)^-1))));

View File

@ -0,0 +1,40 @@
function [LoadingRate, StandardError, ConfidenceInterval] = bootstrapErrorEstimation(this, NumberOfLoadedAtoms)
n = this.NumberOfAtoms;
NumberOfTimeSteps = int64(this.SimulationTime/this.TimeStep);
Autocorrelation = autocorr(NumberOfLoadedAtoms,'NumLags', double(NumberOfTimeSteps - 1));
if Autocorrelation(1)~=0
CorrelationFactor = table(Helper.findAllZeroCrossings(linspace(1, double(NumberOfTimeSteps), double(NumberOfTimeSteps)), Autocorrelation)).Var1(1);
if ~isnan(CorrelationFactor)
SampleLength = floor(CorrelationFactor);
NumberOfBootsrapSamples = 1000;
MeanLoadingRatioInEachSample = zeros(1,NumberOfBootsrapSamples);
for SampleNumber = 1:NumberOfBootsrapSamples
BoostrapSample = datasample(NumberOfLoadedAtoms, SampleLength); % Sample with replacement
MeanLoadingRatioInEachSample(SampleNumber) = mean(BoostrapSample) / n; % Empirical bootstrap distribution of sample means
end
LoadingRate = mean(MeanLoadingRatioInEachSample) * this.ReducedFlux;
Variance = 0; % Bootstrap Estimate of Variance
for SampleNumber = 1:NumberOfBootsrapSamples
Variance = Variance + (MeanLoadingRatioInEachSample(SampleNumber) - mean(MeanLoadingRatioInEachSample))^2;
end
StandardError = sqrt((1 / (NumberOfBootsrapSamples-1)) * Variance) * this.ReducedFlux;
ts = tinv([0.025 0.975],NumberOfBootsrapSamples-1); % T-Score
ConfidenceInterval = LoadingRate + ts*StandardError; % 95% Confidence Intervals
else
LoadingRate = nan;
StandardError = nan;
ConfidenceInterval = [nan nan];
end
else
LoadingRate = nan;
StandardError = nan;
ConfidenceInterval = [nan nan];
end
end

View File

@ -1,14 +1,15 @@
function ret = calculateCaptureVelocity(this, PositionVector, VelocityVector)
VelocityVector = VelocityVector./norm(VelocityVector);
switch this.SimulationMode
case "2D"
VelocityUnitVector = VelocityVector./norm(VelocityVector);
UpperLimit = 500;
LowerLimit = 0;
this.AtomicBeamCollision = false;
for Index = 1:500
InitialVelocity = 0.5 * (UpperLimit + LowerLimit) * VelocityVector;
[~, FinalDynamicalQuantities] = this.solver(PositionVector, InitialVelocity);
FinalPositionVector = FinalDynamicalQuantities(1:3);
InitialVelocity = (0.5 * (UpperLimit + LowerLimit)) * VelocityUnitVector;
ParticleDynamicalQuantities = this.solver(PositionVector, InitialVelocity);
FinalPositionVector = ParticleDynamicalQuantities(end, 1:3);
if rssq(FinalPositionVector) <= this.OvenDistance
LowerLimit = 0.5 * (UpperLimit + LowerLimit);
else
@ -16,9 +17,12 @@ function ret = calculateCaptureVelocity(this, PositionVector, VelocityVector)
end
if UpperLimit - LowerLimit < 1
ret = InitialVelocity;
ret = (0.5 * (UpperLimit + LowerLimit)) * VelocityUnitVector;
break;
end
end
case "3D"
% Development In progress
end
end

View File

@ -0,0 +1,9 @@
function ret = calculateClausingFactor(this)
ClausingFactorApproximation = (8 * this.NozzleRadius) / (3 * this.NozzleLength);
alpha = 0.5 - (3*this.Beta^2)^-1 * ((1 - (2*this.Beta^3) + ((2*this.Beta^2) - 1) * sqrt(1+this.Beta^2)) / (sqrt(1+this.Beta^2) - (this.Beta^2 * asinh((this.Beta^2)^-1))));
ClausingFactorAnalytic = 1 + (2/3) * (1 - (2 * alpha)) * (this.Beta - sqrt(1 - this.Beta^2)) + (2/3) * (1 + alpha) * this.Beta^(-2) * (1 - sqrt(1 + this.Beta^2));
ret = ClausingFactorAnalytic;
end

View File

@ -3,6 +3,8 @@ function ret = calculateFreeMolecularRegimeFlux(this)
%See Expected atomic flux section in Barbiero
Dy164VapourPressure = 133.322*exp(11.4103-2.3785e+04./(-219.4821+this.OvenTemperatureinKelvin)).*100; % Vapor Pressure Dysprosium for the given oven temperature
Dy164DensityinOven = Dy164VapourPressure/(Helper.PhysicsConstants.BoltzmannConstant*this.OvenTemperatureinKelvin);
ClausingFactorApproximation = (8 * this.NozzleRadius) / (3 * this.NozzleLength);
ret = Helper.PhysicsConstants.Dy164IsotopicAbundance * 1/4 * Dy164DensityinOven * this.AverageVelocity * ClausingFactorApproximation * pi * this.NozzleRadius.^2;
ret = Helper.PhysicsConstants.Dy164IsotopicAbundance * 1/4 * Dy164DensityinOven * this.AverageVelocity * pi * this.NozzleRadius.^2;
% Needs to be multiplied with the "Clausing Factor" which here would be
% the probability not for the full solid angle but the angle subtended
% by the aperture of the oven at its mouth.
end

View File

@ -1,84 +1,38 @@
function [LoadingRate, StandardError] = calculateLoadingRate(this, FinalDynamicalQuantities)
function [LoadingRate, StandardError, ConfidenceInterval] = calculateLoadingRate(this, ParticleDynamicalQuantities)
switch this.SimulationMode
case "2D"
n = this.NumberOfAtoms;
NumberOfTimeSteps = int64(this.SimulationTime/this.TimeStep);
NumberOfLoadedAtoms = zeros(1, NumberOfTimeSteps);
TimeCounts = zeros(1, n);
CollisionEvents = zeros(1, n);
NumberOfLoadedAtoms = zeros(1, this.NumberOfAtoms);
AutocorrelationFunction = zeros(1, this.NumberOfAtoms);
for i = 1:this.NumberOfAtoms
FinalPosition = FinalDynamicalQuantities(i,1:3);
DivergenceAngle = atan(sqrt((FinalPosition(1)^2+FinalPosition(3)^2)/(FinalPosition(2)^2)));
if (DivergenceAngle <= this.MOTExitDivergence) && (FinalPosition(2) >= 0)
if i == 1
NumberOfLoadedAtoms(1) = 1;
else
NumberOfLoadedAtoms(i) = NumberOfLoadedAtoms(i-1) + 1;
% Include the stochastic process of background collisions
for AtomIndex = 1:n
TimeCounts(AtomIndex) = this.computeTimeSpentInInteractionRegion(squeeze(ParticleDynamicalQuantities(AtomIndex,:,1:3)));
end
this.TimeSpentInInteractionRegion = mean(TimeCounts);
for AtomIndex = 1:n
CollisionEvents(AtomIndex) = this.computeCollisionProbability();
end
else
if i == 1
NumberOfLoadedAtoms(1) = 0;
else
NumberOfLoadedAtoms(i) = NumberOfLoadedAtoms(i-1);
% Count the number of loaded atoms subject to conditions
for TimeIndex = 1:NumberOfTimeSteps
if TimeIndex ~= 1
NumberOfLoadedAtoms(TimeIndex) = NumberOfLoadedAtoms(TimeIndex-1);
end
for AtomIndex = 1:n
Position = squeeze(ParticleDynamicalQuantities(AtomIndex, TimeIndex, 1:3))';
Velocity = squeeze(ParticleDynamicalQuantities(AtomIndex, TimeIndex, 4:6))';
if this.exitCondition(Position, Velocity, CollisionEvents(AtomIndex))
NumberOfLoadedAtoms(TimeIndex) = NumberOfLoadedAtoms(TimeIndex) + 1;
end
end
end
for i = 1:this.NumberOfAtoms-1
MeanTrappingEfficiency = 0;
MeanLoadingRateShifted = 0;
for j = 1:this.NumberOfAtoms-i
MeanTrappingEfficiency = MeanTrappingEfficiency + NumberOfLoadedAtoms(j)/j;
MeanLoadingRateShifted = MeanLoadingRateShifted + (NumberOfLoadedAtoms(i+j))/(i+j);
AutocorrelationFunction(i) = AutocorrelationFunction(i) + ((NumberOfLoadedAtoms(j)/j).*(NumberOfLoadedAtoms(i+j)/(i+j)));
[LoadingRate, StandardError, ConfidenceInterval] = this.bootstrapErrorEstimation(NumberOfLoadedAtoms);
case "3D"
% Development In progress
end
AutocorrelationFunction(i) = ((this.NumberOfAtoms-i)^-1 * (AutocorrelationFunction(i)) - ((this.NumberOfAtoms-i)^-1 * MeanTrappingEfficiency * MeanLoadingRateShifted));
end
if AutocorrelationFunction(1)~=0 % To handle cases where there is no atom loading
AutocorrelationFunction = AutocorrelationFunction./AutocorrelationFunction(1);
x = linspace(1, this.NumberOfAtoms, this.NumberOfAtoms);
[FitObject,~] = fit(x',AutocorrelationFunction',"exp(-x/n)",'Startpoint', 100);
CorrelationFactor = FitObject.n; % n is the autocorrelation factor
SumOfAllMeanTrappingEfficiencies = 0;
NumberOfBlocks = floor(this.NumberOfAtoms/(2*CorrelationFactor+1));
MeanTrappingEfficiencyInEachBlock = zeros(1,NumberOfBlocks);
BlockNumberLimit = min(NumberOfBlocks-1,5);
% Jackknife method is a systematic way of obtaining the standard deviation error of a
% set of stochastic measurements:
% 1. Calculate average (or some function f) from the full dataset.
% 2. Divide data into M blocks, with block length correlation factor . This is done in order to
% get rid of autocorrelations; if there are no correlations, block length can be 1.
% 3. For each m = 1 . . .M, take away block m and calculate the average using
% the data from all other blocks.
% 4. Estimate the error by calculating the deviation of the average in each block from average of the full dataset
%Jackknife estimate of the loading rate
for i = 1:NumberOfBlocks-BlockNumberLimit
MeanTrappingEfficiencyInEachBlock(i) = NumberOfLoadedAtoms(this.NumberOfAtoms - ceil((i-1)*(2*CorrelationFactor+1))) / (this.NumberOfAtoms - ceil((i-1)*(2*CorrelationFactor+1)));
SumOfAllMeanTrappingEfficiencies = SumOfAllMeanTrappingEfficiencies + MeanTrappingEfficiencyInEachBlock(i);
end
MeanTrappingEfficiency = SumOfAllMeanTrappingEfficiencies / (NumberOfBlocks-BlockNumberLimit);
c = integral(@(velocity) sqrt(2 / pi) * (Helper.PhysicsConstants.Dy164Mass/(Helper.PhysicsConstants.BoltzmannConstant * this.OvenTemperatureinKelvin)) ...
* velocity.^3 .* exp(-velocity.^2 .* (Helper.PhysicsConstants.Dy164Mass / (2 * Helper.PhysicsConstants.BoltzmannConstant ...
* this.OvenTemperatureinKelvin))), 0, this.VelocityCutoff);
LoadingRate = MeanTrappingEfficiency * c * this.calculateFreeMolecularRegimeFlux();
% Jackknife estimate of the variance of the loading rate
Variance = 0;
for i = 1:NumberOfBlocks-BlockNumberLimit
Variance = Variance + (MeanTrappingEfficiencyInEachBlock(i) - MeanTrappingEfficiency)^2;
end
StandardError = sqrt((((NumberOfBlocks-BlockNumberLimit) - 1) / (NumberOfBlocks-BlockNumberLimit)) * Variance);
else
LoadingRate = 0;
StandardError = 0;
end
end

View File

@ -1,12 +1,6 @@
function ret = calculateLocalSaturationIntensity(~, PeakIntensity, PositionVector, WaveVectorOrigin, WaveVectorEndPoint, BeamRadius, BeamWaist)
WaveVector = WaveVectorEndPoint - WaveVectorOrigin; % Line
PositionVectorFromWaveVectorOrigin = PositionVector - WaveVectorOrigin; % Point = PositionVector
%Height of parallelogram (Distance between point and line) = Area of parallelogram / Base
%One side of parallelogram = PositionVectorFromWaveVectorOrigin
%Base = Wavevector
%Area = One side of parallelogram X Base
DistanceBetweenAtomAndLaserBeamAxis = norm(cross(PositionVectorFromWaveVectorOrigin, WaveVector))./ norm(WaveVector);
DistanceBetweenAtomAndLaserBeamAxis = Helper.calculateDistanceFromPointToLine(PositionVector, WaveVectorOrigin, WaveVectorEndPoint);
if DistanceBetweenAtomAndLaserBeamAxis <= BeamRadius
ret = PeakIntensity * exp(-2*DistanceBetweenAtomAndLaserBeamAxis^2 / BeamWaist^2);

View File

@ -0,0 +1,17 @@
function [ReducedClausingFactor, NormalizationConstantForAngularDistribution] = calculateReducedClausingFactor(this)
ThetaArray = linspace(0.0001, pi/2, 1000);
AngularDistribution = zeros(1,length(ThetaArray));
parfor k = 1:length(ThetaArray)
AngularDistribution(k) = this.angularDistributionFunction(ThetaArray(k));
end
NormalizationConstantForAngularDistribution = max(2 * pi .* sin(ThetaArray) .* AngularDistribution);
ReducedClausingFactor = 0; % We have to calculate the probability of an atom coming out of the oven subject to the physical constraint
parfor p = 1:length(ThetaArray) % that the angle of divergence is not more than the angle subtended at the mouth of the nozzle
if ThetaArray(p) <= this.NozzleExitDivergence
ReducedClausingFactor = ReducedClausingFactor + (2 * pi * sin(ThetaArray(p)) * AngularDistribution(p) * (ThetaArray(2)-ThetaArray(1)));
end
end
ReducedClausingFactor = ReducedClausingFactor / pi;
end

View File

@ -28,9 +28,9 @@ function ret = calculateTotalAcceleration(this, PositionVector, VelocityVector)
B = sign(LocalMagneticField(1:3) * WaveVectorEndPoint(i,1:3)') * LocalMagneticField(4);
ZeemanShift = this.LandegFactor * this.MagneticSubLevel * Helper.PhysicsConstants.BohrMagneton / Helper.PhysicsConstants.PlanckConstantReduced * B;
ZeemanShift = this.LandegFactor * this.MagneticSubLevel * (Helper.PhysicsConstants.BohrMagneton / Helper.PhysicsConstants.PlanckConstantReduced) * B;
DopplerShift = (VelocityVector * WaveVectorEndPoint(i,1:3)') * this.CoolingBeamWaveVector;
DopplerShift = (VelocityVector * WaveVectorEndPoint(i,1:3)') * this.CoolingBeamWaveNumber;
Delta_Cooling(i*2-1) = this.CoolingBeamDetuning + DopplerShift + ZeemanShift * Sigma(i);
Delta_Cooling(i*2) = this.CoolingBeamDetuning - DopplerShift - ZeemanShift * Sigma(i);
@ -44,11 +44,11 @@ function ret = calculateTotalAcceleration(this, PositionVector, VelocityVector)
SaturationParameter = [0,0,0,0,0,0,0,0];
for i = 1:2
SaturationParameter(2*i-1) = (0.25 * this.CoolingBeamSaturationParameter * CoolingBeamLocalSaturationIntensity(1)) /(1 + 4*Delta_Cooling(2*i-1)^2 / this.CoolingBeamLinewidth^2);
SaturationParameter(2*i) = (0.25 * this.CoolingBeamSaturationParameter * CoolingBeamLocalSaturationIntensity(1)) /(1 + 4*Delta_Cooling(2*i)^2 / this.CoolingBeamLinewidth^2);
SaturationParameter(2*i-1) = (0.25 * this.CoolingBeamSaturationParameter * CoolingBeamLocalSaturationIntensity(1)) /(1 + 4 * (Delta_Cooling(2*i-1)/this.CoolingBeamLinewidth)^2);
SaturationParameter(2*i) = (0.25 * this.CoolingBeamSaturationParameter * CoolingBeamLocalSaturationIntensity(1)) /(1 + 4 * (Delta_Cooling(2*i) /this.CoolingBeamLinewidth)^2);
if this.Sideband
SaturationParameter(2*i-1+4) = (0.25 * this.SidebandSaturationParameter * SidebandLocalSaturationIntensity(1)) /(1 + 4*Delta_Sideband(2*i-1)^2/ this.CoolingBeamLinewidth^2);
SaturationParameter(2*i+4) = (0.25 * this.SidebandSaturationParameter * SidebandLocalSaturationIntensity(2)) /(1 + 4*Delta_Sideband(2*i)^2 / this.CoolingBeamLinewidth^2);
SaturationParameter(2*i-1+4) = (0.25 * this.SidebandSaturationParameter * SidebandLocalSaturationIntensity(1)) /(1 + 4 * (Delta_Sideband(2*i-1)/this.CoolingBeamLinewidth)^2);
SaturationParameter(2*i+4) = (0.25 * this.SidebandSaturationParameter * SidebandLocalSaturationIntensity(2)) /(1 + 4 * (Delta_Sideband(2*i)/this.CoolingBeamLinewidth)^2);
end
end
@ -56,28 +56,28 @@ function ret = calculateTotalAcceleration(this, PositionVector, VelocityVector)
for i = 1:2
a_1 = (Helper.PhysicsConstants.PlanckConstantReduced * this.CoolingBeamWaveVector * WaveVectorEndPoint(i,1:3)/Helper.PhysicsConstants.Dy164Mass).*(this.CoolingBeamLinewidth * 0.5) .* ...
a_1 = (Helper.PhysicsConstants.PlanckConstantReduced * this.CoolingBeamWaveNumber * WaveVectorEndPoint(i,1:3)/Helper.PhysicsConstants.Dy164Mass).*(this.CoolingBeamLinewidth * 0.5) .* ...
(SaturationParameter(2*i-1)/(1 + TotalSaturationParameter));
a_2 = (Helper.PhysicsConstants.PlanckConstantReduced * this.CoolingBeamWaveVector * WaveVectorEndPoint(i,1:3)/Helper.PhysicsConstants.Dy164Mass).*(this.CoolingBeamLinewidth * 0.5) .* ...
a_2 = (Helper.PhysicsConstants.PlanckConstantReduced * this.CoolingBeamWaveNumber * WaveVectorEndPoint(i,1:3)/Helper.PhysicsConstants.Dy164Mass).*(this.CoolingBeamLinewidth * 0.5) .* ...
(SaturationParameter(2*i) / (1 + TotalSaturationParameter));
if this.SpontaneousEmission
a_scattering = this.accelerationDueToSpontaneousEmissionProcess(SaturationParameter(2*i-1), TotalSaturationParameter, Delta_Cooling(2*i-1), this.CoolingBeamLinewidth, this.CoolingBeamWaveVector) + ...
this.accelerationDueToSpontaneousEmissionProcess(SaturationParameter(2*i), TotalSaturationParameter, Delta_Cooling(2*i) , this.CoolingBeamLinewidth, this.CoolingBeamWaveVector);
a_scattering = this.accelerationDueToSpontaneousEmissionProcess(SaturationParameter(2*i-1), TotalSaturationParameter, Delta_Cooling(2*i-1), this.CoolingBeamLinewidth, this.CoolingBeamWaveNumber) + ...
this.accelerationDueToSpontaneousEmissionProcess(SaturationParameter(2*i), TotalSaturationParameter, Delta_Cooling(2*i), this.CoolingBeamLinewidth, this.CoolingBeamWaveNumber);
else
a_scattering = [0,0,0];
end
if this.Sideband
a_1 = a_1 + (Helper.PhysicsConstants.PlanckConstantReduced * this.CoolingBeamWaveVector * WaveVectorEndPoint(i,1:3)/Helper.PhysicsConstants.Dy164Mass).*(this.CoolingBeamLinewidth * 0.5) .* ...
a_1 = a_1 + (Helper.PhysicsConstants.PlanckConstantReduced * this.CoolingBeamWaveNumber * WaveVectorEndPoint(i,1:3)/Helper.PhysicsConstants.Dy164Mass).*(this.CoolingBeamLinewidth * 0.5) .* ...
(SaturationParameter(2*i-1+4)/(1 + TotalSaturationParameter));
a_2 = a_2 + (Helper.PhysicsConstants.PlanckConstantReduced * this.CoolingBeamWaveVector * WaveVectorEndPoint(i,1:3)/Helper.PhysicsConstants.Dy164Mass).*(this.CoolingBeamLinewidth * 0.5) .* ...
a_2 = a_2 + (Helper.PhysicsConstants.PlanckConstantReduced * this.CoolingBeamWaveNumber * WaveVectorEndPoint(i,1:3)/Helper.PhysicsConstants.Dy164Mass).*(this.CoolingBeamLinewidth * 0.5) .* ...
(SaturationParameter(2*i+4)/(1 + TotalSaturationParameter));
if this.SpontaneousEmission
a_scattering = a_scattering + ...
this.accelerationDueToSpontaneousEmissionProcess(SaturationParameter(2*i-1+4), TotalSaturationParameter, Delta_Cooling(2*i-1), this.CoolingBeamLinewidth, this.CoolingBeamWaveVector) + ...
this.accelerationDueToSpontaneousEmissionProcess(SaturationParameter(2*i+4), TotalSaturationParameter, Delta_Cooling(2*i) , this.CoolingBeamLinewidth, this.CoolingBeamWaveVector);
this.accelerationDueToSpontaneousEmissionProcess(SaturationParameter(2*i-1+4), TotalSaturationParameter, Delta_Cooling(2*i-1), this.CoolingBeamLinewidth, this.CoolingBeamWaveNumber) + ...
this.accelerationDueToSpontaneousEmissionProcess(SaturationParameter(2*i+4), TotalSaturationParameter, Delta_Cooling(2*i), this.CoolingBeamLinewidth, this.CoolingBeamWaveNumber);
else
a_scattering = [0,0,0];
end

View File

@ -0,0 +1,9 @@
function ret = computeCollisionProbability(this)
collision = rand(1);
CollisionProbability = 1 - exp(-this.TimeSpentInInteractionRegion/this.CollisionTime);
if this.BackgroundCollision && collision <= CollisionProbability
ret = true;
else
ret = false;
end
end

View File

@ -0,0 +1,20 @@
function T = computeTimeSpentInInteractionRegion(this, r)
% INPUT:
% r : N x 3 array. N is the number of time steps
% OUTPUT
% T : gives the distribution of time spent in the interaction region
% USAGE:
% T = this.computeTimeSpentInInteractionRegion(r)
T = 0;
NumberOfTimeSteps = int64(this.SimulationTime/this.TimeStep);
for n = 1:(NumberOfTimeSteps - 1)
dr = Helper.calculateDistanceFromPointToLine(r(n+1, :), [0 0 0], [0 0 1]);
if dr < this.CoolingBeamRadius
A = 1;
else
A = 0;
end
T = T + A * this.TimeStep;
end
end

View File

@ -1,4 +1,4 @@
function [LoadingRateArray, StandardErrorArray] = doOneParameterScan(this, ParameterName, ParameterArray, varargin)
function [LoadingRateArray, StandardErrorArray, ConfidenceIntervalArray] = doOneParameterScan(this, ParameterName, ParameterArray, varargin)
p = inputParser;
p.KeepUnmatched = true;
@ -30,6 +30,7 @@ function [LoadingRateArray, StandardErrorArray] = doOneParameterScan(this, Param
NumberOfPointsForParam = length(ParameterArray);
LoadingRateArray = zeros(1,NumberOfPointsForParam);
StandardErrorArray = zeros(1,NumberOfPointsForParam);
ConfidenceIntervalArray = zeros(NumberOfPointsForParam, 2);
for i=1:NumberOfPointsForParam
eval(sprintf('OptionsStruct.%s = %d;', ParameterName, ParameterArray(i)));
@ -44,15 +45,18 @@ function [LoadingRateArray, StandardErrorArray] = doOneParameterScan(this, Param
options = Helper.convertstruct2cell(OptionsStruct);
this.setInitialConditions(options{:});
tic
[LoadingRate, StandardError] = this.runSimulation();
[LoadingRate, StandardError, ConfidenceInterval] = this.runSimulation();
LoadingRateArray(i) = LoadingRate;
StandardErrorArray(i) = StandardError;
ConfidenceIntervalArray(i,1) = ConfidenceInterval(1);
ConfidenceIntervalArray(i,2) = ConfidenceInterval(2);
end
if this.DoSave
LoadingRate = struct;
LoadingRate.Values = LoadingRateArray;
LoadingRate.Errors = StandardErrorArray;
LoadingRate.CI = ConfidenceIntervalArray;
this.Results = LoadingRate;
SaveFolder = [this.SaveDirectory filesep 'Results'];
Filename = ['OneParameterScan_' datestr(now,'yyyymmdd_HHMM')];

View File

@ -1,4 +1,4 @@
function [LoadingRateArray, StandardErrorArray] = doTwoParameterScan(this, FirstParameterName, FirstParameterArray, ...
function [LoadingRateArray, StandardErrorArray, ConfidenceIntervalArray] = doTwoParameterScan(this, FirstParameterName, FirstParameterArray, ...
SecondParameterName, SecondParameterArray, varargin)
p = inputParser;
@ -38,6 +38,7 @@ function [LoadingRateArray, StandardErrorArray] = doTwoParameterScan(this, First
NumberOfPointsForSecondParam = length(SecondParameterArray);
LoadingRateArray = zeros(NumberOfPointsForFirstParam, NumberOfPointsForSecondParam);
StandardErrorArray = zeros(NumberOfPointsForFirstParam, NumberOfPointsForSecondParam);
ConfidenceIntervalArray = zeros(NumberOfPointsForFirstParam, NumberOfPointsForSecondParam, 2);
for i=1:NumberOfPointsForFirstParam
eval(sprintf('OptionsStruct.%s = %d;', FirstParameterName, FirstParameterArray(i)));
@ -58,9 +59,11 @@ function [LoadingRateArray, StandardErrorArray] = doTwoParameterScan(this, First
options = Helper.convertstruct2cell(OptionsStruct);
this.setInitialConditions(options{:});
tic
[LoadingRate, StandardError] = this.runSimulation();
LoadingRateArray(i,j) = LoadingRate;
StandardErrorArray(i,j) = StandardError;
[LoadingRate, StandardError, ConfidenceInterval] = this.runSimulation();
LoadingRateArray(i, j) = LoadingRate;
StandardErrorArray(i, j) = StandardError;
ConfidenceIntervalArray(i, j, 1) = ConfidenceInterval(1);
ConfidenceIntervalArray(i, j, 2) = ConfidenceInterval(2);
end
end
@ -68,6 +71,7 @@ function [LoadingRateArray, StandardErrorArray] = doTwoParameterScan(this, First
LoadingRate = struct;
LoadingRate.Values = LoadingRateArray;
LoadingRate.Errors = StandardErrorArray;
LoadingRate.CI = ConfidenceIntervalArray;
this.Results = LoadingRate;
SaveFolder = [this.SaveDirectory filesep 'Results'];
Filename = ['TwoParameterScan_' datestr(now,'yyyymmdd_HHMM')];

View File

@ -0,0 +1,11 @@
function ret = exitCondition(this, PositionVector, VelocityVector, CollisionEvent)
d = Helper.calculateDistanceFromPointToLine(PositionVector, [0 0 0], [0 1 0]);
y = PositionVector(2);
DivergenceAngle = (d/abs(y));
%DivergenceAngle = atan(norm(cross(PositionVector, )) / norm(dot(PositionVector, [0 1 0])));
if (y >= 0) && (DivergenceAngle <= this.MOTExitDivergence) && (abs(VelocityVector(2))<=this.VelocityCutoff) && ~CollisionEvent
ret = true;
else
ret = false;
end
end

View File

@ -1,7 +1,12 @@
function ret = initialPositionSampling(this)
switch this.SimulationMode
case "2D"
n = this.NumberOfAtoms;
phi = 2 * pi * rand(n,1);
rho = this.Beta * 0.5 * this.NozzleLength * sqrt(rand(n,1));
ret = [-this.OvenDistance * ones(n,1), rho.*cos(phi), rho.*sin(phi)];
case "3D"
% Development In progress
end
end

View File

@ -1,6 +1,25 @@
function ret = initialVelocitySampling(this)
switch this.SimulationMode
case "2D"
n = this.NumberOfAtoms;
% Calculate Calculate Capture velocity --> Introduce velocity cutoff
this.CaptureVelocity = 1.05 * this.calculateCaptureVelocity([-this.OvenDistance,0,0], [1,0,0]);
this.VelocityCutoff = this.CaptureVelocity(1); % Should be the magnitude of the 3-D velocity vector but since here the obtained capture
% velocity is only along the x-axis, we take the first term which is the x-component of the velocity.
[ReducedClausingFactor, NormalizationConstantForAngularDistribution] = this.calculateReducedClausingFactor();
this.ReducedClausingFactor = ReducedClausingFactor;
VelocityDistribution = @(velocity) sqrt(2 / pi) * sqrt(Helper.PhysicsConstants.Dy164Mass/(Helper.PhysicsConstants.BoltzmannConstant * this.OvenTemperatureinKelvin))^3 ...
* velocity.^3 .* exp(-velocity.^2 .* (Helper.PhysicsConstants.Dy164Mass / (2 * Helper.PhysicsConstants.BoltzmannConstant ...
* this.OvenTemperatureinKelvin)));
c = integral(VelocityDistribution, 0, this.VelocityCutoff)/integral(VelocityDistribution,0,Inf);
this.ReducedFlux = c * this.ReducedClausingFactor * this.calculateFreeMolecularRegimeFlux();
ret = zeros(n,3);
SampledVelocityMagnitude = zeros(n,1);
SampledPolarAngle = zeros(n,1);
@ -13,27 +32,25 @@ function ret = initialVelocitySampling(this)
else
MaximumVelocityAllowed = MostProbableVelocity;
end
ProbabilityOfMaximumVelocityAllowed = this.velocityDistributionFunction(MaximumVelocityAllowed);
ProbabilityOfMaximumDivergenceAngleAllowed = 0.98 * this.NormalizationConstantForAngularDistribution * max(this.AngularDistribution .* sin(this.ThetaArray));
NormalizationConstantForVelocityDistribution = this.velocityDistributionFunction(MaximumVelocityAllowed);
parfor i = 1:n
% Rejection Sampling of speed
y = ProbabilityOfMaximumVelocityAllowed * rand(1);
y = rand(1);
x = this.VelocityCutoff * rand(1);
while y > this.velocityDistributionFunction(x) %As long as this loop condition is satisfied, reject the corresponding x value
y = ProbabilityOfMaximumVelocityAllowed * rand(1);
while y > ((NormalizationConstantForVelocityDistribution)^-1 * this.velocityDistributionFunction(x)) %As long as this loop condition is satisfied, reject the corresponding x value
y = rand(1);
x = this.VelocityCutoff * rand(1);
end
SampledVelocityMagnitude(i) = x; % When loop condition is not satisfied, accept x value and store as sample
% Rejection Sampling of polar angle
z = this.MOTExitDivergence * rand(1);
w = ProbabilityOfMaximumDivergenceAngleAllowed * rand(1);
w = rand(1);
z = this.NozzleExitDivergence * rand(1);
while w > (this.NormalizationConstantForAngularDistribution * this.angularDistributionFunction(z) * sin(z)) %As long as this loop condition is satisfied, reject the corresponding x value
z = this.MOTExitDivergence * rand(1);
w = ProbabilityOfMaximumDivergenceAngleAllowed * rand(1);
while w > ((NormalizationConstantForAngularDistribution)^-1 * 2 * pi * this.angularDistributionFunction(z) * sin(z)) %As long as this loop condition is satisfied, reject the corresponding x value
w = rand(1);
z = this.NozzleExitDivergence * rand(1);
end
SampledPolarAngle(i) = z; %When loop condition is not satisfied, accept x value and store as sample
@ -43,5 +60,8 @@ function ret = initialVelocitySampling(this)
ret(i,:)=[SampledVelocityMagnitude(i)*cos(SampledPolarAngle(i)), SampledVelocityMagnitude(i)*sin(SampledPolarAngle(i))*cos(SampledAzimuthalAngle(i)), ...
SampledVelocityMagnitude(i)*sin(SampledPolarAngle(i))*sin(SampledAzimuthalAngle(i))];
end
case "3D"
% Development In progress
end
end

View File

@ -3,8 +3,9 @@ function reinitializeSimulator(this)
pc = Helper.PhysicsConstants;
%% SIMULATION PARAMETERS
this.NozzleLength = 60e-3;
this.NozzleRadius = 2.50e-3;
this.NozzleRadius = 2.60e-3;
this.Beta = 2 * (this.NozzleRadius/this.NozzleLength);
this.ClausingFactor = this.calculateClausingFactor();
this.ApertureCut = max(2.5e-3,this.NozzleRadius);
this.OvenDistance = (25+12.5)*1e-3 + (this.NozzleRadius + this.ApertureCut) / tan(15/360 * 2 * pi);
% Distance between the nozzle and the 2-D MOT chamber center
@ -12,20 +13,25 @@ function reinitializeSimulator(this)
% 12.5 is the radius of the oven
% 15 eg is the angle between the 2-D MOT chamber center and the nozzle
this.OvenTemperature = 1000; % Temperature in Celsius
this.MOTDistance = 320e-3; % Distance between the 2-D MOT the 3-D MOT
this.BlueWaveVector = 2*pi/pc.BlueWavelength;
this.BlueSaturationIntensity = 2*pi^2*pc.PlanckConstantReduced*pc.SpeedOfLight*pc.BlueLinewidth/3/(pc.BlueWavelength)^3/10;
this.OrangeWaveVector = 2*pi/pc.OrangeWavelength;
this.OrangeSaturationIntensity = 2*pi^2*pc.PlanckConstantReduced*pc.SpeedOfLight*pc.OrangeLinewidth/3/(pc.OrangeWavelength)^3/10;
this.MOTDistance = 0.32; % Distance between the 2-D MOT the 3-D MOT
this.BlueWaveNumber = 2*pi/pc.BlueWavelength;
this.BlueSaturationIntensity = 0.1 * (2 * pi^2 / 3) * ((pc.PlanckConstantReduced * pc.SpeedOfLight * pc.BlueLinewidth) / (pc.BlueWavelength)^3);
this.OrangeWaveNumber = 2*pi/pc.OrangeWavelength;
this.OrangeSaturationIntensity = 0.1 * (2 * pi^2 / 3) * ((pc.PlanckConstantReduced * pc.SpeedOfLight * pc.OrangeLinewidth) / (pc.OrangeWavelength)^3);
this.BlueBeamRadius = min(0.035/2,sqrt(2)/2*this.OvenDistance); % Diameter of CF40 flange = 0.035
Theta_Nozzle = atan((this.NozzleRadius+this.BlueBeamRadius*sqrt(2))/this.OvenDistance); % The angle of capture region towards the oven nozzle
Theta_Aperture = 15/360*2*pi; % The limitation angle of the second aperture in the oven
this.NozzleExitDivergence = min(Theta_Nozzle,Theta_Aperture);
this.MOTExitDivergence = 0.016; % The limitation angle between 2D-MOT and 3D-MOT
this.TotalPower = 0.4;
this.OrangeBeamRadius = 1.2e-03;
this.PushBeamRadius = 0.000;
this.MOTExitDivergence = 16e-3; % The limitation angle between 2D-MOT and 3D-MOT
this.TimeSpentInInteractionRegion = this.SimulationTime;
this.TotalPower = 0.8;
this.OrangeBeamRadius = 1.2e-3;
this.PushBeamRadius = 1.2e-3;
this.PushBeamDistance = 0.32;
this.PushBeamLinewidth = Helper.PhysicsConstants.OrangeLinewidth;
this.PushBeamWaveNumber = this.OrangeWaveNumber;
this.PushBeamSaturationIntensity = this.OrangeSaturationIntensity;
this.ZeemanSlowerBeamRadius = 0.035;
this.ZeemanSlowerBeamSaturationIntensity = this.BlueSaturationIntensity;
this.DistanceBetweenPushBeamAnd3DMOTCenter = 0;
this.ZeemanSlowerBeamRadius = 1;
end

View File

@ -1,36 +1,6 @@
function [LoadingRate, StandardError] = runSimulation(this)
n = this.NumberOfAtoms;
%% Calculate Background Collision Time --> Calculate Capture velocity --> Introduce velocity cutoff --> Calculate capture fraction
function [LoadingRate, StandardError, ConfidenceInterval] = runSimulation(this)
this.CaptureVelocity = 1.05 * this.calculateCaptureVelocity([-this.OvenDistance,0,0], [1,0,0]); % Make 5% larger than the numerically obtained CV
this.VelocityCutoff = this.CaptureVelocity(1); %Should be the magnitude of the 3-D velocity vector but since here the obtained capture
%velocity is only along the x-axis, we take the first term which is the x-component of the velocity.
%% Calculate the Clausing Factor
% Compute the angular distribution of the atomic beam
ThetaArray = linspace(0.0001, pi/2, 1000);
AngularDistribution = zeros(1,length(ThetaArray));
parfor i = 1:length(ThetaArray)
AngularDistribution(i) = this.angularDistributionFunction(ThetaArray(i));
end
% Numerically integrate the angular distribution over the full solid angle
NormalizationConstant = 0;
for j = 1:length(ThetaArray)
if ThetaArray(j) <= this.NozzleExitDivergence
NormalizationConstant = NormalizationConstant + (2 * pi * sin(ThetaArray(j)) * AngularDistribution(j) * (ThetaArray(2)-ThetaArray(1)));
end
end
this.ClausingFactor = (1/pi) * NormalizationConstant; %The complete intergration will give pi * ClausingFactor.
%Therefore, the Clausing Factor needs to be extracted from the
%result of the above integration by dividing out pi
this.ThetaArray = ThetaArray;
this.AngularDistribution = AngularDistribution;
this.NormalizationConstantForAngularDistribution = NormalizationConstant;
%%
%% - Sampling for initial positions and velocities
% - sampling the position distribution
this.InitialPositions = this.initialPositionSampling();
% - sampling the velocity distribution
@ -38,18 +8,18 @@ function [LoadingRate, StandardError] = runSimulation(this)
%% Solve ODE
progressbar = Helper.parforNotifications();
progressbar.PB_start(n,'Message',['Simulating capture process for ' num2str(n,'%.0f') ' atoms:']);
progressbar.PB_start(this.NumberOfAtoms,'Message',['Simulating capture process for ' num2str(this.NumberOfAtoms,'%.0f') ' atoms:']);
% calculate the final position of the atoms
FinalDynamicalQuantities = zeros(n,9);
ParticleDynamicalQuantities = zeros(this.NumberOfAtoms,int64(this.SimulationTime/this.TimeStep),6);
Positions = this.InitialPositions;
Velocities = this.InitialVelocities;
parfor Index = 1:n
ret = this.solver(Positions(Index,:), Velocities(Index,:));
FinalDynamicalQuantities(Index,:) = ret(end,:);
parfor Index = 1:this.NumberOfAtoms
ParticleDynamicalQuantities(Index,:, :) = this.solver(Positions(Index,:), Velocities(Index,:));
progressbar.PB_iterate();
end
clear Index
%% Calculate the Loading Rate
[LoadingRate, StandardError] = this.calculateLoadingRate(FinalDynamicalQuantities);
[LoadingRate, StandardError, ConfidenceInterval] = this.calculateLoadingRate(ParticleDynamicalQuantities);
end

View File

@ -4,27 +4,27 @@ function setInitialConditions(this, varargin)
p.KeepUnmatched = true;
addParameter(p, 'NumberOfAtoms', 5000,...
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
addParameter(p, 'BluePower', 200e-3,...
addParameter(p, 'BluePower', this.TotalPower,...
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
addParameter(p, 'BlueDetuning', -1.5*Helper.PhysicsConstants.BlueLinewidth,...
addParameter(p, 'BlueDetuning', -1.39*Helper.PhysicsConstants.BlueLinewidth,...
@(x) assert(isnumeric(x) && isscalar(x)));
addParameter(p, 'BlueBeamWaist', 10e-3,...
addParameter(p, 'BlueBeamWaist', 16.6667e-3,...
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
addParameter(p, 'SidebandPower', 200e-3,...
addParameter(p, 'SidebandPower', 0.5*this.TotalPower,...
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
addParameter(p, 'SidebandDetuning', 0,...
addParameter(p, 'SidebandDetuning', -4.5*Helper.PhysicsConstants.BlueLinewidth,...
@(x) assert(isnumeric(x) && isscalar(x)));
addParameter(p, 'SidebandBeamWaist', 12e-3,...
addParameter(p, 'SidebandBeamWaist', 15e-3,...
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
addParameter(p, 'PushBeamPower', 10e-3,...
addParameter(p, 'PushBeamPower', 100e-3,...
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
addParameter(p, 'PushBeamDetuning', 0,...
addParameter(p, 'PushBeamDetuning', -5*Helper.PhysicsConstants.OrangeLinewidth,...
@(x) assert(isnumeric(x) && isscalar(x)));
addParameter(p, 'PushBeamWaist', 0.81e-3,...
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
addParameter(p, 'OrangePower', 70e-3,...
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
addParameter(p, 'OrangeDetuning', 12e-3,...
addParameter(p, 'OrangeDetuning', -1*Helper.PhysicsConstants.OrangeLinewidth,...
@(x) assert(isnumeric(x) && isscalar(x)));
addParameter(p, 'OrangeBeamWaist', 12e-3,...
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
@ -56,24 +56,19 @@ function setInitialConditions(this, varargin)
this.ZeemanSlowerBeamDetuning = p.Results.ZeemanSlowerBeamDetuning;
this.ZeemanSlowerBeamWaist = p.Results.ZeemanSlowerBeamWaist;
this.MagneticGradient = p.Results.MagneticGradient;
%% Set general parameters according to simulation mode
switch this.SimulationMode
case "2D"
this.CoolingBeamPower = this.BluePower;
this.CoolingBeamWaist = this.BlueBeamWaist;
this.CoolingBeamLinewidth = Helper.PhysicsConstants.BlueLinewidth;
this.CoolingBeamWaveVector = this.BlueWaveVector;
this.CoolingBeamWaveNumber = this.BlueWaveNumber;
this.CoolingBeamDetuning = this.BlueDetuning;
this.CoolingBeamRadius = this.BlueBeamRadius;
this.CoolingBeamWaist = this.BlueBeamWaist;
this.CoolingBeamSaturationIntensity = this.BlueSaturationIntensity;
this.SidebandBeamRadius = this.BlueBeamRadius;
this.SidebandBeamSaturationIntensity = this.BlueSaturationIntensity;
this.PushBeamLinewidth = Helper.PhysicsConstants.OrangeLinewidth;
this.PushBeamWaveVector = this.OrangeWaveVector;
this.PushBeamDetuning = this.OrangeDetuning;
this.PushBeamSaturationIntensity = this.OrangeSaturationIntensity;
this.LandegFactor = Helper.PhysicsConstants.BlueLandegFactor;
this.MagneticSubLevel = 1;
case "3D"

View File

@ -1,22 +1,16 @@
function [ParticleTrajectory, FinalDynamicalQuantities] = solver(this, InitialPosition, InitialVelocity)
function ParticleDynamicalQuantities = solver(this, InitialPosition, InitialVelocity)
if this.Gravity
g = [0,0,-Helper.PhysicsConstants.GravitationalAcceleration];
else
g = 0;
end
% Probability of Background Collisions
collision = rand(1);
CollisionProbability = 1 - exp(-this.SimulationTime/this.CollisionTime);
if collision >= CollisionProbability || this.AtomicBeamCollision == false %flag for skipping the background collision
ParticleTrajectory = zeros(int64(this.SimulationTime/this.TimeStep),9);
ParticleDynamicalQuantities = zeros(int64(this.SimulationTime/this.TimeStep),6);
for i=1:int64(this.SimulationTime/this.TimeStep)
ParticleTrajectory(i,1:3) = InitialPosition;
ParticleTrajectory(i,4:6) = InitialVelocity;
ParticleDynamicalQuantities(i,1:3) = InitialPosition;
ParticleDynamicalQuantities(i,4:6) = InitialVelocity;
rt = InitialPosition;
vt = InitialVelocity;
@ -41,14 +35,7 @@ function [ParticleTrajectory, FinalDynamicalQuantities] = solver(this, InitialPo
InitialPosition = InitialPosition + (gv1+2*(gv2+gv3)+gv4)./6;
InitialVelocity = InitialVelocity + this.TimeStep*(ga1+2*(ga2+ga3)+ga4)./6;
ParticleTrajectory(i,7:9) = (ga1+2*(ga2+ga3)+ ga4)./6;
end
FinalDynamicalQuantities = ParticleTrajectory(end,:);
else
ParticleTrajectory = zeros(int64(this.SimulationTime/this.TimeStep),9);
FinalDynamicalQuantities = -500*ones(1,9); % -500 is a flag for giving up this trajectory
%Acceleration = (ga1+2*(ga2+ga3)+ ga4)./6;
end
end

View File

@ -1,5 +1,5 @@
function ret = velocityDistributionFunction(this, velocity)
ret = sqrt(2 / pi) * (Helper.PhysicsConstants.Dy164Mass/(Helper.PhysicsConstants.BoltzmannConstant * this.OvenTemperatureinKelvin)) ...
ret = sqrt(2 / pi) * sqrt(Helper.PhysicsConstants.Dy164Mass/(Helper.PhysicsConstants.BoltzmannConstant * this.OvenTemperatureinKelvin))^3 ...
* velocity^3 * exp(-velocity^2.*(Helper.PhysicsConstants.Dy164Mass / (2 * Helper.PhysicsConstants.BoltzmannConstant ...
* this.OvenTemperatureinKelvin)));
end

View File

@ -7,12 +7,10 @@ OptionsStruct.SimulationMode = '2D';
OptionsStruct.TimeStep = 50e-06; % in s
OptionsStruct.SimulationTime = 4e-03; % in s
OptionsStruct.SpontaneousEmission = true;
OptionsStruct.Sideband = true;
OptionsStruct.ZeemanSlowerBeam = false;
OptionsStruct.Sideband = false;
OptionsStruct.Gravity = true;
OptionsStruct.AtomicBeamCollision = true;
OptionsStruct.DebugMode = false;
OptionsStruct.SaveData = true;
OptionsStruct.BackgroundCollision = true;
OptionsStruct.SaveData = false;
OptionsStruct.SaveDirectory = 'C:\DY LAB\MOT Simulation Project\Calculations\Code\MOT Capture Process Simulation';
options = Helper.convertstruct2cell(OptionsStruct);
@ -42,9 +40,18 @@ clear OptionsStruct
[LoadingRate, ~] = Simulator.runSimulation();
%% - Plot initial distribution
Simulator.setInitialConditions();
% - sampling the position distribution
Simulator.InitialPositions = Simulator.initialPositionSampling();
% - sampling the velocity distribution
Simulator.InitialVelocities = Simulator.initialVelocitySampling();
NumberOfBins = 100;
Plotting.plotPositionAndVelocitySampling(Simulator, NumberOfBins);
%% - Plot distributions of magnitude and direction of initial velocities
NumberOfBins = 50;
Plotting.plotInitialVeloctiySamplingVsAngle(Simulator, NumberOfBins)
%% - Plot Magnetic Field
XAxisRange = [-5 5];
YAxisRange = [-5 5];
@ -56,7 +63,7 @@ TemperatureinCelsius = linspace(750,1100,2000); % Temperature in Celsius
Plotting.plotMeanFreePathAndVapourPressureVsTemp(TemperatureinCelsius)
%% - Plot the Free Molecular Flux for different temperatures
Temperature = [900, 950, 1000, 1050, 1100]; % Temperature'
Temperature = [950, 1000, 1050]; % Temperature
Plotting.plotFreeMolecularFluxVsTemp(Simulator,Temperature)
%% - Plot Angular Distribution for different Beta
@ -64,18 +71,12 @@ Beta = [0.5, 0.1 , 0.05, 0.02, 0.01]; %Beta = 2 * radius / length of the tube
Plotting.plotAngularDistributionForDifferentBeta(Simulator, Beta)
%% - Plot Capture Velocity
Simulator.setInitialConditions();
Simulator.SimulationTime = 15*10^(-4);
Simulator.TimeStep = 1.5*10^(-6);
Simulator.MOTExitDivergence = 15/360*2*pi;
Simulator.MagneticGradient = 0.4;
Plotting.plotCaptureVelocityVsAngle(Simulator);
%% - Plot Phase Space with Acceleration Field
Simulator.NumberOfAtoms = 100;
Simulator.NumberOfAtoms = 200;
MaximumVelocity = 150;
NumberOfBins = 200; %Along each axis
IncidentAtomDirection = 0*2*pi/360;
@ -86,7 +87,7 @@ Plotting.plotPhaseSpaceWithAccelerationField(Simulator, MaximumVelocity, NumberO
% ONE-PARAMETER SCAN
NumberOfPointsForParam = 20; %iterations of the simulation
NumberOfPointsForParam = 10; %iterations of the simulation
% Scan Cooling Beam Power
PowerArray = linspace(0.1, 1.0, NumberOfPointsForParam) * Simulator.TotalPower;
% Scan Cooling Beam Detuning
@ -95,11 +96,12 @@ PowerArray = linspace(0.1, 1.0, NumberOfPointsForParam) * Simulator.TotalPow
OptionsStruct = struct;
OptionsStruct.ChangeInitialConditions = true;
OptionsStruct.ParameterNameArray = {'NumberOfAtoms'};
OptionsStruct.ParameterValueArray = {10000};
OptionsStruct.ParameterValueArray = {5000};
options = Helper.convertstruct2cell(OptionsStruct);
tStart = tic;
[LoadingRateArray, ~] = Simulator.doOneParameterScan('BluePower', PowerArray, options{:});
[LoadingRateArray, StandardErrorArray, ConfidenceIntervalArray] = Simulator.doOneParameterScan('BluePower', PowerArray, options{:});
tEnd = toc(tStart);
fprintf('Total Computational Time: %0.1f seconds. \n', tEnd);
@ -107,15 +109,19 @@ clear OptionsStruct
% - Plot results
ParameterArray = PowerArray .* Simulator.TotalPower;
ParameterArray = PowerArray;
QuantityOfInterestArray = LoadingRateArray;
OptionsStruct = struct;
OptionsStruct.RescalingFactorForParameter = 1000;
OptionsStruct.XLabelString = 'Cooling Beam Power (mW)';
OptionsStruct.RescalingFactorForYQuantity = 1e-16;
OptionsStruct.ErrorsForYQuantity = false;
OptionsStruct.YLabelString = 'Loading rate (x 10^{16} atoms/s)';
OptionsStruct.RescalingFactorForYQuantity = 1e-10;
OptionsStruct.ErrorsForYQuantity = true;
OptionsStruct.ErrorsArray = StandardErrorArray;
OptionsStruct.CIForYQuantity = true;
OptionsStruct.CIArray = ConfidenceIntervalArray;
OptionsStruct.RemoveOutliers = true;
OptionsStruct.YLabelString = 'Loading rate (x 10^{10} atoms/s)';
OptionsStruct.TitleString = sprintf('Magnetic Gradient = %.0f (G/cm)', Simulator.MagneticGradient * 100);
options = Helper.convertstruct2cell(OptionsStruct);
@ -126,11 +132,11 @@ clear OptionsStruct
%% TWO-PARAMETER SCAN
NumberOfPointsForParam = 20; %iterations of the simulation
NumberOfPointsForParam = 10; %iterations of the simulation
NumberOfPointsForSecondParam = 10;
% Scan Sideband Detuning and Power Ratio
DetuningArray = linspace(-0.5,-6, NumberOfPointsForParam) * Helper.PhysicsConstants.BlueLinewidth;
DetuningArray = linspace(-0.5,-10, NumberOfPointsForParam) * Helper.PhysicsConstants.BlueLinewidth;
SidebandPowerArray = linspace(0.1,0.9, NumberOfPointsForSecondParam) * Simulator.TotalPower;
BluePowerArray = Simulator.TotalPower - SidebandPowerArray;
@ -141,11 +147,11 @@ OptionsStruct.RelatedParameterName = 'BluePower';
OptionsStruct.RelatedParameterArray = BluePowerArray;
OptionsStruct.ChangeInitialConditions = true;
OptionsStruct.ParameterNameArray = {'NumberOfAtoms'};
OptionsStruct.ParameterValueArray = {10000};
OptionsStruct.ParameterValueArray = {5000};
options = Helper.convertstruct2cell(OptionsStruct);
tStart = tic;
[LoadingRateArray, StandardErrorArray] = Simulator.doTwoParameterScan('SidebandDetuning', DetuningArray, 'SidebandPower', SidebandPowerArray, options{:});
[LoadingRateArray, StandardErrorArray, ConfidenceInterval] = Simulator.doTwoParameterScan('SidebandDetuning', DetuningArray, 'SidebandPower', SidebandPowerArray, options{:});
tEnd = toc(tStart);
fprintf('Total Computational Time: %0.1f seconds. \n', tEnd);
@ -162,8 +168,8 @@ OptionsStruct.RescalingFactorForFirstParameter = (Helper.PhysicsConstants.B
OptionsStruct.XLabelString = 'Sideband Detuning (\Delta/\Gamma)';
OptionsStruct.RescalingFactorForSecondParameter = 1000;
OptionsStruct.YLabelString = 'Sideband Power (mW)';
OptionsStruct.RescalingFactorForQuantityOfInterest = 1e-16;
OptionsStruct.ZLabelString = 'Loading rate (x 10^{16} atoms/s)';
OptionsStruct.RescalingFactorForQuantityOfInterest = 1e-10;
OptionsStruct.ZLabelString = 'Loading rate (x 10^{10} atoms/s)';
OptionsStruct.TitleString = sprintf('Magnetic Gradient = %.0f (G/cm)', Simulator.MagneticGradient * 100);
options = Helper.convertstruct2cell(OptionsStruct);