Compare commits

..

No commits in common. "c2e6420243e31a3385f4b9a311aa7ca60f0eae9c" and "d0b4d0b9b84f140b55cb75815a6aa6c983b51a4f" have entirely different histories.

35 changed files with 403 additions and 601 deletions

View File

@ -1,10 +0,0 @@
function ret = calculateDistanceFromPointToLine(p0 , p1, p2)
p01 = p0 - p1;
p12 = p2 - p1;
CrossProduct = [p01(2)*p12(3) - p01(3)*p12(2), p01(3)*p12(1) - p01(1)*p12(3), p01(1)*p12(2) - p01(2)*p12(1)];
ret = rssq(CrossProduct) / rssq(p12);
%Height of parallelogram (Distance between point and line) = Area of parallelogram / Base
%Area = One side of parallelogram X Base
%ret = norm(cross(one side, base))./ norm(base);
end

View File

@ -1,18 +0,0 @@
function ret = findAllZeroCrossings(x,y)
% Finds all Zero-crossing of the function y = f(x)
zci = @(v) find(v(:).*circshift(v(:), [-1 0]) <= 0); % Returns Approximate Zero-Crossing Indices Of Argument Vector
zxidx = zci(y);
if ~isempty(zxidx)
for k1 = 1:numel(zxidx)
idxrng = max([1 zxidx(k1)-1]):min([zxidx(k1)+1 numel(y)]);
xrng = x(idxrng);
yrng = y(idxrng);
[yrng2, ~, jyrng] = unique(yrng); %yrng is a new array containing the unique values of yrng. jyrng contains the indices in yrng that correspond to the original vector. yrng = yrng2(jyrng)
xrng2 = accumarray(jyrng, xrng, [], @mean); %This function creates a new array "xrng2" by applying the function "@mean" to all elements in "xrng" that have identical indices in "jyrng". Any elements with identical X values will have identical indices in jyrng. Thus, this function creates a new array by averaging values with identical X values in the original array.
ret(k1) = interp1( yrng2(:), xrng2(:), 0, 'linear', 'extrap' );
end
else
warning('No zero crossings found!')
ret = nan;
end
end

View File

@ -64,7 +64,7 @@ function plotAngularDistributionForDifferentBeta(obj, Beta)
leg = legend;
hXLabel = xlabel('\theta (rad)');
hYLabel = ylabel('J(\theta)');
hTitle = sgtitle('Angular Distribution (Transition Flow)');
hTitle = sgtitle('Angular Distribution (Free Molecular Flow)');
set([hXLabel, hYLabel, leg] , ...
'FontSize' , 14 );

View File

@ -1,6 +1,6 @@
function plotCaptureVelocityVsAngle(obj)
theta = linspace(0, obj.NozzleExitDivergence, 1000);
theta = linspace(0, obj.MOTExitDivergence, 40);
CaptureVelocity = zeros(length(theta),3);
for i=1:length(theta)
@ -20,16 +20,16 @@ function plotCaptureVelocityVsAngle(obj)
screensize = get(0,'ScreenSize');
f_h.Position = [[screensize(3)/3.5 screensize(4)/3.5] 750 600];
plot(theta .* 1e+03, sqrt(CaptureVelocity(:,1).^2+CaptureVelocity(:,2).^2+CaptureVelocity(:,3).^2), 'Linewidth', 1.5)
plot(theta, sqrt(CaptureVelocity(:,1).^2+CaptureVelocity(:,2).^2+CaptureVelocity(:,3).^2), 'Linewidth', 1.5)
hXLabel = xlabel('\theta (mrad)');
hXLabel = xlabel('\theta (rad)');
hYLabel = ylabel('Velocity (m/s)');
hTitle = sgtitle('Capture velocity for different angles of divergence');
hTitle = sgtitle('Capture Velocity of an atomic beam from (0,0,0)');
set([hXLabel, hYLabel] , ...
'FontSize' , 14 );
set( hTitle , ...
'FontSize' , 14 );
'FontSize' , 18 );
grid on
Helper.bringFiguresWithTagInForeground();

View File

@ -1,18 +0,0 @@
function plotConfidenceIntervalRegion(x, y1, y2)
% draws two lines on a plot and shades the area between those
% lines to indicate confidence interval.
hold on
X_interpolated = linspace(min(x), max(x), 100);
Y1_interpolated = interp1(x,y1,X_interpolated);
Y2_interpolated = interp1(x,y2,X_interpolated);
%Plot the line edges
%plot(X_interpolated, Y1_interpolated, 'LineWidth', 0.5, 'LineStyle', '--', 'Color', '#FE1A1A');
%plot(X_interpolated, Y2_interpolated, 'LineWidth', 0.5, 'LineStyle', '--', 'Color', '#FE1A1A');
fill([X_interpolated fliplr(X_interpolated)], [Y1_interpolated fliplr(Y2_interpolated)], [0 71 138] ./ 255, 'EdgeColor', 'none', 'FaceAlpha', 0.2);
hold off
end

View File

@ -17,22 +17,21 @@ function plotFreeMolecularFluxVsTemp(obj, Temperature)
for i=1:length(Temperature)
beta = linspace(0.01,0.5,200);
L = 2*obj.NozzleRadius./beta;
obj.OvenTemperature = Temperature(i);
flux = zeros(1,length(beta));
for j=1:length(beta)
obj.Beta = beta(j);
[ReducedClausingFactor, ~] = obj.calculateReducedClausingFactor();
flux(j) = ReducedClausingFactor * obj.calculateFreeMolecularRegimeFlux();
flux = zeros(1,length(L));
for j=1:length(L)
obj.NozzleLength = L(j);
flux(j) = obj.calculateFreeMolecularRegimeFlux();
end
plot(beta, flux, 'DisplayName', sprintf('T = %.1f ', Temperature(i)), 'Linewidth', 1.5)
end
set(gca,'yscale','log')
obj.reinitializeSimulator();
[ReducedClausingFactor, ~] = obj.calculateReducedClausingFactor();
xline(obj.Beta, 'k--','Linewidth', 0.5);
fmf = ReducedClausingFactor * obj.calculateFreeMolecularRegimeFlux();
fmf = obj.calculateFreeMolecularRegimeFlux();
yline(fmf, 'k--', 'Linewidth', 1.5);
textstring = [sprintf('%1.e',fmf) ' atoms/s for ' '$$ \beta $$ = ' num2str(obj.Beta, '%.2f') sprintf(' @ %.2f K', obj.OvenTemperatureinKelvin)];
txt = text((obj.Beta + 0.05*obj.Beta), (max(fmf) + 0.2*fmf), textstring, 'Interpreter','latex');

View File

@ -1,74 +0,0 @@
function plotInitialVeloctiySamplingVsAngle(obj, NumberOfBins)
n = obj.NumberOfAtoms;
obj.setInitialConditions();
VelocitySamples = initialVelocitySampling(obj);
Speeds = zeros(length(VelocitySamples),1);
Angles = zeros(length(VelocitySamples),1);
for i=1:length(VelocitySamples)
Speeds(i) = sqrt(VelocitySamples(i,1)^2+VelocitySamples(i,2)^2+VelocitySamples(i,3)^2);
Angles(i) = acos(VelocitySamples(i,1)/Speeds(i));
end
SpeedsArray = linspace(0,obj.VelocityCutoff,5000);
SpeedBinSize = obj.VelocityCutoff / NumberOfBins;
VelocityDistribution = @(velocity) sqrt(2 / pi) * sqrt(Helper.PhysicsConstants.Dy164Mass/(Helper.PhysicsConstants.BoltzmannConstant * obj.OvenTemperatureinKelvin))^3 ...
* velocity.^3 .* exp(-velocity.^2 .* (Helper.PhysicsConstants.Dy164Mass / (2 * Helper.PhysicsConstants.BoltzmannConstant ...
* obj.OvenTemperatureinKelvin)));
c = integral(VelocityDistribution, 0, obj.VelocityCutoff);
AnglesArray = linspace(0, obj.NozzleExitDivergence,1000);
AngleBinSize = obj.NozzleExitDivergence / NumberOfBins;
dtheta = AnglesArray(2)-AnglesArray(1);
AngularDistribution = zeros(1,length(AnglesArray));
d = 0;
for i = 1:length(AnglesArray)
AngularDistribution(i) = obj.angularDistributionFunction(AnglesArray(i));
d = d + (2 * pi * AngularDistribution(i) * sin(AnglesArray(i)) * dtheta);
end
AngularDistribution = AngularDistribution .* (2 * pi .* sin(AnglesArray));
f_h = Helper.getFigureByTag('Velocity Sampling');
set(groot,'CurrentFigure',f_h);
a_h = get(f_h, 'CurrentAxes');
if ~isempty(get(a_h, 'Children'))
clf(f_h);
end
f_h.Name = 'Velocity Sampling';
f_h.Units = 'pixels';
set(0,'units','pixels');
screensize = get(0,'ScreenSize');
f_h.Position = [[screensize(3)/10 screensize(4)/4] 1570,600];
subplot(1,2,1)
h_1 = histogram(Speeds, NumberOfBins,'FaceAlpha',0.4, 'EdgeAlpha',0.4);
hold on
plot(SpeedsArray, n/c * SpeedBinSize .* VelocityDistribution(SpeedsArray),'--', 'Linewidth',1.5)
xline(obj.VelocityCutoff, 'k--', 'Linewidth', 1.5);
text((obj.VelocityCutoff - 0.2 * obj.VelocityCutoff), max(h_1.Values) + 0.01 * max(h_1.Values), 'Cut-Off ---------->');
hXLabel_1 = xlabel('Magnitudes (m/s)');
hYLabel_1 = ylabel('Counts');
hold off
subplot(1,2,2)
histogram(Angles .* 1e+03, NumberOfBins,'FaceAlpha',0.4, 'EdgeAlpha',0.4)
hold on
plot(AnglesArray .* 1e+03, (n/d * AngleBinSize .* AngularDistribution),'--', 'Linewidth',1.5)
xline(obj.NozzleExitDivergence.* 1e+03, 'k--', 'Linewidth', 1.5);
text((obj.NozzleExitDivergence - 0.5 * obj.NozzleExitDivergence).* 1e+03, max(h_1.Values) - 0.45 * max(h_1.Values), 'Maximum Allowed Divergence ----------->');
hXLabel_2 = xlabel(' Directions (mrad)');
hYLabel_2 = ylabel('Counts');
hold off
hTitle = sgtitle('Sampled Velocities');
set([hXLabel_1, hXLabel_2, hYLabel_1, hYLabel_2] , ...
'FontSize' , 14 );
set( hTitle , ...
'FontSize' , 18 );
Helper.bringFiguresWithTagInForeground();
end

View File

@ -49,21 +49,21 @@ function plotPhaseSpaceWithAccelerationField(obj, MaximumVelocity, NumberOfBins,
%-------------------------------------------------------------------------
Y = linspace(0,MaximumVelocity,N);
ParticleDynamicalQuantities = zeros(length(Y),int64(T/tau),6);
Y = linspace(0,MaximumVelocity,N);
Trajectories = zeros(length(Y),int64(T/tau),9);
for i=1:length(Y)
x =-L/2;
vx = Y(i)*cos(Theta);
vz = Y(i)*sin(Theta);
r = [x,0,z];
v = [vx,0,vz];
ParticleDynamicalQuantities(i,:,:) = obj.solver(r, v);
[Trajectories(i,:,:),~] = obj.solver(r, v);
end
hold on
for i=1:length(Y)
plot(ParticleDynamicalQuantities(i,:,1),ParticleDynamicalQuantities(i,:,4),'w','linewidth',1.3)
plot(Trajectories(i,:,1),Trajectories(i,:,4),'w','linewidth',1.3)
end
hold off

View File

@ -41,14 +41,14 @@ function plotPositionAndVelocitySampling(obj, NumberOfBins)
legend('FontSize', 14)
subplot(3,2,4)
histogram(initialVelocities(:, 2),NumberOfBins, 'LineStyle', 'none', 'DisplayName','y-Component')
xlabel('Velocities (m/s)','FontSize', 14)
histogram(initialVelocities(:, 2)*1e3,NumberOfBins, 'LineStyle', 'none', 'DisplayName','y-Component')
xlabel('Velocities (mm/s)','FontSize', 14)
ylabel('Counts','FontSize', 14)
legend('FontSize', 14)
subplot(3,2,6)
histogram(initialVelocities(:, 3),NumberOfBins, 'LineStyle', 'none', 'DisplayName','z-Component')
xlabel('Velocities (m/s)','FontSize', 14)
histogram(initialVelocities(:, 3)*1e3,NumberOfBins, 'LineStyle', 'none', 'DisplayName','z-Component')
xlabel('Velocities (mm/s)','FontSize', 14)
ylabel('Counts','FontSize', 14)
legend('FontSize', 14)

View File

@ -10,10 +10,7 @@ function plotResultForOneParameterScan(XParameter, YQuantity, varargin)
addParameter(p, 'XLabelString', 'X parameter', @ischar)
addParameter(p, 'ErrorsForYQuantity', false, @islogical)
addParameter(p, 'ErrorsArray', [], @isvector)
addParameter(p, 'CIForYQuantity', false, @islogical)
addParameter(p, 'CIArray', [], @ismatrix)
addParameter(p, 'RescalingFactorForYQuantity', 1, @isscalar)
addParameter(p, 'RemoveOutliers', false, @islogical)
addParameter(p, 'YLabelString', 'Y parameter', @ischar)
addParameter(p, 'TitleString', 'One-Parameter Scan', @ischar)
@ -25,10 +22,7 @@ function plotResultForOneParameterScan(XParameter, YQuantity, varargin)
YQuantity = p.Results.QuantityOfInterestArray;
ErrorsForYQuantity = p.Results.ErrorsForYQuantity;
ErrorsArray = p.Results.ErrorsArray;
CIForYQuantity = p.Results.CIForYQuantity;
CIArray = p.Results.CIArray;
RescalingFactorForYQuantity = p.Results.RescalingFactorForYQuantity;
RemoveOutliers = p.Results.RemoveOutliers;
YLabelString = p.Results.YLabelString;
TitleString = p.Results.TitleString;
@ -45,37 +39,16 @@ function plotResultForOneParameterScan(XParameter, YQuantity, varargin)
screensize = get(0,'ScreenSize');
f_h.Position = [[screensize(3)/3.5 screensize(4)/3.5] 750 600];
if RemoveOutliers
[YQuantity,TF] = rmoutliers(YQuantity);
XParameter = XParameter(~TF);
ErrorsArray = ErrorsArray(~TF);
ClippedCIArray(:,1) = CIArray(~TF,1);
ClippedCIArray(:,2) = CIArray(~TF,2);
CIArray = ClippedCIArray;
end
RescaledXParameter = XParameter .* RescalingFactorForXParameter;
RescaledYQuantity = YQuantity .* RescalingFactorForYQuantity;
hold on
if ErrorsForYQuantity
RescaledErrorsArray = ErrorsArray .* RescalingFactorForYQuantity;
errorbar(RescaledXParameter, RescaledYQuantity, RescaledErrorsArray, 'o', 'Linewidth', 1.5, 'MarkerFaceColor', '#0071BB')
errorbar(RescaledXParameter, RescaledYQuantity, RescaledErrorsArray)
else
plot(RescaledXParameter, RescaledYQuantity, '--o', 'Linewidth', 1.5);
end
if CIForYQuantity
RescaledCIArray = CIArray .* RescalingFactorForYQuantity;
Plotting.plotConfidenceIntervalRegion(RescaledXParameter, RescaledCIArray(:,1), RescaledCIArray(:,2));
end
hold off
xlim([0 inf])
ylim([0 inf])
hXLabel = xlabel(XLabelString);
hYLabel = ylabel(YLabelString);
hTitle = sgtitle(TitleString);
@ -85,6 +58,5 @@ function plotResultForOneParameterScan(XParameter, YQuantity, varargin)
set( hTitle , ...
'FontSize' , 18 );
grid on
Helper.bringFiguresWithTagInForeground();
end

View File

@ -24,18 +24,18 @@ classdef MOTSimulator < handle & matlab.mixin.Copyable
BlueDetuning;
BlueBeamRadius;
BlueBeamWaist;
BlueWaveNumber;
BlueWaveVector;
BlueSaturationIntensity;
OrangePower;
OrangeDetuning;
OrangeBeamRadius;
OrangeBeamWaist;
OrangeWaveNumber;
OrangeWaveVector;
OrangeSaturationIntensity;
CoolingBeamPower;
CoolingBeamWaveNumber;
CoolingBeamWaveVector;
CoolingBeamLinewidth;
CoolingBeamDetuning;
CoolingBeamRadius;
@ -49,7 +49,7 @@ classdef MOTSimulator < handle & matlab.mixin.Copyable
SidebandBeamSaturationIntensity;
PushBeamPower;
PushBeamWaveNumber;
PushBeamWaveVector;
PushBeamLinewidth;
PushBeamDetuning;
PushBeamRadius;
@ -71,16 +71,16 @@ classdef MOTSimulator < handle & matlab.mixin.Copyable
CaptureVelocity;
VelocityCutoff;
ClausingFactor;
ReducedClausingFactor;
ReducedFlux;
TimeSpentInInteractionRegion;
ThetaArray;
AngularDistribution;
NormalizationConstantForAngularDistribution;
%Flags
SpontaneousEmission;
Sideband;
ZeemanSlowerBeam;
Gravity;
BackgroundCollision;
AtomicBeamCollision;
DebugMode;
DoSave;
@ -124,7 +124,7 @@ classdef MOTSimulator < handle & matlab.mixin.Copyable
@islogical);
addParameter(p, 'Gravity', false,...
@islogical);
addParameter(p, 'BackgroundCollision', false,...
addParameter(p, 'AtomicBeamCollision', true,...
@islogical);
addParameter(p, 'DebugMode', false,...
@islogical);
@ -144,7 +144,7 @@ classdef MOTSimulator < handle & matlab.mixin.Copyable
s.Sideband = p.Results.Sideband;
s.ZeemanSlowerBeam = p.Results.ZeemanSlowerBeam;
s.Gravity = p.Results.Gravity;
s.BackgroundCollision = p.Results.BackgroundCollision;
s.AtomicBeamCollision = p.Results.AtomicBeamCollision;
s.DebugMode = p.Results.DebugMode;
s.DoSave = p.Results.SaveData;
@ -177,7 +177,7 @@ classdef MOTSimulator < handle & matlab.mixin.Copyable
ret = this.SimulationTime;
end
function set.NumberOfAtoms(this, val)
assert(val <= 20000, 'Not time efficient to compute for atom numbers larger than 20,000!');
assert(val <= 10000, 'Not time efficient to compute for atom numbers larger than 10,000!');
this.NumberOfAtoms = val;
end
function ret = get.NumberOfAtoms(this)
@ -282,11 +282,11 @@ classdef MOTSimulator < handle & matlab.mixin.Copyable
function ret = get.BlueBeamWaist(this)
ret = this.BlueBeamWaist;
end
function set.BlueWaveNumber(this, val)
this.BlueWaveNumber = val;
function set.BlueWaveVector(this, val)
this.BlueWaveVector = val;
end
function ret = get.BlueWaveNumber(this)
ret = this.BlueWaveNumber;
function ret = get.BlueWaveVector(this)
ret = this.BlueWaveVector;
end
function set.BlueSaturationIntensity(this, val)
this.BlueSaturationIntensity = val;
@ -319,11 +319,11 @@ classdef MOTSimulator < handle & matlab.mixin.Copyable
function ret = get.OrangeBeamWaist(this)
ret = this.OrangeBeamWaist;
end
function set.OrangeWaveNumber(this, val)
this.OrangeWaveNumber = val;
function set.OrangeWaveVector(this, val)
this.OrangeWaveVector = val;
end
function ret = get.OrangeWaveNumber(this)
ret = this.OrangeWaveNumber;
function ret = get.OrangeWaveVector(this)
ret = this.OrangeWaveVector;
end
function set.OrangeSaturationIntensity(this, val)
this.OrangeSaturationIntensity = val;
@ -356,11 +356,11 @@ classdef MOTSimulator < handle & matlab.mixin.Copyable
function ret = get.CoolingBeamWaist(this)
ret = this.CoolingBeamWaist;
end
function set.CoolingBeamWaveNumber(this, val)
this.CoolingBeamWaveNumber = val;
function set.CoolingBeamWaveVector(this, val)
this.CoolingBeamWaveVector = val;
end
function ret = get.CoolingBeamWaveNumber(this)
ret = this.CoolingBeamWaveNumber;
function ret = get.CoolingBeamWaveVector(this)
ret = this.CoolingBeamWaveVector;
end
function set.CoolingBeamLinewidth(this, val)
this.CoolingBeamLinewidth = val;
@ -430,11 +430,11 @@ classdef MOTSimulator < handle & matlab.mixin.Copyable
function ret = get.PushBeamWaist(this)
ret = this.PushBeamWaist;
end
function set.PushBeamWaveNumber(this, val)
this.PushBeamWaveNumber= val;
function set.PushBeamWaveVector(this, val)
this.PushBeamWaveVector = val;
end
function ret = get.PushBeamWaveNumber(this)
ret = this.PushBeamWaveNumber;
function ret = get.PushBeamWaveVector(this)
ret = this.PushBeamWaveVector;
end
function set.PushBeamLinewidth(this, val)
this.PushBeamLinewidth = val;
@ -529,23 +529,31 @@ classdef MOTSimulator < handle & matlab.mixin.Copyable
function ret = get.ClausingFactor(this)
ret = this.ClausingFactor;
end
function set.ReducedClausingFactor(this,val)
this.ReducedClausingFactor = val;
function set.AngularDistribution(this,val)
this.AngularDistribution = val;
end
function ret = get.ReducedClausingFactor(this)
ret = this.ReducedClausingFactor;
function ret = get.AngularDistribution(this)
ret = this.AngularDistribution;
end
function set.ReducedFlux(this,val)
this.ReducedFlux = val;
function set.ThetaArray(this,val)
this.ThetaArray = val;
end
function ret = get.ReducedFlux(this)
ret = this.ReducedFlux;
function ret = get.ThetaArray(this)
ret = this.ThetaArray;
end
function set.TimeSpentInInteractionRegion(this,val)
this.TimeSpentInInteractionRegion = val;
function set.NormalizationConstantForAngularDistribution(this,val)
this.NormalizationConstantForAngularDistribution = val;
end
function ret = get.TimeSpentInInteractionRegion(this)
ret = this.TimeSpentInInteractionRegion;
function ret = get.NormalizationConstantForAngularDistribution(this)
ret = this.NormalizationConstantForAngularDistribution;
end
function set.AtomicBeamCollision(this,val)
this.AtomicBeamCollision=val;
end
function ret=get.AtomicBeamCollision(this)
ret=this.AtomicBeamCollision;
end
function set.DebugMode(this, val)
@ -578,19 +586,19 @@ classdef MOTSimulator < handle & matlab.mixin.Copyable
methods
function ret = get.CoolingBeamSaturationParameter(this)
ret = 0.1 * (4 * this.CoolingBeamPower) / (pi*this.CoolingBeamWaist^2 * this.CoolingBeamSaturationIntensity); % two beams are reflected
ret = 4* this.CoolingBeamPower/(pi*this.CoolingBeamWaist^2)/this.CoolingBeamSaturationIntensity/10; % two beams are reflected
end
function ret = get.SidebandSaturationParameter(this)
ret = 0.1 * (4 * this.SidebandPower) / (pi*this.SidebandBeamWaist^2 * this.SidebandBeamSaturationIntensity);
ret = 4*this.SidebandPower/(pi*this.SidebandBeamWaist^2)/this.SidebandBeamSaturationIntensity/10;
end
function ret = get.PushBeamSaturationParameter(this)
ret = 0.1 * this.PushBeamPower/(pi * this.PushBeamWaist^2 * this.PushBeamSaturationIntensity);
ret = this.PushBeamPower/(pi*this.PushBeamWaist^2)/this.PushBeamSaturationIntensity/10;
end
function ret = get.ZeemanSlowerBeamSaturationParameter(this)
ret = 0.1 * this.ZeemanSlowerBeamPower / (pi * this.ZeemanSlowerBeamWaist^2 * this.ZeemanSlowerBeamSaturationIntensity);
ret = this.ZeemanSlowerBeamPower/(pi*this.ZeemanSlowerBeamWaist^2)/this.ZeemanSlowerBeamSaturationIntensity/10;
end
function ret = get.OvenTemperatureinKelvin(this)
@ -599,7 +607,7 @@ classdef MOTSimulator < handle & matlab.mixin.Copyable
function ret = get.AverageVelocity(this)
%See Background collision probability section in Barbiero
ret = sqrt((8*Helper.PhysicsConstants.BoltzmannConstant*this.OvenTemperatureinKelvin)/ (pi*Helper.PhysicsConstants.Dy164Mass));
ret = sqrt(((8*pi)/9) * ((Helper.PhysicsConstants.BoltzmannConstant * this.OvenTemperatureinKelvin)/Helper.PhysicsConstants.Dy164Mass));
end
function ret = get.AtomicBeamDensity(this)

View File

@ -4,17 +4,17 @@ function ret = accelerationDueToPushBeam(this, PositionVector, VelocityVector)
WaveVectorEndPoint = WaveVectorEndPoint./norm(WaveVectorEndPoint);
Origin=[0,0,0];
SaturationIntensity = this.calculateLocalSaturationIntensity(this.PushBeamSaturationParameter, PositionVector, Origin, WaveVectorEndPoint, this.PushBeamRadius, this.PushBeamWaist);
SaturationIntensity = this.calculateLocalSaturationIntensity(this.PushBeamSaturationIntensity, PositionVector, Origin, WaveVectorEndPoint, this.PushBeamRadius, this.PushBeamWaist);
DopplerShift = (VelocityVector * WaveVectorEndPoint(1:3)') * this.PushBeamWaveNumber;
DopplerShift = (VelocityVector * WaveVectorEndPoint(1:3)') * this.PushBeamWaveVector;
Detuning = this.PushBeamDetuning - DopplerShift;
s_push = SaturationIntensity/(1 + SaturationIntensity + (4 * (Detuning./this.PushBeamLinewidth).^2));
a_push = (Helper.PhysicsConstants.PlanckConstantReduced * this.PushBeamWaveNumber * WaveVectorEndPoint(1:3)/Helper.PhysicsConstants.Dy164Mass).*(this.PushBeamLinewidth * 0.5) .* (s_push/(1+s_push));
a_push = (Helper.PhysicsConstants.PlanckConstantReduced * this.PushBeamWaveVector * WaveVectorEndPoint(1:3)/Helper.PhysicsConstants.Dy164Mass).*(this.PushBeamLinewidth * 0.5) .* ...
(SaturationIntensity/(1 + SaturationIntensity + (4 * (Detuning./this.PushBeamLinewidth).^2)));
if this.SpontaneousEmission
a_scatter = this.accelerationDueToSpontaneousEmissionProcess(s_push, s_push, Detuning, this.PushBeamLinewidth, this.PushBeamWaveNumber);
a_scatter = this.accelerationDueToSpontaneousEmissionProcess(SaturationIntensity, SaturationIntensity, Detuning, this.PushBeamLinewidth, this.PushBeamWaveVector);
else
a_scatter = [0,0,0];
end

View File

@ -1,12 +1,12 @@
function ret = accelerationDueToSpontaneousEmissionProcess(this, SaturationParameter, TotalSaturationParameter, Detuning, Linewidth, WaveNumber)
function ret = accelerationDueToSpontaneousEmissionProcess(this, SaturationIntensity, TotalSaturationIntensity, Detuning, Linewidth, WaveVector)
Vector = [2*rand(1)-1,2*rand(1)-1,2*rand(1)-1];
Vector = Vector./norm(Vector);
ScatteringRate = (0.5 * SaturationParameter * Linewidth) / (1 + TotalSaturationParameter + (4 * (Detuning / Linewidth)^2));
ScatteringRate = (0.5 * SaturationIntensity * Linewidth) / (1 + TotalSaturationIntensity + (4 * (Detuning/Linewidth)^2));
NumberOfScatteringEvents = floor(ScatteringRate * this.TimeStep);
if NumberOfScatteringEvents > 0
ret = Vector.*((Helper.PhysicsConstants.PlanckConstantReduced * WaveNumber) / ...
ret = Vector.*((Helper.PhysicsConstants.PlanckConstantReduced * WaveVector) / ...
(Helper.PhysicsConstants.Dy164Mass * this.TimeStep)).* sqrt(NumberOfScatteringEvents);
else
ret = zeros(1,3);

View File

@ -4,7 +4,7 @@ function ret = angularDistributionFunction(this, theta)
KnudsenNumber = this.MeanFreePath/this.NozzleLength;
alpha = 0.5 - (3*this.Beta^2)^-1 * ...
alpha=0.5 - (3*this.Beta^2)^-1 * ...
((1 - (2*this.Beta^3) + ((2*this.Beta^2) - 1) * sqrt(1+this.Beta^2)) / ...
(sqrt(1+this.Beta^2) - (this.Beta^2 * asinh((this.Beta^2)^-1))));

View File

@ -1,40 +0,0 @@
function [LoadingRate, StandardError, ConfidenceInterval] = bootstrapErrorEstimation(this, NumberOfLoadedAtoms)
n = this.NumberOfAtoms;
NumberOfTimeSteps = int64(this.SimulationTime/this.TimeStep);
Autocorrelation = autocorr(NumberOfLoadedAtoms,'NumLags', double(NumberOfTimeSteps - 1));
if Autocorrelation(1)~=0
CorrelationFactor = table(Helper.findAllZeroCrossings(linspace(1, double(NumberOfTimeSteps), double(NumberOfTimeSteps)), Autocorrelation)).Var1(1);
if ~isnan(CorrelationFactor)
SampleLength = floor(CorrelationFactor);
NumberOfBootsrapSamples = 1000;
MeanLoadingRatioInEachSample = zeros(1,NumberOfBootsrapSamples);
for SampleNumber = 1:NumberOfBootsrapSamples
BoostrapSample = datasample(NumberOfLoadedAtoms, SampleLength); % Sample with replacement
MeanLoadingRatioInEachSample(SampleNumber) = mean(BoostrapSample) / n; % Empirical bootstrap distribution of sample means
end
LoadingRate = mean(MeanLoadingRatioInEachSample) * this.ReducedFlux;
Variance = 0; % Bootstrap Estimate of Variance
for SampleNumber = 1:NumberOfBootsrapSamples
Variance = Variance + (MeanLoadingRatioInEachSample(SampleNumber) - mean(MeanLoadingRatioInEachSample))^2;
end
StandardError = sqrt((1 / (NumberOfBootsrapSamples-1)) * Variance) * this.ReducedFlux;
ts = tinv([0.025 0.975],NumberOfBootsrapSamples-1); % T-Score
ConfidenceInterval = LoadingRate + ts*StandardError; % 95% Confidence Intervals
else
LoadingRate = nan;
StandardError = nan;
ConfidenceInterval = [nan nan];
end
else
LoadingRate = nan;
StandardError = nan;
ConfidenceInterval = [nan nan];
end
end

View File

@ -1,28 +1,24 @@
function ret = calculateCaptureVelocity(this, PositionVector, VelocityVector)
switch this.SimulationMode
case "2D"
VelocityUnitVector = VelocityVector./norm(VelocityVector);
UpperLimit = 500;
LowerLimit = 0;
for Index = 1:500
InitialVelocity = (0.5 * (UpperLimit + LowerLimit)) * VelocityUnitVector;
ParticleDynamicalQuantities = this.solver(PositionVector, InitialVelocity);
FinalPositionVector = ParticleDynamicalQuantities(end, 1:3);
if rssq(FinalPositionVector) <= this.OvenDistance
LowerLimit = 0.5 * (UpperLimit + LowerLimit);
else
UpperLimit = 0.5 * (UpperLimit + LowerLimit);
end
VelocityVector = VelocityVector./norm(VelocityVector);
UpperLimit = 500;
LowerLimit = 0;
this.AtomicBeamCollision = false;
if UpperLimit - LowerLimit < 1
ret = (0.5 * (UpperLimit + LowerLimit)) * VelocityUnitVector;
break;
end
end
case "3D"
% Development In progress
for Index = 1:500
InitialVelocity = 0.5 * (UpperLimit + LowerLimit) * VelocityVector;
[~, FinalDynamicalQuantities] = this.solver(PositionVector, InitialVelocity);
FinalPositionVector = FinalDynamicalQuantities(1:3);
if rssq(FinalPositionVector) <= this.OvenDistance
LowerLimit = 0.5 * (UpperLimit + LowerLimit);
else
UpperLimit = 0.5 * (UpperLimit + LowerLimit);
end
if UpperLimit - LowerLimit < 1
ret = InitialVelocity;
break;
end
end
end

View File

@ -1,9 +0,0 @@
function ret = calculateClausingFactor(this)
ClausingFactorApproximation = (8 * this.NozzleRadius) / (3 * this.NozzleLength);
alpha = 0.5 - (3*this.Beta^2)^-1 * ((1 - (2*this.Beta^3) + ((2*this.Beta^2) - 1) * sqrt(1+this.Beta^2)) / (sqrt(1+this.Beta^2) - (this.Beta^2 * asinh((this.Beta^2)^-1))));
ClausingFactorAnalytic = 1 + (2/3) * (1 - (2 * alpha)) * (this.Beta - sqrt(1 - this.Beta^2)) + (2/3) * (1 + alpha) * this.Beta^(-2) * (1 - sqrt(1 + this.Beta^2));
ret = ClausingFactorAnalytic;
end

View File

@ -3,8 +3,6 @@ function ret = calculateFreeMolecularRegimeFlux(this)
%See Expected atomic flux section in Barbiero
Dy164VapourPressure = 133.322*exp(11.4103-2.3785e+04./(-219.4821+this.OvenTemperatureinKelvin)).*100; % Vapor Pressure Dysprosium for the given oven temperature
Dy164DensityinOven = Dy164VapourPressure/(Helper.PhysicsConstants.BoltzmannConstant*this.OvenTemperatureinKelvin);
ret = Helper.PhysicsConstants.Dy164IsotopicAbundance * 1/4 * Dy164DensityinOven * this.AverageVelocity * pi * this.NozzleRadius.^2;
% Needs to be multiplied with the "Clausing Factor" which here would be
% the probability not for the full solid angle but the angle subtended
% by the aperture of the oven at its mouth.
end
ClausingFactorApproximation = (8 * this.NozzleRadius) / (3 * this.NozzleLength);
ret = Helper.PhysicsConstants.Dy164IsotopicAbundance * 1/4 * Dy164DensityinOven * this.AverageVelocity * ClausingFactorApproximation * pi * this.NozzleRadius.^2;
end

View File

@ -1,38 +1,84 @@
function [LoadingRate, StandardError, ConfidenceInterval] = calculateLoadingRate(this, ParticleDynamicalQuantities)
switch this.SimulationMode
case "2D"
n = this.NumberOfAtoms;
NumberOfTimeSteps = int64(this.SimulationTime/this.TimeStep);
NumberOfLoadedAtoms = zeros(1, NumberOfTimeSteps);
TimeCounts = zeros(1, n);
CollisionEvents = zeros(1, n);
% Include the stochastic process of background collisions
for AtomIndex = 1:n
TimeCounts(AtomIndex) = this.computeTimeSpentInInteractionRegion(squeeze(ParticleDynamicalQuantities(AtomIndex,:,1:3)));
end
this.TimeSpentInInteractionRegion = mean(TimeCounts);
for AtomIndex = 1:n
CollisionEvents(AtomIndex) = this.computeCollisionProbability();
function [LoadingRate, StandardError] = calculateLoadingRate(this, FinalDynamicalQuantities)
NumberOfLoadedAtoms = zeros(1, this.NumberOfAtoms);
AutocorrelationFunction = zeros(1, this.NumberOfAtoms);
for i = 1:this.NumberOfAtoms
FinalPosition = FinalDynamicalQuantities(i,1:3);
DivergenceAngle = atan(sqrt((FinalPosition(1)^2+FinalPosition(3)^2)/(FinalPosition(2)^2)));
if (DivergenceAngle <= this.MOTExitDivergence) && (FinalPosition(2) >= 0)
if i == 1
NumberOfLoadedAtoms(1) = 1;
else
NumberOfLoadedAtoms(i) = NumberOfLoadedAtoms(i-1) + 1;
end
% Count the number of loaded atoms subject to conditions
for TimeIndex = 1:NumberOfTimeSteps
if TimeIndex ~= 1
NumberOfLoadedAtoms(TimeIndex) = NumberOfLoadedAtoms(TimeIndex-1);
end
for AtomIndex = 1:n
Position = squeeze(ParticleDynamicalQuantities(AtomIndex, TimeIndex, 1:3))';
Velocity = squeeze(ParticleDynamicalQuantities(AtomIndex, TimeIndex, 4:6))';
if this.exitCondition(Position, Velocity, CollisionEvents(AtomIndex))
NumberOfLoadedAtoms(TimeIndex) = NumberOfLoadedAtoms(TimeIndex) + 1;
end
end
else
if i == 1
NumberOfLoadedAtoms(1) = 0;
else
NumberOfLoadedAtoms(i) = NumberOfLoadedAtoms(i-1);
end
[LoadingRate, StandardError, ConfidenceInterval] = this.bootstrapErrorEstimation(NumberOfLoadedAtoms);
case "3D"
% Development In progress
end
end
for i = 1:this.NumberOfAtoms-1
MeanTrappingEfficiency = 0;
MeanLoadingRateShifted = 0;
for j = 1:this.NumberOfAtoms-i
MeanTrappingEfficiency = MeanTrappingEfficiency + NumberOfLoadedAtoms(j)/j;
MeanLoadingRateShifted = MeanLoadingRateShifted + (NumberOfLoadedAtoms(i+j))/(i+j);
AutocorrelationFunction(i) = AutocorrelationFunction(i) + ((NumberOfLoadedAtoms(j)/j).*(NumberOfLoadedAtoms(i+j)/(i+j)));
end
AutocorrelationFunction(i) = ((this.NumberOfAtoms-i)^-1 * (AutocorrelationFunction(i)) - ((this.NumberOfAtoms-i)^-1 * MeanTrappingEfficiency * MeanLoadingRateShifted));
end
if AutocorrelationFunction(1)~=0 % To handle cases where there is no atom loading
AutocorrelationFunction = AutocorrelationFunction./AutocorrelationFunction(1);
x = linspace(1, this.NumberOfAtoms, this.NumberOfAtoms);
[FitObject,~] = fit(x',AutocorrelationFunction',"exp(-x/n)",'Startpoint', 100);
CorrelationFactor = FitObject.n; % n is the autocorrelation factor
SumOfAllMeanTrappingEfficiencies = 0;
NumberOfBlocks = floor(this.NumberOfAtoms/(2*CorrelationFactor+1));
MeanTrappingEfficiencyInEachBlock = zeros(1,NumberOfBlocks);
BlockNumberLimit = min(NumberOfBlocks-1,5);
% Jackknife method is a systematic way of obtaining the standard deviation error of a
% set of stochastic measurements:
% 1. Calculate average (or some function f) from the full dataset.
% 2. Divide data into M blocks, with block length correlation factor . This is done in order to
% get rid of autocorrelations; if there are no correlations, block length can be 1.
% 3. For each m = 1 . . .M, take away block m and calculate the average using
% the data from all other blocks.
% 4. Estimate the error by calculating the deviation of the average in each block from average of the full dataset
%Jackknife estimate of the loading rate
for i = 1:NumberOfBlocks-BlockNumberLimit
MeanTrappingEfficiencyInEachBlock(i) = NumberOfLoadedAtoms(this.NumberOfAtoms - ceil((i-1)*(2*CorrelationFactor+1))) / (this.NumberOfAtoms - ceil((i-1)*(2*CorrelationFactor+1)));
SumOfAllMeanTrappingEfficiencies = SumOfAllMeanTrappingEfficiencies + MeanTrappingEfficiencyInEachBlock(i);
end
MeanTrappingEfficiency = SumOfAllMeanTrappingEfficiencies / (NumberOfBlocks-BlockNumberLimit);
c = integral(@(velocity) sqrt(2 / pi) * (Helper.PhysicsConstants.Dy164Mass/(Helper.PhysicsConstants.BoltzmannConstant * this.OvenTemperatureinKelvin)) ...
* velocity.^3 .* exp(-velocity.^2 .* (Helper.PhysicsConstants.Dy164Mass / (2 * Helper.PhysicsConstants.BoltzmannConstant ...
* this.OvenTemperatureinKelvin))), 0, this.VelocityCutoff);
LoadingRate = MeanTrappingEfficiency * c * this.calculateFreeMolecularRegimeFlux();
% Jackknife estimate of the variance of the loading rate
Variance = 0;
for i = 1:NumberOfBlocks-BlockNumberLimit
Variance = Variance + (MeanTrappingEfficiencyInEachBlock(i) - MeanTrappingEfficiency)^2;
end
StandardError = sqrt((((NumberOfBlocks-BlockNumberLimit) - 1) / (NumberOfBlocks-BlockNumberLimit)) * Variance);
else
LoadingRate = 0;
StandardError = 0;
end
end

View File

@ -1,6 +1,12 @@
function ret = calculateLocalSaturationIntensity(~, PeakIntensity, PositionVector, WaveVectorOrigin, WaveVectorEndPoint, BeamRadius, BeamWaist)
WaveVector = WaveVectorEndPoint - WaveVectorOrigin; % Line
PositionVectorFromWaveVectorOrigin = PositionVector - WaveVectorOrigin; % Point = PositionVector
DistanceBetweenAtomAndLaserBeamAxis = Helper.calculateDistanceFromPointToLine(PositionVector, WaveVectorOrigin, WaveVectorEndPoint);
%Height of parallelogram (Distance between point and line) = Area of parallelogram / Base
%One side of parallelogram = PositionVectorFromWaveVectorOrigin
%Base = Wavevector
%Area = One side of parallelogram X Base
DistanceBetweenAtomAndLaserBeamAxis = norm(cross(PositionVectorFromWaveVectorOrigin, WaveVector))./ norm(WaveVector);
if DistanceBetweenAtomAndLaserBeamAxis <= BeamRadius
ret = PeakIntensity * exp(-2*DistanceBetweenAtomAndLaserBeamAxis^2 / BeamWaist^2);

View File

@ -1,17 +0,0 @@
function [ReducedClausingFactor, NormalizationConstantForAngularDistribution] = calculateReducedClausingFactor(this)
ThetaArray = linspace(0.0001, pi/2, 1000);
AngularDistribution = zeros(1,length(ThetaArray));
parfor k = 1:length(ThetaArray)
AngularDistribution(k) = this.angularDistributionFunction(ThetaArray(k));
end
NormalizationConstantForAngularDistribution = max(2 * pi .* sin(ThetaArray) .* AngularDistribution);
ReducedClausingFactor = 0; % We have to calculate the probability of an atom coming out of the oven subject to the physical constraint
parfor p = 1:length(ThetaArray) % that the angle of divergence is not more than the angle subtended at the mouth of the nozzle
if ThetaArray(p) <= this.NozzleExitDivergence
ReducedClausingFactor = ReducedClausingFactor + (2 * pi * sin(ThetaArray(p)) * AngularDistribution(p) * (ThetaArray(2)-ThetaArray(1)));
end
end
ReducedClausingFactor = ReducedClausingFactor / pi;
end

View File

@ -28,9 +28,9 @@ function ret = calculateTotalAcceleration(this, PositionVector, VelocityVector)
B = sign(LocalMagneticField(1:3) * WaveVectorEndPoint(i,1:3)') * LocalMagneticField(4);
ZeemanShift = this.LandegFactor * this.MagneticSubLevel * (Helper.PhysicsConstants.BohrMagneton / Helper.PhysicsConstants.PlanckConstantReduced) * B;
ZeemanShift = this.LandegFactor * this.MagneticSubLevel * Helper.PhysicsConstants.BohrMagneton / Helper.PhysicsConstants.PlanckConstantReduced * B;
DopplerShift = (VelocityVector * WaveVectorEndPoint(i,1:3)') * this.CoolingBeamWaveNumber;
DopplerShift = (VelocityVector * WaveVectorEndPoint(i,1:3)') * this.CoolingBeamWaveVector;
Delta_Cooling(i*2-1) = this.CoolingBeamDetuning + DopplerShift + ZeemanShift * Sigma(i);
Delta_Cooling(i*2) = this.CoolingBeamDetuning - DopplerShift - ZeemanShift * Sigma(i);
@ -44,11 +44,11 @@ function ret = calculateTotalAcceleration(this, PositionVector, VelocityVector)
SaturationParameter = [0,0,0,0,0,0,0,0];
for i = 1:2
SaturationParameter(2*i-1) = (0.25 * this.CoolingBeamSaturationParameter * CoolingBeamLocalSaturationIntensity(1)) /(1 + 4 * (Delta_Cooling(2*i-1)/this.CoolingBeamLinewidth)^2);
SaturationParameter(2*i) = (0.25 * this.CoolingBeamSaturationParameter * CoolingBeamLocalSaturationIntensity(1)) /(1 + 4 * (Delta_Cooling(2*i) /this.CoolingBeamLinewidth)^2);
SaturationParameter(2*i-1) = (0.25 * this.CoolingBeamSaturationParameter * CoolingBeamLocalSaturationIntensity(1)) /(1 + 4*Delta_Cooling(2*i-1)^2 / this.CoolingBeamLinewidth^2);
SaturationParameter(2*i) = (0.25 * this.CoolingBeamSaturationParameter * CoolingBeamLocalSaturationIntensity(1)) /(1 + 4*Delta_Cooling(2*i)^2 / this.CoolingBeamLinewidth^2);
if this.Sideband
SaturationParameter(2*i-1+4) = (0.25 * this.SidebandSaturationParameter * SidebandLocalSaturationIntensity(1)) /(1 + 4 * (Delta_Sideband(2*i-1)/this.CoolingBeamLinewidth)^2);
SaturationParameter(2*i+4) = (0.25 * this.SidebandSaturationParameter * SidebandLocalSaturationIntensity(2)) /(1 + 4 * (Delta_Sideband(2*i)/this.CoolingBeamLinewidth)^2);
SaturationParameter(2*i-1+4) = (0.25 * this.SidebandSaturationParameter * SidebandLocalSaturationIntensity(1)) /(1 + 4*Delta_Sideband(2*i-1)^2/ this.CoolingBeamLinewidth^2);
SaturationParameter(2*i+4) = (0.25 * this.SidebandSaturationParameter * SidebandLocalSaturationIntensity(2)) /(1 + 4*Delta_Sideband(2*i)^2 / this.CoolingBeamLinewidth^2);
end
end
@ -56,28 +56,28 @@ function ret = calculateTotalAcceleration(this, PositionVector, VelocityVector)
for i = 1:2
a_1 = (Helper.PhysicsConstants.PlanckConstantReduced * this.CoolingBeamWaveNumber * WaveVectorEndPoint(i,1:3)/Helper.PhysicsConstants.Dy164Mass).*(this.CoolingBeamLinewidth * 0.5) .* ...
a_1 = (Helper.PhysicsConstants.PlanckConstantReduced * this.CoolingBeamWaveVector * WaveVectorEndPoint(i,1:3)/Helper.PhysicsConstants.Dy164Mass).*(this.CoolingBeamLinewidth * 0.5) .* ...
(SaturationParameter(2*i-1)/(1 + TotalSaturationParameter));
a_2 = (Helper.PhysicsConstants.PlanckConstantReduced * this.CoolingBeamWaveNumber * WaveVectorEndPoint(i,1:3)/Helper.PhysicsConstants.Dy164Mass).*(this.CoolingBeamLinewidth * 0.5) .* ...
a_2 = (Helper.PhysicsConstants.PlanckConstantReduced * this.CoolingBeamWaveVector * WaveVectorEndPoint(i,1:3)/Helper.PhysicsConstants.Dy164Mass).*(this.CoolingBeamLinewidth * 0.5) .* ...
(SaturationParameter(2*i) / (1 + TotalSaturationParameter));
if this.SpontaneousEmission
a_scattering = this.accelerationDueToSpontaneousEmissionProcess(SaturationParameter(2*i-1), TotalSaturationParameter, Delta_Cooling(2*i-1), this.CoolingBeamLinewidth, this.CoolingBeamWaveNumber) + ...
this.accelerationDueToSpontaneousEmissionProcess(SaturationParameter(2*i), TotalSaturationParameter, Delta_Cooling(2*i), this.CoolingBeamLinewidth, this.CoolingBeamWaveNumber);
a_scattering = this.accelerationDueToSpontaneousEmissionProcess(SaturationParameter(2*i-1), TotalSaturationParameter, Delta_Cooling(2*i-1), this.CoolingBeamLinewidth, this.CoolingBeamWaveVector) + ...
this.accelerationDueToSpontaneousEmissionProcess(SaturationParameter(2*i), TotalSaturationParameter, Delta_Cooling(2*i) , this.CoolingBeamLinewidth, this.CoolingBeamWaveVector);
else
a_scattering = [0,0,0];
end
if this.Sideband
a_1 = a_1 + (Helper.PhysicsConstants.PlanckConstantReduced * this.CoolingBeamWaveNumber * WaveVectorEndPoint(i,1:3)/Helper.PhysicsConstants.Dy164Mass).*(this.CoolingBeamLinewidth * 0.5) .* ...
a_1 = a_1 + (Helper.PhysicsConstants.PlanckConstantReduced * this.CoolingBeamWaveVector * WaveVectorEndPoint(i,1:3)/Helper.PhysicsConstants.Dy164Mass).*(this.CoolingBeamLinewidth * 0.5) .* ...
(SaturationParameter(2*i-1+4)/(1 + TotalSaturationParameter));
a_2 = a_2 + (Helper.PhysicsConstants.PlanckConstantReduced * this.CoolingBeamWaveNumber * WaveVectorEndPoint(i,1:3)/Helper.PhysicsConstants.Dy164Mass).*(this.CoolingBeamLinewidth * 0.5) .* ...
a_2 = a_2 + (Helper.PhysicsConstants.PlanckConstantReduced * this.CoolingBeamWaveVector * WaveVectorEndPoint(i,1:3)/Helper.PhysicsConstants.Dy164Mass).*(this.CoolingBeamLinewidth * 0.5) .* ...
(SaturationParameter(2*i+4)/(1 + TotalSaturationParameter));
if this.SpontaneousEmission
a_scattering = a_scattering + ...
this.accelerationDueToSpontaneousEmissionProcess(SaturationParameter(2*i-1+4), TotalSaturationParameter, Delta_Cooling(2*i-1), this.CoolingBeamLinewidth, this.CoolingBeamWaveNumber) + ...
this.accelerationDueToSpontaneousEmissionProcess(SaturationParameter(2*i+4), TotalSaturationParameter, Delta_Cooling(2*i), this.CoolingBeamLinewidth, this.CoolingBeamWaveNumber);
this.accelerationDueToSpontaneousEmissionProcess(SaturationParameter(2*i-1+4), TotalSaturationParameter, Delta_Cooling(2*i-1), this.CoolingBeamLinewidth, this.CoolingBeamWaveVector) + ...
this.accelerationDueToSpontaneousEmissionProcess(SaturationParameter(2*i+4), TotalSaturationParameter, Delta_Cooling(2*i) , this.CoolingBeamLinewidth, this.CoolingBeamWaveVector);
else
a_scattering = [0,0,0];
end

View File

@ -1,9 +0,0 @@
function ret = computeCollisionProbability(this)
collision = rand(1);
CollisionProbability = 1 - exp(-this.TimeSpentInInteractionRegion/this.CollisionTime);
if this.BackgroundCollision && collision <= CollisionProbability
ret = true;
else
ret = false;
end
end

View File

@ -1,20 +0,0 @@
function T = computeTimeSpentInInteractionRegion(this, r)
% INPUT:
% r : N x 3 array. N is the number of time steps
% OUTPUT
% T : gives the distribution of time spent in the interaction region
% USAGE:
% T = this.computeTimeSpentInInteractionRegion(r)
T = 0;
NumberOfTimeSteps = int64(this.SimulationTime/this.TimeStep);
for n = 1:(NumberOfTimeSteps - 1)
dr = Helper.calculateDistanceFromPointToLine(r(n+1, :), [0 0 0], [0 0 1]);
if dr < this.CoolingBeamRadius
A = 1;
else
A = 0;
end
T = T + A * this.TimeStep;
end
end

View File

@ -1,4 +1,4 @@
function [LoadingRateArray, StandardErrorArray, ConfidenceIntervalArray] = doOneParameterScan(this, ParameterName, ParameterArray, varargin)
function [LoadingRateArray, StandardErrorArray] = doOneParameterScan(this, ParameterName, ParameterArray, varargin)
p = inputParser;
p.KeepUnmatched = true;
@ -30,7 +30,6 @@ function [LoadingRateArray, StandardErrorArray, ConfidenceIntervalArray] = doOne
NumberOfPointsForParam = length(ParameterArray);
LoadingRateArray = zeros(1,NumberOfPointsForParam);
StandardErrorArray = zeros(1,NumberOfPointsForParam);
ConfidenceIntervalArray = zeros(NumberOfPointsForParam, 2);
for i=1:NumberOfPointsForParam
eval(sprintf('OptionsStruct.%s = %d;', ParameterName, ParameterArray(i)));
@ -45,21 +44,18 @@ function [LoadingRateArray, StandardErrorArray, ConfidenceIntervalArray] = doOne
options = Helper.convertstruct2cell(OptionsStruct);
this.setInitialConditions(options{:});
tic
[LoadingRate, StandardError, ConfidenceInterval] = this.runSimulation();
[LoadingRate, StandardError] = this.runSimulation();
LoadingRateArray(i) = LoadingRate;
StandardErrorArray(i) = StandardError;
ConfidenceIntervalArray(i,1) = ConfidenceInterval(1);
ConfidenceIntervalArray(i,2) = ConfidenceInterval(2);
end
if this.DoSave
LoadingRate = struct;
LoadingRate.Values = LoadingRateArray;
LoadingRate.Errors = StandardErrorArray;
LoadingRate.CI = ConfidenceIntervalArray;
this.Results = LoadingRate;
SaveFolder = [this.SaveDirectory filesep 'Results'];
Filename = ['OneParameterScan_' datestr(now,'yyyymmdd_HHMM')];
this.Results = LoadingRate;
SaveFolder = [this.SaveDirectory filesep 'Results'];
Filename = ['OneParameterScan_' datestr(now,'yyyymmdd_HHMM')];
eval([sprintf('%s_Object', Filename) ' = this;']);
mkdir(SaveFolder);
save([SaveFolder filesep Filename], sprintf('%s_Object', Filename));

View File

@ -1,5 +1,5 @@
function [LoadingRateArray, StandardErrorArray, ConfidenceIntervalArray] = doTwoParameterScan(this, FirstParameterName, FirstParameterArray, ...
SecondParameterName, SecondParameterArray, varargin)
function [LoadingRateArray, StandardErrorArray] = doTwoParameterScan(this, FirstParameterName, FirstParameterArray, ...
SecondParameterName, SecondParameterArray, varargin)
p = inputParser;
p.KeepUnmatched = true;
@ -38,7 +38,6 @@ function [LoadingRateArray, StandardErrorArray, ConfidenceIntervalArray] = doTwo
NumberOfPointsForSecondParam = length(SecondParameterArray);
LoadingRateArray = zeros(NumberOfPointsForFirstParam, NumberOfPointsForSecondParam);
StandardErrorArray = zeros(NumberOfPointsForFirstParam, NumberOfPointsForSecondParam);
ConfidenceIntervalArray = zeros(NumberOfPointsForFirstParam, NumberOfPointsForSecondParam, 2);
for i=1:NumberOfPointsForFirstParam
eval(sprintf('OptionsStruct.%s = %d;', FirstParameterName, FirstParameterArray(i)));
@ -59,11 +58,9 @@ function [LoadingRateArray, StandardErrorArray, ConfidenceIntervalArray] = doTwo
options = Helper.convertstruct2cell(OptionsStruct);
this.setInitialConditions(options{:});
tic
[LoadingRate, StandardError, ConfidenceInterval] = this.runSimulation();
LoadingRateArray(i, j) = LoadingRate;
StandardErrorArray(i, j) = StandardError;
ConfidenceIntervalArray(i, j, 1) = ConfidenceInterval(1);
ConfidenceIntervalArray(i, j, 2) = ConfidenceInterval(2);
[LoadingRate, StandardError] = this.runSimulation();
LoadingRateArray(i,j) = LoadingRate;
StandardErrorArray(i,j) = StandardError;
end
end
@ -71,7 +68,6 @@ function [LoadingRateArray, StandardErrorArray, ConfidenceIntervalArray] = doTwo
LoadingRate = struct;
LoadingRate.Values = LoadingRateArray;
LoadingRate.Errors = StandardErrorArray;
LoadingRate.CI = ConfidenceIntervalArray;
this.Results = LoadingRate;
SaveFolder = [this.SaveDirectory filesep 'Results'];
Filename = ['TwoParameterScan_' datestr(now,'yyyymmdd_HHMM')];

View File

@ -1,11 +0,0 @@
function ret = exitCondition(this, PositionVector, VelocityVector, CollisionEvent)
d = Helper.calculateDistanceFromPointToLine(PositionVector, [0 0 0], [0 1 0]);
y = PositionVector(2);
DivergenceAngle = (d/abs(y));
%DivergenceAngle = atan(norm(cross(PositionVector, )) / norm(dot(PositionVector, [0 1 0])));
if (y >= 0) && (DivergenceAngle <= this.MOTExitDivergence) && (abs(VelocityVector(2))<=this.VelocityCutoff) && ~CollisionEvent
ret = true;
else
ret = false;
end
end

View File

@ -1,12 +1,7 @@
function ret = initialPositionSampling(this)
switch this.SimulationMode
case "2D"
n = this.NumberOfAtoms;
phi = 2 * pi * rand(n,1);
rho = this.Beta * 0.5 * this.NozzleLength * sqrt(rand(n,1));
ret = [-this.OvenDistance * ones(n,1), rho.*cos(phi), rho.*sin(phi)];
case "3D"
% Development In progress
end
n = this.NumberOfAtoms;
phi = 2 * pi * rand(n,1);
rho = this.Beta * 0.5 * this.NozzleLength * sqrt(rand(n,1));
ret = [-this.OvenDistance * ones(n,1), rho.*cos(phi), rho.*sin(phi)];
end

View File

@ -1,67 +1,47 @@
function ret = initialVelocitySampling(this)
switch this.SimulationMode
case "2D"
n = this.NumberOfAtoms;
n = this.NumberOfAtoms;
ret = zeros(n,3);
SampledVelocityMagnitude = zeros(n,1);
SampledPolarAngle = zeros(n,1);
SampledAzimuthalAngle = zeros(n,1);
MostProbableVelocity = sqrt((3 * Helper.PhysicsConstants.BoltzmannConstant * this.OvenTemperature) / Helper.PhysicsConstants.Dy164Mass); % For v * f(v) distribution
if MostProbableVelocity > this.VelocityCutoff
MaximumVelocityAllowed = this.VelocityCutoff;
else
MaximumVelocityAllowed = MostProbableVelocity;
end
ProbabilityOfMaximumVelocityAllowed = this.velocityDistributionFunction(MaximumVelocityAllowed);
ProbabilityOfMaximumDivergenceAngleAllowed = 0.98 * this.NormalizationConstantForAngularDistribution * max(this.AngularDistribution .* sin(this.ThetaArray));
% Calculate Calculate Capture velocity --> Introduce velocity cutoff
this.CaptureVelocity = 1.05 * this.calculateCaptureVelocity([-this.OvenDistance,0,0], [1,0,0]);
this.VelocityCutoff = this.CaptureVelocity(1); % Should be the magnitude of the 3-D velocity vector but since here the obtained capture
% velocity is only along the x-axis, we take the first term which is the x-component of the velocity.
[ReducedClausingFactor, NormalizationConstantForAngularDistribution] = this.calculateReducedClausingFactor();
this.ReducedClausingFactor = ReducedClausingFactor;
VelocityDistribution = @(velocity) sqrt(2 / pi) * sqrt(Helper.PhysicsConstants.Dy164Mass/(Helper.PhysicsConstants.BoltzmannConstant * this.OvenTemperatureinKelvin))^3 ...
* velocity.^3 .* exp(-velocity.^2 .* (Helper.PhysicsConstants.Dy164Mass / (2 * Helper.PhysicsConstants.BoltzmannConstant ...
* this.OvenTemperatureinKelvin)));
c = integral(VelocityDistribution, 0, this.VelocityCutoff)/integral(VelocityDistribution,0,Inf);
this.ReducedFlux = c * this.ReducedClausingFactor * this.calculateFreeMolecularRegimeFlux();
ret = zeros(n,3);
SampledVelocityMagnitude = zeros(n,1);
SampledPolarAngle = zeros(n,1);
SampledAzimuthalAngle = zeros(n,1);
MostProbableVelocity = sqrt((3 * Helper.PhysicsConstants.BoltzmannConstant * this.OvenTemperature) / Helper.PhysicsConstants.Dy164Mass); % For v * f(v) distribution
if MostProbableVelocity > this.VelocityCutoff
MaximumVelocityAllowed = this.VelocityCutoff;
else
MaximumVelocityAllowed = MostProbableVelocity;
end
NormalizationConstantForVelocityDistribution = this.velocityDistributionFunction(MaximumVelocityAllowed);
parfor i = 1:n
% Rejection Sampling of speed
y = rand(1);
x = this.VelocityCutoff * rand(1);
while y > ((NormalizationConstantForVelocityDistribution)^-1 * this.velocityDistributionFunction(x)) %As long as this loop condition is satisfied, reject the corresponding x value
y = rand(1);
x = this.VelocityCutoff * rand(1);
end
SampledVelocityMagnitude(i) = x; % When loop condition is not satisfied, accept x value and store as sample
% Rejection Sampling of polar angle
w = rand(1);
z = this.NozzleExitDivergence * rand(1);
while w > ((NormalizationConstantForAngularDistribution)^-1 * 2 * pi * this.angularDistributionFunction(z) * sin(z)) %As long as this loop condition is satisfied, reject the corresponding x value
w = rand(1);
z = this.NozzleExitDivergence * rand(1);
end
SampledPolarAngle(i) = z; %When loop condition is not satisfied, accept x value and store as sample
% Sampling of azimuthal angle
SampledAzimuthalAngle(i)= 2 * pi * rand(1);
ret(i,:)=[SampledVelocityMagnitude(i)*cos(SampledPolarAngle(i)), SampledVelocityMagnitude(i)*sin(SampledPolarAngle(i))*cos(SampledAzimuthalAngle(i)), ...
SampledVelocityMagnitude(i)*sin(SampledPolarAngle(i))*sin(SampledAzimuthalAngle(i))];
end
case "3D"
% Development In progress
parfor i = 1:n
% Rejection Sampling of speed
y = ProbabilityOfMaximumVelocityAllowed * rand(1);
x = this.VelocityCutoff * rand(1);
while y > this.velocityDistributionFunction(x) %As long as this loop condition is satisfied, reject the corresponding x value
y = ProbabilityOfMaximumVelocityAllowed * rand(1);
x = this.VelocityCutoff * rand(1);
end
SampledVelocityMagnitude(i) = x; % When loop condition is not satisfied, accept x value and store as sample
% Rejection Sampling of polar angle
z = this.MOTExitDivergence * rand(1);
w = ProbabilityOfMaximumDivergenceAngleAllowed * rand(1);
while w > (this.NormalizationConstantForAngularDistribution * this.angularDistributionFunction(z) * sin(z)) %As long as this loop condition is satisfied, reject the corresponding x value
z = this.MOTExitDivergence * rand(1);
w = ProbabilityOfMaximumDivergenceAngleAllowed * rand(1);
end
SampledPolarAngle(i) = z; %When loop condition is not satisfied, accept x value and store as sample
% Sampling of azimuthal angle
SampledAzimuthalAngle(i)= 2 * pi * rand(1);
ret(i,:)=[SampledVelocityMagnitude(i)*cos(SampledPolarAngle(i)), SampledVelocityMagnitude(i)*sin(SampledPolarAngle(i))*cos(SampledAzimuthalAngle(i)), ...
SampledVelocityMagnitude(i)*sin(SampledPolarAngle(i))*sin(SampledAzimuthalAngle(i))];
end
end

View File

@ -2,36 +2,30 @@ function reinitializeSimulator(this)
%% PHYSICAL CONSTANTS
pc = Helper.PhysicsConstants;
%% SIMULATION PARAMETERS
this.NozzleLength = 60e-3;
this.NozzleRadius = 2.60e-3;
this.Beta = 2 * (this.NozzleRadius/this.NozzleLength);
this.ClausingFactor = this.calculateClausingFactor();
this.ApertureCut = max(2.5e-3,this.NozzleRadius);
this.OvenDistance = (25+12.5)*1e-3 + (this.NozzleRadius + this.ApertureCut) / tan(15/360 * 2 * pi);
this.NozzleLength = 60e-3;
this.NozzleRadius = 2.50e-3;
this.Beta = 2 * (this.NozzleRadius/this.NozzleLength);
this.ApertureCut = max(2.5e-3,this.NozzleRadius);
this.OvenDistance = (25+12.5)*1e-3 + (this.NozzleRadius + this.ApertureCut) / tan(15/360 * 2 * pi);
% Distance between the nozzle and the 2-D MOT chamber center
% 25 is the beam radius/sqrt(2)
% 12.5 is the radius of the oven
% 15 eg is the angle between the 2-D MOT chamber center and the nozzle
this.OvenTemperature = 1000; % Temperature in Celsius
this.MOTDistance = 0.32; % Distance between the 2-D MOT the 3-D MOT
this.BlueWaveNumber = 2*pi/pc.BlueWavelength;
this.BlueSaturationIntensity = 0.1 * (2 * pi^2 / 3) * ((pc.PlanckConstantReduced * pc.SpeedOfLight * pc.BlueLinewidth) / (pc.BlueWavelength)^3);
this.OrangeWaveNumber = 2*pi/pc.OrangeWavelength;
this.OrangeSaturationIntensity = 0.1 * (2 * pi^2 / 3) * ((pc.PlanckConstantReduced * pc.SpeedOfLight * pc.OrangeLinewidth) / (pc.OrangeWavelength)^3);
this.BlueBeamRadius = min(0.035/2,sqrt(2)/2*this.OvenDistance); % Diameter of CF40 flange = 0.035
Theta_Nozzle = atan((this.NozzleRadius+this.BlueBeamRadius*sqrt(2))/this.OvenDistance); % The angle of capture region towards the oven nozzle
Theta_Aperture = 15/360*2*pi; % The limitation angle of the second aperture in the oven
this.NozzleExitDivergence = min(Theta_Nozzle,Theta_Aperture);
this.MOTExitDivergence = 16e-3; % The limitation angle between 2D-MOT and 3D-MOT
this.TimeSpentInInteractionRegion = this.SimulationTime;
this.TotalPower = 0.8;
this.OrangeBeamRadius = 1.2e-3;
this.PushBeamRadius = 1.2e-3;
this.PushBeamDistance = 0.32;
this.PushBeamLinewidth = Helper.PhysicsConstants.OrangeLinewidth;
this.PushBeamWaveNumber = this.OrangeWaveNumber;
this.PushBeamSaturationIntensity = this.OrangeSaturationIntensity;
this.ZeemanSlowerBeamRadius = 0.035;
this.ZeemanSlowerBeamSaturationIntensity = this.BlueSaturationIntensity;
this.OvenTemperature = 1000; % Temperature in Celsius
this.MOTDistance = 320e-3; % Distance between the 2-D MOT the 3-D MOT
this.BlueWaveVector = 2*pi/pc.BlueWavelength;
this.BlueSaturationIntensity = 2*pi^2*pc.PlanckConstantReduced*pc.SpeedOfLight*pc.BlueLinewidth/3/(pc.BlueWavelength)^3/10;
this.OrangeWaveVector = 2*pi/pc.OrangeWavelength;
this.OrangeSaturationIntensity = 2*pi^2*pc.PlanckConstantReduced*pc.SpeedOfLight*pc.OrangeLinewidth/3/(pc.OrangeWavelength)^3/10;
this.BlueBeamRadius = min(0.035/2,sqrt(2)/2*this.OvenDistance); % Diameter of CF40 flange = 0.035
Theta_Nozzle = atan((this.NozzleRadius+this.BlueBeamRadius*sqrt(2))/this.OvenDistance); % The angle of capture region towards the oven nozzle
Theta_Aperture = 15/360*2*pi; % The limitation angle of the second aperture in the oven
this.NozzleExitDivergence = min(Theta_Nozzle,Theta_Aperture);
this.MOTExitDivergence = 0.016; % The limitation angle between 2D-MOT and 3D-MOT
this.TotalPower = 0.4;
this.OrangeBeamRadius = 1.2e-03;
this.PushBeamRadius = 0.000;
this.PushBeamDistance = 0.32;
this.DistanceBetweenPushBeamAnd3DMOTCenter = 0;
this.ZeemanSlowerBeamRadius = 1;
end

View File

@ -1,6 +1,36 @@
function [LoadingRate, StandardError, ConfidenceInterval] = runSimulation(this)
function [LoadingRate, StandardError] = runSimulation(this)
n = this.NumberOfAtoms;
%% Calculate Background Collision Time --> Calculate Capture velocity --> Introduce velocity cutoff --> Calculate capture fraction
%% - Sampling for initial positions and velocities
this.CaptureVelocity = 1.05 * this.calculateCaptureVelocity([-this.OvenDistance,0,0], [1,0,0]); % Make 5% larger than the numerically obtained CV
this.VelocityCutoff = this.CaptureVelocity(1); %Should be the magnitude of the 3-D velocity vector but since here the obtained capture
%velocity is only along the x-axis, we take the first term which is the x-component of the velocity.
%% Calculate the Clausing Factor
% Compute the angular distribution of the atomic beam
ThetaArray = linspace(0.0001, pi/2, 1000);
AngularDistribution = zeros(1,length(ThetaArray));
parfor i = 1:length(ThetaArray)
AngularDistribution(i) = this.angularDistributionFunction(ThetaArray(i));
end
% Numerically integrate the angular distribution over the full solid angle
NormalizationConstant = 0;
for j = 1:length(ThetaArray)
if ThetaArray(j) <= this.NozzleExitDivergence
NormalizationConstant = NormalizationConstant + (2 * pi * sin(ThetaArray(j)) * AngularDistribution(j) * (ThetaArray(2)-ThetaArray(1)));
end
end
this.ClausingFactor = (1/pi) * NormalizationConstant; %The complete intergration will give pi * ClausingFactor.
%Therefore, the Clausing Factor needs to be extracted from the
%result of the above integration by dividing out pi
this.ThetaArray = ThetaArray;
this.AngularDistribution = AngularDistribution;
this.NormalizationConstantForAngularDistribution = NormalizationConstant;
%%
% - sampling the position distribution
this.InitialPositions = this.initialPositionSampling();
% - sampling the velocity distribution
@ -8,18 +38,18 @@ function [LoadingRate, StandardError, ConfidenceInterval] = runSimulation(this)
%% Solve ODE
progressbar = Helper.parforNotifications();
progressbar.PB_start(this.NumberOfAtoms,'Message',['Simulating capture process for ' num2str(this.NumberOfAtoms,'%.0f') ' atoms:']);
progressbar.PB_start(n,'Message',['Simulating capture process for ' num2str(n,'%.0f') ' atoms:']);
% calculate the final position of the atoms
ParticleDynamicalQuantities = zeros(this.NumberOfAtoms,int64(this.SimulationTime/this.TimeStep),6);
FinalDynamicalQuantities = zeros(n,9);
Positions = this.InitialPositions;
Velocities = this.InitialVelocities;
parfor Index = 1:this.NumberOfAtoms
ParticleDynamicalQuantities(Index,:, :) = this.solver(Positions(Index,:), Velocities(Index,:));
parfor Index = 1:n
ret = this.solver(Positions(Index,:), Velocities(Index,:));
FinalDynamicalQuantities(Index,:) = ret(end,:);
progressbar.PB_iterate();
end
clear Index
%% Calculate the Loading Rate
[LoadingRate, StandardError, ConfidenceInterval] = this.calculateLoadingRate(ParticleDynamicalQuantities);
[LoadingRate, StandardError] = this.calculateLoadingRate(FinalDynamicalQuantities);
end

View File

@ -4,27 +4,27 @@ function setInitialConditions(this, varargin)
p.KeepUnmatched = true;
addParameter(p, 'NumberOfAtoms', 5000,...
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
addParameter(p, 'BluePower', this.TotalPower,...
addParameter(p, 'BluePower', 200e-3,...
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
addParameter(p, 'BlueDetuning', -1.39*Helper.PhysicsConstants.BlueLinewidth,...
addParameter(p, 'BlueDetuning', -1.5*Helper.PhysicsConstants.BlueLinewidth,...
@(x) assert(isnumeric(x) && isscalar(x)));
addParameter(p, 'BlueBeamWaist', 16.6667e-3,...
addParameter(p, 'BlueBeamWaist', 10e-3,...
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
addParameter(p, 'SidebandPower', 0.5*this.TotalPower,...
addParameter(p, 'SidebandPower', 200e-3,...
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
addParameter(p, 'SidebandDetuning', -4.5*Helper.PhysicsConstants.BlueLinewidth,...
addParameter(p, 'SidebandDetuning', 0,...
@(x) assert(isnumeric(x) && isscalar(x)));
addParameter(p, 'SidebandBeamWaist', 15e-3,...
addParameter(p, 'SidebandBeamWaist', 12e-3,...
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
addParameter(p, 'PushBeamPower', 100e-3,...
addParameter(p, 'PushBeamPower', 10e-3,...
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
addParameter(p, 'PushBeamDetuning', -5*Helper.PhysicsConstants.OrangeLinewidth,...
addParameter(p, 'PushBeamDetuning', 0,...
@(x) assert(isnumeric(x) && isscalar(x)));
addParameter(p, 'PushBeamWaist', 0.81e-3,...
addParameter(p, 'PushBeamWaist', 0.81e-3,...
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
addParameter(p, 'OrangePower', 70e-3,...
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
addParameter(p, 'OrangeDetuning', -1*Helper.PhysicsConstants.OrangeLinewidth,...
addParameter(p, 'OrangeDetuning', 12e-3,...
@(x) assert(isnumeric(x) && isscalar(x)));
addParameter(p, 'OrangeBeamWaist', 12e-3,...
@(x) assert(isnumeric(x) && isscalar(x) && (x > 0)));
@ -56,19 +56,24 @@ function setInitialConditions(this, varargin)
this.ZeemanSlowerBeamDetuning = p.Results.ZeemanSlowerBeamDetuning;
this.ZeemanSlowerBeamWaist = p.Results.ZeemanSlowerBeamWaist;
this.MagneticGradient = p.Results.MagneticGradient;
%% Set general parameters according to simulation mode
switch this.SimulationMode
case "2D"
this.CoolingBeamPower = this.BluePower;
this.CoolingBeamWaist = this.BlueBeamWaist;
this.CoolingBeamLinewidth = Helper.PhysicsConstants.BlueLinewidth;
this.CoolingBeamWaveNumber = this.BlueWaveNumber;
this.CoolingBeamWaveVector = this.BlueWaveVector;
this.CoolingBeamDetuning = this.BlueDetuning;
this.CoolingBeamRadius = this.BlueBeamRadius;
this.CoolingBeamWaist = this.BlueBeamWaist;
this.CoolingBeamSaturationIntensity = this.BlueSaturationIntensity;
this.SidebandBeamRadius = this.BlueBeamRadius;
this.SidebandBeamSaturationIntensity = this.BlueSaturationIntensity;
this.PushBeamLinewidth = Helper.PhysicsConstants.OrangeLinewidth;
this.PushBeamWaveVector = this.OrangeWaveVector;
this.PushBeamDetuning = this.OrangeDetuning;
this.PushBeamSaturationIntensity = this.OrangeSaturationIntensity;
this.LandegFactor = Helper.PhysicsConstants.BlueLandegFactor;
this.MagneticSubLevel = 1;
case "3D"

View File

@ -1,41 +1,54 @@
function ParticleDynamicalQuantities = solver(this, InitialPosition, InitialVelocity)
function [ParticleTrajectory, FinalDynamicalQuantities] = solver(this, InitialPosition, InitialVelocity)
if this.Gravity
g = [0,0,-Helper.PhysicsConstants.GravitationalAcceleration];
else
g = 0;
end
ParticleDynamicalQuantities = zeros(int64(this.SimulationTime/this.TimeStep),6);
for i=1:int64(this.SimulationTime/this.TimeStep)
ParticleDynamicalQuantities(i,1:3) = InitialPosition;
ParticleDynamicalQuantities(i,4:6) = InitialVelocity;
% Probability of Background Collisions
collision = rand(1);
CollisionProbability = 1 - exp(-this.SimulationTime/this.CollisionTime);
rt = InitialPosition;
vt = InitialVelocity;
if collision >= CollisionProbability || this.AtomicBeamCollision == false %flag for skipping the background collision
ga1 = this.calculateTotalAcceleration(rt,vt) + g;
gv1 = vt .* this.TimeStep;
rt = rt + 0.5 * gv1;
vt = vt + 0.5 * ga1 .* this.TimeStep;
ParticleTrajectory = zeros(int64(this.SimulationTime/this.TimeStep),9);
ga2 = this.calculateTotalAcceleration(rt,vt) + g;
gv2 = vt .* this.TimeStep;
rt = rt + 0.5 * gv2;
vt = vt + 0.5 *ga2 .* this.TimeStep;
for i=1:int64(this.SimulationTime/this.TimeStep)
ParticleTrajectory(i,1:3) = InitialPosition;
ParticleTrajectory(i,4:6) = InitialVelocity;
ga3 = this.calculateTotalAcceleration(rt,vt) + g;
gv3 = vt .* this.TimeStep;
rt = rt + 0.5 * gv3;
vt = vt + ga3 .* this.TimeStep;
rt = InitialPosition;
vt = InitialVelocity;
ga4 = this.calculateTotalAcceleration(rt,vt) + g;
gv4 = vt .* this.TimeStep;
ga1 = this.calculateTotalAcceleration(rt,vt) + g;
gv1 = vt .* this.TimeStep;
rt = rt + 0.5 * gv1;
vt = vt + 0.5 * ga1 .* this.TimeStep;
InitialPosition = InitialPosition + (gv1+2*(gv2+gv3)+gv4)./6;
InitialVelocity = InitialVelocity + this.TimeStep*(ga1+2*(ga2+ga3)+ga4)./6;
%Acceleration = (ga1+2*(ga2+ga3)+ ga4)./6;
ga2 = this.calculateTotalAcceleration(rt,vt) + g;
gv2 = vt .* this.TimeStep;
rt = rt + 0.5 * gv2;
vt = vt + 0.5 *ga2 .* this.TimeStep;
ga3 = this.calculateTotalAcceleration(rt,vt) + g;
gv3 = vt .* this.TimeStep;
rt = rt + 0.5 * gv3;
vt = vt + ga3 .* this.TimeStep;
ga4 = this.calculateTotalAcceleration(rt,vt) + g;
gv4 = vt .* this.TimeStep;
InitialPosition = InitialPosition + (gv1+2*(gv2+gv3)+gv4)./6;
InitialVelocity = InitialVelocity + this.TimeStep*(ga1+2*(ga2+ga3)+ga4)./6;
ParticleTrajectory(i,7:9) = (ga1+2*(ga2+ga3)+ ga4)./6;
end
FinalDynamicalQuantities = ParticleTrajectory(end,:);
else
ParticleTrajectory = zeros(int64(this.SimulationTime/this.TimeStep),9);
FinalDynamicalQuantities = -500*ones(1,9); % -500 is a flag for giving up this trajectory
end
end

View File

@ -1,5 +1,5 @@
function ret = velocityDistributionFunction(this, velocity)
ret = sqrt(2 / pi) * sqrt(Helper.PhysicsConstants.Dy164Mass/(Helper.PhysicsConstants.BoltzmannConstant * this.OvenTemperatureinKelvin))^3 ...
ret = sqrt(2 / pi) * (Helper.PhysicsConstants.Dy164Mass/(Helper.PhysicsConstants.BoltzmannConstant * this.OvenTemperatureinKelvin)) ...
* velocity^3 * exp(-velocity^2.*(Helper.PhysicsConstants.Dy164Mass / (2 * Helper.PhysicsConstants.BoltzmannConstant ...
* this.OvenTemperatureinKelvin)));
end

View File

@ -7,10 +7,12 @@ OptionsStruct.SimulationMode = '2D';
OptionsStruct.TimeStep = 50e-06; % in s
OptionsStruct.SimulationTime = 4e-03; % in s
OptionsStruct.SpontaneousEmission = true;
OptionsStruct.Sideband = false;
OptionsStruct.Sideband = true;
OptionsStruct.ZeemanSlowerBeam = false;
OptionsStruct.Gravity = true;
OptionsStruct.BackgroundCollision = true;
OptionsStruct.SaveData = false;
OptionsStruct.AtomicBeamCollision = true;
OptionsStruct.DebugMode = false;
OptionsStruct.SaveData = true;
OptionsStruct.SaveDirectory = 'C:\DY LAB\MOT Simulation Project\Calculations\Code\MOT Capture Process Simulation';
options = Helper.convertstruct2cell(OptionsStruct);
@ -40,18 +42,9 @@ clear OptionsStruct
[LoadingRate, ~] = Simulator.runSimulation();
%% - Plot initial distribution
Simulator.setInitialConditions();
% - sampling the position distribution
Simulator.InitialPositions = Simulator.initialPositionSampling();
% - sampling the velocity distribution
Simulator.InitialVelocities = Simulator.initialVelocitySampling();
NumberOfBins = 100;
Plotting.plotPositionAndVelocitySampling(Simulator, NumberOfBins);
%% - Plot distributions of magnitude and direction of initial velocities
NumberOfBins = 50;
Plotting.plotInitialVeloctiySamplingVsAngle(Simulator, NumberOfBins)
%% - Plot Magnetic Field
XAxisRange = [-5 5];
YAxisRange = [-5 5];
@ -63,7 +56,7 @@ TemperatureinCelsius = linspace(750,1100,2000); % Temperature in Celsius
Plotting.plotMeanFreePathAndVapourPressureVsTemp(TemperatureinCelsius)
%% - Plot the Free Molecular Flux for different temperatures
Temperature = [950, 1000, 1050]; % Temperature
Temperature = [900, 950, 1000, 1050, 1100]; % Temperature'
Plotting.plotFreeMolecularFluxVsTemp(Simulator,Temperature)
%% - Plot Angular Distribution for different Beta
@ -71,12 +64,18 @@ Beta = [0.5, 0.1 , 0.05, 0.02, 0.01]; %Beta = 2 * radius / length of the tube
Plotting.plotAngularDistributionForDifferentBeta(Simulator, Beta)
%% - Plot Capture Velocity
Simulator.setInitialConditions();
Simulator.SimulationTime = 15*10^(-4);
Simulator.TimeStep = 1.5*10^(-6);
Simulator.MOTExitDivergence = 15/360*2*pi;
Simulator.MagneticGradient = 0.4;
Plotting.plotCaptureVelocityVsAngle(Simulator);
%% - Plot Phase Space with Acceleration Field
Simulator.NumberOfAtoms = 200;
Simulator.NumberOfAtoms = 100;
MaximumVelocity = 150;
NumberOfBins = 200; %Along each axis
IncidentAtomDirection = 0*2*pi/360;
@ -87,7 +86,7 @@ Plotting.plotPhaseSpaceWithAccelerationField(Simulator, MaximumVelocity, NumberO
% ONE-PARAMETER SCAN
NumberOfPointsForParam = 10; %iterations of the simulation
NumberOfPointsForParam = 20; %iterations of the simulation
% Scan Cooling Beam Power
PowerArray = linspace(0.1, 1.0, NumberOfPointsForParam) * Simulator.TotalPower;
% Scan Cooling Beam Detuning
@ -96,12 +95,11 @@ PowerArray = linspace(0.1, 1.0, NumberOfPointsForParam) * Simulator.TotalPow
OptionsStruct = struct;
OptionsStruct.ChangeInitialConditions = true;
OptionsStruct.ParameterNameArray = {'NumberOfAtoms'};
OptionsStruct.ParameterValueArray = {5000};
OptionsStruct.ParameterValueArray = {10000};
options = Helper.convertstruct2cell(OptionsStruct);
tStart = tic;
[LoadingRateArray, StandardErrorArray, ConfidenceIntervalArray] = Simulator.doOneParameterScan('BluePower', PowerArray, options{:});
[LoadingRateArray, ~] = Simulator.doOneParameterScan('BluePower', PowerArray, options{:});
tEnd = toc(tStart);
fprintf('Total Computational Time: %0.1f seconds. \n', tEnd);
@ -109,19 +107,15 @@ clear OptionsStruct
% - Plot results
ParameterArray = PowerArray;
ParameterArray = PowerArray .* Simulator.TotalPower;
QuantityOfInterestArray = LoadingRateArray;
OptionsStruct = struct;
OptionsStruct.RescalingFactorForParameter = 1000;
OptionsStruct.XLabelString = 'Cooling Beam Power (mW)';
OptionsStruct.RescalingFactorForYQuantity = 1e-10;
OptionsStruct.ErrorsForYQuantity = true;
OptionsStruct.ErrorsArray = StandardErrorArray;
OptionsStruct.CIForYQuantity = true;
OptionsStruct.CIArray = ConfidenceIntervalArray;
OptionsStruct.RemoveOutliers = true;
OptionsStruct.YLabelString = 'Loading rate (x 10^{10} atoms/s)';
OptionsStruct.RescalingFactorForYQuantity = 1e-16;
OptionsStruct.ErrorsForYQuantity = false;
OptionsStruct.YLabelString = 'Loading rate (x 10^{16} atoms/s)';
OptionsStruct.TitleString = sprintf('Magnetic Gradient = %.0f (G/cm)', Simulator.MagneticGradient * 100);
options = Helper.convertstruct2cell(OptionsStruct);
@ -132,11 +126,11 @@ clear OptionsStruct
%% TWO-PARAMETER SCAN
NumberOfPointsForParam = 10; %iterations of the simulation
NumberOfPointsForParam = 20; %iterations of the simulation
NumberOfPointsForSecondParam = 10;
% Scan Sideband Detuning and Power Ratio
DetuningArray = linspace(-0.5,-10, NumberOfPointsForParam) * Helper.PhysicsConstants.BlueLinewidth;
DetuningArray = linspace(-0.5,-6, NumberOfPointsForParam) * Helper.PhysicsConstants.BlueLinewidth;
SidebandPowerArray = linspace(0.1,0.9, NumberOfPointsForSecondParam) * Simulator.TotalPower;
BluePowerArray = Simulator.TotalPower - SidebandPowerArray;
@ -147,11 +141,11 @@ OptionsStruct.RelatedParameterName = 'BluePower';
OptionsStruct.RelatedParameterArray = BluePowerArray;
OptionsStruct.ChangeInitialConditions = true;
OptionsStruct.ParameterNameArray = {'NumberOfAtoms'};
OptionsStruct.ParameterValueArray = {5000};
OptionsStruct.ParameterValueArray = {10000};
options = Helper.convertstruct2cell(OptionsStruct);
tStart = tic;
[LoadingRateArray, StandardErrorArray, ConfidenceInterval] = Simulator.doTwoParameterScan('SidebandDetuning', DetuningArray, 'SidebandPower', SidebandPowerArray, options{:});
[LoadingRateArray, StandardErrorArray] = Simulator.doTwoParameterScan('SidebandDetuning', DetuningArray, 'SidebandPower', SidebandPowerArray, options{:});
tEnd = toc(tStart);
fprintf('Total Computational Time: %0.1f seconds. \n', tEnd);
@ -168,8 +162,8 @@ OptionsStruct.RescalingFactorForFirstParameter = (Helper.PhysicsConstants.B
OptionsStruct.XLabelString = 'Sideband Detuning (\Delta/\Gamma)';
OptionsStruct.RescalingFactorForSecondParameter = 1000;
OptionsStruct.YLabelString = 'Sideband Power (mW)';
OptionsStruct.RescalingFactorForQuantityOfInterest = 1e-10;
OptionsStruct.ZLabelString = 'Loading rate (x 10^{10} atoms/s)';
OptionsStruct.RescalingFactorForQuantityOfInterest = 1e-16;
OptionsStruct.ZLabelString = 'Loading rate (x 10^{16} atoms/s)';
OptionsStruct.TitleString = sprintf('Magnetic Gradient = %.0f (G/cm)', Simulator.MagneticGradient * 100);
options = Helper.convertstruct2cell(OptionsStruct);