2023-05-04 13:47:33 +02:00
|
|
|
import numpy as np
|
2023-05-07 00:38:52 +02:00
|
|
|
from uncertainties import ufloat
|
2023-05-04 13:47:33 +02:00
|
|
|
|
|
|
|
import lmfit
|
|
|
|
from lmfit.models import (ConstantModel, ComplexConstantModel, LinearModel, QuadraticModel,
|
|
|
|
PolynomialModel, SineModel, GaussianModel, Gaussian2dModel, LorentzianModel,
|
|
|
|
SplitLorentzianModel, VoigtModel, PseudoVoigtModel, MoffatModel,
|
|
|
|
Pearson7Model, StudentsTModel, BreitWignerModel, LognormalModel,
|
|
|
|
DampedOscillatorModel, ExponentialGaussianModel, SkewedGaussianModel,
|
|
|
|
SkewedVoigtModel, ThermalDistributionModel, DoniachModel, PowerLawModel,
|
|
|
|
ExponentialModel, StepModel, RectangleModel, ExpressionModel, DampedHarmonicOscillatorModel)
|
|
|
|
from lmfit.models import (guess_from_peak, guess_from_peak2d, fwhm_expr, height_expr,
|
|
|
|
update_param_vals)
|
|
|
|
from lmfit.lineshapes import (not_zero, breit_wigner, damped_oscillator, dho, doniach,
|
|
|
|
expgaussian, exponential, gaussian, gaussian2d,
|
|
|
|
linear, lognormal, lorentzian, moffat, parabolic,
|
|
|
|
pearson7, powerlaw, pvoigt, rectangle, sine,
|
|
|
|
skewed_gaussian, skewed_voigt, split_lorentzian, step,
|
|
|
|
students_t, thermal_distribution, tiny, voigt)
|
|
|
|
from lmfit import Model
|
|
|
|
import numpy as np
|
|
|
|
from numpy import (arctan, copysign, cos, exp, isclose, isnan, log, pi, real,
|
|
|
|
sin, sqrt, where)
|
|
|
|
from scipy.special import erf, erfc
|
|
|
|
from scipy.special import gamma as gamfcn
|
|
|
|
from scipy.special import wofz
|
|
|
|
from scipy.optimize import curve_fit
|
2023-08-21 10:28:12 +02:00
|
|
|
from scipy.interpolate import CubicSpline
|
|
|
|
from scipy.ndimage import gaussian_filter
|
2023-05-04 13:47:33 +02:00
|
|
|
|
|
|
|
import xarray as xr
|
|
|
|
|
2023-06-02 18:42:18 +02:00
|
|
|
import copy
|
|
|
|
|
2023-08-21 10:28:12 +02:00
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
2023-05-04 13:47:33 +02:00
|
|
|
|
|
|
|
log2 = log(2)
|
|
|
|
s2pi = sqrt(2*pi)
|
|
|
|
s2 = sqrt(2.0)
|
|
|
|
|
|
|
|
|
|
|
|
def gaussianWithOffset(x, amplitude=1.0, center=0.0, sigma=1.0, offset=0.0):
|
|
|
|
"""Return a 1-dimensional Gaussian function with an offset.
|
|
|
|
|
|
|
|
gaussian(x, amplitude, center, sigma) =
|
|
|
|
(amplitude/(s2pi*sigma)) * exp(-(1.0*x-center)**2 / (2*sigma**2))
|
|
|
|
|
|
|
|
"""
|
|
|
|
return ((amplitude/(max(tiny, s2pi*sigma)))
|
|
|
|
* exp(-(1.0*x-center)**2 / max(tiny, (2*sigma**2))) + offset)
|
|
|
|
|
|
|
|
|
|
|
|
def lorentzianWithOffset(x, amplitude=1.0, center=0.0, sigma=1.0, offset=0.0):
|
|
|
|
return ((amplitude/(1 + ((1.0*x-center)/max(tiny, sigma))**2))
|
|
|
|
/ max(tiny, (pi*sigma)) + offset)
|
|
|
|
|
|
|
|
|
|
|
|
def exponentialWithOffset(x, amplitude=1.0, decay=1.0, offset=0.0):
|
|
|
|
decay = not_zero(decay)
|
|
|
|
return amplitude * exp(-x/decay) + offset
|
|
|
|
|
|
|
|
|
|
|
|
def expansion(x, amplitude=1.0, offset=0.0):
|
|
|
|
return np.sqrt(amplitude*x*x + offset)
|
|
|
|
|
|
|
|
|
|
|
|
def dampingOscillation(x, center=0, amplitude=1.0, frequency=1.0, decay=1.0, offset=0.0):
|
|
|
|
return amplitude * np.exp(-decay*x)*np.sin(2*np.pi*frequency*(x-center)) + offset
|
|
|
|
|
|
|
|
|
2023-05-04 18:32:17 +02:00
|
|
|
def two_gaussian2d(x, y=0.0, A_amplitude=1.0, A_centerx=0.0, A_centery=0.0, A_sigmax=1.0,
|
|
|
|
A_sigmay=1.0, B_amplitude=1.0, B_centerx=0.0, B_centery=0.0, B_sigmax=1.0,
|
|
|
|
B_sigmay=1.0):
|
|
|
|
"""Return a 2-dimensional Gaussian function.
|
|
|
|
|
|
|
|
gaussian2d(x, y, amplitude, centerx, centery, sigmax, sigmay) =
|
|
|
|
amplitude/(2*pi*sigmax*sigmay) * exp(-(x-centerx)**2/(2*sigmax**2)
|
|
|
|
-(y-centery)**2/(2*sigmay**2))
|
|
|
|
|
|
|
|
"""
|
|
|
|
z = A_amplitude*(gaussian(x, amplitude=1, center=A_centerx, sigma=A_sigmax) *
|
|
|
|
gaussian(y, amplitude=1, center=A_centery, sigma=A_sigmay))
|
|
|
|
z += B_amplitude*(gaussian(x, amplitude=1, center=B_centerx, sigma=B_sigmax) *
|
|
|
|
gaussian(y, amplitude=1, center=B_centery, sigma=B_sigmay))
|
|
|
|
return z
|
2023-05-04 13:47:33 +02:00
|
|
|
|
|
|
|
|
2023-08-21 10:28:12 +02:00
|
|
|
def polylog_tab(pow, x, order=100):
|
|
|
|
"""Calculationg the polylog sum_i(x^i/i^pow), up to the order-th element of the sum
|
|
|
|
|
|
|
|
:param pow: power in denominator of sum
|
|
|
|
:type pow: int (can be float)
|
|
|
|
:param x: argument of Polylogarithm
|
|
|
|
:type x: float or 1D numpy array
|
|
|
|
:return: value of polylog(x)
|
|
|
|
:rtype: same as x, float or 1D numpy array
|
|
|
|
"""
|
|
|
|
|
|
|
|
sum = 0
|
|
|
|
for k in range(1,order):
|
|
|
|
sum += x ** k /k **pow
|
|
|
|
return sum
|
|
|
|
|
|
|
|
# Creating array for interpolation
|
|
|
|
x_int = np.linspace(0, 1.00001, 100000)
|
|
|
|
poly_tab = polylog_tab(2,x_int)
|
|
|
|
|
|
|
|
# Creating function interpolating between the Polylog values calculated before
|
|
|
|
polylog_int = CubicSpline(x_int, poly_tab)
|
|
|
|
|
|
|
|
|
2023-08-21 11:26:02 +02:00
|
|
|
def thermal(x, x0, amp, sigma):
|
|
|
|
res = np.exp(-0.5 * (x-x0)**2 / sigma**2)
|
|
|
|
return amp/1.643 * polylog_int(res)
|
|
|
|
|
|
|
|
|
|
|
|
def Thomas_Fermi_1d(x, x0, amp, sigma):
|
|
|
|
res = (1- ((x-x0)/sigma)**2)
|
|
|
|
res = np.where(res > 0, res, 0)
|
|
|
|
res = res**(3/2)
|
|
|
|
return amp * res
|
|
|
|
|
|
|
|
|
|
|
|
def density_1d(x, x0_bec, x0_th, amp_bec, amp_th, sigma_bec, sigma_th):
|
|
|
|
return thermal(x, x0_th, amp_th, sigma_th) + Thomas_Fermi_1d(x, x0_bec, amp_bec, sigma_bec)
|
|
|
|
|
|
|
|
|
|
|
|
def polylog(pow, x):
|
|
|
|
order = 15
|
|
|
|
sum = 0
|
|
|
|
for k in range(1,order):
|
|
|
|
sum += x ** k /k **pow
|
|
|
|
return sum
|
|
|
|
|
|
|
|
|
|
|
|
def ThomasFermi_2d(x, y=0.0, centerx=0.0, centery=0.0, amplitude=1.0, sigmax=1.0, sigmay=1.0):
|
|
|
|
|
|
|
|
res = (1- ((x-centerx)/(sigmax))**2 - ((y-centery)/(sigmay))**2)
|
|
|
|
res = np.where(res > 0, res, 0)
|
|
|
|
res = res**(3/2)
|
|
|
|
return amplitude * res
|
|
|
|
|
|
|
|
|
|
|
|
def polylog2_2d(x, y=0.0, centerx=0.0, centery=0.0, amplitude=1.0, sigmax=1.0, sigmay=1.0):
|
|
|
|
## Approximation of the polylog function with 2D gaussian as argument. -> discribes the thermal part of the cloud
|
|
|
|
return amplitude/1.643 * polylog_int(np.exp( -((x-centerx)**2/(2 * sigmax**2))-((y-centery)**2/( 2 * sigmay**2)) ))
|
|
|
|
|
|
|
|
|
|
|
|
def density_profile_BEC_2d(x, y=0.0, amp_bec=1.0, amp_th=1.0, x0_bec=0.0, y0_bec=0.0, x0_th=0.0, y0_th=0.0,
|
|
|
|
sigmax_bec=1.0, sigmay_bec=1.0, sigma_th=1.0):
|
|
|
|
return ThomasFermi_2d(x=x, y=y, centerx=x0_bec, centery=y0_bec,
|
|
|
|
amplitude=amp_bec, sigmax=sigmax_bec, sigmay=sigmay_bec
|
|
|
|
) + polylog2_2d(x=x, y=y, centerx=x0_th, centery=y0_th,
|
|
|
|
amplitude=amp_th, sigmax=sigma_th,sigmay=sigma_th)
|
2023-05-23 22:14:03 +02:00
|
|
|
|
|
|
|
|
2023-05-04 13:47:33 +02:00
|
|
|
class GaussianWithOffsetModel(Model):
|
|
|
|
|
|
|
|
fwhm_factor = 2*np.sqrt(2*np.log(2))
|
|
|
|
height_factor = 1./np.sqrt(2*np.pi)
|
|
|
|
|
|
|
|
def __init__(self, independent_vars=['x'], nan_policy='raise', prefix='', name=None, **kwargs):
|
|
|
|
|
|
|
|
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
|
|
|
|
'independent_vars': independent_vars})
|
|
|
|
super().__init__(gaussianWithOffset, **kwargs)
|
|
|
|
self._set_paramhints_prefix()
|
|
|
|
|
|
|
|
def _set_paramhints_prefix(self):
|
|
|
|
self.set_param_hint('sigma', min=0)
|
|
|
|
self.set_param_hint('fwhm', expr=fwhm_expr(self))
|
|
|
|
self.set_param_hint('height', expr=height_expr(self))
|
|
|
|
|
|
|
|
def guess(self, data, x, negative=False, **kwargs):
|
|
|
|
offset = np.min(data)
|
|
|
|
data = data - offset
|
|
|
|
pars = guess_from_peak(self, data, x, negative)
|
|
|
|
pars.add('offset', value=offset)
|
|
|
|
return update_param_vals(pars, self.prefix, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
class LorentzianWithOffsetModel(Model):
|
|
|
|
|
|
|
|
fwhm_factor = 2.0
|
|
|
|
height_factor = 1./np.pi
|
|
|
|
|
|
|
|
def __init__(self, independent_vars=['x'], prefix='', nan_policy='raise',
|
|
|
|
**kwargs):
|
|
|
|
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
|
|
|
|
'independent_vars': independent_vars})
|
|
|
|
super().__init__(lorentzianWithOffset, **kwargs)
|
|
|
|
self._set_paramhints_prefix()
|
|
|
|
|
|
|
|
def _set_paramhints_prefix(self):
|
|
|
|
self.set_param_hint('sigma', min=0)
|
|
|
|
self.set_param_hint('fwhm', expr=fwhm_expr(self))
|
|
|
|
self.set_param_hint('height', expr=height_expr(self))
|
|
|
|
|
|
|
|
def guess(self, data, x, negative=False, **kwargs):
|
|
|
|
"""Estimate initial model parameter values from data."""
|
|
|
|
offset = np.min(data)
|
|
|
|
data = data - offset
|
|
|
|
pars = guess_from_peak(self, data, x, negative, ampscale=1.25)
|
|
|
|
pars.add('offset', value=offset)
|
|
|
|
return update_param_vals(pars, self.prefix, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
class ExponentialWithOffsetModel(Model):
|
|
|
|
|
|
|
|
def __init__(self, independent_vars=['x'], prefix='', nan_policy='raise',
|
|
|
|
**kwargs):
|
|
|
|
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
|
|
|
|
'independent_vars': independent_vars})
|
|
|
|
super().__init__(exponentialWithOffset, **kwargs)
|
|
|
|
|
|
|
|
def guess(self, data, x, **kwargs):
|
|
|
|
"""Estimate initial model parameter values from data."""
|
|
|
|
offset = np.min(data)
|
|
|
|
data = data - offset
|
|
|
|
try:
|
|
|
|
sval, oval = np.polyfit(x, np.log(abs(data)+1.e-15), 1)
|
|
|
|
except TypeError:
|
|
|
|
sval, oval = 1., np.log(abs(max(data)+1.e-9))
|
|
|
|
pars = self.make_params(amplitude=np.exp(oval), decay=-1.0/sval)
|
|
|
|
pars.add('offset', value=offset)
|
|
|
|
return update_param_vals(pars, self.prefix, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
class ExpansionModel(Model):
|
|
|
|
|
|
|
|
def __init__(self, independent_vars=['x'], prefix='', nan_policy='raise',
|
|
|
|
**kwargs):
|
|
|
|
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
|
|
|
|
'independent_vars': independent_vars})
|
|
|
|
super().__init__(expansion, **kwargs)
|
|
|
|
|
|
|
|
def guess(self, data, x, **kwargs):
|
|
|
|
"""Estimate initial model parameter values from data."""
|
|
|
|
|
|
|
|
popt1, pcov1 = curve_fit(expansion, x, data)
|
|
|
|
pars = self.make_params(amplitude=popt1[0], offset=popt1[1])
|
|
|
|
|
|
|
|
return update_param_vals(pars, self.prefix, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
class DampingOscillationModel(Model):
|
|
|
|
|
|
|
|
def __init__(self, independent_vars=['x'], prefix='', nan_policy='raise',
|
|
|
|
**kwargs):
|
|
|
|
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
|
|
|
|
'independent_vars': independent_vars})
|
|
|
|
super().__init__(dampingOscillation, **kwargs)
|
|
|
|
|
|
|
|
def guess(self, data, x, **kwargs):
|
|
|
|
"""Estimate initial model parameter values from data."""
|
|
|
|
try:
|
|
|
|
popt1, pcov1 = curve_fit(dampingOscillation, x, data, np.array(0, 5, 5e2, 1e3, 16))
|
|
|
|
pars = self.make_params(center=popt1[0], amplitude=popt1[1], frequency=popt1[2], decay=popt1[3], offset=popt1[4])
|
|
|
|
except:
|
|
|
|
pars = self.make_params(center=0, amplitude=5.0, frequency=5e2, decay=1.0e3, offset=16.0)
|
|
|
|
|
|
|
|
return update_param_vals(pars, self.prefix, **kwargs)
|
|
|
|
|
|
|
|
|
2023-05-04 18:32:17 +02:00
|
|
|
class TwoGaussian2dModel(Model):
|
|
|
|
|
|
|
|
fwhm_factor = 2*np.sqrt(2*np.log(2))
|
|
|
|
height_factor = 1./2*np.pi
|
|
|
|
|
|
|
|
def __init__(self, independent_vars=['x', 'y'], prefix='', nan_policy='raise',
|
|
|
|
**kwargs):
|
|
|
|
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
|
|
|
|
'independent_vars': independent_vars})
|
|
|
|
|
|
|
|
self.helperModel = Gaussian2dModel()
|
|
|
|
|
|
|
|
super().__init__(two_gaussian2d, **kwargs)
|
2023-05-07 00:38:52 +02:00
|
|
|
|
|
|
|
self._set_paramhints_prefix()
|
|
|
|
|
|
|
|
def _set_paramhints_prefix(self):
|
|
|
|
self.set_param_hint('delta', value=-1, max=0)
|
|
|
|
self.set_param_hint('A_sigmax', expr=f'{self.prefix}delta + {self.prefix}B_sigmax')
|
2023-05-04 18:32:17 +02:00
|
|
|
|
|
|
|
def guess(self, data, x, y, negative=False, **kwargs):
|
|
|
|
pars_guess = guess_from_peak2d(self.helperModel, data, x, y, negative)
|
2023-05-07 00:38:52 +02:00
|
|
|
pars = self.make_params(A_amplitude=pars_guess['amplitude'].value, A_centerx=pars_guess['centerx'].value, A_centery=pars_guess['centery'].value,
|
|
|
|
A_sigmax=pars_guess['sigmax'].value, A_sigmay=pars_guess['sigmay'].value,
|
|
|
|
B_amplitude=pars_guess['amplitude'].value, B_centerx=pars_guess['centerx'].value, B_centery=pars_guess['centery'].value,
|
|
|
|
B_sigmax=pars_guess['sigmax'].value, B_sigmay=pars_guess['sigmay'].value)
|
2023-05-04 18:32:17 +02:00
|
|
|
|
|
|
|
pars[f'{self.prefix}A_sigmax'].set(expr=f'delta + {self.prefix}B_sigmax')
|
2023-05-07 00:38:52 +02:00
|
|
|
pars.add(f'{self.prefix}delta', value=-1, max=0, min=-np.inf, vary=True)
|
2023-05-04 18:32:17 +02:00
|
|
|
pars[f'{self.prefix}A_sigmay'].set(min=0.0)
|
|
|
|
pars[f'{self.prefix}B_sigmax'].set(min=0.0)
|
|
|
|
pars[f'{self.prefix}B_sigmay'].set(min=0.0)
|
|
|
|
|
|
|
|
return pars
|
|
|
|
|
|
|
|
|
2023-05-23 22:14:03 +02:00
|
|
|
class Polylog22dModel(Model):
|
|
|
|
|
|
|
|
fwhm_factor = 2*np.sqrt(2*np.log(2))
|
|
|
|
height_factor = 1./2*np.pi
|
|
|
|
|
|
|
|
def __init__(self, independent_vars=['x', 'y'], prefix='', nan_policy='raise',
|
|
|
|
**kwargs):
|
|
|
|
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
|
|
|
|
'independent_vars': independent_vars})
|
|
|
|
super().__init__(polylog2_2d, **kwargs)
|
|
|
|
self._set_paramhints_prefix()
|
|
|
|
|
|
|
|
def _set_paramhints_prefix(self):
|
|
|
|
self.set_param_hint('Rx', min=0)
|
|
|
|
self.set_param_hint('Ry', min=0)
|
|
|
|
|
|
|
|
def guess(self, data, x, y, negative=False, **kwargs):
|
|
|
|
"""Estimate initial model parameter values from data."""
|
|
|
|
pars = guess_from_peak2d(self, data, x, y, negative)
|
|
|
|
return update_param_vals(pars, self.prefix, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
class ThomasFermi2dModel(Model):
|
|
|
|
|
|
|
|
fwhm_factor = 1
|
|
|
|
height_factor = 0.5
|
|
|
|
|
|
|
|
def __init__(self, independent_vars=['x', 'y'], prefix='', nan_policy='raise',
|
|
|
|
**kwargs):
|
|
|
|
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
|
|
|
|
'independent_vars': independent_vars})
|
|
|
|
super().__init__(ThomasFermi_2d, **kwargs)
|
|
|
|
self._set_paramhints_prefix()
|
|
|
|
|
|
|
|
def _set_paramhints_prefix(self):
|
|
|
|
self.set_param_hint('Rx', min=0)
|
|
|
|
self.set_param_hint('Ry', min=0)
|
|
|
|
|
|
|
|
def guess(self, data, x, y, negative=False, **kwargs):
|
|
|
|
"""Estimate initial model parameter values from data."""
|
|
|
|
pars = guess_from_peak2d(self, data, x, y, negative)
|
|
|
|
|
|
|
|
# amplitude = pars['amplitude'].value
|
|
|
|
# simgax = pars['sigmax'].value
|
|
|
|
# sigmay = pars['sigmay'].value
|
|
|
|
|
|
|
|
# pars['amplitude'].set(value=amplitude/s2pi/simgax/sigmay)
|
|
|
|
|
|
|
|
simgax = pars['sigmax'].value
|
|
|
|
sigmay = pars['sigmay'].value
|
|
|
|
pars['simgax'].set(value=simgax / 2.355)
|
|
|
|
pars['sigmay'].set(value=sigmay / 2.355)
|
|
|
|
|
|
|
|
return update_param_vals(pars, self.prefix, **kwargs)
|
|
|
|
|
|
|
|
|
2023-08-21 10:28:12 +02:00
|
|
|
class DensityProfileBEC2dModel(lmfit.Model):
|
|
|
|
""" Fitting class to do 2D bimodal fit on OD of absorption images
|
|
|
|
"""
|
|
|
|
def __init__(self,
|
|
|
|
independent_vars=['x', 'y'],
|
|
|
|
prefix='',
|
|
|
|
nan_policy='raise',
|
|
|
|
atom_n_conv=144,
|
|
|
|
is_debug=False,
|
|
|
|
**kwargs
|
|
|
|
):
|
2023-05-23 22:14:03 +02:00
|
|
|
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
|
|
|
|
'independent_vars': independent_vars})
|
2023-08-21 10:28:12 +02:00
|
|
|
|
|
|
|
self.atom_n_conv = atom_n_conv
|
|
|
|
self.is_debug=is_debug
|
2023-05-23 22:14:03 +02:00
|
|
|
super().__init__(density_profile_BEC_2d, **kwargs)
|
|
|
|
self._set_paramhints_prefix()
|
|
|
|
|
|
|
|
def _set_paramhints_prefix(self):
|
2023-06-29 11:54:10 +02:00
|
|
|
# self.set_param_hint('BEC_sigmax', min=0)
|
2023-08-21 10:28:12 +02:00
|
|
|
self.set_param_hint('amp_bec', min=0)
|
|
|
|
self.set_param_hint('amp_th', min=0)
|
|
|
|
self.set_param_hint('x0_bec', min=0)
|
|
|
|
self.set_param_hint('y0_bec', min=0)
|
|
|
|
self.set_param_hint('x0_th', min=0)
|
|
|
|
self.set_param_hint('y0_th', min=0)
|
|
|
|
self.set_param_hint('sigmax_bec', min=0)
|
|
|
|
self.set_param_hint('sigmay_bec', min=0)
|
|
|
|
self.set_param_hint('sigma_th', min=0)
|
|
|
|
|
|
|
|
|
|
|
|
def guess(self, data, x, y, **kwargs):
|
|
|
|
"""
|
|
|
|
Estimate and create initial model parameters for 2d fit
|
|
|
|
:param data: Flattened 2d array, flattened from array with (x,y) -->
|
|
|
|
:param x:
|
|
|
|
:param y:
|
|
|
|
:param kwargs:
|
|
|
|
:return:
|
|
|
|
"""
|
|
|
|
#
|
|
|
|
# global X_guess
|
|
|
|
# global bval_1d
|
|
|
|
x_width = len(np.unique(x))
|
|
|
|
y_width = len(np.unique(y))
|
|
|
|
data = np.reshape(data, (y_width, x_width))
|
|
|
|
data = data.T
|
|
|
|
|
|
|
|
shape = np.shape(data)
|
|
|
|
cut_width = np.max(shape)
|
|
|
|
|
|
|
|
thresh = self.calc_thresh(data)
|
|
|
|
center = self.calc_cen(thresh)
|
|
|
|
|
|
|
|
BEC_width_guess = self.guess_BEC_width(thresh, center)
|
|
|
|
|
|
|
|
if BEC_width_guess[0] < BEC_width_guess[1]:
|
|
|
|
if self.is_debug:
|
|
|
|
print(f'x smaller y')
|
|
|
|
s_width_ind = 0
|
|
|
|
X_guess = np.sum(data[:, round(center[1] - BEC_width_guess[1]/2) : round(center[1] + BEC_width_guess[1]/2)], 1) / len(data[0,round(center[1] - BEC_width_guess[1]/2) : round(center[1] + BEC_width_guess[1]/2)])
|
|
|
|
else:
|
|
|
|
if self.is_debug:
|
|
|
|
print(f'y smaller x')
|
|
|
|
s_width_ind = 1
|
|
|
|
X_guess = np.sum(data[round(center[0] - BEC_width_guess[0]/2) : round(center[0] + BEC_width_guess[0]/2), :], 0) / len(data[0,round(center[0] - BEC_width_guess[0]/2) : round(center[0] + BEC_width_guess[0]/2)])
|
|
|
|
|
|
|
|
if self.is_debug:
|
|
|
|
print(f'center = {center}')
|
|
|
|
print(f'BEC widths: {BEC_width_guess}')
|
|
|
|
plt.plot(X_guess)
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
x = np.linspace(0, len(X_guess), len(X_guess))
|
|
|
|
|
|
|
|
max_val = np.max(X_guess)
|
|
|
|
|
|
|
|
fitmodel_1d = lmfit.Model(density_1d, independent_vars=['x'])
|
|
|
|
params_1d = lmfit.Parameters()
|
|
|
|
params_1d.add_many(
|
|
|
|
('x0_bec', center[s_width_ind], True,0, 200),
|
|
|
|
('x0_th',center[s_width_ind], True,0, 200),
|
|
|
|
('amp_bec', 0.7 * max_val, True, 0, 1.3 * max_val),
|
|
|
|
('amp_th', 0.3 * max_val, True, 0, 1.3 * max_val),
|
|
|
|
('deltax', 3*BEC_width_guess[s_width_ind], True, 0,cut_width),
|
|
|
|
# ('sigma_bec',BEC_width_guess[i,j,0]/1.22, True, 0, 50)
|
|
|
|
('sigma_bec',BEC_width_guess[s_width_ind]/1.22, True, 0, 50)
|
|
|
|
)
|
|
|
|
params_1d.add('sigma_th', 3*BEC_width_guess[0], min=0, expr=f'0.632*sigma_bec + 0.518*deltax')
|
2023-05-23 22:14:03 +02:00
|
|
|
|
2023-08-21 10:28:12 +02:00
|
|
|
|
|
|
|
res_1d = fitmodel_1d.fit(X_guess, x=x, params=params_1d)
|
|
|
|
|
|
|
|
if self.is_debug:
|
|
|
|
params_1d.pretty_print()
|
|
|
|
self.print_bval(res_1d)
|
|
|
|
|
|
|
|
|
|
|
|
bval_1d = res_1d.best_values
|
|
|
|
|
|
|
|
amp_conv_1d_2d = np.max(gaussian_filter(data, sigma=1)) / (bval_1d['amp_bec'] + bval_1d['amp_th'])
|
|
|
|
max_val = np.max(data)
|
|
|
|
|
|
|
|
params = self.make_params()
|
|
|
|
|
|
|
|
if bval_1d['amp_th']/bval_1d['amp_bec'] > 3:
|
|
|
|
print(f'Image seems to be purely thermal (guessed from 1d fit amplitude)')
|
|
|
|
|
|
|
|
params[f'{self.prefix}amp_bec'].set(value=0, vary=False)
|
|
|
|
params[f'{self.prefix}amp_th'].set(value=amp_conv_1d_2d * bval_1d['amp_th'], max=1.3 * max_val, vary=True)
|
|
|
|
params[f'{self.prefix}x0_bec'].set(value=1, vary=False)
|
|
|
|
params[f'{self.prefix}y0_bec'].set(value=1, vary=False)
|
|
|
|
params[f'{self.prefix}x0_th'].set(value=center[0], min=center[0] -10, max=center[0] + 10, vary=True)
|
|
|
|
params[f'{self.prefix}y0_th'].set(value=center[1], min=center[1] -10, max=center[1] + 10, vary=True)
|
|
|
|
params[f'{self.prefix}sigmax_bec'].set(value=1, vary=False)
|
|
|
|
params[f'{self.prefix}sigmay_bec'].set(value=1, vary=False)
|
|
|
|
params[f'{self.prefix}sigma_th'].set(value=bval_1d['sigma_th'], max=cut_width, vary=True)
|
|
|
|
|
|
|
|
elif bval_1d['amp_bec']/bval_1d['amp_th'] > 10:
|
|
|
|
print('Image seems to be pure BEC (guessed from 1d fit amplitude)')
|
|
|
|
|
|
|
|
params[f'{self.prefix}amp_bec'].set(value=amp_conv_1d_2d * bval_1d['amp_bec'], max=1.3 * max_val, vary=True)
|
|
|
|
params[f'{self.prefix}amp_th'].set(value=0, vary=False)
|
|
|
|
params[f'{self.prefix}x0_bec'].set(value=center[0], min=center[0] -10, max=center[0] + 10, vary=True)
|
|
|
|
params[f'{self.prefix}y0_bec'].set(value=center[1], min=center[1] -10, max=center[1] + 10, vary=True)
|
|
|
|
params[f'{self.prefix}x0_th'].set(value=1, vary=False)
|
|
|
|
params[f'{self.prefix}y0_th'].set(value=1, vary=False)
|
|
|
|
params[f'{self.prefix}sigma_th'].set(value=1, vary=False)
|
|
|
|
|
|
|
|
if s_width_ind == 0:
|
|
|
|
params[f'{self.prefix}sigmax_bec'].set(value=bval_1d['sigma_bec'], max= 2*BEC_width_guess[0], vary=True)
|
|
|
|
params[f'{self.prefix}sigmay_bec'].set(value=BEC_width_guess[1]/1.22, max= 2*BEC_width_guess[1], vary=True)
|
|
|
|
elif s_width_ind == 1:
|
|
|
|
params[f'{self.prefix}sigmax_bec'].set(value=BEC_width_guess[0]/1.22, max= 2*BEC_width_guess[0], vary=True)
|
|
|
|
params[f'{self.prefix}sigmay_bec'].set(value=bval_1d['sigma_bec'], max= 2*BEC_width_guess[1], vary=True)
|
2023-05-24 16:54:29 +02:00
|
|
|
else:
|
2023-08-21 10:28:12 +02:00
|
|
|
print('Error in small width BEC recogintion, s_width_ind should be 0 or 1')
|
|
|
|
|
|
|
|
else:
|
|
|
|
params[f'{self.prefix}amp_bec'].set(value=amp_conv_1d_2d * bval_1d['amp_bec'], max=1.3 * max_val, vary=True)
|
|
|
|
params[f'{self.prefix}amp_th'].set(value=amp_conv_1d_2d * bval_1d['amp_th'], max=1.3 * max_val, vary=True)
|
|
|
|
params[f'{self.prefix}x0_bec'].set(value=center[0], min=center[0] -10, max=center[0] + 10, vary=True)
|
|
|
|
params[f'{self.prefix}y0_bec'].set(value=center[1], min=center[1] -10, max=center[1] + 10, vary=True)
|
|
|
|
params[f'{self.prefix}x0_th'].set(value=center[0], min=center[0] -10, max=center[0] + 10, vary=True)
|
|
|
|
params[f'{self.prefix}y0_th'].set(value=center[1], min=center[1] -10, max=center[1] + 10, vary=True)
|
|
|
|
params[f'{self.prefix}sigma_th'].set(value=bval_1d['sigma_th'], max=cut_width, vary=True)
|
|
|
|
|
|
|
|
if s_width_ind == 0:
|
|
|
|
params[f'{self.prefix}sigmax_bec'].set(value=bval_1d['sigma_bec'], max= 2*BEC_width_guess[0], vary=True)
|
|
|
|
params[f'{self.prefix}sigmay_bec'].set(value=BEC_width_guess[1]/1.22, max= 2*BEC_width_guess[1], vary=True)
|
|
|
|
elif s_width_ind == 1:
|
|
|
|
params[f'{self.prefix}sigmax_bec'].set(value=BEC_width_guess[0]/1.22, max= 2*BEC_width_guess[0], vary=True)
|
|
|
|
params[f'{self.prefix}sigmay_bec'].set(value=bval_1d['sigma_bec'], max= 2*BEC_width_guess[1], vary=True)
|
|
|
|
else:
|
|
|
|
print('Error in small width BEC recogintion, s_width_ind should be 0 or 1')
|
|
|
|
|
|
|
|
if self.is_debug:
|
|
|
|
print('')
|
|
|
|
print('Init Params')
|
|
|
|
params.pretty_print()
|
|
|
|
return lmfit.models.update_param_vals(params, self.prefix, **kwargs)
|
|
|
|
|
|
|
|
|
2023-08-21 11:26:02 +02:00
|
|
|
def fit(self, data, **kwargs):
|
|
|
|
|
|
|
|
data_1d = data
|
2023-08-21 10:28:12 +02:00
|
|
|
|
|
|
|
res = super().fit(data_1d, **kwargs)
|
|
|
|
|
|
|
|
if self.is_debug:
|
|
|
|
print('bval first fit')
|
|
|
|
self.print_bval(res)
|
|
|
|
|
|
|
|
|
|
|
|
if res.params['amp_bec'].vary and res.params['amp_th'].vary:
|
|
|
|
bval = res.best_values
|
|
|
|
sigma_cut = max(bval['sigmay_bec'], bval['sigmax_bec'])
|
|
|
|
tf_fit = ThomasFermi_2d(kwargs['x'],kwargs['y'],centerx=bval['x0_bec'], centery=bval['y0_bec'], amplitude=bval['amp_bec'], sigmax=bval['sigmax_bec'], sigmay=bval['sigmay_bec'])
|
|
|
|
tf_fit_2 = ThomasFermi_2d(kwargs['x'],kwargs['y'],centerx=bval['x0_bec'], centery=bval['y0_bec'], amplitude=bval['amp_bec'], sigmax=1.5 * sigma_cut, sigmay=1.5*sigma_cut)
|
|
|
|
mask = np.where(tf_fit > 0, np.nan, data_1d)
|
|
|
|
#mask[i,j] = gaussian_filter(mask[i,j], sigma = 0.4)
|
|
|
|
mask = np.where(tf_fit_2 > 0, mask, np.nan)
|
|
|
|
|
|
|
|
N_c = np.nansum(mask)
|
|
|
|
# conversion N_count to Pixels
|
|
|
|
N_a = self.atom_n_conv * N_c
|
|
|
|
|
|
|
|
if N_a < 6615:
|
|
|
|
print('No thermal part detected, performing fit without thermal function')
|
|
|
|
params = res.params
|
|
|
|
params[f'{self.prefix}amp_th'].set(value=0, vary=False)
|
|
|
|
params[f'{self.prefix}x0_th'].set(value=1, vary=False)
|
|
|
|
params[f'{self.prefix}y0_th'].set(value=1, vary=False)
|
|
|
|
params[f'{self.prefix}sigma_th'].set(value=1, vary=False)
|
|
|
|
|
|
|
|
res = super().fit(data_1d, x=kwargs['x'], y=kwargs['y'], params=params)
|
|
|
|
|
|
|
|
return res
|
|
|
|
|
|
|
|
return res
|
|
|
|
|
|
|
|
def calc_thresh(self, data, thresh_val=0.3, sigma=0.4):
|
|
|
|
"""Returns thresholded binary image after blurring to guess BEC size
|
|
|
|
|
|
|
|
:param data: 2d image or 1D or 2D array containing 2d images
|
|
|
|
:type data: 2d, 3d or 4d numpy array
|
|
|
|
:param thresh_val: relative threshhold value for binarization with respect to maximum of blurred image
|
|
|
|
:param sigma: sigma of gaussian blur filter (see scipy.ndimage.gaussian_filter
|
|
|
|
:return: binary 2d image or 1D or 2D array containing 2d images
|
|
|
|
:rtype: 2d, 3d or 4d numpy array
|
|
|
|
"""
|
|
|
|
shape = np.shape(data)
|
|
|
|
thresh = np.zeros(shape)
|
|
|
|
|
|
|
|
blurred = gaussian_filter(data, sigma=sigma)
|
|
|
|
|
|
|
|
if len(shape) == 4:
|
|
|
|
for i in range(0,shape[0]):
|
|
|
|
for j in range(0, shape[1]):
|
|
|
|
thresh[i,j] = np.where(blurred[i,j] < np.max(blurred[i,j])*thresh_val, 0, 1)
|
|
|
|
|
|
|
|
elif len(shape) == 3:
|
|
|
|
for i in range(0,shape[0]):
|
|
|
|
thresh[i] = np.where(blurred[i] < np.max(blurred[i])*thresh_val, 0, 1)
|
|
|
|
|
|
|
|
elif len(shape) == 2:
|
|
|
|
thresh = np.where(blurred < np.max(blurred)*thresh_val, 0, 1)
|
|
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
print("Shape of data is wrong, output is empty")
|
|
|
|
|
|
|
|
return thresh
|
|
|
|
|
|
|
|
def calc_cen(self, thresh1):
|
|
|
|
"""
|
|
|
|
returns array: [X_center,Y_center]
|
|
|
|
"""
|
|
|
|
cen = np.zeros(2)
|
|
|
|
(Y,X) = np.shape(thresh1)
|
|
|
|
|
|
|
|
|
|
|
|
thresh1 = thresh1 /np.sum(thresh1)
|
|
|
|
|
|
|
|
# marginal distributions
|
|
|
|
dx = np.sum(thresh1, 0)
|
|
|
|
dy = np.sum(thresh1, 1)
|
|
|
|
|
|
|
|
# expected values
|
|
|
|
cen[0] = np.sum(dx * np.arange(X))
|
|
|
|
cen[1] = np.sum(dy * np.arange(Y))
|
|
|
|
return cen
|
|
|
|
|
|
|
|
def guess_BEC_width(self, thresh, center):
|
|
|
|
"""
|
|
|
|
returns width of thresholded area along both axis through the center with shape of thresh and [X_width, Y_width] for each image
|
|
|
|
"""
|
|
|
|
shape = np.shape(thresh)
|
|
|
|
|
|
|
|
if len(shape) == 2:
|
|
|
|
BEC_width_guess = np.array([np.sum(thresh[round(center[1]), :]), np.sum(thresh[:, round(center[0])]) ])
|
|
|
|
|
|
|
|
elif len(shape) == 3:
|
|
|
|
BEC_width_guess = np.zeros((shape[0], 2))
|
|
|
|
for i in range(0, shape[0]):
|
|
|
|
BEC_width_guess[i, 0] = np.sum(thresh[i, round(center[i,j,1]), :])
|
|
|
|
BEC_width_guess[i, 1] = np.sum(thresh[i, :, round(center[i,j,0])])
|
|
|
|
|
|
|
|
elif len(shape) == 4:
|
|
|
|
BEC_width_guess = np.zeros((shape[0], shape[1], 2))
|
|
|
|
for i in range(0, shape[0]):
|
|
|
|
for j in range(0, shape[1]):
|
|
|
|
BEC_width_guess[i, j, 0] = np.sum(thresh[i, j, round(center[i,j,1]), :])
|
|
|
|
BEC_width_guess[i, j, 1] = np.sum(thresh[i, j, :, round(center[i,j,0])])
|
|
|
|
else:
|
|
|
|
print("Shape of data is wrong, output is empty")
|
|
|
|
|
|
|
|
return BEC_width_guess
|
|
|
|
|
|
|
|
def cond_frac(self, results):
|
|
|
|
"""Returns condensate fraction"""
|
|
|
|
bval = results.best_values
|
|
|
|
tf_fit = ThomasFermi_2d(X, Y, centerx=bval['x0_bec'], centery=bval['y0_bec'], amplitude=bval['amp_bec'], sigmax=bval['sigmax_bec'], sigmay=bval['sigmay_bec'])
|
|
|
|
N_bec = np.sum(tf_fit)
|
|
|
|
fit = density_profile_BEC_2d(X, Y, **bval)
|
|
|
|
N_ges = np.sum(fit)
|
|
|
|
return N_bec/N_ges
|
|
|
|
|
|
|
|
def return_atom_number(self, result, X, Y, is_print=True):
|
|
|
|
"""Printing fitted atom number in bec + thermal state"""
|
|
|
|
bval = result.best_values
|
|
|
|
tf_fit = ThomasFermi_2d(X,Y,centerx=bval['x0_bec'], centery=bval['y0_bec'], amplitude=bval['amp_bec'], sigmax=bval['sigmax_bec'], sigmay=bval['sigmay_bec'])
|
|
|
|
N_bec = self.atom_n_conv * np.sum(tf_fit)
|
|
|
|
|
|
|
|
th_fit = polylog2_2d(X, Y, centerx=bval['x0_th'], centery=bval['y0_th'], amplitude=bval['amp_th'], sigmax=bval['sigma_th'], sigmay=bval['sigma_th'])
|
|
|
|
N_th = self.atom_n_conv * np.sum(th_fit)
|
|
|
|
|
|
|
|
# fit = density_profile_BEC_2d(X,Y, **bval)
|
|
|
|
# N_ges = self.atom_n_conv * np.sum(fit)
|
|
|
|
|
|
|
|
if is_print:
|
|
|
|
print()
|
|
|
|
print('Atom numbers:')
|
|
|
|
print(f' N_bec: {N_bec :.0f}')
|
|
|
|
print(f' N_th: {N_th :.0f}')
|
|
|
|
print(f' N_ges: {N_bec + N_th :.0f}')
|
|
|
|
print(f' Cond. frac: {N_bec/(N_bec + N_th):.2f}')
|
|
|
|
print('')
|
|
|
|
|
|
|
|
|
|
|
|
def return_temperature(self, result, omg, tof, is_print=True, eff_pix=2.472e-6):
|
|
|
|
"""Returns temperature of thermal cloud"""
|
|
|
|
R_th = result.best_values['sigma_th'] * eff_pix * np.sqrt(2)
|
|
|
|
print(R_th)
|
|
|
|
T = R_th**2 * 164*const.u/const.k * (1/omg**2 + tof**2)**(-1)
|
|
|
|
if is_print:
|
|
|
|
print(f'Temperature: {T*1e9:.2f} nK')
|
|
|
|
return T
|
|
|
|
|
|
|
|
def print_bval(self, res_s):
|
|
|
|
"""nicely print best fitted values + init values + bounds """
|
|
|
|
keys = res_s.best_values.keys()
|
|
|
|
bval = res_s.best_values
|
|
|
|
init = res_s.init_params
|
|
|
|
|
|
|
|
for item in keys:
|
|
|
|
print(f'{item}: {bval[item]:.3f}, (init = {init[item].value:.3f}), bounds = [{init[item].min:.2f} : {init[item].max :.2f}] ')
|
|
|
|
print('')
|
2023-05-23 22:14:03 +02:00
|
|
|
|
|
|
|
|
2023-05-17 11:03:34 +02:00
|
|
|
class NewFitModel(Model):
|
|
|
|
|
|
|
|
def __init__(self, func, independent_vars=['x'], prefix='', nan_policy='raise',
|
|
|
|
**kwargs):
|
|
|
|
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
|
|
|
|
'independent_vars': independent_vars})
|
|
|
|
|
|
|
|
super().__init__(func, **kwargs)
|
|
|
|
|
|
|
|
def guess(self, *args, **kwargs):
|
|
|
|
return self.make_params()
|
|
|
|
|
|
|
|
|
2023-05-04 13:47:33 +02:00
|
|
|
lmfit_models = {'Constant': ConstantModel,
|
|
|
|
'Complex Constant': ComplexConstantModel,
|
|
|
|
'Linear': LinearModel,
|
|
|
|
'Quadratic': QuadraticModel,
|
|
|
|
'Polynomial': PolynomialModel,
|
|
|
|
'Gaussian': GaussianModel,
|
|
|
|
'Gaussian-2D': Gaussian2dModel,
|
|
|
|
'Lorentzian': LorentzianModel,
|
|
|
|
'Split-Lorentzian': SplitLorentzianModel,
|
|
|
|
'Voigt': VoigtModel,
|
|
|
|
'PseudoVoigt': PseudoVoigtModel,
|
|
|
|
'Moffat': MoffatModel,
|
|
|
|
'Pearson7': Pearson7Model,
|
|
|
|
'StudentsT': StudentsTModel,
|
|
|
|
'Breit-Wigner': BreitWignerModel,
|
|
|
|
'Log-Normal': LognormalModel,
|
|
|
|
'Damped Oscillator': DampedOscillatorModel,
|
|
|
|
'Damped Harmonic Oscillator': DampedHarmonicOscillatorModel,
|
|
|
|
'Exponential Gaussian': ExponentialGaussianModel,
|
|
|
|
'Skewed Gaussian': SkewedGaussianModel,
|
|
|
|
'Skewed Voigt': SkewedVoigtModel,
|
|
|
|
'Thermal Distribution': ThermalDistributionModel,
|
|
|
|
'Doniach': DoniachModel,
|
|
|
|
'Power Law': PowerLawModel,
|
|
|
|
'Exponential': ExponentialModel,
|
|
|
|
'Step': StepModel,
|
|
|
|
'Rectangle': RectangleModel,
|
|
|
|
'Expression': ExpressionModel,
|
|
|
|
'Gaussian With Offset':GaussianWithOffsetModel,
|
|
|
|
'Lorentzian With Offset':LorentzianWithOffsetModel,
|
|
|
|
'Expansion':ExpansionModel,
|
2023-05-04 18:32:17 +02:00
|
|
|
'Damping Oscillation Model':DampingOscillationModel,
|
|
|
|
'Two Gaussian-2D':TwoGaussian2dModel,
|
2023-07-12 17:23:18 +02:00
|
|
|
'Thomas Fermi-2D': ThomasFermi2dModel,
|
|
|
|
'Density Profile of BEC-2D': DensityProfileBEC2dModel,
|
|
|
|
'Polylog2-2D': polylog2_2d,
|
2023-05-04 13:47:33 +02:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
class FitAnalyser():
|
2023-07-03 15:19:12 +02:00
|
|
|
"""This is a class integrated all the functions to do a fit.
|
|
|
|
"""
|
2023-05-04 13:47:33 +02:00
|
|
|
|
|
|
|
def __init__(self, fitModel, fitDim=1, **kwargs) -> None:
|
2023-07-03 15:19:12 +02:00
|
|
|
"""Initialize function
|
|
|
|
|
|
|
|
:param fitModel: The fitting model of fit function
|
|
|
|
:type fitModel: lmfit Model
|
|
|
|
:param fitDim: The dimension of the fit, defaults to 1
|
|
|
|
:type fitDim: int, optional
|
|
|
|
"""
|
2023-05-04 13:47:33 +02:00
|
|
|
|
|
|
|
if isinstance(fitModel, str):
|
|
|
|
self.fitModel = lmfit_models[fitModel](**kwargs)
|
|
|
|
else:
|
|
|
|
self.fitModel = fitModel
|
|
|
|
|
|
|
|
self.fitDim = fitDim
|
2023-05-07 00:38:52 +02:00
|
|
|
|
2023-05-22 19:35:09 +02:00
|
|
|
def print_params_set_template(self, params=None):
|
2023-07-03 15:19:12 +02:00
|
|
|
"""Print a template to manually set the initial parameters of the fit
|
|
|
|
|
|
|
|
:param params: An object of Parameters class to print, defaults to None
|
|
|
|
:type params: lmfit Paraemters, optional
|
|
|
|
"""
|
2023-05-07 00:38:52 +02:00
|
|
|
|
|
|
|
if params is None:
|
|
|
|
params = self.fitModel.make_params()
|
|
|
|
|
|
|
|
for key in params:
|
|
|
|
res = "params.add("
|
|
|
|
res += "name=\"" + key + "\", "
|
|
|
|
if not params[key].expr is None:
|
2023-06-02 18:42:18 +02:00
|
|
|
res += "expr=\"" + params[key].expr +"\")"
|
2023-05-07 00:38:52 +02:00
|
|
|
else:
|
|
|
|
res += "value=" + f'{params[key].value:3g}' + ", "
|
|
|
|
if str(params[key].max)=="inf":
|
|
|
|
res += "max=np.inf, "
|
|
|
|
else:
|
|
|
|
res += "max=" + f'{params[key].max:3g}' + ", "
|
|
|
|
if str(params[key].min)=="-inf":
|
|
|
|
res += "min=-np.inf, "
|
|
|
|
else:
|
|
|
|
res += "min=" + f'{params[key].min:3g}' + ", "
|
|
|
|
res += "vary=" + str(params[key].vary) + ")"
|
|
|
|
print(res)
|
2023-05-04 13:47:33 +02:00
|
|
|
|
2023-05-04 18:32:17 +02:00
|
|
|
def _guess_1D(self, data, x, **kwargs):
|
2023-07-03 15:19:12 +02:00
|
|
|
"""Call the guess function of the 1D fit model to guess the initial value.
|
|
|
|
|
|
|
|
:param data: The data to fit
|
|
|
|
:type data: 1D numpy array
|
|
|
|
:param x: The data of x axis
|
|
|
|
:type x: 1D numpy array
|
|
|
|
:return: The guessed initial parameters for the fit
|
|
|
|
:rtype: lmfit Parameters
|
|
|
|
"""
|
2023-05-04 18:32:17 +02:00
|
|
|
return self.fitModel.guess(data=data, x=x, **kwargs)
|
2023-05-04 13:47:33 +02:00
|
|
|
|
2023-05-04 18:32:17 +02:00
|
|
|
def _guess_2D(self, data, x, y, **kwargs):
|
2023-07-03 15:19:12 +02:00
|
|
|
"""Call the guess function of the 2D fit model to guess the initial value.
|
|
|
|
|
|
|
|
:param data: The flattened data to fit
|
|
|
|
:type data: 1D numpy array
|
|
|
|
:param x: The flattened data of x axis
|
|
|
|
:type x: 1D numpy array
|
|
|
|
:param y: The flattened data of y axis
|
|
|
|
:type y: 1D numpy array
|
|
|
|
:return: The guessed initial parameters for the fit
|
|
|
|
:rtype: lmfit Parameters
|
|
|
|
"""
|
2023-05-15 17:05:16 +02:00
|
|
|
data = data.flatten(order='F')
|
2023-05-04 18:32:17 +02:00
|
|
|
return self.fitModel.guess(data=data, x=x, y=y, **kwargs)
|
2023-05-04 13:47:33 +02:00
|
|
|
|
2023-05-10 19:03:03 +02:00
|
|
|
def guess(self, dataArray, x=None, y=None, guess_kwargs={}, input_core_dims=None, dask='parallelized', vectorize=True, keep_attrs=True, daskKwargs=None, **kwargs):
|
2023-07-03 18:37:44 +02:00
|
|
|
"""Call the guess function of the fit model to guess the initial value.
|
2023-07-03 15:19:12 +02:00
|
|
|
|
|
|
|
:param dataArray: The data for the fit
|
|
|
|
:type dataArray: xarray DataArray
|
|
|
|
:param x: The name of x axis in data or the data of x axis, defaults to None
|
|
|
|
:type x: str or numpy array, optional
|
|
|
|
:param y: The name of y axis in data or the data of y axis, defaults to None
|
|
|
|
:type y: str or numpy array, optional
|
|
|
|
:param guess_kwargs: the keyworded arguments to send to the guess function, defaults to {}
|
|
|
|
:type guess_kwargs: dict, optional
|
|
|
|
:param input_core_dims: over write of the same argument in xarray.apply_ufunc, defaults to None
|
2023-07-03 18:37:44 +02:00
|
|
|
:type input_core_dims: list or array like, optional
|
2023-07-03 15:19:12 +02:00
|
|
|
:param dask: over write of the same argument in xarray.apply_ufunc,, defaults to 'parallelized'
|
|
|
|
:type dask: str, optional
|
2023-07-05 12:15:03 +02:00
|
|
|
:param vectorize: over write of the same argument in xarray.apply_ufunc, defaults to True
|
2023-07-03 15:19:12 +02:00
|
|
|
:type vectorize: bool, optional
|
2023-07-05 12:15:03 +02:00
|
|
|
:param keep_attrs: over write of the same argument in xarray.apply_ufunc, defaults to True
|
2023-07-03 15:19:12 +02:00
|
|
|
:type keep_attrs: bool, optional
|
2023-07-05 12:15:03 +02:00
|
|
|
:param daskKwargs: over write of the same argument in xarray.apply_ufunc, defaults to None
|
2023-07-03 15:19:12 +02:00
|
|
|
:type daskKwargs: dict, optional
|
2023-07-03 18:37:44 +02:00
|
|
|
:return: The guessed initial parameters for the fit
|
|
|
|
:rtype: xarray DataArray
|
2023-07-03 15:19:12 +02:00
|
|
|
"""
|
2023-05-04 13:47:33 +02:00
|
|
|
|
|
|
|
kwargs.update(
|
|
|
|
{
|
|
|
|
"dask": dask,
|
|
|
|
"vectorize": vectorize,
|
2023-05-04 18:32:17 +02:00
|
|
|
"input_core_dims": input_core_dims,
|
|
|
|
'keep_attrs': keep_attrs,
|
2023-05-10 19:03:03 +02:00
|
|
|
|
2023-05-04 13:47:33 +02:00
|
|
|
}
|
|
|
|
)
|
|
|
|
|
2023-05-10 19:03:03 +02:00
|
|
|
if not daskKwargs is None:
|
|
|
|
kwargs.update({"dask_gufunc_kwargs": daskKwargs})
|
|
|
|
|
2023-05-04 13:47:33 +02:00
|
|
|
if input_core_dims is None:
|
|
|
|
kwargs.update(
|
|
|
|
{
|
|
|
|
"input_core_dims": [['x']],
|
|
|
|
}
|
|
|
|
)
|
|
|
|
|
|
|
|
if x is None:
|
|
|
|
if 'x' in dataArray.dims:
|
|
|
|
x = dataArray['x'].to_numpy()
|
|
|
|
else:
|
|
|
|
if isinstance(x, str):
|
|
|
|
if input_core_dims is None:
|
|
|
|
kwargs.update(
|
|
|
|
{
|
|
|
|
"input_core_dims": [[x]],
|
|
|
|
}
|
|
|
|
)
|
2023-05-05 18:25:03 +02:00
|
|
|
x = dataArray[x].to_numpy()
|
2023-05-04 13:47:33 +02:00
|
|
|
|
|
|
|
if self.fitDim == 1:
|
|
|
|
|
2023-05-04 18:32:17 +02:00
|
|
|
guess_kwargs.update(
|
|
|
|
{
|
|
|
|
'x':x,
|
|
|
|
}
|
|
|
|
)
|
|
|
|
|
|
|
|
return xr.apply_ufunc(self._guess_1D, dataArray, kwargs=guess_kwargs,
|
2023-05-04 13:47:33 +02:00
|
|
|
output_dtypes=[type(self.fitModel.make_params())],
|
|
|
|
**kwargs
|
|
|
|
)
|
|
|
|
|
|
|
|
if self.fitDim == 2:
|
|
|
|
|
|
|
|
if y is None:
|
|
|
|
if 'y' in dataArray.dims:
|
|
|
|
y = dataArray['y'].to_numpy()
|
|
|
|
if input_core_dims is None:
|
|
|
|
kwargs.update(
|
|
|
|
{
|
|
|
|
"input_core_dims": [['x', 'y']],
|
|
|
|
}
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
if isinstance(y, str):
|
|
|
|
kwargs["input_core_dims"][0] = np.append(kwargs["input_core_dims"][0], y)
|
2023-05-05 18:25:03 +02:00
|
|
|
y = dataArray[y].to_numpy()
|
2023-05-04 13:47:33 +02:00
|
|
|
elif input_core_dims is None:
|
|
|
|
kwargs.update(
|
|
|
|
{
|
|
|
|
"input_core_dims": [['x', 'y']],
|
|
|
|
}
|
|
|
|
)
|
|
|
|
|
|
|
|
_x, _y = np.meshgrid(x, y)
|
|
|
|
_x = _x.flatten()
|
|
|
|
_y = _y.flatten()
|
|
|
|
|
2023-05-15 17:05:16 +02:00
|
|
|
# dataArray = dataArray.stack(_z=(kwargs["input_core_dims"][0][0], kwargs["input_core_dims"][0][1]))
|
2023-05-04 13:47:33 +02:00
|
|
|
|
2023-05-15 17:05:16 +02:00
|
|
|
# kwargs["input_core_dims"][0] = ['_z']
|
2023-05-04 13:47:33 +02:00
|
|
|
|
2023-05-04 18:32:17 +02:00
|
|
|
guess_kwargs.update(
|
|
|
|
{
|
|
|
|
'x':_x,
|
|
|
|
'y':_y,
|
|
|
|
}
|
|
|
|
)
|
|
|
|
|
|
|
|
return xr.apply_ufunc(self._guess_2D, dataArray, kwargs=guess_kwargs,
|
2023-05-04 13:47:33 +02:00
|
|
|
output_dtypes=[type(self.fitModel.make_params())],
|
|
|
|
**kwargs
|
|
|
|
)
|
|
|
|
|
|
|
|
def _fit_1D(self, data, params, x):
|
2023-07-03 18:37:44 +02:00
|
|
|
"""Call the fit function of the 1D fit model to do the fit.
|
|
|
|
|
|
|
|
:param data: The data to fit
|
|
|
|
:type data: 1D numpy array
|
|
|
|
:param params: The initial paramters of the fit
|
|
|
|
:type params: lmfit Parameters
|
|
|
|
:param x: The data of x axis
|
|
|
|
:type x: 1D numpy array
|
|
|
|
:return: The result of the fit
|
|
|
|
:rtype: lmfit FitResult
|
|
|
|
"""
|
2023-05-16 15:51:13 +02:00
|
|
|
return self.fitModel.fit(data=data, x=x, params=params, nan_policy='omit')
|
2023-05-04 13:47:33 +02:00
|
|
|
|
|
|
|
def _fit_2D(self, data, params, x, y):
|
2023-07-03 18:37:44 +02:00
|
|
|
"""Call the fit function of the 2D fit model to do the fit.
|
|
|
|
|
|
|
|
:param data: The flattened data to fit
|
|
|
|
:type data: 1D numpy array
|
|
|
|
:param params: The flattened initial paramters of the fit
|
|
|
|
:type params: lmfit Parameters
|
|
|
|
:param x: The flattened data of x axis
|
|
|
|
:type x: 1D numpy array
|
|
|
|
:param y: The flattened data of y axis
|
|
|
|
:type y: 1D numpy array
|
|
|
|
:return: The result of the fit
|
|
|
|
:rtype: lmfit FitResult
|
|
|
|
"""
|
2023-05-15 17:05:16 +02:00
|
|
|
data = data.flatten(order='F')
|
2023-05-16 15:51:13 +02:00
|
|
|
return self.fitModel.fit(data=data, x=x, y=y, params=params, nan_policy='omit')
|
2023-05-04 13:47:33 +02:00
|
|
|
|
2023-05-10 19:03:03 +02:00
|
|
|
def fit(self, dataArray, paramsArray, x=None, y=None, input_core_dims=None, dask='parallelized', vectorize=True, keep_attrs=True, daskKwargs=None, **kwargs):
|
2023-07-03 18:37:44 +02:00
|
|
|
"""Call the fit function of the fit model to do the fit.
|
|
|
|
|
|
|
|
:param dataArray: The data for the fit
|
|
|
|
:type dataArray: xarray DataArray
|
|
|
|
:param paramsArray: The flattened initial paramters of the fit
|
|
|
|
:type paramsArray: xarray DataArray or lmfit Parameters
|
|
|
|
:param x: The name of x axis in data or the data of x axis, defaults to None
|
|
|
|
:type x: str or numpy array, optional
|
|
|
|
:param y: The name of y axis in data or the data of y axis, defaults to None
|
|
|
|
:type y: str or numpy array, optional
|
|
|
|
:param input_core_dims: over write of the same argument in xarray.apply_ufunc, defaults to None, defaults to None
|
|
|
|
:type input_core_dims: list or array like, optional
|
|
|
|
:param dask: over write of the same argument in xarray.apply_ufunc, defaults to None, defaults to 'parallelized'
|
|
|
|
:type dask: str, optional
|
|
|
|
:param vectorize: over write of the same argument in xarray.apply_ufunc, defaults to None, defaults to True
|
|
|
|
:type vectorize: bool, optional
|
|
|
|
:param keep_attrs: over write of the same argument in xarray.apply_ufunc, defaults to None, defaults to True
|
|
|
|
:type keep_attrs: bool, optional
|
|
|
|
:param daskKwargs: over write of the same argument in xarray.apply_ufunc, defaults to None, defaults to None
|
|
|
|
:type daskKwargs: dict, optional
|
|
|
|
:return: The fit result
|
|
|
|
:rtype: xarray DataArray
|
|
|
|
"""
|
2023-05-04 13:47:33 +02:00
|
|
|
kwargs.update(
|
|
|
|
{
|
|
|
|
"dask": dask,
|
|
|
|
"vectorize": vectorize,
|
|
|
|
"input_core_dims": input_core_dims,
|
2023-05-04 18:32:17 +02:00
|
|
|
'keep_attrs': keep_attrs,
|
2023-05-04 13:47:33 +02:00
|
|
|
}
|
|
|
|
)
|
2023-05-10 19:03:03 +02:00
|
|
|
|
|
|
|
if not daskKwargs is None:
|
|
|
|
kwargs.update({"dask_gufunc_kwargs": daskKwargs})
|
2023-05-04 13:47:33 +02:00
|
|
|
|
|
|
|
if isinstance(paramsArray, type(self.fitModel.make_params())):
|
|
|
|
|
2023-05-07 00:38:52 +02:00
|
|
|
if input_core_dims is None:
|
|
|
|
kwargs.update(
|
|
|
|
{
|
|
|
|
"input_core_dims": [['x']],
|
|
|
|
}
|
|
|
|
)
|
|
|
|
|
|
|
|
if x is None:
|
|
|
|
if 'x' in dataArray.dims:
|
|
|
|
x = dataArray['x'].to_numpy()
|
|
|
|
else:
|
|
|
|
if isinstance(x, str):
|
|
|
|
if input_core_dims is None:
|
|
|
|
kwargs.update(
|
|
|
|
{
|
|
|
|
"input_core_dims": [[x]],
|
|
|
|
}
|
|
|
|
)
|
|
|
|
x = dataArray[x].to_numpy()
|
|
|
|
|
2023-05-04 13:47:33 +02:00
|
|
|
if self.fitDim == 1:
|
2023-06-02 18:42:18 +02:00
|
|
|
|
|
|
|
res = xr.apply_ufunc(self._fit_1D, dataArray, kwargs={'params':paramsArray,'x':x},
|
2023-05-04 13:47:33 +02:00
|
|
|
output_dtypes=[type(lmfit.model.ModelResult(self.fitModel, self.fitModel.make_params()))],
|
|
|
|
**kwargs)
|
2023-06-02 18:42:18 +02:00
|
|
|
|
|
|
|
if keep_attrs:
|
|
|
|
res.attrs = copy.copy(dataArray.attrs)
|
|
|
|
|
|
|
|
return res
|
2023-05-04 13:47:33 +02:00
|
|
|
|
|
|
|
if self.fitDim == 2:
|
|
|
|
|
|
|
|
if y is None:
|
|
|
|
if 'y' in dataArray.dims:
|
|
|
|
y = dataArray['y'].to_numpy()
|
|
|
|
if input_core_dims is None:
|
|
|
|
kwargs.update(
|
|
|
|
{
|
2023-05-07 00:38:52 +02:00
|
|
|
"input_core_dims": [['x', 'y']],
|
2023-05-04 13:47:33 +02:00
|
|
|
}
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
if isinstance(y, str):
|
|
|
|
kwargs["input_core_dims"][0] = np.append(kwargs["input_core_dims"][0], y)
|
2023-05-05 18:25:03 +02:00
|
|
|
y = dataArray[y].to_numpy()
|
2023-05-04 13:47:33 +02:00
|
|
|
elif input_core_dims is None:
|
|
|
|
kwargs.update(
|
|
|
|
{
|
2023-05-07 00:38:52 +02:00
|
|
|
"input_core_dims": [['x', 'y']],
|
2023-05-04 13:47:33 +02:00
|
|
|
}
|
|
|
|
)
|
|
|
|
|
|
|
|
_x, _y = np.meshgrid(x, y)
|
|
|
|
_x = _x.flatten()
|
|
|
|
_y = _y.flatten()
|
|
|
|
|
2023-05-15 17:05:16 +02:00
|
|
|
# dataArray = dataArray.stack(_z=(kwargs["input_core_dims"][0][0], kwargs["input_core_dims"][0][1]))
|
2023-05-04 13:47:33 +02:00
|
|
|
|
2023-05-15 17:05:16 +02:00
|
|
|
# kwargs["input_core_dims"][0] = ['_z']
|
2023-05-04 13:47:33 +02:00
|
|
|
|
2023-06-02 18:42:18 +02:00
|
|
|
res = xr.apply_ufunc(self._fit_2D, dataArray, kwargs={'params':paramsArray,'x':_x, 'y':_y},
|
2023-05-04 13:47:33 +02:00
|
|
|
output_dtypes=[type(lmfit.model.ModelResult(self.fitModel, self.fitModel.make_params()))],
|
|
|
|
**kwargs)
|
2023-06-02 18:42:18 +02:00
|
|
|
|
|
|
|
if keep_attrs:
|
|
|
|
res.attrs = copy.copy(dataArray.attrs)
|
|
|
|
|
|
|
|
return res
|
2023-05-04 13:47:33 +02:00
|
|
|
|
|
|
|
else:
|
2023-05-07 00:38:52 +02:00
|
|
|
|
|
|
|
if input_core_dims is None:
|
|
|
|
kwargs.update(
|
|
|
|
{
|
|
|
|
"input_core_dims": [['x'], []],
|
|
|
|
}
|
|
|
|
)
|
|
|
|
|
|
|
|
if x is None:
|
|
|
|
if 'x' in dataArray.dims:
|
|
|
|
x = dataArray['x'].to_numpy()
|
|
|
|
else:
|
|
|
|
if isinstance(x, str):
|
|
|
|
if input_core_dims is None:
|
|
|
|
kwargs.update(
|
|
|
|
{
|
|
|
|
"input_core_dims": [[x], []],
|
|
|
|
}
|
|
|
|
)
|
|
|
|
x = dataArray[x].to_numpy()
|
|
|
|
|
2023-05-04 13:47:33 +02:00
|
|
|
if self.fitDim == 1:
|
|
|
|
return xr.apply_ufunc(self._fit_1D, dataArray, paramsArray, kwargs={'x':x},
|
|
|
|
output_dtypes=[type(lmfit.model.ModelResult(self.fitModel, self.fitModel.make_params()))],
|
|
|
|
**kwargs)
|
|
|
|
|
|
|
|
if self.fitDim == 2:
|
|
|
|
|
|
|
|
if input_core_dims is None:
|
|
|
|
kwargs.update(
|
|
|
|
{
|
|
|
|
"input_core_dims": [['x', 'y'], []],
|
|
|
|
}
|
|
|
|
)
|
|
|
|
|
|
|
|
if y is None:
|
|
|
|
if 'y' in dataArray.dims:
|
|
|
|
y = dataArray['y'].to_numpy()
|
|
|
|
else:
|
|
|
|
if isinstance(y, str):
|
|
|
|
y = dataArray[y].to_numpy()
|
|
|
|
kwargs["input_core_dims"][0] = np.append(kwargs["input_core_dims"][0], y)
|
|
|
|
|
|
|
|
_x, _y = np.meshgrid(x, y)
|
|
|
|
_x = _x.flatten()
|
|
|
|
_y = _y.flatten()
|
|
|
|
|
2023-05-15 17:05:16 +02:00
|
|
|
# dataArray = dataArray.stack(_z=(kwargs["input_core_dims"][0][0], kwargs["input_core_dims"][0][1]))
|
2023-05-04 13:47:33 +02:00
|
|
|
|
2023-05-15 17:05:16 +02:00
|
|
|
# kwargs["input_core_dims"][0] = ['_z']
|
2023-05-04 13:47:33 +02:00
|
|
|
|
|
|
|
return xr.apply_ufunc(self._fit_2D, dataArray, paramsArray, kwargs={'x':_x, 'y':_y},
|
|
|
|
output_dtypes=[type(lmfit.model.ModelResult(self.fitModel, self.fitModel.make_params()))],
|
|
|
|
**kwargs)
|
|
|
|
|
|
|
|
def _eval_1D(self, fitResult, x):
|
2023-07-03 18:37:44 +02:00
|
|
|
"""Call the eval function of the 1D fit model to calculate the curve.
|
|
|
|
|
|
|
|
:param fitResult: The result of fit
|
|
|
|
:type fitResult: lmfit FitResult
|
|
|
|
:param x: The data of x axis
|
|
|
|
:type x: 1D numpy array
|
|
|
|
:return: The curve based on the fit result
|
|
|
|
:rtype: 1D numpy array
|
|
|
|
"""
|
2023-05-04 13:47:33 +02:00
|
|
|
return self.fitModel.eval(x=x, **fitResult.best_values)
|
|
|
|
|
|
|
|
def _eval_2D(self, fitResult, x, y, shape):
|
2023-07-03 18:37:44 +02:00
|
|
|
"""Call the eval function of the 2D fit model to calculate the curve.
|
|
|
|
|
|
|
|
:param fitResult: The result of fit
|
|
|
|
:type fitResult: lmfit FitResult
|
|
|
|
:param x: The data of x axis
|
|
|
|
:type x: 1D numpy array
|
|
|
|
:param y: The flattened data of y axis
|
|
|
|
:type y: 1D numpy array
|
|
|
|
:param shape: The desired shape for output
|
|
|
|
:type shape: list, tuple or array like
|
|
|
|
:return: The curve based on the fit result
|
|
|
|
:rtype: 2D numpy array
|
|
|
|
"""
|
2023-05-04 13:47:33 +02:00
|
|
|
res = self.fitModel.eval(x=x, y=y, **fitResult.best_values)
|
2023-05-15 17:05:16 +02:00
|
|
|
return res.reshape(shape, order='F')
|
2023-05-04 13:47:33 +02:00
|
|
|
|
2023-05-10 19:03:03 +02:00
|
|
|
def eval(self, fitResultArray, x=None, y=None, output_core_dims=None, prefix="", dask='parallelized', vectorize=True, daskKwargs=None, **kwargs):
|
2023-07-05 12:15:03 +02:00
|
|
|
"""Call the eval function of the fit model to calculate the curve.
|
2023-07-03 18:37:44 +02:00
|
|
|
|
|
|
|
:param fitResultArray: The result of fit
|
|
|
|
:type fitResultArray: xarray DataArray
|
|
|
|
:param x: The name of x axis in data or the data of x axis, defaults to None
|
|
|
|
:type x: str or numpy array, optional
|
|
|
|
:param y: The name of y axis in data or the data of y axis, defaults to None
|
|
|
|
:type y: str or numpy array, optional
|
|
|
|
:param output_core_dims: over write of the same argument in xarray.apply_ufunc, defaults to None
|
|
|
|
:type output_core_dims: list, optional
|
|
|
|
:param prefix: prefix str of the fit model, defaults to ""
|
|
|
|
:type prefix: str, optional
|
|
|
|
:param dask: over write of the same argument in xarray.apply_ufunc, defaults to 'parallelized'
|
|
|
|
:type dask: str, optional
|
|
|
|
:param vectorize: over write of the same argument in xarray.apply_ufunc, defaults to True
|
|
|
|
:type vectorize: bool, optional
|
|
|
|
:param daskKwargs: over write of the same argument in xarray.apply_ufunc, defaults to None
|
|
|
|
:type daskKwargs: dict, optional
|
|
|
|
:return: The curve based on the fit result
|
|
|
|
:rtype: xarray
|
|
|
|
"""
|
2023-05-04 13:47:33 +02:00
|
|
|
|
|
|
|
kwargs.update(
|
|
|
|
{
|
|
|
|
"dask": dask,
|
|
|
|
"vectorize": vectorize,
|
|
|
|
"output_core_dims": output_core_dims,
|
|
|
|
}
|
|
|
|
)
|
|
|
|
|
2023-05-10 19:03:03 +02:00
|
|
|
if daskKwargs is None:
|
|
|
|
daskKwargs = {}
|
|
|
|
|
2023-05-04 13:47:33 +02:00
|
|
|
if self.fitDim == 1:
|
|
|
|
|
|
|
|
if output_core_dims is None:
|
|
|
|
kwargs.update(
|
|
|
|
{
|
2023-05-05 18:25:03 +02:00
|
|
|
"output_core_dims": prefix+'x',
|
2023-05-04 13:47:33 +02:00
|
|
|
}
|
|
|
|
)
|
|
|
|
output_core_dims = [prefix+'x']
|
|
|
|
|
2023-05-10 19:03:03 +02:00
|
|
|
daskKwargs.update(
|
|
|
|
{
|
|
|
|
'output_sizes': {
|
|
|
|
output_core_dims[0]: np.size(x),
|
|
|
|
},
|
|
|
|
'meta': np.ndarray((0,0), dtype=float)
|
|
|
|
}
|
|
|
|
)
|
|
|
|
|
2023-05-04 13:47:33 +02:00
|
|
|
kwargs.update(
|
|
|
|
{
|
2023-05-10 19:03:03 +02:00
|
|
|
"dask_gufunc_kwargs": daskKwargs,
|
2023-05-04 13:47:33 +02:00
|
|
|
}
|
|
|
|
)
|
|
|
|
|
2023-05-08 16:57:58 +02:00
|
|
|
res = xr.apply_ufunc(self._eval_1D, fitResultArray, kwargs={"x":x}, **kwargs)
|
|
|
|
return res.assign_coords({prefix+'x':np.array(x)})
|
2023-05-04 13:47:33 +02:00
|
|
|
|
|
|
|
if self.fitDim == 2:
|
|
|
|
if output_core_dims is None:
|
|
|
|
kwargs.update(
|
|
|
|
{
|
|
|
|
"output_core_dims": [[prefix+'x', prefix+'y']],
|
|
|
|
}
|
|
|
|
)
|
|
|
|
output_core_dims = [prefix+'x', prefix+'y']
|
2023-05-10 19:03:03 +02:00
|
|
|
|
|
|
|
daskKwargs.update(
|
|
|
|
{
|
|
|
|
'output_sizes': {
|
|
|
|
output_core_dims[0]: np.size(x),
|
|
|
|
output_core_dims[1]: np.size(y),
|
|
|
|
},
|
|
|
|
'meta': np.ndarray((0,0), dtype=float)
|
|
|
|
},
|
|
|
|
)
|
2023-05-04 13:47:33 +02:00
|
|
|
|
|
|
|
kwargs.update(
|
|
|
|
{
|
2023-05-10 19:03:03 +02:00
|
|
|
"dask_gufunc_kwargs": daskKwargs,
|
2023-05-04 13:47:33 +02:00
|
|
|
}
|
|
|
|
)
|
|
|
|
|
|
|
|
_x, _y = np.meshgrid(x, y)
|
|
|
|
_x = _x.flatten()
|
|
|
|
_y = _y.flatten()
|
|
|
|
|
2023-05-08 16:57:58 +02:00
|
|
|
res = xr.apply_ufunc(self._eval_2D, fitResultArray, kwargs={"x":_x, "y":_y, "shape":(len(x), len(y))}, **kwargs)
|
|
|
|
return res.assign_coords({prefix+'x':np.array(x), prefix+'y':np.array(y)})
|
2023-05-04 13:47:33 +02:00
|
|
|
|
2023-05-07 00:38:52 +02:00
|
|
|
def _get_fit_value_single(self, fitResult, key):
|
2023-07-03 18:37:44 +02:00
|
|
|
"""get value of one single parameter from fit result
|
|
|
|
|
|
|
|
:param fitResult: The result of the fit
|
|
|
|
:type fitResult: lmfit FitResult
|
|
|
|
:param key: The name of the parameter
|
|
|
|
:type key: str
|
|
|
|
:return: The vaule of the parameter
|
|
|
|
:rtype: float
|
|
|
|
"""
|
2023-05-07 00:38:52 +02:00
|
|
|
return fitResult.params[key].value
|
|
|
|
|
|
|
|
def _get_fit_value(self, fitResult, params):
|
2023-07-03 18:37:44 +02:00
|
|
|
"""get value of parameters from fit result
|
|
|
|
|
|
|
|
:param fitResult: The result of the fit
|
|
|
|
:type fitResult: lmfit FitResult
|
|
|
|
:param params: A list of the name of paramerters to read
|
|
|
|
:type params: list or array like
|
|
|
|
:return: The vaule of the parameter
|
|
|
|
:rtype: 1D numpy array
|
|
|
|
"""
|
2023-05-07 00:38:52 +02:00
|
|
|
func = np.vectorize(self._get_fit_value_single)
|
|
|
|
res = tuple(
|
|
|
|
func(fitResult, key)
|
|
|
|
for key in params
|
|
|
|
)
|
|
|
|
|
|
|
|
return res
|
|
|
|
|
|
|
|
def get_fit_value(self, fitResult, dask='parallelized', **kwargs):
|
2023-07-03 18:37:44 +02:00
|
|
|
"""get value of parameters from fit result
|
|
|
|
|
|
|
|
:param fitResult: The result of the fit
|
|
|
|
:type fitResult: lmfit FitResult
|
|
|
|
:param dask: over write of the same argument in xarray.apply_ufunc, defaults to 'parallelized'
|
|
|
|
:type dask: str, optional
|
|
|
|
:return: The vaule of the parameter
|
|
|
|
:rtype: xarray DataArray
|
|
|
|
"""
|
2023-05-07 00:38:52 +02:00
|
|
|
firstIndex = {
|
|
|
|
key: fitResult[key][0]
|
|
|
|
for key in fitResult.dims
|
|
|
|
}
|
|
|
|
firstFitResult = fitResult.sel(firstIndex).item()
|
|
|
|
|
|
|
|
params = list(firstFitResult.params.keys())
|
|
|
|
|
|
|
|
output_core_dims=[ [] for _ in range(len(params))]
|
|
|
|
|
|
|
|
kwargs.update(
|
|
|
|
{
|
|
|
|
"dask": dask,
|
|
|
|
"output_core_dims": output_core_dims,
|
|
|
|
}
|
|
|
|
)
|
|
|
|
|
|
|
|
value = xr.apply_ufunc(self._get_fit_value, fitResult, kwargs=dict(params=params), **kwargs)
|
|
|
|
|
|
|
|
value = xr.Dataset(
|
|
|
|
data_vars={
|
|
|
|
params[i]: value[i]
|
|
|
|
for i in range(len(params))
|
|
|
|
},
|
|
|
|
attrs=fitResult.attrs
|
|
|
|
)
|
|
|
|
|
|
|
|
return value
|
|
|
|
|
|
|
|
def _get_fit_std_single(self, fitResult, key):
|
2023-07-03 18:37:44 +02:00
|
|
|
"""get standard deviation of one single parameter from fit result
|
|
|
|
|
|
|
|
:param fitResult: The result of the fit
|
|
|
|
:type fitResult: lmfit FitResult
|
|
|
|
:param key: The name of the parameter
|
|
|
|
:type key: str
|
|
|
|
:return: The vaule of the parameter
|
|
|
|
:rtype: float
|
|
|
|
"""
|
2023-05-07 00:38:52 +02:00
|
|
|
return fitResult.params[key].stderr
|
|
|
|
|
|
|
|
def _get_fit_std(self, fitResult, params):
|
2023-07-03 18:37:44 +02:00
|
|
|
"""get standard deviation of parameters from fit result
|
|
|
|
|
|
|
|
:param fitResult: The result of the fit
|
|
|
|
:type fitResult: lmfit FitResult
|
|
|
|
:param params: A list of the name of paramerters to read
|
|
|
|
:type params: list or array like
|
|
|
|
:return: The vaule of the parameter
|
|
|
|
:rtype: 1D numpy array
|
|
|
|
"""
|
2023-05-07 00:38:52 +02:00
|
|
|
func = np.vectorize(self._get_fit_std_single)
|
|
|
|
res = tuple(
|
|
|
|
func(fitResult, key)
|
|
|
|
for key in params
|
|
|
|
)
|
|
|
|
|
|
|
|
return res
|
|
|
|
|
|
|
|
def get_fit_std(self, fitResult, dask='parallelized', **kwargs):
|
2023-07-03 18:37:44 +02:00
|
|
|
"""get standard deviation of parameters from fit result
|
|
|
|
|
|
|
|
:param fitResult: The result of the fit
|
|
|
|
:type fitResult: lmfit FitResult
|
|
|
|
:param dask: over write of the same argument in xarray.apply_ufunc, defaults to 'parallelized'
|
|
|
|
:type dask: str, optional
|
|
|
|
:return: The vaule of the parameter
|
|
|
|
:rtype: xarray DataArray
|
|
|
|
"""
|
2023-05-07 00:38:52 +02:00
|
|
|
firstIndex = {
|
|
|
|
key: fitResult[key][0]
|
|
|
|
for key in fitResult.dims
|
|
|
|
}
|
|
|
|
firstFitResult = fitResult.sel(firstIndex).item()
|
|
|
|
|
|
|
|
params = list(firstFitResult.params.keys())
|
|
|
|
|
|
|
|
output_core_dims=[ [] for _ in range(len(params))]
|
|
|
|
|
|
|
|
kwargs.update(
|
|
|
|
{
|
|
|
|
"dask": dask,
|
|
|
|
"output_core_dims": output_core_dims,
|
|
|
|
}
|
|
|
|
)
|
|
|
|
|
|
|
|
value = xr.apply_ufunc(self._get_fit_std, fitResult, kwargs=dict(params=params), **kwargs)
|
|
|
|
|
|
|
|
value = xr.Dataset(
|
|
|
|
data_vars={
|
|
|
|
params[i]: value[i]
|
|
|
|
for i in range(len(params))
|
|
|
|
},
|
|
|
|
attrs=fitResult.attrs
|
|
|
|
)
|
|
|
|
|
|
|
|
return value
|
|
|
|
|
|
|
|
def _get_fit_full_result_single(self, fitResult, key):
|
2023-07-03 18:37:44 +02:00
|
|
|
"""get the full result of one single parameter from fit result
|
|
|
|
|
|
|
|
:param fitResult: The result of the fit
|
|
|
|
:type fitResult: lmfit FitResult
|
|
|
|
:param key: The name of the parameter
|
|
|
|
:type key: str
|
|
|
|
:return: The vaule of the parameter
|
|
|
|
:rtype: float
|
|
|
|
"""
|
2023-05-08 11:47:35 +02:00
|
|
|
|
|
|
|
if not fitResult.params[key].value is None:
|
|
|
|
value = fitResult.params[key].value
|
|
|
|
else:
|
|
|
|
value = np.nan
|
|
|
|
|
|
|
|
if not fitResult.params[key].stderr is None:
|
|
|
|
std = fitResult.params[key].stderr
|
|
|
|
else:
|
|
|
|
std = np.nan
|
|
|
|
|
|
|
|
return ufloat(value, std)
|
2023-05-07 00:38:52 +02:00
|
|
|
|
|
|
|
def _get_fit_full_result(self, fitResult, params):
|
2023-07-03 18:37:44 +02:00
|
|
|
"""get the full result of parameters from fit result
|
|
|
|
|
|
|
|
:param fitResult: The result of the fit
|
|
|
|
:type fitResult: lmfit FitResult
|
|
|
|
:param params: A list of the name of paramerters to read
|
|
|
|
:type params: list or array like
|
|
|
|
:return: The vaule of the parameter
|
|
|
|
:rtype: 1D numpy array
|
|
|
|
"""
|
2023-05-07 00:38:52 +02:00
|
|
|
func = np.vectorize(self._get_fit_full_result_single)
|
|
|
|
res = tuple(
|
|
|
|
func(fitResult, key)
|
|
|
|
for key in params
|
|
|
|
)
|
|
|
|
|
|
|
|
return res
|
|
|
|
|
|
|
|
def get_fit_full_result(self, fitResult, dask='parallelized', **kwargs):
|
2023-07-03 18:37:44 +02:00
|
|
|
"""get the full result of parameters from fit result
|
|
|
|
|
|
|
|
:param fitResult: The result of the fit
|
|
|
|
:type fitResult: lmfit FitResult
|
|
|
|
:param dask: over write of the same argument in xarray.apply_ufunc, defaults to 'parallelized'
|
|
|
|
:type dask: str, optional
|
|
|
|
:return: The vaule of the parameter
|
|
|
|
:rtype: xarray DataArray
|
|
|
|
"""
|
2023-05-07 00:38:52 +02:00
|
|
|
firstIndex = {
|
|
|
|
key: fitResult[key][0]
|
|
|
|
for key in fitResult.dims
|
|
|
|
}
|
|
|
|
firstFitResult = fitResult.sel(firstIndex).item()
|
|
|
|
|
|
|
|
params = list(firstFitResult.params.keys())
|
|
|
|
|
|
|
|
output_core_dims=[ [] for _ in range(len(params))]
|
|
|
|
|
|
|
|
kwargs.update(
|
|
|
|
{
|
|
|
|
"dask": dask,
|
|
|
|
"output_core_dims": output_core_dims,
|
|
|
|
}
|
|
|
|
)
|
|
|
|
|
|
|
|
value = xr.apply_ufunc(self._get_fit_full_result, fitResult, kwargs=dict(params=params), **kwargs)
|
|
|
|
|
|
|
|
value = xr.Dataset(
|
|
|
|
data_vars={
|
|
|
|
params[i]: value[i]
|
|
|
|
for i in range(len(params))
|
|
|
|
},
|
|
|
|
attrs=fitResult.attrs
|
|
|
|
)
|
|
|
|
|
|
|
|
return value
|
|
|
|
|
|
|
|
|
|
|
|
|