analyseScript/Analyser/FitAnalyser.py

905 lines
34 KiB
Python
Raw Normal View History

2023-05-04 13:47:33 +02:00
import numpy as np
2023-05-07 00:38:52 +02:00
from uncertainties import ufloat
2023-05-04 13:47:33 +02:00
import lmfit
from lmfit.models import (ConstantModel, ComplexConstantModel, LinearModel, QuadraticModel,
PolynomialModel, SineModel, GaussianModel, Gaussian2dModel, LorentzianModel,
SplitLorentzianModel, VoigtModel, PseudoVoigtModel, MoffatModel,
Pearson7Model, StudentsTModel, BreitWignerModel, LognormalModel,
DampedOscillatorModel, ExponentialGaussianModel, SkewedGaussianModel,
SkewedVoigtModel, ThermalDistributionModel, DoniachModel, PowerLawModel,
ExponentialModel, StepModel, RectangleModel, ExpressionModel, DampedHarmonicOscillatorModel)
from lmfit.models import (guess_from_peak, guess_from_peak2d, fwhm_expr, height_expr,
update_param_vals)
from lmfit.lineshapes import (not_zero, breit_wigner, damped_oscillator, dho, doniach,
expgaussian, exponential, gaussian, gaussian2d,
linear, lognormal, lorentzian, moffat, parabolic,
pearson7, powerlaw, pvoigt, rectangle, sine,
skewed_gaussian, skewed_voigt, split_lorentzian, step,
students_t, thermal_distribution, tiny, voigt)
from lmfit import Model
import numpy as np
from numpy import (arctan, copysign, cos, exp, isclose, isnan, log, pi, real,
sin, sqrt, where)
from scipy.special import erf, erfc
from scipy.special import gamma as gamfcn
from scipy.special import wofz
from scipy.optimize import curve_fit
import xarray as xr
log2 = log(2)
s2pi = sqrt(2*pi)
s2 = sqrt(2.0)
def gaussianWithOffset(x, amplitude=1.0, center=0.0, sigma=1.0, offset=0.0):
"""Return a 1-dimensional Gaussian function with an offset.
gaussian(x, amplitude, center, sigma) =
(amplitude/(s2pi*sigma)) * exp(-(1.0*x-center)**2 / (2*sigma**2))
"""
return ((amplitude/(max(tiny, s2pi*sigma)))
* exp(-(1.0*x-center)**2 / max(tiny, (2*sigma**2))) + offset)
def lorentzianWithOffset(x, amplitude=1.0, center=0.0, sigma=1.0, offset=0.0):
return ((amplitude/(1 + ((1.0*x-center)/max(tiny, sigma))**2))
/ max(tiny, (pi*sigma)) + offset)
def exponentialWithOffset(x, amplitude=1.0, decay=1.0, offset=0.0):
decay = not_zero(decay)
return amplitude * exp(-x/decay) + offset
def expansion(x, amplitude=1.0, offset=0.0):
return np.sqrt(amplitude*x*x + offset)
def dampingOscillation(x, center=0, amplitude=1.0, frequency=1.0, decay=1.0, offset=0.0):
return amplitude * np.exp(-decay*x)*np.sin(2*np.pi*frequency*(x-center)) + offset
2023-05-04 18:32:17 +02:00
def two_gaussian2d(x, y=0.0, A_amplitude=1.0, A_centerx=0.0, A_centery=0.0, A_sigmax=1.0,
A_sigmay=1.0, B_amplitude=1.0, B_centerx=0.0, B_centery=0.0, B_sigmax=1.0,
B_sigmay=1.0):
"""Return a 2-dimensional Gaussian function.
gaussian2d(x, y, amplitude, centerx, centery, sigmax, sigmay) =
amplitude/(2*pi*sigmax*sigmay) * exp(-(x-centerx)**2/(2*sigmax**2)
-(y-centery)**2/(2*sigmay**2))
"""
z = A_amplitude*(gaussian(x, amplitude=1, center=A_centerx, sigma=A_sigmax) *
gaussian(y, amplitude=1, center=A_centery, sigma=A_sigmay))
z += B_amplitude*(gaussian(x, amplitude=1, center=B_centerx, sigma=B_sigmax) *
gaussian(y, amplitude=1, center=B_centery, sigma=B_sigmay))
return z
2023-05-04 13:47:33 +02:00
2023-05-23 22:14:03 +02:00
def ThomasFermi_2d(x, y=0.0, centerx=0.0, centery=0.0, amplitude=1.0, sigmax=1.0, sigmay=1.0):
res = (1- ((x-centerx)/(sigmax))**2 - ((y-centery)/(sigmay))**2)**(3 / 2)
return amplitude * 5 / 2 / np.pi / max(tiny, sigmax * sigmay) * np.where(res > 0, res, 0)
def polylog(power, numerator):
dataShape = numerator.shape
numerator = np.tile(numerator, (20, 1))
denominator = np.arange(1, 21)
denominator = np.tile(denominator, (dataShape[0], 1))
denominator = denominator.T
data = numerator / denominator
return np.sum(np.power(data, power), axis=0)
def polylog2_2d(x, y=0.0, centerx=0.0, centery=0.0, amplitude=1.0, sigmax=1.0, sigmay=1.0):
## Approximation of the polylog function with 2D gaussian as argument. -> discribes the thermal part of the cloud
return amplitude / np.pi / 1.59843 / max(tiny, sigmax * sigmay) * polylog(2, np.exp( -((x-centerx)**2/(2 * (sigmax)**2))-((y-centery)**2/( 2 * (sigmay)**2)) ))
2023-05-24 14:24:09 +02:00
def density_profile_BEC_2d(x, y=0.0, BEC_amplitude=1.0, thermal_amplitude=1.0, BEC_centerx=0.0, BEC_centery=0.0, thermal_centerx=0.0, thermal_centery=0.0,
2023-05-23 22:14:03 +02:00
BEC_sigmax=1.0, BEC_sigmay=1.0, thermal_sigmax=1.0, thermal_sigmay=1.0):
return ThomasFermi_2d(x=x, y=y, centerx=BEC_centerx, centery=BEC_centery,
2023-05-24 14:24:09 +02:00
amplitude=BEC_amplitude, sigmax=BEC_sigmax, sigmay=BEC_sigmay
2023-05-23 22:14:03 +02:00
) + polylog2_2d(x=x, y=y, centerx=thermal_centerx, centery=thermal_centery,
2023-05-24 14:24:09 +02:00
amplitude=thermal_amplitude, sigmax=thermal_sigmax, sigmay=thermal_sigmay)
2023-05-23 22:14:03 +02:00
2023-05-04 13:47:33 +02:00
class GaussianWithOffsetModel(Model):
fwhm_factor = 2*np.sqrt(2*np.log(2))
height_factor = 1./np.sqrt(2*np.pi)
def __init__(self, independent_vars=['x'], nan_policy='raise', prefix='', name=None, **kwargs):
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
'independent_vars': independent_vars})
super().__init__(gaussianWithOffset, **kwargs)
self._set_paramhints_prefix()
def _set_paramhints_prefix(self):
self.set_param_hint('sigma', min=0)
self.set_param_hint('fwhm', expr=fwhm_expr(self))
self.set_param_hint('height', expr=height_expr(self))
def guess(self, data, x, negative=False, **kwargs):
offset = np.min(data)
data = data - offset
pars = guess_from_peak(self, data, x, negative)
pars.add('offset', value=offset)
return update_param_vals(pars, self.prefix, **kwargs)
class LorentzianWithOffsetModel(Model):
fwhm_factor = 2.0
height_factor = 1./np.pi
def __init__(self, independent_vars=['x'], prefix='', nan_policy='raise',
**kwargs):
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
'independent_vars': independent_vars})
super().__init__(lorentzianWithOffset, **kwargs)
self._set_paramhints_prefix()
def _set_paramhints_prefix(self):
self.set_param_hint('sigma', min=0)
self.set_param_hint('fwhm', expr=fwhm_expr(self))
self.set_param_hint('height', expr=height_expr(self))
def guess(self, data, x, negative=False, **kwargs):
"""Estimate initial model parameter values from data."""
offset = np.min(data)
data = data - offset
pars = guess_from_peak(self, data, x, negative, ampscale=1.25)
pars.add('offset', value=offset)
return update_param_vals(pars, self.prefix, **kwargs)
class ExponentialWithOffsetModel(Model):
def __init__(self, independent_vars=['x'], prefix='', nan_policy='raise',
**kwargs):
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
'independent_vars': independent_vars})
super().__init__(exponentialWithOffset, **kwargs)
def guess(self, data, x, **kwargs):
"""Estimate initial model parameter values from data."""
offset = np.min(data)
data = data - offset
try:
sval, oval = np.polyfit(x, np.log(abs(data)+1.e-15), 1)
except TypeError:
sval, oval = 1., np.log(abs(max(data)+1.e-9))
pars = self.make_params(amplitude=np.exp(oval), decay=-1.0/sval)
pars.add('offset', value=offset)
return update_param_vals(pars, self.prefix, **kwargs)
class ExpansionModel(Model):
def __init__(self, independent_vars=['x'], prefix='', nan_policy='raise',
**kwargs):
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
'independent_vars': independent_vars})
super().__init__(expansion, **kwargs)
def guess(self, data, x, **kwargs):
"""Estimate initial model parameter values from data."""
popt1, pcov1 = curve_fit(expansion, x, data)
pars = self.make_params(amplitude=popt1[0], offset=popt1[1])
return update_param_vals(pars, self.prefix, **kwargs)
class DampingOscillationModel(Model):
def __init__(self, independent_vars=['x'], prefix='', nan_policy='raise',
**kwargs):
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
'independent_vars': independent_vars})
super().__init__(dampingOscillation, **kwargs)
def guess(self, data, x, **kwargs):
"""Estimate initial model parameter values from data."""
try:
popt1, pcov1 = curve_fit(dampingOscillation, x, data, np.array(0, 5, 5e2, 1e3, 16))
pars = self.make_params(center=popt1[0], amplitude=popt1[1], frequency=popt1[2], decay=popt1[3], offset=popt1[4])
except:
pars = self.make_params(center=0, amplitude=5.0, frequency=5e2, decay=1.0e3, offset=16.0)
return update_param_vals(pars, self.prefix, **kwargs)
2023-05-04 18:32:17 +02:00
class TwoGaussian2dModel(Model):
fwhm_factor = 2*np.sqrt(2*np.log(2))
height_factor = 1./2*np.pi
def __init__(self, independent_vars=['x', 'y'], prefix='', nan_policy='raise',
**kwargs):
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
'independent_vars': independent_vars})
self.helperModel = Gaussian2dModel()
super().__init__(two_gaussian2d, **kwargs)
2023-05-07 00:38:52 +02:00
self._set_paramhints_prefix()
def _set_paramhints_prefix(self):
self.set_param_hint('delta', value=-1, max=0)
self.set_param_hint('A_sigmax', expr=f'{self.prefix}delta + {self.prefix}B_sigmax')
2023-05-04 18:32:17 +02:00
def guess(self, data, x, y, negative=False, **kwargs):
pars_guess = guess_from_peak2d(self.helperModel, data, x, y, negative)
2023-05-07 00:38:52 +02:00
pars = self.make_params(A_amplitude=pars_guess['amplitude'].value, A_centerx=pars_guess['centerx'].value, A_centery=pars_guess['centery'].value,
A_sigmax=pars_guess['sigmax'].value, A_sigmay=pars_guess['sigmay'].value,
B_amplitude=pars_guess['amplitude'].value, B_centerx=pars_guess['centerx'].value, B_centery=pars_guess['centery'].value,
B_sigmax=pars_guess['sigmax'].value, B_sigmay=pars_guess['sigmay'].value)
2023-05-04 18:32:17 +02:00
pars[f'{self.prefix}A_sigmax'].set(expr=f'delta + {self.prefix}B_sigmax')
2023-05-07 00:38:52 +02:00
pars.add(f'{self.prefix}delta', value=-1, max=0, min=-np.inf, vary=True)
2023-05-04 18:32:17 +02:00
pars[f'{self.prefix}A_sigmay'].set(min=0.0)
pars[f'{self.prefix}B_sigmax'].set(min=0.0)
pars[f'{self.prefix}B_sigmay'].set(min=0.0)
return pars
2023-05-23 22:14:03 +02:00
class Polylog22dModel(Model):
fwhm_factor = 2*np.sqrt(2*np.log(2))
height_factor = 1./2*np.pi
def __init__(self, independent_vars=['x', 'y'], prefix='', nan_policy='raise',
**kwargs):
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
'independent_vars': independent_vars})
super().__init__(polylog2_2d, **kwargs)
self._set_paramhints_prefix()
def _set_paramhints_prefix(self):
self.set_param_hint('Rx', min=0)
self.set_param_hint('Ry', min=0)
def guess(self, data, x, y, negative=False, **kwargs):
"""Estimate initial model parameter values from data."""
pars = guess_from_peak2d(self, data, x, y, negative)
return update_param_vals(pars, self.prefix, **kwargs)
class ThomasFermi2dModel(Model):
fwhm_factor = 1
height_factor = 0.5
def __init__(self, independent_vars=['x', 'y'], prefix='', nan_policy='raise',
**kwargs):
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
'independent_vars': independent_vars})
super().__init__(ThomasFermi_2d, **kwargs)
self._set_paramhints_prefix()
def _set_paramhints_prefix(self):
self.set_param_hint('Rx', min=0)
self.set_param_hint('Ry', min=0)
def guess(self, data, x, y, negative=False, **kwargs):
"""Estimate initial model parameter values from data."""
pars = guess_from_peak2d(self, data, x, y, negative)
# amplitude = pars['amplitude'].value
# simgax = pars['sigmax'].value
# sigmay = pars['sigmay'].value
# pars['amplitude'].set(value=amplitude/s2pi/simgax/sigmay)
simgax = pars['sigmax'].value
sigmay = pars['sigmay'].value
pars['simgax'].set(value=simgax / 2.355)
pars['sigmay'].set(value=sigmay / 2.355)
return update_param_vals(pars, self.prefix, **kwargs)
class DensityProfileBEC2dModel(Model):
fwhm_factor = 2*np.sqrt(2*np.log(2))
height_factor = 1./2*np.pi
def __init__(self, independent_vars=['x', 'y'], prefix='', nan_policy='raise',
**kwargs):
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
'independent_vars': independent_vars})
super().__init__(density_profile_BEC_2d, **kwargs)
self._set_paramhints_prefix()
def _set_paramhints_prefix(self):
self.set_param_hint('BEC_sigmax', min=0)
self.set_param_hint('BEC_sigmay', min=0)
self.set_param_hint('thermal_sigmax', min=0)
2023-05-24 14:24:09 +02:00
# self.set_param_hint('thermal_sigmay', min=0)
self.set_param_hint('BEC_amplitude', min=0)
self.set_param_hint('thermal_amplitude', min=0)
self.set_param_hint('thermalAspectRatio', min=0.8, max=1.2)
self.set_param_hint('thermal_sigmay', expr=f'{self.prefix}thermalAspectRatio * {self.prefix}thermal_sigmax')
self.set_param_hint('condensate_fraction', expr=f'{self.prefix}BEC_amplitude / ({self.prefix}BEC_amplitude + {self.prefix}thermal_amplitude)')
2023-05-23 22:14:03 +02:00
2023-05-24 15:10:34 +02:00
def guess(self, data, x, y, negative=False, pureBECThreshold=0.5, **kwargs):
2023-05-23 22:14:03 +02:00
"""Estimate initial model parameter values from data."""
fitModel = TwoGaussian2dModel()
pars = fitModel.guess(data, x=x, y=y, negative=negative)
fitResult = fitModel.fit(data, x=x, y=y, params=pars, **kwargs)
pars_guess = fitResult.params
2023-05-24 14:24:09 +02:00
BEC_amplitude = pars_guess['A_amplitude'].value
thermal_amplitude = pars_guess['B_amplitude'].value
pars = self.make_params(BEC_amplitude=BEC_amplitude,
thermal_amplitude=thermal_amplitude,
2023-05-23 22:14:03 +02:00
BEC_centerx=pars_guess['A_centerx'].value, BEC_centery=pars_guess['A_centery'].value,
BEC_sigmax=(pars_guess['A_sigmax'].value / 2.355), BEC_sigmay=(pars_guess['A_sigmay'].value / 2.355),
thermal_centerx=pars_guess['B_centerx'].value, thermal_centery=pars_guess['B_centery'].value,
2023-05-24 14:24:09 +02:00
thermal_sigmax=(pars_guess['B_sigmax'].value * s2),
thermalAspectRatio=(pars_guess['B_sigmax'].value * s2) / (pars_guess['B_sigmay'].value * s2)
# thermal_sigmay=(pars_guess['B_sigmay'].value * s2)
)
2023-05-23 22:14:03 +02:00
2023-05-24 15:10:34 +02:00
if BEC_amplitude / (thermal_amplitude + BEC_amplitude) > pureBECThreshold:
2023-05-24 14:24:09 +02:00
pars[f'{self.prefix}thermal_amplitude'].set(value=0)
pars[f'{self.prefix}BEC_amplitude'].set(value=(thermal_amplitude + BEC_amplitude))
2023-05-23 22:14:03 +02:00
return update_param_vals(pars, self.prefix, **kwargs)
class NewFitModel(Model):
def __init__(self, func, independent_vars=['x'], prefix='', nan_policy='raise',
**kwargs):
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
'independent_vars': independent_vars})
super().__init__(func, **kwargs)
def guess(self, *args, **kwargs):
return self.make_params()
2023-05-04 13:47:33 +02:00
lmfit_models = {'Constant': ConstantModel,
'Complex Constant': ComplexConstantModel,
'Linear': LinearModel,
'Quadratic': QuadraticModel,
'Polynomial': PolynomialModel,
'Gaussian': GaussianModel,
'Gaussian-2D': Gaussian2dModel,
'Lorentzian': LorentzianModel,
'Split-Lorentzian': SplitLorentzianModel,
'Voigt': VoigtModel,
'PseudoVoigt': PseudoVoigtModel,
'Moffat': MoffatModel,
'Pearson7': Pearson7Model,
'StudentsT': StudentsTModel,
'Breit-Wigner': BreitWignerModel,
'Log-Normal': LognormalModel,
'Damped Oscillator': DampedOscillatorModel,
'Damped Harmonic Oscillator': DampedHarmonicOscillatorModel,
'Exponential Gaussian': ExponentialGaussianModel,
'Skewed Gaussian': SkewedGaussianModel,
'Skewed Voigt': SkewedVoigtModel,
'Thermal Distribution': ThermalDistributionModel,
'Doniach': DoniachModel,
'Power Law': PowerLawModel,
'Exponential': ExponentialModel,
'Step': StepModel,
'Rectangle': RectangleModel,
'Expression': ExpressionModel,
'Gaussian With Offset':GaussianWithOffsetModel,
'Lorentzian With Offset':LorentzianWithOffsetModel,
'Expansion':ExpansionModel,
2023-05-04 18:32:17 +02:00
'Damping Oscillation Model':DampingOscillationModel,
'Two Gaussian-2D':TwoGaussian2dModel,
2023-05-04 13:47:33 +02:00
}
class FitAnalyser():
def __init__(self, fitModel, fitDim=1, **kwargs) -> None:
if isinstance(fitModel, str):
self.fitModel = lmfit_models[fitModel](**kwargs)
else:
self.fitModel = fitModel
self.fitDim = fitDim
2023-05-07 00:38:52 +02:00
2023-05-22 19:35:09 +02:00
def print_params_set_template(self, params=None):
2023-05-07 00:38:52 +02:00
if params is None:
params = self.fitModel.make_params()
for key in params:
res = "params.add("
res += "name=\"" + key + "\", "
if not params[key].expr is None:
res += "expr=" + params[key].expr +")"
else:
res += "value=" + f'{params[key].value:3g}' + ", "
if str(params[key].max)=="inf":
res += "max=np.inf, "
else:
res += "max=" + f'{params[key].max:3g}' + ", "
if str(params[key].min)=="-inf":
res += "min=-np.inf, "
else:
res += "min=" + f'{params[key].min:3g}' + ", "
res += "vary=" + str(params[key].vary) + ")"
print(res)
2023-05-04 13:47:33 +02:00
2023-05-04 18:32:17 +02:00
def _guess_1D(self, data, x, **kwargs):
return self.fitModel.guess(data=data, x=x, **kwargs)
2023-05-04 13:47:33 +02:00
2023-05-04 18:32:17 +02:00
def _guess_2D(self, data, x, y, **kwargs):
data = data.flatten(order='F')
2023-05-04 18:32:17 +02:00
return self.fitModel.guess(data=data, x=x, y=y, **kwargs)
2023-05-04 13:47:33 +02:00
2023-05-10 19:03:03 +02:00
def guess(self, dataArray, x=None, y=None, guess_kwargs={}, input_core_dims=None, dask='parallelized', vectorize=True, keep_attrs=True, daskKwargs=None, **kwargs):
2023-05-04 13:47:33 +02:00
kwargs.update(
{
"dask": dask,
"vectorize": vectorize,
2023-05-04 18:32:17 +02:00
"input_core_dims": input_core_dims,
'keep_attrs': keep_attrs,
2023-05-10 19:03:03 +02:00
2023-05-04 13:47:33 +02:00
}
)
2023-05-10 19:03:03 +02:00
if not daskKwargs is None:
kwargs.update({"dask_gufunc_kwargs": daskKwargs})
2023-05-04 13:47:33 +02:00
if input_core_dims is None:
kwargs.update(
{
"input_core_dims": [['x']],
}
)
if x is None:
if 'x' in dataArray.dims:
x = dataArray['x'].to_numpy()
else:
if isinstance(x, str):
if input_core_dims is None:
kwargs.update(
{
"input_core_dims": [[x]],
}
)
2023-05-05 18:25:03 +02:00
x = dataArray[x].to_numpy()
2023-05-04 13:47:33 +02:00
if self.fitDim == 1:
2023-05-04 18:32:17 +02:00
guess_kwargs.update(
{
'x':x,
}
)
return xr.apply_ufunc(self._guess_1D, dataArray, kwargs=guess_kwargs,
2023-05-04 13:47:33 +02:00
output_dtypes=[type(self.fitModel.make_params())],
**kwargs
)
if self.fitDim == 2:
if y is None:
if 'y' in dataArray.dims:
y = dataArray['y'].to_numpy()
if input_core_dims is None:
kwargs.update(
{
"input_core_dims": [['x', 'y']],
}
)
else:
if isinstance(y, str):
kwargs["input_core_dims"][0] = np.append(kwargs["input_core_dims"][0], y)
2023-05-05 18:25:03 +02:00
y = dataArray[y].to_numpy()
2023-05-04 13:47:33 +02:00
elif input_core_dims is None:
kwargs.update(
{
"input_core_dims": [['x', 'y']],
}
)
_x, _y = np.meshgrid(x, y)
_x = _x.flatten()
_y = _y.flatten()
# dataArray = dataArray.stack(_z=(kwargs["input_core_dims"][0][0], kwargs["input_core_dims"][0][1]))
2023-05-04 13:47:33 +02:00
# kwargs["input_core_dims"][0] = ['_z']
2023-05-04 13:47:33 +02:00
2023-05-04 18:32:17 +02:00
guess_kwargs.update(
{
'x':_x,
'y':_y,
}
)
return xr.apply_ufunc(self._guess_2D, dataArray, kwargs=guess_kwargs,
2023-05-04 13:47:33 +02:00
output_dtypes=[type(self.fitModel.make_params())],
**kwargs
)
def _fit_1D(self, data, params, x):
2023-05-16 15:51:13 +02:00
return self.fitModel.fit(data=data, x=x, params=params, nan_policy='omit')
2023-05-04 13:47:33 +02:00
def _fit_2D(self, data, params, x, y):
data = data.flatten(order='F')
2023-05-16 15:51:13 +02:00
return self.fitModel.fit(data=data, x=x, y=y, params=params, nan_policy='omit')
2023-05-04 13:47:33 +02:00
2023-05-10 19:03:03 +02:00
def fit(self, dataArray, paramsArray, x=None, y=None, input_core_dims=None, dask='parallelized', vectorize=True, keep_attrs=True, daskKwargs=None, **kwargs):
2023-05-04 13:47:33 +02:00
kwargs.update(
{
"dask": dask,
"vectorize": vectorize,
"input_core_dims": input_core_dims,
2023-05-04 18:32:17 +02:00
'keep_attrs': keep_attrs,
2023-05-04 13:47:33 +02:00
}
)
2023-05-10 19:03:03 +02:00
if not daskKwargs is None:
kwargs.update({"dask_gufunc_kwargs": daskKwargs})
2023-05-04 13:47:33 +02:00
if isinstance(paramsArray, type(self.fitModel.make_params())):
2023-05-07 00:38:52 +02:00
if input_core_dims is None:
kwargs.update(
{
"input_core_dims": [['x']],
}
)
if x is None:
if 'x' in dataArray.dims:
x = dataArray['x'].to_numpy()
else:
if isinstance(x, str):
if input_core_dims is None:
kwargs.update(
{
"input_core_dims": [[x]],
}
)
x = dataArray[x].to_numpy()
2023-05-04 13:47:33 +02:00
if self.fitDim == 1:
return xr.apply_ufunc(self._fit_1D, dataArray, kwargs={'params':paramsArray,'x':x},
output_dtypes=[type(lmfit.model.ModelResult(self.fitModel, self.fitModel.make_params()))],
**kwargs)
if self.fitDim == 2:
if y is None:
if 'y' in dataArray.dims:
y = dataArray['y'].to_numpy()
if input_core_dims is None:
kwargs.update(
{
2023-05-07 00:38:52 +02:00
"input_core_dims": [['x', 'y']],
2023-05-04 13:47:33 +02:00
}
)
else:
if isinstance(y, str):
kwargs["input_core_dims"][0] = np.append(kwargs["input_core_dims"][0], y)
2023-05-05 18:25:03 +02:00
y = dataArray[y].to_numpy()
2023-05-04 13:47:33 +02:00
elif input_core_dims is None:
kwargs.update(
{
2023-05-07 00:38:52 +02:00
"input_core_dims": [['x', 'y']],
2023-05-04 13:47:33 +02:00
}
)
_x, _y = np.meshgrid(x, y)
_x = _x.flatten()
_y = _y.flatten()
# dataArray = dataArray.stack(_z=(kwargs["input_core_dims"][0][0], kwargs["input_core_dims"][0][1]))
2023-05-04 13:47:33 +02:00
# kwargs["input_core_dims"][0] = ['_z']
2023-05-04 13:47:33 +02:00
return xr.apply_ufunc(self._fit_2D, dataArray, kwargs={'params':paramsArray,'x':_x, 'y':_y},
output_dtypes=[type(lmfit.model.ModelResult(self.fitModel, self.fitModel.make_params()))],
**kwargs)
else:
2023-05-07 00:38:52 +02:00
if input_core_dims is None:
kwargs.update(
{
"input_core_dims": [['x'], []],
}
)
if x is None:
if 'x' in dataArray.dims:
x = dataArray['x'].to_numpy()
else:
if isinstance(x, str):
if input_core_dims is None:
kwargs.update(
{
"input_core_dims": [[x], []],
}
)
x = dataArray[x].to_numpy()
2023-05-04 13:47:33 +02:00
if self.fitDim == 1:
return xr.apply_ufunc(self._fit_1D, dataArray, paramsArray, kwargs={'x':x},
output_dtypes=[type(lmfit.model.ModelResult(self.fitModel, self.fitModel.make_params()))],
**kwargs)
if self.fitDim == 2:
if input_core_dims is None:
kwargs.update(
{
"input_core_dims": [['x', 'y'], []],
}
)
if y is None:
if 'y' in dataArray.dims:
y = dataArray['y'].to_numpy()
else:
if isinstance(y, str):
y = dataArray[y].to_numpy()
kwargs["input_core_dims"][0] = np.append(kwargs["input_core_dims"][0], y)
_x, _y = np.meshgrid(x, y)
_x = _x.flatten()
_y = _y.flatten()
# dataArray = dataArray.stack(_z=(kwargs["input_core_dims"][0][0], kwargs["input_core_dims"][0][1]))
2023-05-04 13:47:33 +02:00
# kwargs["input_core_dims"][0] = ['_z']
2023-05-04 13:47:33 +02:00
return xr.apply_ufunc(self._fit_2D, dataArray, paramsArray, kwargs={'x':_x, 'y':_y},
output_dtypes=[type(lmfit.model.ModelResult(self.fitModel, self.fitModel.make_params()))],
**kwargs)
def _eval_1D(self, fitResult, x):
return self.fitModel.eval(x=x, **fitResult.best_values)
def _eval_2D(self, fitResult, x, y, shape):
res = self.fitModel.eval(x=x, y=y, **fitResult.best_values)
return res.reshape(shape, order='F')
2023-05-04 13:47:33 +02:00
2023-05-10 19:03:03 +02:00
def eval(self, fitResultArray, x=None, y=None, output_core_dims=None, prefix="", dask='parallelized', vectorize=True, daskKwargs=None, **kwargs):
2023-05-04 13:47:33 +02:00
kwargs.update(
{
"dask": dask,
"vectorize": vectorize,
"output_core_dims": output_core_dims,
}
)
2023-05-10 19:03:03 +02:00
if daskKwargs is None:
daskKwargs = {}
2023-05-04 13:47:33 +02:00
if self.fitDim == 1:
if output_core_dims is None:
kwargs.update(
{
2023-05-05 18:25:03 +02:00
"output_core_dims": prefix+'x',
2023-05-04 13:47:33 +02:00
}
)
output_core_dims = [prefix+'x']
2023-05-10 19:03:03 +02:00
daskKwargs.update(
{
'output_sizes': {
output_core_dims[0]: np.size(x),
},
'meta': np.ndarray((0,0), dtype=float)
}
)
2023-05-04 13:47:33 +02:00
kwargs.update(
{
2023-05-10 19:03:03 +02:00
"dask_gufunc_kwargs": daskKwargs,
2023-05-04 13:47:33 +02:00
}
)
2023-05-08 16:57:58 +02:00
res = xr.apply_ufunc(self._eval_1D, fitResultArray, kwargs={"x":x}, **kwargs)
return res.assign_coords({prefix+'x':np.array(x)})
2023-05-04 13:47:33 +02:00
if self.fitDim == 2:
if output_core_dims is None:
kwargs.update(
{
"output_core_dims": [[prefix+'x', prefix+'y']],
}
)
output_core_dims = [prefix+'x', prefix+'y']
2023-05-10 19:03:03 +02:00
daskKwargs.update(
{
'output_sizes': {
output_core_dims[0]: np.size(x),
output_core_dims[1]: np.size(y),
},
'meta': np.ndarray((0,0), dtype=float)
},
)
2023-05-04 13:47:33 +02:00
kwargs.update(
{
2023-05-10 19:03:03 +02:00
"dask_gufunc_kwargs": daskKwargs,
2023-05-04 13:47:33 +02:00
}
)
_x, _y = np.meshgrid(x, y)
_x = _x.flatten()
_y = _y.flatten()
2023-05-08 16:57:58 +02:00
res = xr.apply_ufunc(self._eval_2D, fitResultArray, kwargs={"x":_x, "y":_y, "shape":(len(x), len(y))}, **kwargs)
return res.assign_coords({prefix+'x':np.array(x), prefix+'y':np.array(y)})
2023-05-04 13:47:33 +02:00
2023-05-07 00:38:52 +02:00
def _get_fit_value_single(self, fitResult, key):
return fitResult.params[key].value
def _get_fit_value(self, fitResult, params):
func = np.vectorize(self._get_fit_value_single)
res = tuple(
func(fitResult, key)
for key in params
)
return res
def get_fit_value(self, fitResult, dask='parallelized', **kwargs):
firstIndex = {
key: fitResult[key][0]
for key in fitResult.dims
}
firstFitResult = fitResult.sel(firstIndex).item()
params = list(firstFitResult.params.keys())
output_core_dims=[ [] for _ in range(len(params))]
kwargs.update(
{
"dask": dask,
"output_core_dims": output_core_dims,
}
)
value = xr.apply_ufunc(self._get_fit_value, fitResult, kwargs=dict(params=params), **kwargs)
value = xr.Dataset(
data_vars={
params[i]: value[i]
for i in range(len(params))
},
attrs=fitResult.attrs
)
return value
def _get_fit_std_single(self, fitResult, key):
return fitResult.params[key].stderr
def _get_fit_std(self, fitResult, params):
func = np.vectorize(self._get_fit_std_single)
res = tuple(
func(fitResult, key)
for key in params
)
return res
def get_fit_std(self, fitResult, dask='parallelized', **kwargs):
firstIndex = {
key: fitResult[key][0]
for key in fitResult.dims
}
firstFitResult = fitResult.sel(firstIndex).item()
params = list(firstFitResult.params.keys())
output_core_dims=[ [] for _ in range(len(params))]
kwargs.update(
{
"dask": dask,
"output_core_dims": output_core_dims,
}
)
value = xr.apply_ufunc(self._get_fit_std, fitResult, kwargs=dict(params=params), **kwargs)
value = xr.Dataset(
data_vars={
params[i]: value[i]
for i in range(len(params))
},
attrs=fitResult.attrs
)
return value
def _get_fit_full_result_single(self, fitResult, key):
2023-05-08 11:47:35 +02:00
if not fitResult.params[key].value is None:
value = fitResult.params[key].value
else:
value = np.nan
if not fitResult.params[key].stderr is None:
std = fitResult.params[key].stderr
else:
std = np.nan
return ufloat(value, std)
2023-05-07 00:38:52 +02:00
def _get_fit_full_result(self, fitResult, params):
func = np.vectorize(self._get_fit_full_result_single)
res = tuple(
func(fitResult, key)
for key in params
)
return res
def get_fit_full_result(self, fitResult, dask='parallelized', **kwargs):
firstIndex = {
key: fitResult[key][0]
for key in fitResult.dims
}
firstFitResult = fitResult.sel(firstIndex).item()
params = list(firstFitResult.params.keys())
output_core_dims=[ [] for _ in range(len(params))]
kwargs.update(
{
"dask": dask,
"output_core_dims": output_core_dims,
}
)
value = xr.apply_ufunc(self._get_fit_full_result, fitResult, kwargs=dict(params=params), **kwargs)
value = xr.Dataset(
data_vars={
params[i]: value[i]
for i in range(len(params))
},
attrs=fitResult.attrs
)
return value