Browse Source

regular backup

joschka_dev
Jianshun Gao 1 year ago
parent
commit
2744a57d68
  1. 160
      Analyser/FitAnalyser.py
  2. 1
      DataContainer/ReadData.py

160
Analyser/FitAnalyser.py

@ -80,6 +80,48 @@ def two_gaussian2d(x, y=0.0, A_amplitude=1.0, A_centerx=0.0, A_centery=0.0, A_si
return z
def ThomasFermi_2d(x, y=0.0, centerx=0.0, centery=0.0, amplitude=1.0, sigmax=1.0, sigmay=1.0):
res = (1- ((x-centerx)/(sigmax))**2 - ((y-centery)/(sigmay))**2)**(3 / 2)
return amplitude * 5 / 2 / np.pi / max(tiny, sigmax * sigmay) * np.where(res > 0, res, 0)
def polylog(power, numerator):
dataShape = numerator.shape
numerator = np.tile(numerator, (20, 1))
denominator = np.arange(1, 21)
denominator = np.tile(denominator, (dataShape[0], 1))
denominator = denominator.T
data = numerator / denominator
return np.sum(np.power(data, power), axis=0)
def polylog2_2d(x, y=0.0, centerx=0.0, centery=0.0, amplitude=1.0, sigmax=1.0, sigmay=1.0):
## Approximation of the polylog function with 2D gaussian as argument. -> discribes the thermal part of the cloud
return amplitude / np.pi / 1.59843 / max(tiny, sigmax * sigmay) * polylog(2, np.exp( -((x-centerx)**2/(2 * (sigmax)**2))-((y-centery)**2/( 2 * (sigmay)**2)) ))
def density_profile_BEC_2d(x, y=0.0, amplitude=1.0, condensateFraction=1.0, BEC_centerx=0.0, BEC_centery=0.0, thermal_centerx=0.0, thermal_centery=0.0,
BEC_sigmax=1.0, BEC_sigmay=1.0, thermal_sigmax=1.0, thermal_sigmay=1.0):
return ThomasFermi_2d(x=x, y=y, centerx=BEC_centerx, centery=BEC_centery,
amplitude=amplitude*condensateFraction, sigmax=BEC_sigmax, sigmay=BEC_sigmay
) + polylog2_2d(x=x, y=y, centerx=thermal_centerx, centery=thermal_centery,
amplitude=amplitude * (1 - condensateFraction), sigmax=thermal_sigmax, sigmay=thermal_sigmay)
# def density_profile_BEC_2d(x, y=0.0, BEC_amplitude=1.0, thermal_amplitude=1.0, BEC_centerx=0.0, BEC_centery=0.0, thermal_centerx=0.0, thermal_centery=0.0,
# BEC_sigmax=1.0, BEC_sigmay=1.0, thermal_sigmax=1.0, thermal_sigmay=1.0):
# return ThomasFermi_2d(x=x, y=y, centerx=BEC_centerx, centery=BEC_centery,
# amplitude=BEC_amplitude, sigmax=BEC_sigmax, sigmay=BEC_sigmay
# ) + polylog2_2d(x=x, y=y, centerx=thermal_centerx, centery=thermal_centery,
# amplitude=thermal_amplitude, sigmax=thermal_sigmax, sigmay=thermal_sigmay)
class GaussianWithOffsetModel(Model):
fwhm_factor = 2*np.sqrt(2*np.log(2))
@ -224,6 +266,124 @@ class TwoGaussian2dModel(Model):
return pars
class Polylog22dModel(Model):
fwhm_factor = 2*np.sqrt(2*np.log(2))
height_factor = 1./2*np.pi
def __init__(self, independent_vars=['x', 'y'], prefix='', nan_policy='raise',
**kwargs):
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
'independent_vars': independent_vars})
super().__init__(polylog2_2d, **kwargs)
self._set_paramhints_prefix()
def _set_paramhints_prefix(self):
self.set_param_hint('Rx', min=0)
self.set_param_hint('Ry', min=0)
def guess(self, data, x, y, negative=False, **kwargs):
"""Estimate initial model parameter values from data."""
pars = guess_from_peak2d(self, data, x, y, negative)
return update_param_vals(pars, self.prefix, **kwargs)
class ThomasFermi2dModel(Model):
fwhm_factor = 1
height_factor = 0.5
def __init__(self, independent_vars=['x', 'y'], prefix='', nan_policy='raise',
**kwargs):
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
'independent_vars': independent_vars})
super().__init__(ThomasFermi_2d, **kwargs)
self._set_paramhints_prefix()
def _set_paramhints_prefix(self):
self.set_param_hint('Rx', min=0)
self.set_param_hint('Ry', min=0)
def guess(self, data, x, y, negative=False, **kwargs):
"""Estimate initial model parameter values from data."""
pars = guess_from_peak2d(self, data, x, y, negative)
# amplitude = pars['amplitude'].value
# simgax = pars['sigmax'].value
# sigmay = pars['sigmay'].value
# pars['amplitude'].set(value=amplitude/s2pi/simgax/sigmay)
simgax = pars['sigmax'].value
sigmay = pars['sigmay'].value
pars['simgax'].set(value=simgax / 2.355)
pars['sigmay'].set(value=sigmay / 2.355)
return update_param_vals(pars, self.prefix, **kwargs)
class DensityProfileBEC2dModel(Model):
fwhm_factor = 2*np.sqrt(2*np.log(2))
height_factor = 1./2*np.pi
def __init__(self, independent_vars=['x', 'y'], prefix='', nan_policy='raise',
**kwargs):
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
'independent_vars': independent_vars})
super().__init__(density_profile_BEC_2d, **kwargs)
self._set_paramhints_prefix()
def _set_paramhints_prefix(self):
self.set_param_hint('BEC_sigmax', min=0)
self.set_param_hint('BEC_sigmay', min=0)
self.set_param_hint('thermal_sigmax', min=0)
self.set_param_hint('thermal_sigmay', min=0)
def guess(self, data, x, y, negative=False, **kwargs):
"""Estimate initial model parameter values from data."""
fitModel = TwoGaussian2dModel()
pars = fitModel.guess(data, x=x, y=y, negative=negative)
fitResult = fitModel.fit(data, x=x, y=y, params=pars, **kwargs)
pars_guess = fitResult.params
amplitude = (pars_guess['A_amplitude'].value + pars_guess['B_amplitude'].value)
# amplitude = amplitude / amplitude * np.max(data)
condensateFraction = pars_guess['A_amplitude'].value / (pars_guess['A_amplitude'].value + pars_guess['B_amplitude'].value)
pars = self.make_params(amplitude=amplitude,
condensateFraction=condensateFraction,
BEC_centerx=pars_guess['A_centerx'].value, BEC_centery=pars_guess['A_centery'].value,
BEC_sigmax=(pars_guess['A_sigmax'].value / 2.355), BEC_sigmay=(pars_guess['A_sigmay'].value / 2.355),
thermal_centerx=pars_guess['B_centerx'].value, thermal_centery=pars_guess['B_centery'].value,
thermal_sigmax=(pars_guess['B_sigmax'].value * s2), thermal_sigmay=(pars_guess['B_sigmay'].value * s2))
# BEC_amplitude = pars_guess['A_amplitude'].value
# thermal_amplitude = pars_guess['B_amplitude'].value
# pars = self.make_params(BEC_amplitude=BEC_amplitude,
# thermal_amplitude=thermal_amplitude,
# BEC_centerx=pars_guess['A_centerx'].value, BEC_centery=pars_guess['A_centery'].value,
# BEC_sigmax=(pars_guess['A_sigmax'].value / 2.355), BEC_sigmay=(pars_guess['A_sigmay'].value / 2.355),
# thermal_centerx=pars_guess['B_centerx'].value, thermal_centery=pars_guess['B_centery'].value,
# thermal_sigmax=(pars_guess['B_sigmax'].value * s2), thermal_sigmay=(pars_guess['B_sigmay'].value * s2))
# pars[f'{self.prefix}BEC_sigmax'].set(min=0.0)
# pars[f'{self.prefix}BEC_sigmay'].set(min=0.0)
# pars[f'{self.prefix}thermal_sigmax'].set(min=0.0)
# pars[f'{self.prefix}thermal_sigmay'].set(min=0.0)
if condensateFraction < 0.3:
pars[f'{self.prefix}condensateFraction'].set(max=condensateFraction*1.5)
if condensateFraction > 0.5:
pars[f'{self.prefix}condensateFraction'].set(min=0.9)
# pars[f'{self.prefix}condensateFraction'].set(max=condensateFraction*1.5)
# pars[f'{self.prefix}condensateFraction'].set(min=condensateFraction*0.75)
return update_param_vals(pars, self.prefix, **kwargs)
class NewFitModel(Model):
def __init__(self, func, independent_vars=['x'], prefix='', nan_policy='raise',

1
DataContainer/ReadData.py

@ -206,6 +206,7 @@ def _assign_scan_axis_partial_and_remove_everything(x, datesetOfGlobal, fullFile
for key in scanAxis
}
)
def _read_run_time_from_hdf5(x):
runTime = datetime.strptime(x.attrs['run time'], '%Y%m%dT%H%M%S')

Loading…
Cancel
Save