discussion with Joschka

This commit is contained in:
Jianshun Gao 2023-07-03 15:19:12 +02:00
parent ca924246d5
commit ca901526f6
2 changed files with 2144 additions and 0 deletions

View File

@ -479,8 +479,17 @@ lmfit_models = {'Constant': ConstantModel,
class FitAnalyser():
"""This is a class integrated all the functions to do a fit.
"""
def __init__(self, fitModel, fitDim=1, **kwargs) -> None:
"""Initialize function
:param fitModel: The fitting model of fit function
:type fitModel: lmfit Model
:param fitDim: The dimension of the fit, defaults to 1
:type fitDim: int, optional
"""
if isinstance(fitModel, str):
self.fitModel = lmfit_models[fitModel](**kwargs)
@ -490,6 +499,11 @@ class FitAnalyser():
self.fitDim = fitDim
def print_params_set_template(self, params=None):
"""Print a template to manually set the initial parameters of the fit
:param params: An object of Parameters class to print, defaults to None
:type params: lmfit Paraemters, optional
"""
if params is None:
params = self.fitModel.make_params()
@ -513,13 +527,56 @@ class FitAnalyser():
print(res)
def _guess_1D(self, data, x, **kwargs):
"""Call the guess function of the 1D fit model to guess the initial value.
:param data: The data to fit
:type data: 1D numpy array
:param x: The data of x axis
:type x: 1D numpy array
:return: The guessed initial parameters for the fit
:rtype: lmfit Parameters
"""
return self.fitModel.guess(data=data, x=x, **kwargs)
def _guess_2D(self, data, x, y, **kwargs):
"""Call the guess function of the 2D fit model to guess the initial value.
:param data: The flattened data to fit
:type data: 1D numpy array
:param x: The flattened data of x axis
:type x: 1D numpy array
:param y: The flattened data of y axis
:type y: 1D numpy array
:return: The guessed initial parameters for the fit
:rtype: lmfit Parameters
"""
data = data.flatten(order='F')
return self.fitModel.guess(data=data, x=x, y=y, **kwargs)
def guess(self, dataArray, x=None, y=None, guess_kwargs={}, input_core_dims=None, dask='parallelized', vectorize=True, keep_attrs=True, daskKwargs=None, **kwargs):
"""Call the guess function of the 1D fit model to guess the initial value.
:param dataArray: The data for the fit
:type dataArray: xarray DataArray
:param x: The name of x axis in data or the data of x axis, defaults to None
:type x: str or numpy array, optional
:param y: The name of y axis in data or the data of y axis, defaults to None
:type y: str or numpy array, optional
:param guess_kwargs: the keyworded arguments to send to the guess function, defaults to {}
:type guess_kwargs: dict, optional
:param input_core_dims: over write of the same argument in xarray.apply_ufunc, defaults to None
:type input_core_dims: _type_, optional
:param dask: over write of the same argument in xarray.apply_ufunc,, defaults to 'parallelized'
:type dask: str, optional
:param vectorize: over write of the same argument in xarray.apply_ufunc,, defaults to True
:type vectorize: bool, optional
:param keep_attrs: over write of the same argument in xarray.apply_ufunc,, defaults to True
:type keep_attrs: bool, optional
:param daskKwargs: over write of the same argument in xarray.apply_ufunc,, defaults to None
:type daskKwargs: dict, optional
:return: _description_
:rtype: _type_
"""
kwargs.update(
{

2087
fit_test_20230703.ipynb Normal file

File diff suppressed because one or more lines are too long