Calculations/Estimations/SplitStepFourierMethod.m

91 lines
3.4 KiB
Matlab

% Constants
hbar = 1.0545718e-34; % Reduced Planck constant (Joule second)
m_e = 9.10938356e-31; % Mass of electron (kg)
wavelength = 5e-9; % de Broglie wavelength (meters)
k0 = 2 * pi / wavelength; % Wave number
% Grid parameters
Lx = 1e-6; % Simulation domain size (meters)
Nx = 1024; % Number of grid points
dx = Lx / Nx; % Grid spacing
x = linspace(-Lx / 2, Lx / 2, Nx); % Spatial grid
% Time parameters
dt = 3e-15; % Time step (seconds)
Nt = 1001; % Number of time steps
% Wave packet parameters
sigma_x = 60e-9; % Width of the Gaussian packet (meters)
x0 = -2e-7; % Initial position of the packet (meters)
kx0 = k0; % Initial wave vector
% Barrier parameters
barrier_width = 4e-8; % Width of the square barrier (meters)
barrier_height = 0.8 * hbar^2 * k0^2 / (2 * m_e); % Height of the barrier (Joules)
% Initial Gaussian wave packet
psi0 = exp(-(x - x0).^2 / (2 * sigma_x^2)) .* exp(1i * kx0 * x);
psi0 = psi0 / sqrt(sum(abs(psi0).^2) * dx); % Normalization
% Potential energy (Square barrier in the center)
V = zeros(size(x));
V(abs(x) < barrier_width / 2) = barrier_height;
% Fourier space components
kx = (2 * pi / Lx) * (-Nx/2:Nx/2-1); % Frequency domain representation
kx = fftshift(kx); % Shift zero frequency component to center
K2 = kx.^2; % Squared wave numbers
% Split-step Fourier method
psi = psi0; % Initialize wave function
transmission_prob = 0; % Initialize transmission probability
figure(1); % Create a figure for visualization
clf
set(gcf,'Position',[100 100 950 750])
set(gca,'FontSize',16,'Box','On','Linewidth',2);
for t = 1:Nt
% (a) 1/2 Evolution for the potential energy in real space
psi = psi .* exp(-1i * V * dt / (2 * hbar));
% (b) Forward transform to Fourier space
psi_k = fft(psi);
% (c) Full evolution for the kinetic energy in Fourier space
psi_k = psi_k .* exp(-1i * hbar * K2 * dt / (2 * m_e));
% (d) Inverse Fourier transform back to real space
psi = ifft(psi_k);
% (e) 1/2 Evolution for the potential energy in real space
psi = psi .* exp(-1i * V * dt / (2 * hbar));
% Calculate transmission probability
Rho = abs(psi).^2; % Probability density
transmission_prob = sum(Rho(x > barrier_width / 2)) * dx;
% Visualization of wave packet evolution
if mod(t, 50) == 0
clf; % Clear figure before drawing
plot(x * 1e9, Rho / max(Rho), 'r', 'LineWidth', 2); % Plot normalized density
hold on;
plot(x * 1e9, V / max(V), 'k', 'LineWidth', 2); % Plot barrier potential
title(sprintf('Time step: %d\nTransmission Probability: %.3f', t, transmission_prob),'FontSize',16);
xlabel('x (nm)', 'FontSize', 16);
ylabel('Probability Density', 'FontSize', 16);
grid on
drawnow; % Update the figure dynamically
end
end
% Final wave packet distribution
figure(2);
clf
set(gcf,'Position',[100 100 950 750])
set(gca,'FontSize',16,'Box','On','Linewidth',2);
plot(x * 1e9, abs(psi).^2, 'b', 'LineWidth', 2);
xlabel('x (nm)','FontSize',16);
ylabel('Probability Density','FontSize',16);
title('Final Wave Packet Distribution','FontSize',16);
grid on
%%