New test and example scripts.
This commit is contained in:
parent
6cbeb19473
commit
3a4edcb312
77
Estimations/CustomCylindricalCutOff.m
Normal file
77
Estimations/CustomCylindricalCutOff.m
Normal file
@ -0,0 +1,77 @@
|
||||
% Define the size of the cube using NumberOfGridPoints
|
||||
NumberOfGridPoints = [32, 32, 16]; % [X, Y, Z] dimensions of the cube
|
||||
Dimensions = [30, 30, 15]; % Real-world dimensions for the grid
|
||||
|
||||
% Generate a random 3D cube based on the NumberOfGridPoints
|
||||
cube = rand(NumberOfGridPoints(1), NumberOfGridPoints(2), NumberOfGridPoints(3));
|
||||
|
||||
% Define the real-world distance range for each axis (X, Y, Z)
|
||||
x_range = linspace(-Dimensions(1)/2, Dimensions(1)/2, NumberOfGridPoints(1)); % 32 points along X mapped to [-15, 15]
|
||||
y_range = linspace(-Dimensions(2)/2, Dimensions(2)/2, NumberOfGridPoints(2)); % 32 points along Y mapped to [-15, 15]
|
||||
z_range = linspace(-Dimensions(3)/2, Dimensions(3)/2, NumberOfGridPoints(3)); % 16 points along Z mapped to [-7.5, 7.5]
|
||||
|
||||
% Create a 3D grid of coordinates for the cube using meshgrid
|
||||
[x, y, z] = meshgrid(x_range, y_range, z_range);
|
||||
|
||||
% Define the cylinder's radius and height (in real-world units)
|
||||
radius = 10; % Radius in real-world units (e.g., meters)
|
||||
height = 4; % Height in real-world units (e.g., meters)
|
||||
|
||||
% Get the center of the cube (in real-world coordinates)
|
||||
center_x = mean(x_range); % Center of x_range
|
||||
center_y = mean(y_range); % Center of y_range
|
||||
center_z = mean(z_range); % Center of z_range
|
||||
|
||||
% Define the cylindrical mask
|
||||
cylinder_mask = ((x - center_x).^2 + (y - center_y).^2 <= radius^2) & ...
|
||||
(abs(z - center_z) <= height / 2);
|
||||
|
||||
% Set everything inside the cylinder to 1 and outside to 0
|
||||
mask = double(cylinder_mask);
|
||||
|
||||
% Multiply the mask by the random cube to apply the cut-off
|
||||
masked_cube = cube .* mask;
|
||||
|
||||
% Visualize the cube and the cylindrical mask using isosurfaces
|
||||
figure(1);
|
||||
clf
|
||||
figure_width = 1200;
|
||||
set(gcf, 'Position', [100, 100, figure_width, round(figure_width / 1.618)]);
|
||||
set(gca, 'FontSize', 16, 'Box', 'On', 'Linewidth', 2);
|
||||
|
||||
% Set the axis limits to be the same for both subplots
|
||||
x_limits = [min(x_range), max(x_range)];
|
||||
y_limits = [min(y_range), max(y_range)];
|
||||
z_limits = [min(z_range), max(z_range)];
|
||||
|
||||
% Visualize the random cube
|
||||
subplot(1, 2, 1);
|
||||
isosurface(x, y, z, cube, 0.5); % Isosurface for the random cube
|
||||
axis([x_limits, y_limits, z_limits]);
|
||||
title('Original 3D Numerical Grid', 'FontSize', 16);
|
||||
xlabel('X (\mum)', 'Interpreter', 'tex', 'FontSize', 16);
|
||||
ylabel('Y (\mum)', 'Interpreter', 'tex', 'FontSize', 16);
|
||||
zlabel('Z (\mum)', 'Interpreter', 'tex', 'FontSize', 16);
|
||||
grid on;
|
||||
axis equal;
|
||||
view(3);
|
||||
camlight;
|
||||
lighting gouraud;
|
||||
|
||||
% Visualize the masked cube
|
||||
subplot(1, 2, 2);
|
||||
isosurface(x, y, z, masked_cube, 0.5); % Isosurface for the masked cube
|
||||
axis([x_limits, y_limits, z_limits]);
|
||||
title('Grid with Custom Cylindrical Cut-off', 'FontSize', 16);
|
||||
% Add subtitle with radius and height with adjusted position
|
||||
text('Units', 'normalized', 'Position', [0.5, -0.2], 'String', ...
|
||||
['Radius = ', num2str(radius), ' \mum, Height = ', num2str(height), ' \mum'], ...
|
||||
'Interpreter', 'tex', 'FontSize', 14, 'FontWeight', 'normal', 'HorizontalAlignment', 'center');
|
||||
xlabel('X (\mum)', 'Interpreter', 'tex', 'FontSize', 16);
|
||||
ylabel('Y (\mum)', 'Interpreter', 'tex', 'FontSize', 16);
|
||||
zlabel('Z (\mum)', 'Interpreter', 'tex', 'FontSize', 16);
|
||||
grid on;
|
||||
axis equal;
|
||||
view(3);
|
||||
camlight;
|
||||
lighting gouraud;
|
@ -1,6 +1,6 @@
|
||||
%%
|
||||
% Parameters
|
||||
alpha = 0.5; % Example value for alpha
|
||||
alpha = 8; % Example value for alpha
|
||||
N = linspace(1e4, 1e6, 100); % Atom number range
|
||||
OD = linspace(0, 3, 100); % Optical depth range
|
||||
N1 = 100; % Example parameter for N1 controlling transition steepness
|
||||
@ -37,13 +37,10 @@ title(['|C(X)| = OD^3 * N^{\alpha - 9/5} * Smoothed Heaviside Function with Alph
|
||||
% title('Cost Function: OD^3 * N^{\alpha - 9/5} with Smoothed Heaviside Function');
|
||||
%%
|
||||
% Parameters
|
||||
N = linspace(1e3, 1e6, 100); % Atom number range
|
||||
OD = linspace(0, 3, 100); % Optical depth range
|
||||
N = linspace(1e3, 1e6, 100); % Atom number range
|
||||
OD = linspace(0, 3, 100); % Optical depth range
|
||||
N1 = 1e5; % Example parameter for N1 controlling transition steepness
|
||||
|
||||
% Smoothed Heaviside function as given in the appendix
|
||||
|
||||
|
||||
% Create figure and initial plot
|
||||
fig = figure(2);
|
||||
clf
|
||||
@ -51,17 +48,26 @@ set(gcf,'Position',[50 50 950 750])
|
||||
set(gca,'FontSize',16,'Box','On','Linewidth',2);
|
||||
alpha = 0.5; % Initial value for alpha
|
||||
|
||||
function cf = getSmoothedHeaviside(x, N1)
|
||||
if x > 0
|
||||
cf = (2 ./ (1 + exp(N1 ./ x)));
|
||||
else
|
||||
cf = 0;
|
||||
end
|
||||
end
|
||||
|
||||
% Nested function to calculate and update the cost function plot
|
||||
function update_plot(alpha_value, N, N1, OD)
|
||||
SmoothedHeaviside = @(x) (x > 0) .* (2 ./ (1 + exp(N1 ./ x)));
|
||||
|
||||
% Calculate the cost function for the given alpha
|
||||
CostFunction = zeros(length(N), length(OD));
|
||||
for i = 1:length(N)
|
||||
for j = 1:length(OD)
|
||||
H_N = SmoothedHeaviside(N(i)); % Smoothed Heaviside function
|
||||
H_N = getSmoothedHeaviside(N(i), N1); % Smoothed Heaviside function
|
||||
CostFunction(i, j) = H_N * OD(j)^3 * N(i)^(alpha_value - 9/5);
|
||||
end
|
||||
end
|
||||
|
||||
% Create a meshgrid for plotting
|
||||
[OD_grid, N_grid] = meshgrid(OD, N);
|
||||
% Plot the cost function as a surface plot
|
||||
|
@ -1,3 +1,165 @@
|
||||
%% Direction solution to the unconstrained optimization problem with the Conjugate Gradient technique
|
||||
clc;
|
||||
clear;
|
||||
format long;
|
||||
|
||||
% Define the function (now accepts a 3D array)
|
||||
f = @(X) sum(X(:).^4) - 4*sum(X(:).^3) + 6*sum(X(:).^2) + 5;
|
||||
|
||||
% Initial Guess: Now we use a 3D array
|
||||
x_o = rand(3, 3, 3); % Random 3D array as the initial guess
|
||||
fprintf('Initial Objective Function Value: %.6f\n\n', f(x_o));
|
||||
|
||||
% Convergence Criteria:
|
||||
Epsilon = 1E-5;
|
||||
|
||||
% Gradient Calculation (numerical)
|
||||
J = compute_gradient(f, x_o); % Gradient at initial point
|
||||
S = -J; % Initial search direction
|
||||
|
||||
% Iteration Counter:
|
||||
i = 1;
|
||||
|
||||
% Minimization
|
||||
while norm(S(:)) > Epsilon % Halting Criterion
|
||||
% Step Size Optimization (Line Search)
|
||||
lambda = optimize_step_size(f, x_o, S);
|
||||
|
||||
% Update the solution
|
||||
x_o_new = x_o + lambda * S;
|
||||
|
||||
% Update the gradient and search direction
|
||||
J_old = J;
|
||||
J = compute_gradient(f, x_o_new);
|
||||
S = update_search_direction(S, J, J_old);
|
||||
|
||||
% Update for next iteration
|
||||
x_o = x_o_new;
|
||||
i = i + 1;
|
||||
end
|
||||
|
||||
% Output
|
||||
fprintf('Number of Iterations for Convergence: %d\n\n', i);
|
||||
fprintf('Objective Function Minimum Value: %.6f\n\n', f(x_o));
|
||||
|
||||
|
||||
%% Visualize the optimization
|
||||
|
||||
clc;
|
||||
clear;
|
||||
format long;
|
||||
|
||||
% Define the function (now accepts a 3D array)
|
||||
f = @(X) sum(X(:).^4) - 4*sum(X(:).^3) + 6*sum(X(:).^2) + 5;
|
||||
|
||||
% Initial Guess: Now we use a 3D array
|
||||
x_o = rand(3, 3, 3); % Random 3D array as the initial guess
|
||||
fprintf('Initial Objective Function Value: %.6f\n\n', f(x_o));
|
||||
|
||||
% Convergence Criteria:
|
||||
Epsilon = 1E-5;
|
||||
|
||||
% Gradient Calculation (numerical)
|
||||
J = compute_gradient(f, x_o); % Gradient at initial point
|
||||
S = -J; % Initial search direction
|
||||
|
||||
% Iteration Counter:
|
||||
i = 1;
|
||||
|
||||
% Prepare for visualization
|
||||
fig = figure;
|
||||
clf
|
||||
set(gcf,'Position',[50 50 950 750])
|
||||
set(gca,'FontSize',16,'Box','On','Linewidth',2);
|
||||
hold on;
|
||||
|
||||
% Create a mesh grid for visualization
|
||||
[X1, X2] = meshgrid(-2:0.1:2, -2:0.1:2); % Adjust domain based on your function
|
||||
Z = arrayfun(@(x1, x2) f([x1, x2, 0]), X1, X2); % Example 2D slice: f([X1, X2, 0])
|
||||
|
||||
% Plot the surface
|
||||
surf(X1, X2, Z);
|
||||
xlabel('X1');
|
||||
ylabel('X2');
|
||||
zlabel('f(X)');
|
||||
title('Conjugate Gradient Optimization Process');
|
||||
colorbar;
|
||||
scatter3(x_o(1), x_o(2), f(x_o), 'r', 'filled'); % Initial point
|
||||
|
||||
% Set the 3D view
|
||||
view(75, 30); % Example 3D view: azimuth 45°, elevation 30°
|
||||
|
||||
% Minimization with visualization
|
||||
while norm(S(:)) > Epsilon % Halting Criterion
|
||||
% Step Size Optimization (Line Search)
|
||||
lambda = optimize_step_size(f, x_o, S);
|
||||
|
||||
% Update the solution
|
||||
x_o_new = x_o + lambda * S;
|
||||
|
||||
% Update the gradient and search direction
|
||||
J_old = J;
|
||||
J = compute_gradient(f, x_o_new);
|
||||
S = update_search_direction(S, J, J_old);
|
||||
|
||||
% Update for next iteration
|
||||
x_o = x_o_new;
|
||||
i = i + 1;
|
||||
|
||||
% Visualization Update
|
||||
scatter3(x_o(1), x_o(2), f(x_o), 'g', 'filled'); % Current point
|
||||
drawnow; % Update the plot
|
||||
end
|
||||
|
||||
% Output
|
||||
fprintf('Number of Iterations for Convergence: %d\n\n', i);
|
||||
fprintf('Objective Function Minimum Value: %.6f\n\n', f(x_o));
|
||||
|
||||
%%
|
||||
% Numerical Gradient Calculation using the finite differences method for 3D
|
||||
function J = compute_gradient(f, X)
|
||||
epsilon = 1E-5; % Step size for numerical differentiation
|
||||
J = zeros(size(X)); % Gradient with the same size as the input
|
||||
|
||||
% Loop over all elements of the 3D array
|
||||
for i = 1:numel(X)
|
||||
X1 = X;
|
||||
X2 = X;
|
||||
% Perturb the element X(i) in both directions
|
||||
X1(i) = X1(i) + epsilon;
|
||||
X2(i) = X2(i) - epsilon;
|
||||
% Central difference formula for gradient
|
||||
J(i) = (f(X1) - f(X2)) / (2 * epsilon);
|
||||
end
|
||||
end
|
||||
|
||||
% Line Search (Step Size Optimization)
|
||||
function lambda = optimize_step_size(f, X, S)
|
||||
alpha = 1; % Initial step size
|
||||
rho = 0.5; % Step size reduction factor
|
||||
c = 1E-4; % Armijo condition constant
|
||||
max_iter = 100; % Max iterations for backtracking
|
||||
|
||||
for k = 1:max_iter
|
||||
% Check if the Armijo condition is satisfied
|
||||
grad = compute_gradient(f, X); % Compute gradient
|
||||
if f(X + alpha * S) <= f(X) + c * alpha * (S(:)' * grad(:))
|
||||
break;
|
||||
else
|
||||
alpha = rho * alpha; % Reduce the step size
|
||||
end
|
||||
end
|
||||
lambda = alpha; % Return the optimized step size
|
||||
end
|
||||
|
||||
% Update Search Direction (Polak-Ribiere method)
|
||||
function S_new = update_search_direction(S, J_new, J_old)
|
||||
beta = (norm(J_new(:))^2) / (norm(J_old(:))^2);
|
||||
S_new = -J_new + beta * S;
|
||||
end
|
||||
|
||||
|
||||
%{
|
||||
function [psi] = minimizeEnergyFunctional(this,psi,Params,Transf,VDk,V,Observ)
|
||||
|
||||
format long;
|
||||
@ -168,4 +330,5 @@ function S_new = update_search_direction(S, J_new, J_old)
|
||||
% (Polak-Ribiere method)
|
||||
beta = max(0, (J_new(:)' * (J_new(:) - J_old(:))) / (norm(J_old(:))^2));
|
||||
S_new = -J_new + beta * S;
|
||||
end
|
||||
end
|
||||
%}
|
91
Estimations/SplitStepFourierMethod.m
Normal file
91
Estimations/SplitStepFourierMethod.m
Normal file
@ -0,0 +1,91 @@
|
||||
% Constants
|
||||
hbar = 1.0545718e-34; % Reduced Planck constant (Joule second)
|
||||
m_e = 9.10938356e-31; % Mass of electron (kg)
|
||||
wavelength = 5e-9; % de Broglie wavelength (meters)
|
||||
k0 = 2 * pi / wavelength; % Wave number
|
||||
|
||||
% Grid parameters
|
||||
Lx = 1e-6; % Simulation domain size (meters)
|
||||
Nx = 1024; % Number of grid points
|
||||
dx = Lx / Nx; % Grid spacing
|
||||
x = linspace(-Lx / 2, Lx / 2, Nx); % Spatial grid
|
||||
|
||||
% Time parameters
|
||||
dt = 3e-15; % Time step (seconds)
|
||||
Nt = 1001; % Number of time steps
|
||||
|
||||
% Wave packet parameters
|
||||
sigma_x = 60e-9; % Width of the Gaussian packet (meters)
|
||||
x0 = -2e-7; % Initial position of the packet (meters)
|
||||
kx0 = k0; % Initial wave vector
|
||||
|
||||
% Barrier parameters
|
||||
barrier_width = 4e-8; % Width of the square barrier (meters)
|
||||
barrier_height = 0.8 * hbar^2 * k0^2 / (2 * m_e); % Height of the barrier (Joules)
|
||||
|
||||
% Initial Gaussian wave packet
|
||||
psi0 = exp(-(x - x0).^2 / (2 * sigma_x^2)) .* exp(1i * kx0 * x);
|
||||
psi0 = psi0 / sqrt(sum(abs(psi0).^2) * dx); % Normalization
|
||||
|
||||
% Potential energy (Square barrier in the center)
|
||||
V = zeros(size(x));
|
||||
V(abs(x) < barrier_width / 2) = barrier_height;
|
||||
|
||||
% Fourier space components
|
||||
kx = (2 * pi / Lx) * (-Nx/2:Nx/2-1); % Frequency domain representation
|
||||
kx = fftshift(kx); % Shift zero frequency component to center
|
||||
K2 = kx.^2; % Squared wave numbers
|
||||
|
||||
% Split-step Fourier method
|
||||
psi = psi0; % Initialize wave function
|
||||
transmission_prob = 0; % Initialize transmission probability
|
||||
|
||||
figure(1); % Create a figure for visualization
|
||||
clf
|
||||
set(gcf,'Position',[100 100 950 750])
|
||||
set(gca,'FontSize',16,'Box','On','Linewidth',2);
|
||||
for t = 1:Nt
|
||||
% (a) 1/2 Evolution for the potential energy in real space
|
||||
psi = psi .* exp(-1i * V * dt / (2 * hbar));
|
||||
|
||||
% (b) Forward transform to Fourier space
|
||||
psi_k = fft(psi);
|
||||
|
||||
% (c) Full evolution for the kinetic energy in Fourier space
|
||||
psi_k = psi_k .* exp(-1i * hbar * K2 * dt / (2 * m_e));
|
||||
|
||||
% (d) Inverse Fourier transform back to real space
|
||||
psi = ifft(psi_k);
|
||||
|
||||
% (e) 1/2 Evolution for the potential energy in real space
|
||||
psi = psi .* exp(-1i * V * dt / (2 * hbar));
|
||||
|
||||
% Calculate transmission probability
|
||||
Rho = abs(psi).^2; % Probability density
|
||||
transmission_prob = sum(Rho(x > barrier_width / 2)) * dx;
|
||||
|
||||
% Visualization of wave packet evolution
|
||||
if mod(t, 50) == 0
|
||||
clf; % Clear figure before drawing
|
||||
plot(x * 1e9, Rho / max(Rho), 'r', 'LineWidth', 2); % Plot normalized density
|
||||
hold on;
|
||||
plot(x * 1e9, V / max(V), 'k', 'LineWidth', 2); % Plot barrier potential
|
||||
title(sprintf('Time step: %d\nTransmission Probability: %.3f', t, transmission_prob),'FontSize',16);
|
||||
xlabel('x (nm)', 'FontSize', 16);
|
||||
ylabel('Probability Density', 'FontSize', 16);
|
||||
grid on
|
||||
drawnow; % Update the figure dynamically
|
||||
end
|
||||
end
|
||||
|
||||
% Final wave packet distribution
|
||||
figure(2);
|
||||
clf
|
||||
set(gcf,'Position',[100 100 950 750])
|
||||
set(gca,'FontSize',16,'Box','On','Linewidth',2);
|
||||
plot(x * 1e9, abs(psi).^2, 'b', 'LineWidth', 2);
|
||||
xlabel('x (nm)','FontSize',16);
|
||||
ylabel('Probability Density','FontSize',16);
|
||||
title('Final Wave Packet Distribution','FontSize',16);
|
||||
grid on
|
||||
%%
|
Loading…
Reference in New Issue
Block a user