New test and example scripts.

This commit is contained in:
Karthik 2025-04-01 12:13:54 +02:00
parent 6cbeb19473
commit 3a4edcb312
4 changed files with 346 additions and 9 deletions

View File

@ -0,0 +1,77 @@
% Define the size of the cube using NumberOfGridPoints
NumberOfGridPoints = [32, 32, 16]; % [X, Y, Z] dimensions of the cube
Dimensions = [30, 30, 15]; % Real-world dimensions for the grid
% Generate a random 3D cube based on the NumberOfGridPoints
cube = rand(NumberOfGridPoints(1), NumberOfGridPoints(2), NumberOfGridPoints(3));
% Define the real-world distance range for each axis (X, Y, Z)
x_range = linspace(-Dimensions(1)/2, Dimensions(1)/2, NumberOfGridPoints(1)); % 32 points along X mapped to [-15, 15]
y_range = linspace(-Dimensions(2)/2, Dimensions(2)/2, NumberOfGridPoints(2)); % 32 points along Y mapped to [-15, 15]
z_range = linspace(-Dimensions(3)/2, Dimensions(3)/2, NumberOfGridPoints(3)); % 16 points along Z mapped to [-7.5, 7.5]
% Create a 3D grid of coordinates for the cube using meshgrid
[x, y, z] = meshgrid(x_range, y_range, z_range);
% Define the cylinder's radius and height (in real-world units)
radius = 10; % Radius in real-world units (e.g., meters)
height = 4; % Height in real-world units (e.g., meters)
% Get the center of the cube (in real-world coordinates)
center_x = mean(x_range); % Center of x_range
center_y = mean(y_range); % Center of y_range
center_z = mean(z_range); % Center of z_range
% Define the cylindrical mask
cylinder_mask = ((x - center_x).^2 + (y - center_y).^2 <= radius^2) & ...
(abs(z - center_z) <= height / 2);
% Set everything inside the cylinder to 1 and outside to 0
mask = double(cylinder_mask);
% Multiply the mask by the random cube to apply the cut-off
masked_cube = cube .* mask;
% Visualize the cube and the cylindrical mask using isosurfaces
figure(1);
clf
figure_width = 1200;
set(gcf, 'Position', [100, 100, figure_width, round(figure_width / 1.618)]);
set(gca, 'FontSize', 16, 'Box', 'On', 'Linewidth', 2);
% Set the axis limits to be the same for both subplots
x_limits = [min(x_range), max(x_range)];
y_limits = [min(y_range), max(y_range)];
z_limits = [min(z_range), max(z_range)];
% Visualize the random cube
subplot(1, 2, 1);
isosurface(x, y, z, cube, 0.5); % Isosurface for the random cube
axis([x_limits, y_limits, z_limits]);
title('Original 3D Numerical Grid', 'FontSize', 16);
xlabel('X (\mum)', 'Interpreter', 'tex', 'FontSize', 16);
ylabel('Y (\mum)', 'Interpreter', 'tex', 'FontSize', 16);
zlabel('Z (\mum)', 'Interpreter', 'tex', 'FontSize', 16);
grid on;
axis equal;
view(3);
camlight;
lighting gouraud;
% Visualize the masked cube
subplot(1, 2, 2);
isosurface(x, y, z, masked_cube, 0.5); % Isosurface for the masked cube
axis([x_limits, y_limits, z_limits]);
title('Grid with Custom Cylindrical Cut-off', 'FontSize', 16);
% Add subtitle with radius and height with adjusted position
text('Units', 'normalized', 'Position', [0.5, -0.2], 'String', ...
['Radius = ', num2str(radius), ' \mum, Height = ', num2str(height), ' \mum'], ...
'Interpreter', 'tex', 'FontSize', 14, 'FontWeight', 'normal', 'HorizontalAlignment', 'center');
xlabel('X (\mum)', 'Interpreter', 'tex', 'FontSize', 16);
ylabel('Y (\mum)', 'Interpreter', 'tex', 'FontSize', 16);
zlabel('Z (\mum)', 'Interpreter', 'tex', 'FontSize', 16);
grid on;
axis equal;
view(3);
camlight;
lighting gouraud;

View File

@ -1,6 +1,6 @@
%%
% Parameters
alpha = 0.5; % Example value for alpha
alpha = 8; % Example value for alpha
N = linspace(1e4, 1e6, 100); % Atom number range
OD = linspace(0, 3, 100); % Optical depth range
N1 = 100; % Example parameter for N1 controlling transition steepness
@ -37,13 +37,10 @@ title(['|C(X)| = OD^3 * N^{\alpha - 9/5} * Smoothed Heaviside Function with Alph
% title('Cost Function: OD^3 * N^{\alpha - 9/5} with Smoothed Heaviside Function');
%%
% Parameters
N = linspace(1e3, 1e6, 100); % Atom number range
OD = linspace(0, 3, 100); % Optical depth range
N = linspace(1e3, 1e6, 100); % Atom number range
OD = linspace(0, 3, 100); % Optical depth range
N1 = 1e5; % Example parameter for N1 controlling transition steepness
% Smoothed Heaviside function as given in the appendix
% Create figure and initial plot
fig = figure(2);
clf
@ -51,17 +48,26 @@ set(gcf,'Position',[50 50 950 750])
set(gca,'FontSize',16,'Box','On','Linewidth',2);
alpha = 0.5; % Initial value for alpha
function cf = getSmoothedHeaviside(x, N1)
if x > 0
cf = (2 ./ (1 + exp(N1 ./ x)));
else
cf = 0;
end
end
% Nested function to calculate and update the cost function plot
function update_plot(alpha_value, N, N1, OD)
SmoothedHeaviside = @(x) (x > 0) .* (2 ./ (1 + exp(N1 ./ x)));
% Calculate the cost function for the given alpha
CostFunction = zeros(length(N), length(OD));
for i = 1:length(N)
for j = 1:length(OD)
H_N = SmoothedHeaviside(N(i)); % Smoothed Heaviside function
H_N = getSmoothedHeaviside(N(i), N1); % Smoothed Heaviside function
CostFunction(i, j) = H_N * OD(j)^3 * N(i)^(alpha_value - 9/5);
end
end
% Create a meshgrid for plotting
[OD_grid, N_grid] = meshgrid(OD, N);
% Plot the cost function as a surface plot

View File

@ -1,3 +1,165 @@
%% Direction solution to the unconstrained optimization problem with the Conjugate Gradient technique
clc;
clear;
format long;
% Define the function (now accepts a 3D array)
f = @(X) sum(X(:).^4) - 4*sum(X(:).^3) + 6*sum(X(:).^2) + 5;
% Initial Guess: Now we use a 3D array
x_o = rand(3, 3, 3); % Random 3D array as the initial guess
fprintf('Initial Objective Function Value: %.6f\n\n', f(x_o));
% Convergence Criteria:
Epsilon = 1E-5;
% Gradient Calculation (numerical)
J = compute_gradient(f, x_o); % Gradient at initial point
S = -J; % Initial search direction
% Iteration Counter:
i = 1;
% Minimization
while norm(S(:)) > Epsilon % Halting Criterion
% Step Size Optimization (Line Search)
lambda = optimize_step_size(f, x_o, S);
% Update the solution
x_o_new = x_o + lambda * S;
% Update the gradient and search direction
J_old = J;
J = compute_gradient(f, x_o_new);
S = update_search_direction(S, J, J_old);
% Update for next iteration
x_o = x_o_new;
i = i + 1;
end
% Output
fprintf('Number of Iterations for Convergence: %d\n\n', i);
fprintf('Objective Function Minimum Value: %.6f\n\n', f(x_o));
%% Visualize the optimization
clc;
clear;
format long;
% Define the function (now accepts a 3D array)
f = @(X) sum(X(:).^4) - 4*sum(X(:).^3) + 6*sum(X(:).^2) + 5;
% Initial Guess: Now we use a 3D array
x_o = rand(3, 3, 3); % Random 3D array as the initial guess
fprintf('Initial Objective Function Value: %.6f\n\n', f(x_o));
% Convergence Criteria:
Epsilon = 1E-5;
% Gradient Calculation (numerical)
J = compute_gradient(f, x_o); % Gradient at initial point
S = -J; % Initial search direction
% Iteration Counter:
i = 1;
% Prepare for visualization
fig = figure;
clf
set(gcf,'Position',[50 50 950 750])
set(gca,'FontSize',16,'Box','On','Linewidth',2);
hold on;
% Create a mesh grid for visualization
[X1, X2] = meshgrid(-2:0.1:2, -2:0.1:2); % Adjust domain based on your function
Z = arrayfun(@(x1, x2) f([x1, x2, 0]), X1, X2); % Example 2D slice: f([X1, X2, 0])
% Plot the surface
surf(X1, X2, Z);
xlabel('X1');
ylabel('X2');
zlabel('f(X)');
title('Conjugate Gradient Optimization Process');
colorbar;
scatter3(x_o(1), x_o(2), f(x_o), 'r', 'filled'); % Initial point
% Set the 3D view
view(75, 30); % Example 3D view: azimuth 45°, elevation 30°
% Minimization with visualization
while norm(S(:)) > Epsilon % Halting Criterion
% Step Size Optimization (Line Search)
lambda = optimize_step_size(f, x_o, S);
% Update the solution
x_o_new = x_o + lambda * S;
% Update the gradient and search direction
J_old = J;
J = compute_gradient(f, x_o_new);
S = update_search_direction(S, J, J_old);
% Update for next iteration
x_o = x_o_new;
i = i + 1;
% Visualization Update
scatter3(x_o(1), x_o(2), f(x_o), 'g', 'filled'); % Current point
drawnow; % Update the plot
end
% Output
fprintf('Number of Iterations for Convergence: %d\n\n', i);
fprintf('Objective Function Minimum Value: %.6f\n\n', f(x_o));
%%
% Numerical Gradient Calculation using the finite differences method for 3D
function J = compute_gradient(f, X)
epsilon = 1E-5; % Step size for numerical differentiation
J = zeros(size(X)); % Gradient with the same size as the input
% Loop over all elements of the 3D array
for i = 1:numel(X)
X1 = X;
X2 = X;
% Perturb the element X(i) in both directions
X1(i) = X1(i) + epsilon;
X2(i) = X2(i) - epsilon;
% Central difference formula for gradient
J(i) = (f(X1) - f(X2)) / (2 * epsilon);
end
end
% Line Search (Step Size Optimization)
function lambda = optimize_step_size(f, X, S)
alpha = 1; % Initial step size
rho = 0.5; % Step size reduction factor
c = 1E-4; % Armijo condition constant
max_iter = 100; % Max iterations for backtracking
for k = 1:max_iter
% Check if the Armijo condition is satisfied
grad = compute_gradient(f, X); % Compute gradient
if f(X + alpha * S) <= f(X) + c * alpha * (S(:)' * grad(:))
break;
else
alpha = rho * alpha; % Reduce the step size
end
end
lambda = alpha; % Return the optimized step size
end
% Update Search Direction (Polak-Ribiere method)
function S_new = update_search_direction(S, J_new, J_old)
beta = (norm(J_new(:))^2) / (norm(J_old(:))^2);
S_new = -J_new + beta * S;
end
%{
function [psi] = minimizeEnergyFunctional(this,psi,Params,Transf,VDk,V,Observ)
format long;
@ -168,4 +330,5 @@ function S_new = update_search_direction(S, J_new, J_old)
% (Polak-Ribiere method)
beta = max(0, (J_new(:)' * (J_new(:) - J_old(:))) / (norm(J_old(:))^2));
S_new = -J_new + beta * S;
end
end
%}

View File

@ -0,0 +1,91 @@
% Constants
hbar = 1.0545718e-34; % Reduced Planck constant (Joule second)
m_e = 9.10938356e-31; % Mass of electron (kg)
wavelength = 5e-9; % de Broglie wavelength (meters)
k0 = 2 * pi / wavelength; % Wave number
% Grid parameters
Lx = 1e-6; % Simulation domain size (meters)
Nx = 1024; % Number of grid points
dx = Lx / Nx; % Grid spacing
x = linspace(-Lx / 2, Lx / 2, Nx); % Spatial grid
% Time parameters
dt = 3e-15; % Time step (seconds)
Nt = 1001; % Number of time steps
% Wave packet parameters
sigma_x = 60e-9; % Width of the Gaussian packet (meters)
x0 = -2e-7; % Initial position of the packet (meters)
kx0 = k0; % Initial wave vector
% Barrier parameters
barrier_width = 4e-8; % Width of the square barrier (meters)
barrier_height = 0.8 * hbar^2 * k0^2 / (2 * m_e); % Height of the barrier (Joules)
% Initial Gaussian wave packet
psi0 = exp(-(x - x0).^2 / (2 * sigma_x^2)) .* exp(1i * kx0 * x);
psi0 = psi0 / sqrt(sum(abs(psi0).^2) * dx); % Normalization
% Potential energy (Square barrier in the center)
V = zeros(size(x));
V(abs(x) < barrier_width / 2) = barrier_height;
% Fourier space components
kx = (2 * pi / Lx) * (-Nx/2:Nx/2-1); % Frequency domain representation
kx = fftshift(kx); % Shift zero frequency component to center
K2 = kx.^2; % Squared wave numbers
% Split-step Fourier method
psi = psi0; % Initialize wave function
transmission_prob = 0; % Initialize transmission probability
figure(1); % Create a figure for visualization
clf
set(gcf,'Position',[100 100 950 750])
set(gca,'FontSize',16,'Box','On','Linewidth',2);
for t = 1:Nt
% (a) 1/2 Evolution for the potential energy in real space
psi = psi .* exp(-1i * V * dt / (2 * hbar));
% (b) Forward transform to Fourier space
psi_k = fft(psi);
% (c) Full evolution for the kinetic energy in Fourier space
psi_k = psi_k .* exp(-1i * hbar * K2 * dt / (2 * m_e));
% (d) Inverse Fourier transform back to real space
psi = ifft(psi_k);
% (e) 1/2 Evolution for the potential energy in real space
psi = psi .* exp(-1i * V * dt / (2 * hbar));
% Calculate transmission probability
Rho = abs(psi).^2; % Probability density
transmission_prob = sum(Rho(x > barrier_width / 2)) * dx;
% Visualization of wave packet evolution
if mod(t, 50) == 0
clf; % Clear figure before drawing
plot(x * 1e9, Rho / max(Rho), 'r', 'LineWidth', 2); % Plot normalized density
hold on;
plot(x * 1e9, V / max(V), 'k', 'LineWidth', 2); % Plot barrier potential
title(sprintf('Time step: %d\nTransmission Probability: %.3f', t, transmission_prob),'FontSize',16);
xlabel('x (nm)', 'FontSize', 16);
ylabel('Probability Density', 'FontSize', 16);
grid on
drawnow; % Update the figure dynamically
end
end
% Final wave packet distribution
figure(2);
clf
set(gcf,'Position',[100 100 950 750])
set(gca,'FontSize',16,'Box','On','Linewidth',2);
plot(x * 1e9, abs(psi).^2, 'b', 'LineWidth', 2);
xlabel('x (nm)','FontSize',16);
ylabel('Probability Density','FontSize',16);
title('Final Wave Packet Distribution','FontSize',16);
grid on
%%