Backing up of script of CGD implementation.

This commit is contained in:
Karthik 2025-04-01 01:18:54 +02:00
parent f1b781f8b8
commit 6cbeb19473

View File

@ -0,0 +1,171 @@
function [psi] = minimizeEnergyFunctional(this,psi,Params,Transf,VDk,V,Observ)
format long;
% Define the function handle
f = @(X) this.Calculator.calculateTotalEnergy(X, Params, Transf, VDk, V)/Params.N;
% Convergence Criteria:
Epsilon = 1E-5;
% Iteration Counter:
i = 1;
Observ.residual = 1;
Observ.res = 1;
% Initialize the PrematureExitFlag to false
PrematureExitFlag = false;
if this.PlotLive
Plotter.plotLive(psi,Params,Transf,Observ)
drawnow
end
% Minimization Loop
while true
% Compute gradient
J = compute_gradient(psi, Params, Transf, VDk, V);
% Check stopping criterion (Gradient norm)
if norm(J(:)) < Epsilon
disp('Tolerance reached: Gradient norm is below the specified epsilon.');
PrematureExitFlag = true; % Set flag to indicate premature exit
break;
elseif i >= this.MaxIterationsForCGD
disp('Maximum number of iterations for CGD reached.');
PrematureExitFlag = true; % Set flag to indicate premature exit
break;
end
% Initialize search direction if first iteration
if i == 1
S = -J;
else
% Update search direction
S = update_search_direction(S, J, J_old);
end
% Step Size Optimization (Line Search)
alpha = optimize_step_size(f, psi, S, Params, Transf, VDk, V);
% Update solution
psi = psi + alpha * S;
% Normalize psi
Norm = sum(abs(psi(:)).^2) * Transf.dx * Transf.dy * Transf.dz;
psi = sqrt(Params.N) * psi / sqrt(Norm);
% Store old gradient
J_old = J;
i = i + 1;
muchem = this.Calculator.calculateChemicalPotential(psi,Params,Transf,VDk,V);
if mod(i,500) == 0
% Change in Energy
E = this.Calculator.calculateTotalEnergy(psi,Params,Transf,VDk,V);
E = E/Norm;
Observ.EVec = [Observ.EVec E];
% Chemical potential
Observ.mucVec = [Observ.mucVec muchem];
% Normalized residuals
res = this.Calculator.calculateNormalizedResiduals(psi,Params,Transf,VDk,V,muchem);
Observ.residual = [Observ.residual res];
Observ.res_idx = Observ.res_idx + 1;
if this.PlotLive
Plotter.plotLive(psi,Params,Transf,Observ)
drawnow
end
save(sprintf(strcat(this.SaveDirectory, '/Run_%03i/psi_gs.mat'),Params.njob),'psi','muchem','Observ','Transf','Params','VDk','V');
end
end
% Check if loop ended prematurely
if PrematureExitFlag
disp('Optimizer ended prematurely without convergence to a minimum.');
else
fprintf('Minimum found! Number of Iterations for Convergence: %d\n\n', i);
end
% Change in Energy
E = this.Calculator.calculateTotalEnergy(psi,Params,Transf,VDk,V);
E = E/Norm;
Observ.EVec = [Observ.EVec E];
disp('Saving data...');
save(sprintf(strcat(this.SaveDirectory, '/Run_%03i/psi_gs.mat'),Params.njob),'psi','muchem','Observ','Transf','Params','VDk','V');
disp('Save complete!');
end
%% Helper functions
% Numerical Gradient Calculation using the finite differences method
function J = compute_gradient(psi, Params, Transf, VDk, V)
% Operators
% Kinetic energy
KEop = 0.5 * (Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2);
HKin = @(w) real(ifft(KEop.*fft(w)));
% Trap Potential
HV = @(w) V.*w;
% Contact interactions
Hint = @(w) (Params.gs*abs(psi).^2).*w;
% DDIs
frho = fftn(abs(psi).^2);
Phi = real(ifftn(frho.*VDk));
Hddi = @(w) (Params.gdd*Phi).*w;
% Quantum fluctuations
Hqf = @(w) (Params.gammaQF*abs(psi).^3).*w;
H = @(w) HKin(w) + HV(w) + Hint(w) + Hddi(w) + Hqf(w);
J = H(psi);
end
% Line Search (Step Size Optimization)
function alpha = optimize_step_size(f, X, S, Params, Transf, VDk, V)
alpha = 1; % Initial step size
rho = 0.5; % Step size reduction factor
c = 1E-4; % Armijo condition constant
max_iter = 100; % Max iterations for backtracking
tol = 1E-4; % Tolerance for stopping
grad = compute_gradient(X, Params, Transf, VDk, V); % Compute gradient once
f_X = f(X); % Evaluate f(X) once
for k = 1:max_iter
% Evaluate Armijo condition with precomputed f(X) and grad
if f(X + alpha * S) <= f_X + c * alpha * (S(:)' * grad(:))
break;
else
alpha = rho * alpha; % Reduce the step size
end
% Early stopping if step size becomes too small
if alpha < tol
break;
end
end
end
% Update Search Direction
function S_new = update_search_direction(S, J_new, J_old)
% (Fletcher-Reeves method)
% beta = (norm(J_new(:))^2) / (norm(J_old(:))^2);
% S_new = -J_new + beta * S;
% (Polak-Ribiere method)
beta = max(0, (J_new(:)' * (J_new(:) - J_old(:))) / (norm(J_old(:))^2));
S_new = -J_new + beta * S;
end