% Constants hbar = 1.0545718e-34; % Reduced Planck constant (Joule second) m_e = 9.10938356e-31; % Mass of electron (kg) wavelength = 5e-9; % de Broglie wavelength (meters) k0 = 2 * pi / wavelength; % Wave number % Grid parameters Lx = 1e-6; % Simulation domain size (meters) Nx = 1024; % Number of grid points dx = Lx / Nx; % Grid spacing x = linspace(-Lx / 2, Lx / 2, Nx); % Spatial grid % Time parameters dt = 3e-15; % Time step (seconds) Nt = 1001; % Number of time steps % Wave packet parameters sigma_x = 60e-9; % Width of the Gaussian packet (meters) x0 = -2e-7; % Initial position of the packet (meters) kx0 = k0; % Initial wave vector % Barrier parameters barrier_width = 4e-8; % Width of the square barrier (meters) barrier_height = 0.8 * hbar^2 * k0^2 / (2 * m_e); % Height of the barrier (Joules) % Initial Gaussian wave packet psi0 = exp(-(x - x0).^2 / (2 * sigma_x^2)) .* exp(1i * kx0 * x); psi0 = psi0 / sqrt(sum(abs(psi0).^2) * dx); % Normalization % Potential energy (Square barrier in the center) V = zeros(size(x)); V(abs(x) < barrier_width / 2) = barrier_height; % Fourier space components kx = (2 * pi / Lx) * (-Nx/2:Nx/2-1); % Frequency domain representation kx = fftshift(kx); % Shift zero frequency component to center K2 = kx.^2; % Squared wave numbers % Split-step Fourier method psi = psi0; % Initialize wave function transmission_prob = 0; % Initialize transmission probability figure(1); % Create a figure for visualization clf set(gcf,'Position',[100 100 950 750]) set(gca,'FontSize',16,'Box','On','Linewidth',2); for t = 1:Nt % (a) 1/2 Evolution for the potential energy in real space psi = psi .* exp(-1i * V * dt / (2 * hbar)); % (b) Forward transform to Fourier space psi_k = fft(psi); % (c) Full evolution for the kinetic energy in Fourier space psi_k = psi_k .* exp(-1i * hbar * K2 * dt / (2 * m_e)); % (d) Inverse Fourier transform back to real space psi = ifft(psi_k); % (e) 1/2 Evolution for the potential energy in real space psi = psi .* exp(-1i * V * dt / (2 * hbar)); % Calculate transmission probability Rho = abs(psi).^2; % Probability density transmission_prob = sum(Rho(x > barrier_width / 2)) * dx; % Visualization of wave packet evolution if mod(t, 50) == 0 clf; % Clear figure before drawing plot(x * 1e9, Rho / max(Rho), 'r', 'LineWidth', 2); % Plot normalized density hold on; plot(x * 1e9, V / max(V), 'k', 'LineWidth', 2); % Plot barrier potential title(sprintf('Time step: %d\nTransmission Probability: %.3f', t, transmission_prob),'FontSize',16); xlabel('x (nm)', 'FontSize', 16); ylabel('Probability Density', 'FontSize', 16); grid on drawnow; % Update the figure dynamically end end % Final wave packet distribution figure(2); clf set(gcf,'Position',[100 100 950 750]) set(gca,'FontSize',16,'Box','On','Linewidth',2); plot(x * 1e9, abs(psi).^2, 'b', 'LineWidth', 2); xlabel('x (nm)','FontSize',16); ylabel('Probability Density','FontSize',16); title('Final Wave Packet Distribution','FontSize',16); grid on %%