Calculations/Dipolar-Gas-Simulator/+Scripts/run_locally.m

415 lines
16 KiB
Mathematica
Raw Normal View History

2024-06-18 19:01:35 +02:00
%% This script is testing the functionalities of the Dipolar Gas Simulator
%
% Important: Run only sectionwise!!
%% - Create Simulator, Potential and Calculator object with specified options
OptionsStruct = struct;
OptionsStruct.NumberOfAtoms = 1E5;
2024-06-20 13:15:56 +02:00
OptionsStruct.DipolarPolarAngle = 0;
2024-06-18 19:01:35 +02:00
OptionsStruct.DipolarAzimuthAngle = 0;
OptionsStruct.ScatteringLength = 86;
2024-06-18 19:01:35 +02:00
OptionsStruct.TrapFrequencies = [10, 10, 72.4];
2024-06-18 19:01:35 +02:00
OptionsStruct.TrapDepth = 5;
OptionsStruct.BoxSize = 15;
OptionsStruct.TrapPotentialType = 'Harmonic';
OptionsStruct.NumberOfGridPoints = [256, 512, 256];
2024-06-20 13:15:56 +02:00
OptionsStruct.Dimensions = [50, 120, 150];
2024-06-18 19:01:35 +02:00
OptionsStruct.CutoffType = 'Cylindrical';
OptionsStruct.SimulationMode = 'ImaginaryTimeEvolution'; % 'ImaginaryTimeEvolution' | 'RealTimeEvolution'
OptionsStruct.TimeStepSize = 0.005; % in s
OptionsStruct.NumberOfTimeSteps = 2E6; % in s
2024-06-18 19:01:35 +02:00
OptionsStruct.EnergyTolerance = 5E-10;
2024-06-20 12:16:42 +02:00
OptionsStruct.ResidualTolerance = 1E-05;
2024-06-18 19:01:35 +02:00
OptionsStruct.JobNumber = 1;
2024-06-20 13:15:56 +02:00
OptionsStruct.RunOnGPU = false;
2024-06-18 19:01:35 +02:00
OptionsStruct.SaveData = true;
OptionsStruct.SaveDirectory = './Data';
options = Helper.convertstruct2cell(OptionsStruct);
clear OptionsStruct
sim = Simulator.DipolarGas(options{:});
pot = Simulator.Potentials(options{:});
sim.Potential = pot.trap(); % + pot.repulsive_chopstick();
2024-06-18 19:01:35 +02:00
%-% Run Simulation %-%
[Params, Transf, psi, V, VDk] = sim.run();
2024-06-18 19:01:35 +02:00
%% - Plot numerical grid
% Plotter.visualizeSpace(Transf)
%% - Plot trap potential
Plotter.visualizeTrapPotential(sim.Potential,Params,Transf)
%% - Plot initial wavefunction
Plotter.visualizeWavefunction(psi,Params,Transf)
%% - Plot GS wavefunction
Plotter.visualizeGSWavefunction(Params.njob)
%%
% To reproduce results from the Blair Blakie paper:
% (n*add^2, as/add)
% Critical point: (0.0978, 0.784); Triangular phase: (0.0959, 0.750); Stripe phase: (0.144, 0.765); Honeycomb phase: (0.192, 0.780)
% N = ((n*add^2)/Params.add^2) * (Params.Lx *1E-6)^2
% Critical point: N = 2.0427e+07; Triangular phase: N = 2.0030e+07; Stripe phase: N = 3.0077e+07; Honeycomb phase: N = 4.0102e+07 for dimensions fixed to 100
% as = ((as/add)*Params.add)/Params.a0
% Critical point: 102.5133; Triangular phase: 98.0676; Stripe phase: 100.0289; Honeycomb phase: 101.9903
%% - Create Variational2D and Calculator object with specified options
OptionsStruct = struct;
OptionsStruct.NumberOfAtoms = 2.0030e+07;
OptionsStruct.DipolarPolarAngle = 0;
OptionsStruct.DipolarAzimuthAngle = 0;
OptionsStruct.ScatteringLength = 98.0676;
OptionsStruct.TrapFrequencies = [0, 0, 72.4];
OptionsStruct.TrapPotentialType = 'None';
OptionsStruct.NumberOfGridPoints = [128, 128];
OptionsStruct.Dimensions = [100, 100];
OptionsStruct.TimeStepSize = 0.005; % in s
OptionsStruct.MinimumTimeStepSize = 1E-5; % in s
OptionsStruct.TimeCutOff = 1E6; % in s
OptionsStruct.EnergyTolerance = 5E-10;
OptionsStruct.ResidualTolerance = 1E-05;
OptionsStruct.NoiseScaleFactor = 0.05;
OptionsStruct.MaxIterations = 10;
OptionsStruct.VariationalWidth = 5.0;
OptionsStruct.WidthLowerBound = 1;
OptionsStruct.WidthUpperBound = 12;
OptionsStruct.WidthCutoff = 5e-3;
OptionsStruct.PlotLive = true;
OptionsStruct.JobNumber = 1;
OptionsStruct.RunOnGPU = false;
OptionsStruct.SaveData = true;
OptionsStruct.SaveDirectory = './Results/Data_TriangularPhase';
options = Helper.convertstruct2cell(OptionsStruct);
clear OptionsStruct
solver = VariationalSolver2D.DipolarGas(options{:});
pot = VariationalSolver2D.Potentials(options{:});
solver.Potential = pot.trap();
%-% Run Solver %-%
[Params, Transf, psi, V, VDk] = solver.run();
%%
% Solve BdG equations
% Load data
Data = load(sprintf(horzcat(solver.SaveDirectory, '/Run_%03i/psi_gs.mat'),solver.JobNumber),'psi','Transf','Params','VParams','V');
Transf = Data.Transf;
Params = Data.Params;
VParams = Data.VParams;
V = Data.V;
if isgpuarray(Data.psi)
psi = gather(Data.psi);
else
psi = Data.psi;
end
% == DDI potential == %
VDk = solver.Calculator.calculateVDkWithCutoff(Transf, Params, VParams.ell);
% == Chemical potential == %
muchem = solver.Calculator.calculateChemicalPotential(psi,Params,VParams,Transf,VDk,V);
[evals, modes] = BdGSolver2D.solveBogoliubovdeGennesIn2D(psi, Params, VDk, VParams, Transf, muchem);
% Save the eigenvalues and eigenvectors to a .mat file
save(sprintf(strcat(solver.SaveDirectory, '/Run_%03i/bdg_eigen_data.mat'),solver.JobNumber), 'evals', 'modes', '-v7.3');
%% - Create Variational2D and Calculator object with specified options
OptionsStruct = struct;
OptionsStruct.NumberOfAtoms = 3.0077e+07;
OptionsStruct.DipolarPolarAngle = 0;
OptionsStruct.DipolarAzimuthAngle = 0;
OptionsStruct.ScatteringLength = 100.0289;
OptionsStruct.TrapFrequencies = [0, 0, 72.4];
OptionsStruct.TrapPotentialType = 'None';
OptionsStruct.NumberOfGridPoints = [128, 128];
OptionsStruct.Dimensions = [100, 100];
OptionsStruct.TimeStepSize = 0.005; % in s
2024-11-18 18:06:14 +01:00
OptionsStruct.MinimumTimeStepSize = 1E-5; % in s
OptionsStruct.TimeCutOff = 1E6; % in s
OptionsStruct.EnergyTolerance = 5E-10;
OptionsStruct.ResidualTolerance = 1E-05;
OptionsStruct.NoiseScaleFactor = 0.05;
OptionsStruct.MaxIterations = 10;
OptionsStruct.VariationalWidth = 5;
OptionsStruct.WidthLowerBound = 1;
2024-11-22 00:04:27 +01:00
OptionsStruct.WidthUpperBound = 12;
OptionsStruct.WidthCutoff = 5e-3;
OptionsStruct.PlotLive = true;
OptionsStruct.JobNumber = 1;
OptionsStruct.RunOnGPU = false;
OptionsStruct.SaveData = true;
OptionsStruct.SaveDirectory = './Results/Data_StripePhase';
options = Helper.convertstruct2cell(OptionsStruct);
clear OptionsStruct
solver = VariationalSolver2D.DipolarGas(options{:});
pot = VariationalSolver2D.Potentials(options{:});
solver.Potential = pot.trap();
%-% Run Solver %-%
[Params, Transf, psi, V, VDk] = solver.run();
%% - Create Variational2D and Calculator object with specified options
OptionsStruct = struct;
OptionsStruct.NumberOfAtoms = 4.2e+07;
OptionsStruct.DipolarPolarAngle = 0;
OptionsStruct.DipolarAzimuthAngle = 0;
2025-01-22 16:10:46 +01:00
OptionsStruct.ScatteringLength = 101.35;
OptionsStruct.TrapFrequencies = [0, 0, 72.4];
OptionsStruct.TrapPotentialType = 'None';
OptionsStruct.NumberOfGridPoints = [128, 128];
OptionsStruct.Dimensions = [100, 100];
OptionsStruct.TimeStepSize = 0.005; % in s
OptionsStruct.MinimumTimeStepSize = 1E-5; % in s
OptionsStruct.TimeCutOff = 2E6; % in s
OptionsStruct.EnergyTolerance = 5E-10;
OptionsStruct.ResidualTolerance = 1E-05;
OptionsStruct.NoiseScaleFactor = 0.05;
OptionsStruct.MaxIterations = 10;
2025-01-22 16:10:46 +01:00
OptionsStruct.VariationalWidth = 6;
OptionsStruct.WidthLowerBound = 1;
OptionsStruct.WidthUpperBound = 12;
OptionsStruct.WidthCutoff = 5e-3;
OptionsStruct.PlotLive = true;
OptionsStruct.JobNumber = 1;
OptionsStruct.RunOnGPU = false;
OptionsStruct.SaveData = true;
OptionsStruct.SaveDirectory = './Results/Data_HoneycombPhase';
options = Helper.convertstruct2cell(OptionsStruct);
clear OptionsStruct
solver = VariationalSolver2D.DipolarGas(options{:});
pot = VariationalSolver2D.Potentials(options{:});
solver.Potential = pot.trap();
%-% Run Solver %-%
[Params, Transf, psi, V, VDk] = solver.run();
2024-06-18 19:01:35 +02:00
%% - Plot numerical grid
% Plotter.visualizeSpace2D(Transf)
2024-11-18 18:06:14 +01:00
%% - Plot trap potential
% Plotter.visualizeTrapPotential2D(solver.Potential,Params,Transf)
2024-06-18 19:01:35 +02:00
%% - Plot initial wavefunction
Plotter.visualizeWavefunction2D(psi,Params,Transf)
2024-06-20 12:16:42 +02:00
%% - Plot GS wavefunction
Plotter.visualizeGSWavefunction2D(solver.SaveDirectory, solver.JobNumber)
%% - Analysis
SaveDirectory = './Results/Data_TriangularPhase';
JobNumber = 1;
Plotter.visualizeGSWavefunction2D(SaveDirectory, JobNumber)
%% - Analysis
SaveDirectory = './Results/Data_StripePhase';
JobNumber = 2;
Plotter.visualizeGSWavefunction2D(SaveDirectory, JobNumber)
%% - Analysis
SaveDirectory = './Results/Data_HoneycombPhase';
JobNumber = 3;
Plotter.visualizeGSWavefunction2D(SaveDirectory, JobNumber)
%% Tilting of the dipoles
% Atom Number = 1.00e+05
% System size = [10, 10]
%% v_z = 500, theta = 45: a_s = 85.17
OptionsStruct = struct;
OptionsStruct.NumberOfAtoms = 1.00e+05;
OptionsStruct.DipolarPolarAngle = deg2rad(45);
OptionsStruct.DipolarAzimuthAngle = 0;
OptionsStruct.ScatteringLength = 75.00;
OptionsStruct.TrapFrequencies = [0, 0, 500];
OptionsStruct.TrapPotentialType = 'None';
OptionsStruct.NumberOfGridPoints = [128, 128];
OptionsStruct.Dimensions = [10, 10];
OptionsStruct.TimeStepSize = 0.005; % in s
OptionsStruct.MinimumTimeStepSize = 1E-5; % in s
OptionsStruct.TimeCutOff = 5E5; % in s
OptionsStruct.EnergyTolerance = 5E-10;
OptionsStruct.ResidualTolerance = 1E-05;
OptionsStruct.NoiseScaleFactor = 0.15;
OptionsStruct.MaxIterations = 10;
OptionsStruct.VariationalWidth = 1;
OptionsStruct.WidthLowerBound = 0.01;
OptionsStruct.WidthUpperBound = 12;
OptionsStruct.WidthCutoff = 5e-3;
OptionsStruct.PlotLive = true;
OptionsStruct.JobNumber = 4;
OptionsStruct.RunOnGPU = false;
OptionsStruct.SaveData = true;
OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles';
options = Helper.convertstruct2cell(OptionsStruct);
clear OptionsStruct
solver = VariationalSolver2D.DipolarGas(options{:});
pot = VariationalSolver2D.Potentials(options{:});
solver.Potential = pot.trap();
%-% Run Solver %-%
[Params, Transf, psi, V, VDk] = solver.run();
%% v_z = 500, theta = 65: a_s = 93.41
OptionsStruct = struct;
OptionsStruct.NumberOfAtoms = 1.00e+05;
OptionsStruct.DipolarPolarAngle = deg2rad(65);
OptionsStruct.DipolarAzimuthAngle = 0;
OptionsStruct.ScatteringLength = 81.00;
OptionsStruct.TrapFrequencies = [0, 0, 500];
OptionsStruct.TrapPotentialType = 'None';
OptionsStruct.NumberOfGridPoints = [128, 128];
OptionsStruct.Dimensions = [10, 10];
OptionsStruct.TimeStepSize = 0.0025; % in s
OptionsStruct.MinimumTimeStepSize = 1E-5; % in s
OptionsStruct.TimeCutOff = 5E5; % in s
OptionsStruct.EnergyTolerance = 5E-10;
OptionsStruct.ResidualTolerance = 1E-05;
OptionsStruct.NoiseScaleFactor = 0.15;
OptionsStruct.MaxIterations = 10;
OptionsStruct.VariationalWidth = 1;
OptionsStruct.WidthLowerBound = 0.01;
OptionsStruct.WidthUpperBound = 12;
OptionsStruct.WidthCutoff = 5e-3;
OptionsStruct.PlotLive = true;
OptionsStruct.JobNumber = 5;
OptionsStruct.RunOnGPU = false;
OptionsStruct.SaveData = true;
OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles';
options = Helper.convertstruct2cell(OptionsStruct);
clear OptionsStruct
solver = VariationalSolver2D.DipolarGas(options{:});
pot = VariationalSolver2D.Potentials(options{:});
solver.Potential = pot.trap();
%-% Run Solver %-%
[Params, Transf, psi, V, VDk] = solver.run();
%% v_z = 500, theta = 75: a_s = 98.11
OptionsStruct = struct;
OptionsStruct.NumberOfAtoms = 1.00e+05;
OptionsStruct.DipolarPolarAngle = deg2rad(75);
OptionsStruct.DipolarAzimuthAngle = 0;
OptionsStruct.ScatteringLength = 85.00;
OptionsStruct.TrapFrequencies = [0, 0, 500];
OptionsStruct.TrapPotentialType = 'None';
OptionsStruct.NumberOfGridPoints = [128, 128];
OptionsStruct.Dimensions = [10, 10];
OptionsStruct.TimeStepSize = 0.001; % in s
OptionsStruct.MinimumTimeStepSize = 1E-5; % in s
OptionsStruct.TimeCutOff = 5E5; % in s
OptionsStruct.EnergyTolerance = 5E-10;
OptionsStruct.ResidualTolerance = 1E-05;
OptionsStruct.NoiseScaleFactor = 0.05;
OptionsStruct.MaxIterations = 10;
OptionsStruct.VariationalWidth = 1;
OptionsStruct.WidthLowerBound = 0.01;
OptionsStruct.WidthUpperBound = 12;
OptionsStruct.WidthCutoff = 5e-3;
OptionsStruct.PlotLive = true;
OptionsStruct.JobNumber = 6;
OptionsStruct.RunOnGPU = false;
OptionsStruct.SaveData = true;
OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles';
options = Helper.convertstruct2cell(OptionsStruct);
clear OptionsStruct
solver = VariationalSolver2D.DipolarGas(options{:});
pot = VariationalSolver2D.Potentials(options{:});
solver.Potential = pot.trap();
%-% Run Solver %-%
[Params, Transf, psi, V, VDk] = solver.run();
%% v_z = 500, theta = 85: a_s = 102.56
OptionsStruct = struct;
OptionsStruct.NumberOfAtoms = 1.00e+05;
OptionsStruct.DipolarPolarAngle = deg2rad(85);
OptionsStruct.DipolarAzimuthAngle = 0;
OptionsStruct.ScatteringLength = 90.00;
OptionsStruct.TrapFrequencies = [0, 0, 500];
OptionsStruct.TrapPotentialType = 'None';
OptionsStruct.NumberOfGridPoints = [128, 128];
OptionsStruct.Dimensions = [10, 10];
OptionsStruct.TimeStepSize = 0.001; % in s
OptionsStruct.MinimumTimeStepSize = 1E-5; % in s
OptionsStruct.TimeCutOff = 5E5; % in s
OptionsStruct.EnergyTolerance = 5E-10;
OptionsStruct.ResidualTolerance = 1E-05;
OptionsStruct.NoiseScaleFactor = 0.05;
OptionsStruct.MaxIterations = 10;
OptionsStruct.VariationalWidth = 1;
OptionsStruct.WidthLowerBound = 0.01;
OptionsStruct.WidthUpperBound = 12;
OptionsStruct.WidthCutoff = 5e-3;
OptionsStruct.PlotLive = true;
OptionsStruct.JobNumber = 7;
OptionsStruct.RunOnGPU = false;
OptionsStruct.SaveData = true;
OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles';
options = Helper.convertstruct2cell(OptionsStruct);
clear OptionsStruct
solver = VariationalSolver2D.DipolarGas(options{:});
pot = VariationalSolver2D.Potentials(options{:});
solver.Potential = pot.trap();
%-% Run Solver %-%
[Params, Transf, psi, V, VDk] = solver.run();
%% - Analysis
SaveDirectory = './Results/Data_TiltingOfDipoles';
JobNumber = 4;
Plotter.visualizeGSWavefunction2D(SaveDirectory, JobNumber)