Solver runs till BdG equations are solved and results saved.
This commit is contained in:
parent
5b1428e91a
commit
5049970246
@ -1,41 +1,67 @@
|
||||
function [evals, modes] = solveBogoliubovdeGennesIn2D(psi, Params, VDk, VParams, Transf, muchem)
|
||||
% 2-D matrix will be unravelled to a single column vector and the corresponding BdG matrix of (N^2)^2 elements solved for.
|
||||
Size = length(psi(:));
|
||||
Neigs = length(psi(:));
|
||||
opts.tol = 1e-16;
|
||||
opts.disp = 1;
|
||||
opts.issym = 0;
|
||||
opts.isreal = 1;
|
||||
opts.maxit = 1e4;
|
||||
|
||||
BdGVec = @(g) BdGSolver2D.BdGMatrix(g, psi, Params, VDk, VParams, Transf, muchem); % This function takes a column vector as input and returns a
|
||||
% matrix-vector product which is also a column vector
|
||||
[g,D] = eigs(BdGVec,Size,Neigs,'sr',opts);
|
||||
evals = diag(D);
|
||||
clear D;
|
||||
gs = Params.gs;
|
||||
gdd = Params.gdd;
|
||||
gammaQF = Params.gammaQF;
|
||||
|
||||
KEop = 0.5*(Transf.KX.^2+Transf.KY.^2);
|
||||
|
||||
g_pf_2D = 1/(sqrt(2*pi)*VParams.ell);
|
||||
gQF_pf_2D = sqrt(2/5)/(pi^(3/4)*VParams.ell^(3/2));
|
||||
Ez = (0.25/VParams.ell^2) + (0.25*Params.gz*VParams.ell^2);
|
||||
muchem_tilde = muchem - Ez;
|
||||
|
||||
% eigs only works with column vectors
|
||||
psi = psi.';
|
||||
KEop = KEop.';
|
||||
VDk = VDk.';
|
||||
|
||||
% Interaction Potential
|
||||
frho = fftn(abs(psi).^2);
|
||||
Phi = real(ifftn(frho.*VDk));
|
||||
% Operators
|
||||
H = @(w) real(ifft(KEop.*fft(w)));
|
||||
C = @(w) (((g_pf_2D*gs*abs(psi).^2) + (g_pf_2D*gdd*Phi)).*w) + (gQF_pf_2D*gammaQF*abs(psi).^3.*w);
|
||||
muHC = @(w) (-muchem_tilde * w) + H(w) + C(w);
|
||||
X = @(w) (psi.*real(ifft(VDk.*fft(psi.*w)))) + (3/2)*(gQF_pf_2D*gammaQF*abs(psi).^3).*w;
|
||||
|
||||
% Eigenvalues
|
||||
evals = sqrt(evals);
|
||||
|
||||
% Obtain f from g
|
||||
f = zeros(size(g));
|
||||
for ii = 1:Neigs
|
||||
f(:,:,ii) = (1/evals(ii)) * (muHC(g(:,:,ii)) + (2.*X(g(:,:,ii))));
|
||||
end
|
||||
|
||||
% Obtain u and v from f and g
|
||||
u = (f + g)/2;
|
||||
v = (f - g)/2;
|
||||
|
||||
% Renormalize to \int |u|^2 - |v|^2 = 1
|
||||
for ii=1:Neigs
|
||||
normalization = sum(abs(u(:,:,ii)).^2 - abs(v(:,:,ii)).^2);
|
||||
u(:,:,ii) = u(:,:,ii)/sqrt(normalization);
|
||||
v(:,:,ii) = v(:,:,ii)/sqrt(normalization);
|
||||
end
|
||||
|
||||
modes.u = u'; modes.v = v';
|
||||
modes.g = g'; modes.f = f';
|
||||
% 2-D matrix will be unravelled to a single column vector and the corresponding BdG matrix of (N^2)^2 elements solved for.
|
||||
Size = length(psi(:));
|
||||
Neigs = length(psi(:));
|
||||
opts.tol = 1e-16;
|
||||
opts.disp = 1;
|
||||
opts.issym = 0;
|
||||
opts.isreal = 1;
|
||||
opts.maxit = 1e4;
|
||||
|
||||
BdGVec = @(g) BdGSolver2D.BdGMatrix(g, psi, Params, VDk, VParams, Transf, muchem); % This function takes a column vector as input and returns a
|
||||
% matrix-vector product which is also a column vector
|
||||
[g,D] = eigs(BdGVec,Size,Neigs,'sr',opts);
|
||||
evals = diag(D);
|
||||
clear D;
|
||||
|
||||
% Eigenvalues
|
||||
evals = sqrt(evals);
|
||||
|
||||
% Obtain f from g
|
||||
for ii = 1:Neigs
|
||||
gres = reshape(g(:,ii), size(psi));
|
||||
f(:,ii) = reshape((1/evals(ii)) * (muHC(gres) + (2.*X(gres))), [], 1);
|
||||
end
|
||||
|
||||
% Obtain u and v from f and g
|
||||
u = (f + g)/2;
|
||||
v = (f - g)/2;
|
||||
|
||||
% Renormalize to \int |u|^2 - |v|^2 = 1
|
||||
for ii=1:Neigs
|
||||
normalization = sum(abs(u(:,ii)).^2 - abs(v(:,ii)).^2);
|
||||
u(:,ii) = u(:,ii)/sqrt(normalization);
|
||||
v(:,ii) = v(:,ii)/sqrt(normalization);
|
||||
end
|
||||
|
||||
modes.u = u'; modes.v = v';
|
||||
modes.g = g'; modes.f = f';
|
||||
|
||||
end
|
||||
|
||||
|
@ -100,36 +100,33 @@ pot = VariationalSolver2D.Potentials(options{:
|
||||
solver.Potential = pot.trap();
|
||||
|
||||
%-% Run Solver %-%
|
||||
% [Params, Transf, psi, V, VDk] = solver.run();
|
||||
[Params, Transf, psi, V, VDk] = solver.run();
|
||||
|
||||
% Solve BdG equations
|
||||
% Load data
|
||||
Data = load(sprintf(horzcat(solver.SaveDirectory, '/Run_%03i/psi_gs.mat'),solver.JobNumber),'psi','Params','Transf');
|
||||
Params = Data.Params;
|
||||
Transf = Data.Transf;
|
||||
|
||||
Data = load(sprintf(horzcat(solver.SaveDirectory, '/Run_%03i/psi_gs.mat'),solver.JobNumber),'psi','Transf','Params','VParams','V');
|
||||
|
||||
Transf = Data.Transf;
|
||||
Params = Data.Params;
|
||||
VParams = Data.VParams;
|
||||
V = Data.V;
|
||||
|
||||
if isgpuarray(Data.psi)
|
||||
psi = gather(Data.psi);
|
||||
else
|
||||
psi = Data.psi;
|
||||
end
|
||||
|
||||
VParams.ell = Params.ell;
|
||||
|
||||
% == DDI potential == %
|
||||
VDk = solver.Calculator.calculateVDkWithCutoff(Transf, Params, VParams.ell);
|
||||
|
||||
% == Trap potential == %
|
||||
X = Transf.X; Y = Transf.Y;
|
||||
V = 0.0*(Params.gx.*X.^2+Params.gy.*Y.^2);
|
||||
|
||||
% == Chemical potential == %
|
||||
muchem = solver.Calculator.calculateChemicalPotential(psi,Params,VParams,Transf,VDk,V);
|
||||
|
||||
[evals, modes] = BdGSolver2D.solveBogoliubovdeGennesIn2D(psi, Params, VDk, VParams, Transf, muchem);
|
||||
|
||||
% Save the eigenvalues and eigenvectors to a .mat file
|
||||
save(sprintf(strcat(solver.SaveDirectory, '/Run_%03i/bdg_eigen_data.mat'),solver.JobNumber), 'evals', 'modes');
|
||||
save(sprintf(strcat(solver.SaveDirectory, '/Run_%03i/bdg_eigen_data.mat'),solver.JobNumber), 'evals', 'modes', '-v7.3');
|
||||
|
||||
%% - Create Variational2D and Calculator object with specified options
|
||||
|
||||
|
@ -164,9 +164,9 @@ OptionsStruct.WidthLowerBound = 0.2;
|
||||
OptionsStruct.WidthUpperBound = 12;
|
||||
OptionsStruct.WidthCutoff = 1e-2;
|
||||
|
||||
OptionsStruct.PlotLive = true;
|
||||
OptionsStruct.PlotLive = false;
|
||||
OptionsStruct.JobNumber = 1;
|
||||
OptionsStruct.RunOnGPU = false;
|
||||
OptionsStruct.RunOnGPU = true;
|
||||
OptionsStruct.SaveData = true;
|
||||
OptionsStruct.SaveDirectory = './Data_TriangularPhase';
|
||||
options = Helper.convertstruct2cell(OptionsStruct);
|
||||
@ -177,33 +177,30 @@ pot = VariationalSolver2D.Potentials(options{:
|
||||
solver.Potential = pot.trap();
|
||||
|
||||
%-% Run Solver %-%
|
||||
% [Params, Transf, psi, V, VDk] = solver.run();
|
||||
[Params, Transf, psi, V, VDk] = solver.run();
|
||||
|
||||
% Solve BdG equations
|
||||
% Load data
|
||||
Data = load(sprintf(horzcat(solver.SaveDirectory, '/Run_%03i/psi_gs.mat'),solver.JobNumber),'psi','Params','Transf');
|
||||
Params = Data.Params;
|
||||
Transf = Data.Transf;
|
||||
|
||||
Data = load(sprintf(horzcat(solver.SaveDirectory, '/Run_%03i/psi_gs.mat'),solver.JobNumber),'psi','Transf','Params','VParams','V');
|
||||
|
||||
Transf = Data.Transf;
|
||||
Params = Data.Params;
|
||||
VParams = Data.VParams;
|
||||
V = Data.V;
|
||||
|
||||
if isgpuarray(Data.psi)
|
||||
psi = gather(Data.psi);
|
||||
else
|
||||
psi = Data.psi;
|
||||
end
|
||||
|
||||
VParams.ell = Params.ell;
|
||||
|
||||
% == DDI potential == %
|
||||
VDk = solver.Calculator.calculateVDkWithCutoff(Transf, Params, VParams.ell);
|
||||
|
||||
% == Trap potential == %
|
||||
X = Transf.X; Y = Transf.Y;
|
||||
V = 0.0*(Params.gx.*X.^2+Params.gy.*Y.^2);
|
||||
|
||||
% == Chemical potential == %
|
||||
muchem = solver.Calculator.calculateChemicalPotential(psi,Params,VParams,Transf,VDk,V);
|
||||
|
||||
[evals, modes] = BdGSolver2D.solveBogoliubovdeGennesIn2D(psi, Params, VDk, VParams, Transf, muchem);
|
||||
|
||||
% Save the eigenvalues and eigenvectors to a .mat file
|
||||
save(sprintf(strcat(solver.SaveDirectory, '/Run_%03i/bdg_eigen_data.mat'),Params.njob), 'evals', 'modes');
|
||||
save(sprintf(strcat(solver.SaveDirectory, '/Run_%03i/bdg_eigen_data.mat'),solver.JobNumber), 'evals', 'modes', '-v7.3');
|
||||
|
Loading…
Reference in New Issue
Block a user