Benchmarking complete - Code reliably reproduces expected ground states, script added to begin investigation in to tilt of the dipoles.
This commit is contained in:
parent
5e7940a1b1
commit
59fa679549
@ -76,7 +76,7 @@ OptionsStruct.NumberOfGridPoints = [128, 128];
|
||||
OptionsStruct.Dimensions = [100, 100];
|
||||
OptionsStruct.TimeStepSize = 0.005; % in s
|
||||
OptionsStruct.MinimumTimeStepSize = 1E-5; % in s
|
||||
OptionsStruct.TimeCutOff = 2E6; % in s
|
||||
OptionsStruct.TimeCutOff = 1E6; % in s
|
||||
OptionsStruct.EnergyTolerance = 5E-10;
|
||||
OptionsStruct.ResidualTolerance = 1E-05;
|
||||
OptionsStruct.NoiseScaleFactor = 0.05;
|
||||
@ -91,7 +91,7 @@ OptionsStruct.PlotLive = true;
|
||||
OptionsStruct.JobNumber = 1;
|
||||
OptionsStruct.RunOnGPU = false;
|
||||
OptionsStruct.SaveData = true;
|
||||
OptionsStruct.SaveDirectory = './Data_TriangularPhase';
|
||||
OptionsStruct.SaveDirectory = './Results/Data_TriangularPhase';
|
||||
options = Helper.convertstruct2cell(OptionsStruct);
|
||||
clear OptionsStruct
|
||||
|
||||
@ -144,7 +144,7 @@ OptionsStruct.NumberOfGridPoints = [128, 128];
|
||||
OptionsStruct.Dimensions = [100, 100];
|
||||
OptionsStruct.TimeStepSize = 0.005; % in s
|
||||
OptionsStruct.MinimumTimeStepSize = 1E-5; % in s
|
||||
OptionsStruct.TimeCutOff = 2E6; % in s
|
||||
OptionsStruct.TimeCutOff = 1E6; % in s
|
||||
OptionsStruct.EnergyTolerance = 5E-10;
|
||||
OptionsStruct.ResidualTolerance = 1E-05;
|
||||
OptionsStruct.NoiseScaleFactor = 0.05;
|
||||
@ -159,7 +159,7 @@ OptionsStruct.PlotLive = true;
|
||||
OptionsStruct.JobNumber = 1;
|
||||
OptionsStruct.RunOnGPU = false;
|
||||
OptionsStruct.SaveData = true;
|
||||
OptionsStruct.SaveDirectory = './Data_StripePhase';
|
||||
OptionsStruct.SaveDirectory = './Results/Data_StripePhase';
|
||||
options = Helper.convertstruct2cell(OptionsStruct);
|
||||
clear OptionsStruct
|
||||
|
||||
@ -174,7 +174,7 @@ solver.Potential = pot.trap();
|
||||
|
||||
OptionsStruct = struct;
|
||||
|
||||
OptionsStruct.NumberOfAtoms = 4.148e+07;
|
||||
OptionsStruct.NumberOfAtoms = 4.2e+07;
|
||||
OptionsStruct.DipolarPolarAngle = 0;
|
||||
OptionsStruct.DipolarAzimuthAngle = 0;
|
||||
OptionsStruct.ScatteringLength = 101.35;
|
||||
@ -201,7 +201,7 @@ OptionsStruct.PlotLive = true;
|
||||
OptionsStruct.JobNumber = 1;
|
||||
OptionsStruct.RunOnGPU = false;
|
||||
OptionsStruct.SaveData = true;
|
||||
OptionsStruct.SaveDirectory = './Data_HoneycombPhase';
|
||||
OptionsStruct.SaveDirectory = './Results/Data_HoneycombPhase';
|
||||
options = Helper.convertstruct2cell(OptionsStruct);
|
||||
clear OptionsStruct
|
||||
|
||||
@ -222,17 +222,61 @@ Plotter.visualizeWavefunction2D(psi,Params,Transf)
|
||||
Plotter.visualizeGSWavefunction2D(solver.SaveDirectory, solver.JobNumber)
|
||||
|
||||
%% - Analysis
|
||||
SaveDirectory = './Data_TriangularPhase';
|
||||
SaveDirectory = './Results/Data_TriangularPhase';
|
||||
JobNumber = 1;
|
||||
Plotter.visualizeGSWavefunction2D(SaveDirectory, JobNumber)
|
||||
|
||||
%% - Analysis
|
||||
SaveDirectory = './Data_StripePhase';
|
||||
SaveDirectory = './Results/Data_StripePhase';
|
||||
JobNumber = 2;
|
||||
Plotter.visualizeGSWavefunction2D(SaveDirectory, JobNumber)
|
||||
|
||||
%% - Analysis
|
||||
SaveDirectory = './Data_HoneycombPhase';
|
||||
SaveDirectory = './Results/Data_HoneycombPhase';
|
||||
JobNumber = 3;
|
||||
Plotter.visualizeGSWavefunction2D(SaveDirectory, JobNumber)
|
||||
|
||||
%% Tilting of the dipoles
|
||||
% Atom Number = 1.00e+05
|
||||
% System size = [10, 10]
|
||||
|
||||
%% v_z = 500, theta = 0: a_s = 76.41
|
||||
OptionsStruct = struct;
|
||||
|
||||
OptionsStruct.NumberOfAtoms = 1.00e+05;
|
||||
OptionsStruct.DipolarPolarAngle = 0;
|
||||
OptionsStruct.DipolarAzimuthAngle = 0;
|
||||
OptionsStruct.ScatteringLength = 76.41;
|
||||
|
||||
OptionsStruct.TrapFrequencies = [0, 0, 500];
|
||||
OptionsStruct.TrapPotentialType = 'None';
|
||||
|
||||
OptionsStruct.NumberOfGridPoints = [128, 128];
|
||||
OptionsStruct.Dimensions = [10, 10];
|
||||
OptionsStruct.TimeStepSize = 0.005; % in s
|
||||
OptionsStruct.MinimumTimeStepSize = 1E-5; % in s
|
||||
OptionsStruct.TimeCutOff = 2E6; % in s
|
||||
OptionsStruct.EnergyTolerance = 5E-10;
|
||||
OptionsStruct.ResidualTolerance = 1E-05;
|
||||
OptionsStruct.NoiseScaleFactor = 0.05;
|
||||
|
||||
OptionsStruct.MaxIterations = 10;
|
||||
OptionsStruct.VariationalWidth = 2;
|
||||
OptionsStruct.WidthLowerBound = 1;
|
||||
OptionsStruct.WidthUpperBound = 12;
|
||||
OptionsStruct.WidthCutoff = 5e-3;
|
||||
|
||||
OptionsStruct.PlotLive = true;
|
||||
OptionsStruct.JobNumber = 1;
|
||||
OptionsStruct.RunOnGPU = false;
|
||||
OptionsStruct.SaveData = true;
|
||||
OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles';
|
||||
options = Helper.convertstruct2cell(OptionsStruct);
|
||||
clear OptionsStruct
|
||||
|
||||
solver = VariationalSolver2D.DipolarGas(options{:});
|
||||
pot = VariationalSolver2D.Potentials(options{:});
|
||||
solver.Potential = pot.trap();
|
||||
|
||||
%-% Run Solver %-%
|
||||
[Params, Transf, psi, V, VDk] = solver.run();
|
||||
|
@ -1,29 +1,20 @@
|
||||
%%
|
||||
|
||||
% To reproduce results from the Blair Blakie paper:
|
||||
% (n*add^2, as/add)
|
||||
% Critical point: (0.0978, 0.784); Triangular phase: (0.0959, 0.750); Stripe phase: (0.144, 0.765); Honeycomb phase: (0.192, 0.780)
|
||||
|
||||
% N = ((n*add^2)/Params.add^2) * (Params.Lx *1E-6)^2
|
||||
% Critical point: N = 2.0427e+07; Triangular phase: N = 2.0030e+07; Stripe phase: N = 3.0077e+07; Honeycomb phase: N = 4.0102e+07 for dimensions fixed to 100
|
||||
|
||||
% as = ((as/add)*Params.add)/Params.a0
|
||||
% Critical point: 102.5133; Triangular phase: 98.0676; Stripe phase: 100.0289; Honeycomb phase: 101.9903
|
||||
|
||||
%% - Create Variational2D and Calculator object with specified options
|
||||
%% Tilting of the dipoles
|
||||
% Atom Number = 1.00e+05
|
||||
% System size = [10, 10]
|
||||
|
||||
%% v_z = 500, theta = 0: a_s = 76.41
|
||||
OptionsStruct = struct;
|
||||
|
||||
OptionsStruct.NumberOfAtoms = 2.0030e+07;
|
||||
OptionsStruct.NumberOfAtoms = 1.00e+05;
|
||||
OptionsStruct.DipolarPolarAngle = 0;
|
||||
OptionsStruct.DipolarAzimuthAngle = 0;
|
||||
OptionsStruct.ScatteringLength = 98.0676;
|
||||
OptionsStruct.ScatteringLength = 76.41;
|
||||
|
||||
OptionsStruct.TrapFrequencies = [0, 0, 72.4];
|
||||
OptionsStruct.TrapFrequencies = [0, 0, 500];
|
||||
OptionsStruct.TrapPotentialType = 'None';
|
||||
|
||||
OptionsStruct.NumberOfGridPoints = [128, 128];
|
||||
OptionsStruct.Dimensions = [100, 100];
|
||||
OptionsStruct.Dimensions = [10, 10];
|
||||
OptionsStruct.TimeStepSize = 0.005; % in s
|
||||
OptionsStruct.MinimumTimeStepSize = 1E-5; % in s
|
||||
OptionsStruct.TimeCutOff = 2E6; % in s
|
||||
@ -32,7 +23,7 @@ OptionsStruct.ResidualTolerance = 1E-05;
|
||||
OptionsStruct.NoiseScaleFactor = 0.05;
|
||||
|
||||
OptionsStruct.MaxIterations = 10;
|
||||
OptionsStruct.VariationalWidth = 5;
|
||||
OptionsStruct.VariationalWidth = 2;
|
||||
OptionsStruct.WidthLowerBound = 1;
|
||||
OptionsStruct.WidthUpperBound = 12;
|
||||
OptionsStruct.WidthCutoff = 5e-3;
|
||||
@ -41,7 +32,7 @@ OptionsStruct.PlotLive = false;
|
||||
OptionsStruct.JobNumber = 1;
|
||||
OptionsStruct.RunOnGPU = true;
|
||||
OptionsStruct.SaveData = true;
|
||||
OptionsStruct.SaveDirectory = './Data_TriangularPhase';
|
||||
OptionsStruct.SaveDirectory = './Results/Data_TiltingOfDipoles';
|
||||
options = Helper.convertstruct2cell(OptionsStruct);
|
||||
clear OptionsStruct
|
||||
|
||||
@ -51,117 +42,3 @@ solver.Potential = pot.trap();
|
||||
|
||||
%-% Run Solver %-%
|
||||
[Params, Transf, psi, V, VDk] = solver.run();
|
||||
|
||||
%% - Create Variational2D and Calculator object with specified options
|
||||
|
||||
OptionsStruct = struct;
|
||||
|
||||
OptionsStruct.NumberOfAtoms = 3.0077e+07;
|
||||
OptionsStruct.DipolarPolarAngle = 0;
|
||||
OptionsStruct.DipolarAzimuthAngle = 0;
|
||||
OptionsStruct.ScatteringLength = 100.0289;
|
||||
|
||||
OptionsStruct.TrapFrequencies = [0, 0, 72.4];
|
||||
OptionsStruct.TrapPotentialType = 'None';
|
||||
|
||||
OptionsStruct.NumberOfGridPoints = [128, 128];
|
||||
OptionsStruct.Dimensions = [100, 100];
|
||||
OptionsStruct.TimeStepSize = 0.005; % in s
|
||||
OptionsStruct.MinimumTimeStepSize = 1E-5; % in s
|
||||
OptionsStruct.TimeCutOff = 2E6; % in s
|
||||
OptionsStruct.EnergyTolerance = 5E-10;
|
||||
OptionsStruct.ResidualTolerance = 1E-05;
|
||||
OptionsStruct.NoiseScaleFactor = 0.05;
|
||||
|
||||
OptionsStruct.MaxIterations = 10;
|
||||
OptionsStruct.VariationalWidth = 5;
|
||||
OptionsStruct.WidthLowerBound = 1;
|
||||
OptionsStruct.WidthUpperBound = 12;
|
||||
OptionsStruct.WidthCutoff = 5e-3;
|
||||
|
||||
OptionsStruct.PlotLive = false;
|
||||
OptionsStruct.JobNumber = 2;
|
||||
OptionsStruct.RunOnGPU = true;
|
||||
OptionsStruct.SaveData = true;
|
||||
OptionsStruct.SaveDirectory = './Data_StripePhase';
|
||||
options = Helper.convertstruct2cell(OptionsStruct);
|
||||
clear OptionsStruct
|
||||
|
||||
solver = VariationalSolver2D.DipolarGas(options{:});
|
||||
pot = VariationalSolver2D.Potentials(options{:});
|
||||
solver.Potential = pot.trap();
|
||||
|
||||
%-% Run Solver %-%
|
||||
[Params, Transf, psi, V, VDk] = solver.run();
|
||||
|
||||
%% - Create Variational2D and Calculator object with specified options
|
||||
|
||||
OptionsStruct = struct;
|
||||
|
||||
OptionsStruct.NumberOfAtoms = 4.0102e+07;
|
||||
OptionsStruct.DipolarPolarAngle = 0;
|
||||
OptionsStruct.DipolarAzimuthAngle = 0;
|
||||
OptionsStruct.ScatteringLength = 101.9903;
|
||||
|
||||
OptionsStruct.TrapFrequencies = [0, 0, 72.4];
|
||||
OptionsStruct.TrapPotentialType = 'None';
|
||||
|
||||
OptionsStruct.NumberOfGridPoints = [128, 128];
|
||||
OptionsStruct.Dimensions = [100, 100];
|
||||
OptionsStruct.TimeStepSize = 0.005; % in s
|
||||
OptionsStruct.MinimumTimeStepSize = 1E-5; % in s
|
||||
OptionsStruct.TimeCutOff = 2E6; % in s
|
||||
OptionsStruct.EnergyTolerance = 5E-10;
|
||||
OptionsStruct.ResidualTolerance = 1E-05;
|
||||
OptionsStruct.NoiseScaleFactor = 0.05;
|
||||
|
||||
OptionsStruct.MaxIterations = 10;
|
||||
OptionsStruct.VariationalWidth = 6;
|
||||
OptionsStruct.WidthLowerBound = 1;
|
||||
OptionsStruct.WidthUpperBound = 12;
|
||||
OptionsStruct.WidthCutoff = 5e-3;
|
||||
|
||||
OptionsStruct.PlotLive = false;
|
||||
OptionsStruct.JobNumber = 3;
|
||||
OptionsStruct.RunOnGPU = true;
|
||||
OptionsStruct.SaveData = true;
|
||||
OptionsStruct.SaveDirectory = './Data_HoneycombPhase';
|
||||
options = Helper.convertstruct2cell(OptionsStruct);
|
||||
clear OptionsStruct
|
||||
|
||||
solver = VariationalSolver2D.DipolarGas(options{:});
|
||||
pot = VariationalSolver2D.Potentials(options{:});
|
||||
solver.Potential = pot.trap();
|
||||
|
||||
%-% Run Solver %-%
|
||||
[Params, Transf, psi, V, VDk] = solver.run();
|
||||
|
||||
%%
|
||||
|
||||
%{
|
||||
% Solve BdG equations
|
||||
% Load data
|
||||
Data = load(sprintf(horzcat(solver.SaveDirectory, '/Run_%03i/psi_gs.mat'),solver.JobNumber),'psi','Transf','Params','VParams','V');
|
||||
|
||||
Transf = Data.Transf;
|
||||
Params = Data.Params;
|
||||
VParams = Data.VParams;
|
||||
V = Data.V;
|
||||
|
||||
if isgpuarray(Data.psi)
|
||||
psi = gather(Data.psi);
|
||||
else
|
||||
psi = Data.psi;
|
||||
end
|
||||
|
||||
% == DDI potential == %
|
||||
VDk = solver.Calculator.calculateVDkWithCutoff(Transf, Params, VParams.ell);
|
||||
|
||||
% == Chemical potential == %
|
||||
muchem = solver.Calculator.calculateChemicalPotential(psi,Params,VParams,Transf,VDk,V);
|
||||
|
||||
[evals, modes] = BdGSolver2D.solveBogoliubovdeGennesIn2D(psi, Params, VDk, VParams, Transf, muchem);
|
||||
|
||||
% Save the eigenvalues and eigenvectors to a .mat file
|
||||
save(sprintf(strcat(solver.SaveDirectory, '/Run_%03i/bdg_eigen_data.mat'),solver.JobNumber), 'evals', 'modes', '-v7.3');
|
||||
%}
|
166
Dipolar-Gas-Simulator/+Scripts/run_on_cluster_benchmarking.m
Normal file
166
Dipolar-Gas-Simulator/+Scripts/run_on_cluster_benchmarking.m
Normal file
@ -0,0 +1,166 @@
|
||||
%%
|
||||
|
||||
% To reproduce results from the Blair Blakie paper:
|
||||
% (n*add^2, as/add)
|
||||
% Critical point: (0.0978, 0.784); Triangular phase: (0.0959, 0.750); Stripe phase: (0.144, 0.765); Honeycomb phase: (0.192, 0.780)
|
||||
|
||||
% N = ((n*add^2)/Params.add^2) * (Params.Lx *1E-6)^2
|
||||
% Critical point: N = 2.0427e+07; Triangular phase: N = 2.0030e+07; Stripe phase: N = 3.0077e+07; Honeycomb phase: N = 4.0102e+07 for dimensions fixed to 100
|
||||
|
||||
% as = ((as/add)*Params.add)/Params.a0
|
||||
% Critical point: 102.5133; Triangular phase: 98.0676; Stripe phase: 100.0289; Honeycomb phase: 101.9903
|
||||
|
||||
%% - Create Variational2D and Calculator object with specified options
|
||||
|
||||
OptionsStruct = struct;
|
||||
|
||||
OptionsStruct.NumberOfAtoms = 2.0030e+07;
|
||||
OptionsStruct.DipolarPolarAngle = 0;
|
||||
OptionsStruct.DipolarAzimuthAngle = 0;
|
||||
OptionsStruct.ScatteringLength = 98.0676;
|
||||
|
||||
OptionsStruct.TrapFrequencies = [0, 0, 72.4];
|
||||
OptionsStruct.TrapPotentialType = 'None';
|
||||
|
||||
OptionsStruct.NumberOfGridPoints = [128, 128];
|
||||
OptionsStruct.Dimensions = [100, 100];
|
||||
OptionsStruct.TimeStepSize = 0.005; % in s
|
||||
OptionsStruct.MinimumTimeStepSize = 1E-5; % in s
|
||||
OptionsStruct.TimeCutOff = 2E6; % in s
|
||||
OptionsStruct.EnergyTolerance = 5E-10;
|
||||
OptionsStruct.ResidualTolerance = 1E-05;
|
||||
OptionsStruct.NoiseScaleFactor = 0.05;
|
||||
|
||||
OptionsStruct.MaxIterations = 10;
|
||||
OptionsStruct.VariationalWidth = 5;
|
||||
OptionsStruct.WidthLowerBound = 1;
|
||||
OptionsStruct.WidthUpperBound = 12;
|
||||
OptionsStruct.WidthCutoff = 5e-3;
|
||||
|
||||
OptionsStruct.PlotLive = false;
|
||||
OptionsStruct.JobNumber = 1;
|
||||
OptionsStruct.RunOnGPU = true;
|
||||
OptionsStruct.SaveData = true;
|
||||
OptionsStruct.SaveDirectory = './Results/Data_TriangularPhase';
|
||||
options = Helper.convertstruct2cell(OptionsStruct);
|
||||
clear OptionsStruct
|
||||
|
||||
solver = VariationalSolver2D.DipolarGas(options{:});
|
||||
pot = VariationalSolver2D.Potentials(options{:});
|
||||
solver.Potential = pot.trap();
|
||||
|
||||
%-% Run Solver %-%
|
||||
[Params, Transf, psi, V, VDk] = solver.run();
|
||||
|
||||
%% - Create Variational2D and Calculator object with specified options
|
||||
|
||||
OptionsStruct = struct;
|
||||
|
||||
OptionsStruct.NumberOfAtoms = 3.0077e+07;
|
||||
OptionsStruct.DipolarPolarAngle = 0;
|
||||
OptionsStruct.DipolarAzimuthAngle = 0;
|
||||
OptionsStruct.ScatteringLength = 100.0289;
|
||||
|
||||
OptionsStruct.TrapFrequencies = [0, 0, 72.4];
|
||||
OptionsStruct.TrapPotentialType = 'None';
|
||||
|
||||
OptionsStruct.NumberOfGridPoints = [128, 128];
|
||||
OptionsStruct.Dimensions = [100, 100];
|
||||
OptionsStruct.TimeStepSize = 0.005; % in s
|
||||
OptionsStruct.MinimumTimeStepSize = 1E-5; % in s
|
||||
OptionsStruct.TimeCutOff = 2E6; % in s
|
||||
OptionsStruct.EnergyTolerance = 5E-10;
|
||||
OptionsStruct.ResidualTolerance = 1E-05;
|
||||
OptionsStruct.NoiseScaleFactor = 0.05;
|
||||
|
||||
OptionsStruct.MaxIterations = 10;
|
||||
OptionsStruct.VariationalWidth = 5;
|
||||
OptionsStruct.WidthLowerBound = 1;
|
||||
OptionsStruct.WidthUpperBound = 12;
|
||||
OptionsStruct.WidthCutoff = 5e-3;
|
||||
|
||||
OptionsStruct.PlotLive = false;
|
||||
OptionsStruct.JobNumber = 2;
|
||||
OptionsStruct.RunOnGPU = true;
|
||||
OptionsStruct.SaveData = true;
|
||||
OptionsStruct.SaveDirectory = './Results/Data_StripePhase';
|
||||
options = Helper.convertstruct2cell(OptionsStruct);
|
||||
clear OptionsStruct
|
||||
|
||||
solver = VariationalSolver2D.DipolarGas(options{:});
|
||||
pot = VariationalSolver2D.Potentials(options{:});
|
||||
solver.Potential = pot.trap();
|
||||
|
||||
%-% Run Solver %-%
|
||||
[Params, Transf, psi, V, VDk] = solver.run();
|
||||
|
||||
%% - Create Variational2D and Calculator object with specified options
|
||||
|
||||
OptionsStruct = struct;
|
||||
|
||||
OptionsStruct.NumberOfAtoms = 4.2e+07;
|
||||
OptionsStruct.DipolarPolarAngle = 0;
|
||||
OptionsStruct.DipolarAzimuthAngle = 0;
|
||||
OptionsStruct.ScatteringLength = 101.35;
|
||||
|
||||
OptionsStruct.TrapFrequencies = [0, 0, 72.4];
|
||||
OptionsStruct.TrapPotentialType = 'None';
|
||||
|
||||
OptionsStruct.NumberOfGridPoints = [128, 128];
|
||||
OptionsStruct.Dimensions = [100, 100];
|
||||
OptionsStruct.TimeStepSize = 0.005; % in s
|
||||
OptionsStruct.MinimumTimeStepSize = 1E-5; % in s
|
||||
OptionsStruct.TimeCutOff = 2E6; % in s
|
||||
OptionsStruct.EnergyTolerance = 5E-10;
|
||||
OptionsStruct.ResidualTolerance = 1E-05;
|
||||
OptionsStruct.NoiseScaleFactor = 0.05;
|
||||
|
||||
OptionsStruct.MaxIterations = 10;
|
||||
OptionsStruct.VariationalWidth = 6;
|
||||
OptionsStruct.WidthLowerBound = 1;
|
||||
OptionsStruct.WidthUpperBound = 12;
|
||||
OptionsStruct.WidthCutoff = 5e-3;
|
||||
|
||||
OptionsStruct.PlotLive = false;
|
||||
OptionsStruct.JobNumber = 3;
|
||||
OptionsStruct.RunOnGPU = true;
|
||||
OptionsStruct.SaveData = true;
|
||||
OptionsStruct.SaveDirectory = './Results/Data_HoneycombPhase';
|
||||
options = Helper.convertstruct2cell(OptionsStruct);
|
||||
clear OptionsStruct
|
||||
|
||||
solver = VariationalSolver2D.DipolarGas(options{:});
|
||||
pot = VariationalSolver2D.Potentials(options{:});
|
||||
solver.Potential = pot.trap();
|
||||
|
||||
%-% Run Solver %-%
|
||||
[Params, Transf, psi, V, VDk] = solver.run();
|
||||
|
||||
%%
|
||||
%{
|
||||
% Solve BdG equations
|
||||
% Load data
|
||||
Data = load(sprintf(horzcat(solver.SaveDirectory, '/Run_%03i/psi_gs.mat'),solver.JobNumber),'psi','Transf','Params','VParams','V');
|
||||
|
||||
Transf = Data.Transf;
|
||||
Params = Data.Params;
|
||||
VParams = Data.VParams;
|
||||
V = Data.V;
|
||||
|
||||
if isgpuarray(Data.psi)
|
||||
psi = gather(Data.psi);
|
||||
else
|
||||
psi = Data.psi;
|
||||
end
|
||||
|
||||
% == DDI potential == %
|
||||
VDk = solver.Calculator.calculateVDkWithCutoff(Transf, Params, VParams.ell);
|
||||
|
||||
% == Chemical potential == %
|
||||
muchem = solver.Calculator.calculateChemicalPotential(psi,Params,VParams,Transf,VDk,V);
|
||||
|
||||
[evals, modes] = BdGSolver2D.solveBogoliubovdeGennesIn2D(psi, Params, VDk, VParams, Transf, muchem);
|
||||
|
||||
% Save the eigenvalues and eigenvectors to a .mat file
|
||||
save(sprintf(strcat(solver.SaveDirectory, '/Run_%03i/bdg_eigen_data.mat'),solver.JobNumber), 'evals', 'modes', '-v7.3');
|
||||
%}
|
@ -1,4 +1,7 @@
|
||||
function [psi, Observ] = propagateWavefunction(this, psi, Params, VParams, Transf, VDk, V, t_idx, Observ, vrun)
|
||||
|
||||
format long
|
||||
|
||||
set(0,'defaulttextInterpreter','latex')
|
||||
set(groot, 'defaultAxesTickLabelInterpreter','latex'); set(groot, 'defaultLegendInterpreter','latex');
|
||||
|
||||
|
@ -1,4 +1,5 @@
|
||||
function [Params, Transf, psi, V, VDk] = run(this)
|
||||
|
||||
format long;
|
||||
|
||||
% --- Obtain simulation parameters ---
|
||||
|
@ -1,4 +1,7 @@
|
||||
function [Params] = setupParameters(this)
|
||||
|
||||
format long
|
||||
|
||||
CONSTANTS = Helper.PhysicsConstants;
|
||||
hbar = CONSTANTS.PlanckConstantReduced; % [J.s]
|
||||
kbol = CONSTANTS.BoltzmannConstant; % [J/K]
|
||||
@ -6,7 +9,7 @@ function [Params] = setupParameters(this)
|
||||
muB = CONSTANTS.BohrMagneton; % [J/T]
|
||||
a0 = CONSTANTS.BohrRadius; % [m]
|
||||
m0 = CONSTANTS.AtomicMassUnit; % [kg]
|
||||
w0 = 2*pi*61.6316; % Angular frequency unit [s^-1]
|
||||
w0 = 2*pi*61.658214297935530; % Angular frequency unit [s^-1]
|
||||
mu0factor = 0.3049584233607396; % =(m0/me)*pi*alpha^2 -- me=mass of electron, alpha=fine struct. const.
|
||||
% mu0=mu0factor *hbar^2*a0/(m0*muB^2)
|
||||
% Number of points in each direction
|
||||
|
@ -6,7 +6,7 @@
|
||||
#SBATCH --nodes=1
|
||||
#SBATCH --ntasks-per-node=1
|
||||
#SBATCH --gres=gpu:A40:1
|
||||
#SBATCH --mem=8G
|
||||
#SBATCH --mem=2G
|
||||
# Estimated wallclock time for job
|
||||
#SBATCH --time=03:00:00
|
||||
#SBATCH --job-name=simulation
|
||||
|
Loading…
Reference in New Issue
Block a user