first working version

This commit is contained in:
Karthik 2023-05-04 18:32:17 +02:00
parent c049919d9d
commit 2df54e360e
4 changed files with 142 additions and 1591 deletions

View File

@ -61,13 +61,22 @@ def expansion(x, amplitude=1.0, offset=0.0):
def dampingOscillation(x, center=0, amplitude=1.0, frequency=1.0, decay=1.0, offset=0.0): def dampingOscillation(x, center=0, amplitude=1.0, frequency=1.0, decay=1.0, offset=0.0):
return amplitude * np.exp(-decay*x)*np.sin(2*np.pi*frequency*(x-center)) + offset return amplitude * np.exp(-decay*x)*np.sin(2*np.pi*frequency*(x-center)) + offset
def two_gaussian2d(x, y=0.0, A_amplitude=1.0, A_centerx=0.0, A_centery=0.0, A_sigmax=1.0,
A_sigmay=1.0, B_amplitude=1.0, B_centerx=0.0, B_centery=0.0, B_sigmax=1.0,
B_sigmay=1.0):
"""Return a 2-dimensional Gaussian function.
def double_structure(x, x1=0.25, x2=0.75, amplitude=1.0, center=0.0, sigma=1.0, a=-1.0, b=0, c=0): gaussian2d(x, y, amplitude, centerx, centery, sigmax, sigmay) =
amplitude/(2*pi*sigmax*sigmay) * exp(-(x-centerx)**2/(2*sigmax**2)
y = np.zeros(x.shape) -(y-centery)**2/(2*sigmay**2))
return ((amplitude/(max(tiny, s2pi*sigma))) """
* exp(-(1.0*x-center)**2 / max(tiny, (2*sigma**2)))) z = A_amplitude*(gaussian(x, amplitude=1, center=A_centerx, sigma=A_sigmax) *
gaussian(y, amplitude=1, center=A_centery, sigma=A_sigmay))
z += B_amplitude*(gaussian(x, amplitude=1, center=B_centerx, sigma=B_sigmax) *
gaussian(y, amplitude=1, center=B_centery, sigma=B_sigmay))
return z
class GaussianWithOffsetModel(Model): class GaussianWithOffsetModel(Model):
@ -178,6 +187,36 @@ class DampingOscillationModel(Model):
return update_param_vals(pars, self.prefix, **kwargs) return update_param_vals(pars, self.prefix, **kwargs)
class TwoGaussian2dModel(Model):
fwhm_factor = 2*np.sqrt(2*np.log(2))
height_factor = 1./2*np.pi
def __init__(self, independent_vars=['x', 'y'], prefix='', nan_policy='raise',
**kwargs):
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
'independent_vars': independent_vars})
self.helperModel = Gaussian2dModel()
super().__init__(two_gaussian2d, **kwargs)
def guess(self, data, x, y, negative=False, **kwargs):
pars_guess = guess_from_peak2d(self.helperModel, data, x, y, negative)
pars = self.make_params(A_amplitude=pars_guess['amplitude'], A_centerx=pars_guess['centerx'], A_centery=pars_guess['centery'],
A_sigmax=pars_guess['sigmax'], A_sigmay=pars_guess['sigmay'],
B_amplitude=pars_guess['amplitude'], B_centerx=pars_guess['centerx'], B_centery=pars_guess['centery'],
B_sigmax=pars_guess['sigmax'], B_sigmay=pars_guess['sigmay'])
pars.add(f'{self.prefix}delta', value=-1, max=0, vary=True)
pars[f'{self.prefix}A_sigmax'].set(expr=f'delta + {self.prefix}B_sigmax')
pars[f'{self.prefix}A_sigmay'].set(min=0.0)
pars[f'{self.prefix}B_sigmax'].set(min=0.0)
pars[f'{self.prefix}B_sigmay'].set(min=0.0)
return pars
lmfit_models = {'Constant': ConstantModel, lmfit_models = {'Constant': ConstantModel,
'Complex Constant': ComplexConstantModel, 'Complex Constant': ComplexConstantModel,
'Linear': LinearModel, 'Linear': LinearModel,
@ -209,7 +248,8 @@ lmfit_models = {'Constant': ConstantModel,
'Gaussian With Offset':GaussianWithOffsetModel, 'Gaussian With Offset':GaussianWithOffsetModel,
'Lorentzian With Offset':LorentzianWithOffsetModel, 'Lorentzian With Offset':LorentzianWithOffsetModel,
'Expansion':ExpansionModel, 'Expansion':ExpansionModel,
'Damping Oscillation Model':DampingOscillationModel 'Damping Oscillation Model':DampingOscillationModel,
'Two Gaussian-2D':TwoGaussian2dModel,
} }
@ -224,19 +264,20 @@ class FitAnalyser():
self.fitDim = fitDim self.fitDim = fitDim
def _guess_1D(self, data, x): def _guess_1D(self, data, x, **kwargs):
return self.fitModel.guess(data=data, x=x) return self.fitModel.guess(data=data, x=x, **kwargs)
def _guess_2D(self, data, x, y): def _guess_2D(self, data, x, y, **kwargs):
return self.fitModel.guess(data=data, x=x, y=y) return self.fitModel.guess(data=data, x=x, y=y, **kwargs)
def guess(self, dataArray, x=None, y=None, input_core_dims=None, dask='parallelized', vectorize=True, **kwargs): def guess(self, dataArray, x=None, y=None, guess_kwargs={}, input_core_dims=None, dask='parallelized', vectorize=True, keep_attrs=True, **kwargs):
kwargs.update( kwargs.update(
{ {
"dask": dask, "dask": dask,
"vectorize": vectorize, "vectorize": vectorize,
"input_core_dims": input_core_dims "input_core_dims": input_core_dims,
'keep_attrs': keep_attrs,
} }
) )
@ -262,7 +303,13 @@ class FitAnalyser():
if self.fitDim == 1: if self.fitDim == 1:
return xr.apply_ufunc(self._guess_1D, dataArray, kwargs={'x':x}, guess_kwargs.update(
{
'x':x,
}
)
return xr.apply_ufunc(self._guess_1D, dataArray, kwargs=guess_kwargs,
output_dtypes=[type(self.fitModel.make_params())], output_dtypes=[type(self.fitModel.make_params())],
**kwargs **kwargs
) )
@ -297,7 +344,14 @@ class FitAnalyser():
kwargs["input_core_dims"][0] = ['_z'] kwargs["input_core_dims"][0] = ['_z']
return xr.apply_ufunc(self._guess_2D, dataArray, kwargs={'x':_x, 'y':_y}, guess_kwargs.update(
{
'x':_x,
'y':_y,
}
)
return xr.apply_ufunc(self._guess_2D, dataArray, kwargs=guess_kwargs,
output_dtypes=[type(self.fitModel.make_params())], output_dtypes=[type(self.fitModel.make_params())],
**kwargs **kwargs
) )
@ -309,13 +363,14 @@ class FitAnalyser():
def _fit_2D(self, data, params, x, y): def _fit_2D(self, data, params, x, y):
return self.fitModel.fit(data=data, x=x, y=y, params=params) return self.fitModel.fit(data=data, x=x, y=y, params=params)
def fit(self, dataArray, paramsArray, x=None, y=None, input_core_dims=None, dask='parallelized', vectorize=True, **kwargs): def fit(self, dataArray, paramsArray, x=None, y=None, input_core_dims=None, dask='parallelized', vectorize=True, keep_attrs=True, **kwargs):
kwargs.update( kwargs.update(
{ {
"dask": dask, "dask": dask,
"vectorize": vectorize, "vectorize": vectorize,
"input_core_dims": input_core_dims, "input_core_dims": input_core_dims,
'keep_attrs': keep_attrs,
} }
) )
@ -415,7 +470,6 @@ class FitAnalyser():
output_dtypes=[type(lmfit.model.ModelResult(self.fitModel, self.fitModel.make_params()))], output_dtypes=[type(lmfit.model.ModelResult(self.fitModel, self.fitModel.make_params()))],
**kwargs) **kwargs)
def _eval_1D(self, fitResult, x): def _eval_1D(self, fitResult, x):
return self.fitModel.eval(x=x, **fitResult.best_values) return self.fitModel.eval(x=x, **fitResult.best_values)

View File

@ -104,10 +104,13 @@ class ImageAnalyser():
def get_Ncount(self, imageOD): def get_Ncount(self, imageOD):
return np.sum(imageOD) return np.sum(imageOD)
def get_absorption_images(self, dataset, dask='allowed', **kwargs): def get_absorption_images(self, dataset, dask='allowed', keep_attrs=True, **kwargs):
kwargs.update( kwargs.update(
{'dask': dask} {
'dask': dask,
'keep_attrs': keep_attrs,
}
) )
dataset = dataset.assign( dataset = dataset.assign(
@ -118,10 +121,13 @@ class ImageAnalyser():
return dataset return dataset
def remove_background(self, dataset, dask='allowed', **kwargs): def remove_background(self, dataset, dask='allowed', keep_attrs=True, **kwargs):
kwargs.update( kwargs.update(
{'dask': dask} {
'dask': dask,
'keep_attrs': keep_attrs,
}
) )
xr.apply_ufunc(self.get_OD, dataset[self._image_name['atoms']], dataset[self._image_name['background']], dataset[self._image_name['dark']], **kwargs) xr.apply_ufunc(self.get_OD, dataset[self._image_name['atoms']], dataset[self._image_name['background']], dataset[self._image_name['dark']], **kwargs)

View File

@ -0,0 +1,18 @@
def get_mask():
pass
def remove_bad_shots():
pass
def auto_rechunk():
pass
def get_h5_file_path(folderpath, maxFileNum):
pass
def get_folder_path():
pass

1613
test.ipynb

File diff suppressed because one or more lines are too long