analyseScript/Analyser/ImagingAnalyser.py
2023-05-04 18:32:17 +02:00

136 lines
4.1 KiB
Python

import numpy as np
import xarray as xr
class ImageAnalyser():
def __init__(self) -> None:
self._image_name = {
'atoms': 'atoms',
'background': 'background',
'dark': 'dark',
'OD':'OD',
}
self._center = None
self._span = None
self._fraction = None
@property
def image_name(self):
return self._image_name
@image_name.setter
def image_name(self, value):
self._image_name.update(value)
@property
def center(self):
return self._center
@center.setter
def center(self, value):
self._center = value
@property
def span(self):
return self._span
@span.setter
def span(self, value):
self._span = value
@property
def fraction(self):
return self._fraction
@fraction.setter
def fraction(self, value):
self._fraction = value
def get_offset_from_corner(self, dataArray, x_fraction=None, y_fraction=None, fraction=None, xAxisName='x', yAxisName='y'):
if fraction is None:
if x_fraction is None:
x_fraction = self._fraction[0]
if y_fraction is None:
y_fraction = self._fraction[1]
else:
x_fraction = fraction[0]
y_fraction = fraction[1]
x_number = dataArray[xAxisName].shape[0]
y_number = dataArray[yAxisName].shape[0]
mean = dataArray.isel(x=slice(0, int(x_number * x_fraction)), y=slice(0 , int(y_number * y_fraction))).mean(dim=[xAxisName, yAxisName])
mean += dataArray.isel(x=slice(0, int(x_number * x_fraction)), y=slice(int(y_number - y_number * y_fraction) , int(y_number))).mean(dim=[xAxisName, yAxisName])
mean += dataArray.isel(x=slice(int(x_number - x_number * x_fraction) , int(x_number)), y=slice(0 , int(y_number * y_fraction))).mean(dim=[xAxisName, yAxisName])
mean += dataArray.isel(x=slice(int(x_number - x_number * x_fraction) , int(x_number)), y=slice(int(y_number - y_number * y_fraction) , int(y_number))).mean(dim=[xAxisName, yAxisName])
return mean / 4
def substract_offset(self, dataArray, **kwargs):
return dataArray - self.get_offset_from_corner(dataArray, **kwargs)
def crop_image(self, dataset, center=None, span=None):
if center is None:
center = self._center
if span is None:
span = self._span
x_start = int(center[0] - span[0] / 2)
x_end = int(center[0] + span[0] / 2)
y_end = int(center[1] + span[1] / 2)
y_start = int(center[1] - span[1] / 2)
return dataset.isel(x=slice(x_start, x_end), y=slice(y_start, y_end))
def get_OD(self, imageAtom, imageBackground, imageDrak):
numerator = np.atleast_1d(imageBackground - imageDrak)
denominator = np.atleast_1d(imageAtom - imageDrak)
numerator[numerator == 0] = 1
denominator[denominator == 0] = 1
imageOD = np.abs(np.divide(denominator, numerator))
imageOD= -np.log(imageOD)
if len(imageOD) == 1:
return imageOD[0]
else:
return imageOD
def get_Ncount(self, imageOD):
return np.sum(imageOD)
def get_absorption_images(self, dataset, dask='allowed', keep_attrs=True, **kwargs):
kwargs.update(
{
'dask': dask,
'keep_attrs': keep_attrs,
}
)
dataset = dataset.assign(
{
self._image_name['OD']: xr.apply_ufunc(self.get_OD, dataset[self._image_name['atoms']], dataset[self._image_name['background']], dataset[self._image_name['dark']], **kwargs)
}
)
return dataset
def remove_background(self, dataset, dask='allowed', keep_attrs=True, **kwargs):
kwargs.update(
{
'dask': dask,
'keep_attrs': keep_attrs,
}
)
xr.apply_ufunc(self.get_OD, dataset[self._image_name['atoms']], dataset[self._image_name['background']], dataset[self._image_name['dark']], **kwargs)