analyseScript/Analyser/FitAnalyser.py
2023-05-04 18:32:17 +02:00

545 lines
21 KiB
Python

import numpy as np
import lmfit
from lmfit.models import (ConstantModel, ComplexConstantModel, LinearModel, QuadraticModel,
PolynomialModel, SineModel, GaussianModel, Gaussian2dModel, LorentzianModel,
SplitLorentzianModel, VoigtModel, PseudoVoigtModel, MoffatModel,
Pearson7Model, StudentsTModel, BreitWignerModel, LognormalModel,
DampedOscillatorModel, ExponentialGaussianModel, SkewedGaussianModel,
SkewedVoigtModel, ThermalDistributionModel, DoniachModel, PowerLawModel,
ExponentialModel, StepModel, RectangleModel, ExpressionModel, DampedHarmonicOscillatorModel)
from lmfit.models import (guess_from_peak, guess_from_peak2d, fwhm_expr, height_expr,
update_param_vals)
from lmfit.lineshapes import (not_zero, breit_wigner, damped_oscillator, dho, doniach,
expgaussian, exponential, gaussian, gaussian2d,
linear, lognormal, lorentzian, moffat, parabolic,
pearson7, powerlaw, pvoigt, rectangle, sine,
skewed_gaussian, skewed_voigt, split_lorentzian, step,
students_t, thermal_distribution, tiny, voigt)
from lmfit import Model
import numpy as np
from numpy import (arctan, copysign, cos, exp, isclose, isnan, log, pi, real,
sin, sqrt, where)
from scipy.special import erf, erfc
from scipy.special import gamma as gamfcn
from scipy.special import wofz
from scipy.optimize import curve_fit
import xarray as xr
log2 = log(2)
s2pi = sqrt(2*pi)
s2 = sqrt(2.0)
def gaussianWithOffset(x, amplitude=1.0, center=0.0, sigma=1.0, offset=0.0):
"""Return a 1-dimensional Gaussian function with an offset.
gaussian(x, amplitude, center, sigma) =
(amplitude/(s2pi*sigma)) * exp(-(1.0*x-center)**2 / (2*sigma**2))
"""
return ((amplitude/(max(tiny, s2pi*sigma)))
* exp(-(1.0*x-center)**2 / max(tiny, (2*sigma**2))) + offset)
def lorentzianWithOffset(x, amplitude=1.0, center=0.0, sigma=1.0, offset=0.0):
return ((amplitude/(1 + ((1.0*x-center)/max(tiny, sigma))**2))
/ max(tiny, (pi*sigma)) + offset)
def exponentialWithOffset(x, amplitude=1.0, decay=1.0, offset=0.0):
decay = not_zero(decay)
return amplitude * exp(-x/decay) + offset
def expansion(x, amplitude=1.0, offset=0.0):
return np.sqrt(amplitude*x*x + offset)
def dampingOscillation(x, center=0, amplitude=1.0, frequency=1.0, decay=1.0, offset=0.0):
return amplitude * np.exp(-decay*x)*np.sin(2*np.pi*frequency*(x-center)) + offset
def two_gaussian2d(x, y=0.0, A_amplitude=1.0, A_centerx=0.0, A_centery=0.0, A_sigmax=1.0,
A_sigmay=1.0, B_amplitude=1.0, B_centerx=0.0, B_centery=0.0, B_sigmax=1.0,
B_sigmay=1.0):
"""Return a 2-dimensional Gaussian function.
gaussian2d(x, y, amplitude, centerx, centery, sigmax, sigmay) =
amplitude/(2*pi*sigmax*sigmay) * exp(-(x-centerx)**2/(2*sigmax**2)
-(y-centery)**2/(2*sigmay**2))
"""
z = A_amplitude*(gaussian(x, amplitude=1, center=A_centerx, sigma=A_sigmax) *
gaussian(y, amplitude=1, center=A_centery, sigma=A_sigmay))
z += B_amplitude*(gaussian(x, amplitude=1, center=B_centerx, sigma=B_sigmax) *
gaussian(y, amplitude=1, center=B_centery, sigma=B_sigmay))
return z
class GaussianWithOffsetModel(Model):
fwhm_factor = 2*np.sqrt(2*np.log(2))
height_factor = 1./np.sqrt(2*np.pi)
def __init__(self, independent_vars=['x'], nan_policy='raise', prefix='', name=None, **kwargs):
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
'independent_vars': independent_vars})
super().__init__(gaussianWithOffset, **kwargs)
self._set_paramhints_prefix()
def _set_paramhints_prefix(self):
self.set_param_hint('sigma', min=0)
self.set_param_hint('fwhm', expr=fwhm_expr(self))
self.set_param_hint('height', expr=height_expr(self))
def guess(self, data, x, negative=False, **kwargs):
offset = np.min(data)
data = data - offset
pars = guess_from_peak(self, data, x, negative)
pars.add('offset', value=offset)
return update_param_vals(pars, self.prefix, **kwargs)
class LorentzianWithOffsetModel(Model):
fwhm_factor = 2.0
height_factor = 1./np.pi
def __init__(self, independent_vars=['x'], prefix='', nan_policy='raise',
**kwargs):
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
'independent_vars': independent_vars})
super().__init__(lorentzianWithOffset, **kwargs)
self._set_paramhints_prefix()
def _set_paramhints_prefix(self):
self.set_param_hint('sigma', min=0)
self.set_param_hint('fwhm', expr=fwhm_expr(self))
self.set_param_hint('height', expr=height_expr(self))
def guess(self, data, x, negative=False, **kwargs):
"""Estimate initial model parameter values from data."""
offset = np.min(data)
data = data - offset
pars = guess_from_peak(self, data, x, negative, ampscale=1.25)
pars.add('offset', value=offset)
return update_param_vals(pars, self.prefix, **kwargs)
class ExponentialWithOffsetModel(Model):
def __init__(self, independent_vars=['x'], prefix='', nan_policy='raise',
**kwargs):
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
'independent_vars': independent_vars})
super().__init__(exponentialWithOffset, **kwargs)
def guess(self, data, x, **kwargs):
"""Estimate initial model parameter values from data."""
offset = np.min(data)
data = data - offset
try:
sval, oval = np.polyfit(x, np.log(abs(data)+1.e-15), 1)
except TypeError:
sval, oval = 1., np.log(abs(max(data)+1.e-9))
pars = self.make_params(amplitude=np.exp(oval), decay=-1.0/sval)
pars.add('offset', value=offset)
return update_param_vals(pars, self.prefix, **kwargs)
class ExpansionModel(Model):
def __init__(self, independent_vars=['x'], prefix='', nan_policy='raise',
**kwargs):
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
'independent_vars': independent_vars})
super().__init__(expansion, **kwargs)
def guess(self, data, x, **kwargs):
"""Estimate initial model parameter values from data."""
popt1, pcov1 = curve_fit(expansion, x, data)
pars = self.make_params(amplitude=popt1[0], offset=popt1[1])
return update_param_vals(pars, self.prefix, **kwargs)
class DampingOscillationModel(Model):
def __init__(self, independent_vars=['x'], prefix='', nan_policy='raise',
**kwargs):
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
'independent_vars': independent_vars})
super().__init__(dampingOscillation, **kwargs)
def guess(self, data, x, **kwargs):
"""Estimate initial model parameter values from data."""
try:
popt1, pcov1 = curve_fit(dampingOscillation, x, data, np.array(0, 5, 5e2, 1e3, 16))
pars = self.make_params(center=popt1[0], amplitude=popt1[1], frequency=popt1[2], decay=popt1[3], offset=popt1[4])
except:
pars = self.make_params(center=0, amplitude=5.0, frequency=5e2, decay=1.0e3, offset=16.0)
return update_param_vals(pars, self.prefix, **kwargs)
class TwoGaussian2dModel(Model):
fwhm_factor = 2*np.sqrt(2*np.log(2))
height_factor = 1./2*np.pi
def __init__(self, independent_vars=['x', 'y'], prefix='', nan_policy='raise',
**kwargs):
kwargs.update({'prefix': prefix, 'nan_policy': nan_policy,
'independent_vars': independent_vars})
self.helperModel = Gaussian2dModel()
super().__init__(two_gaussian2d, **kwargs)
def guess(self, data, x, y, negative=False, **kwargs):
pars_guess = guess_from_peak2d(self.helperModel, data, x, y, negative)
pars = self.make_params(A_amplitude=pars_guess['amplitude'], A_centerx=pars_guess['centerx'], A_centery=pars_guess['centery'],
A_sigmax=pars_guess['sigmax'], A_sigmay=pars_guess['sigmay'],
B_amplitude=pars_guess['amplitude'], B_centerx=pars_guess['centerx'], B_centery=pars_guess['centery'],
B_sigmax=pars_guess['sigmax'], B_sigmay=pars_guess['sigmay'])
pars.add(f'{self.prefix}delta', value=-1, max=0, vary=True)
pars[f'{self.prefix}A_sigmax'].set(expr=f'delta + {self.prefix}B_sigmax')
pars[f'{self.prefix}A_sigmay'].set(min=0.0)
pars[f'{self.prefix}B_sigmax'].set(min=0.0)
pars[f'{self.prefix}B_sigmay'].set(min=0.0)
return pars
lmfit_models = {'Constant': ConstantModel,
'Complex Constant': ComplexConstantModel,
'Linear': LinearModel,
'Quadratic': QuadraticModel,
'Polynomial': PolynomialModel,
'Gaussian': GaussianModel,
'Gaussian-2D': Gaussian2dModel,
'Lorentzian': LorentzianModel,
'Split-Lorentzian': SplitLorentzianModel,
'Voigt': VoigtModel,
'PseudoVoigt': PseudoVoigtModel,
'Moffat': MoffatModel,
'Pearson7': Pearson7Model,
'StudentsT': StudentsTModel,
'Breit-Wigner': BreitWignerModel,
'Log-Normal': LognormalModel,
'Damped Oscillator': DampedOscillatorModel,
'Damped Harmonic Oscillator': DampedHarmonicOscillatorModel,
'Exponential Gaussian': ExponentialGaussianModel,
'Skewed Gaussian': SkewedGaussianModel,
'Skewed Voigt': SkewedVoigtModel,
'Thermal Distribution': ThermalDistributionModel,
'Doniach': DoniachModel,
'Power Law': PowerLawModel,
'Exponential': ExponentialModel,
'Step': StepModel,
'Rectangle': RectangleModel,
'Expression': ExpressionModel,
'Gaussian With Offset':GaussianWithOffsetModel,
'Lorentzian With Offset':LorentzianWithOffsetModel,
'Expansion':ExpansionModel,
'Damping Oscillation Model':DampingOscillationModel,
'Two Gaussian-2D':TwoGaussian2dModel,
}
class FitAnalyser():
def __init__(self, fitModel, fitDim=1, **kwargs) -> None:
if isinstance(fitModel, str):
self.fitModel = lmfit_models[fitModel](**kwargs)
else:
self.fitModel = fitModel
self.fitDim = fitDim
def _guess_1D(self, data, x, **kwargs):
return self.fitModel.guess(data=data, x=x, **kwargs)
def _guess_2D(self, data, x, y, **kwargs):
return self.fitModel.guess(data=data, x=x, y=y, **kwargs)
def guess(self, dataArray, x=None, y=None, guess_kwargs={}, input_core_dims=None, dask='parallelized', vectorize=True, keep_attrs=True, **kwargs):
kwargs.update(
{
"dask": dask,
"vectorize": vectorize,
"input_core_dims": input_core_dims,
'keep_attrs': keep_attrs,
}
)
if input_core_dims is None:
kwargs.update(
{
"input_core_dims": [['x']],
}
)
if x is None:
if 'x' in dataArray.dims:
x = dataArray['x'].to_numpy()
else:
if isinstance(x, str):
x = dataArray[x].to_numpy()
if input_core_dims is None:
kwargs.update(
{
"input_core_dims": [[x]],
}
)
if self.fitDim == 1:
guess_kwargs.update(
{
'x':x,
}
)
return xr.apply_ufunc(self._guess_1D, dataArray, kwargs=guess_kwargs,
output_dtypes=[type(self.fitModel.make_params())],
**kwargs
)
if self.fitDim == 2:
if y is None:
if 'y' in dataArray.dims:
y = dataArray['y'].to_numpy()
if input_core_dims is None:
kwargs.update(
{
"input_core_dims": [['x', 'y']],
}
)
else:
if isinstance(y, str):
y = dataArray[y].to_numpy()
kwargs["input_core_dims"][0] = np.append(kwargs["input_core_dims"][0], y)
elif input_core_dims is None:
kwargs.update(
{
"input_core_dims": [['x', 'y']],
}
)
_x, _y = np.meshgrid(x, y)
_x = _x.flatten()
_y = _y.flatten()
dataArray = dataArray.stack(_z=(kwargs["input_core_dims"][0][0], kwargs["input_core_dims"][0][1]))
kwargs["input_core_dims"][0] = ['_z']
guess_kwargs.update(
{
'x':_x,
'y':_y,
}
)
return xr.apply_ufunc(self._guess_2D, dataArray, kwargs=guess_kwargs,
output_dtypes=[type(self.fitModel.make_params())],
**kwargs
)
def _fit_1D(self, data, params, x):
# try:
return self.fitModel.fit(data=data, x=x, params=params)
def _fit_2D(self, data, params, x, y):
return self.fitModel.fit(data=data, x=x, y=y, params=params)
def fit(self, dataArray, paramsArray, x=None, y=None, input_core_dims=None, dask='parallelized', vectorize=True, keep_attrs=True, **kwargs):
kwargs.update(
{
"dask": dask,
"vectorize": vectorize,
"input_core_dims": input_core_dims,
'keep_attrs': keep_attrs,
}
)
if input_core_dims is None:
kwargs.update(
{
"input_core_dims": [['x'], []],
}
)
if x is None:
if 'x' in dataArray.dims:
x = dataArray['x'].to_numpy()
else:
if isinstance(x, str):
x = dataArray[x].to_numpy()
if input_core_dims is None:
kwargs.update(
{
"input_core_dims": [[x], []],
}
)
if isinstance(paramsArray, type(self.fitModel.make_params())):
if self.fitDim == 1:
return xr.apply_ufunc(self._fit_1D, dataArray, kwargs={'params':paramsArray,'x':x},
output_dtypes=[type(lmfit.model.ModelResult(self.fitModel, self.fitModel.make_params()))],
**kwargs)
if self.fitDim == 2:
if y is None:
if 'y' in dataArray.dims:
y = dataArray['y'].to_numpy()
if input_core_dims is None:
kwargs.update(
{
"input_core_dims": [['x', 'y'], []],
}
)
else:
if isinstance(y, str):
y = dataArray[y].to_numpy()
kwargs["input_core_dims"][0] = np.append(kwargs["input_core_dims"][0], y)
elif input_core_dims is None:
kwargs.update(
{
"input_core_dims": [['x', 'y'], []],
}
)
_x, _y = np.meshgrid(x, y)
_x = _x.flatten()
_y = _y.flatten()
dataArray = dataArray.stack(_z=(kwargs["input_core_dims"][0][0], kwargs["input_core_dims"][0][1]))
kwargs["input_core_dims"][0] = ['_z']
return xr.apply_ufunc(self._fit_2D, dataArray, kwargs={'params':paramsArray,'x':_x, 'y':_y},
output_dtypes=[type(lmfit.model.ModelResult(self.fitModel, self.fitModel.make_params()))],
**kwargs)
else:
if self.fitDim == 1:
return xr.apply_ufunc(self._fit_1D, dataArray, paramsArray, kwargs={'x':x},
output_dtypes=[type(lmfit.model.ModelResult(self.fitModel, self.fitModel.make_params()))],
**kwargs)
if self.fitDim == 2:
if input_core_dims is None:
kwargs.update(
{
"input_core_dims": [['x', 'y'], []],
}
)
if y is None:
if 'y' in dataArray.dims:
y = dataArray['y'].to_numpy()
else:
if isinstance(y, str):
y = dataArray[y].to_numpy()
kwargs["input_core_dims"][0] = np.append(kwargs["input_core_dims"][0], y)
_x, _y = np.meshgrid(x, y)
_x = _x.flatten()
_y = _y.flatten()
dataArray = dataArray.stack(_z=(kwargs["input_core_dims"][0][0], kwargs["input_core_dims"][0][1]))
kwargs["input_core_dims"][0] = ['_z']
return xr.apply_ufunc(self._fit_2D, dataArray, paramsArray, kwargs={'x':_x, 'y':_y},
output_dtypes=[type(lmfit.model.ModelResult(self.fitModel, self.fitModel.make_params()))],
**kwargs)
def _eval_1D(self, fitResult, x):
return self.fitModel.eval(x=x, **fitResult.best_values)
def _eval_2D(self, fitResult, x, y, shape):
res = self.fitModel.eval(x=x, y=y, **fitResult.best_values)
return res.reshape(shape)
def eval(self, fitResultArray, x=None, y=None, output_core_dims=None, prefix="", dask='parallelized', vectorize=True, **kwargs):
kwargs.update(
{
"dask": dask,
"vectorize": vectorize,
"output_core_dims": output_core_dims,
}
)
if self.fitDim == 1:
if output_core_dims is None:
kwargs.update(
{
"output_core_dims": [[prefix+'x']],
"output_dtypes": float,
}
)
output_core_dims = [prefix+'x']
kwargs.update(
{
"dask_gufunc_kwargs": {
'output_sizes': {
output_core_dims[0]: np.size(x),
},
},
}
)
return xr.apply_ufunc(self._eval_1D, fitResultArray, kwargs={"x":x}, **kwargs)
if self.fitDim == 2:
if output_core_dims is None:
kwargs.update(
{
"output_core_dims": [[prefix+'x', prefix+'y']],
"output_dtypes": float,
}
)
output_core_dims = [prefix+'x', prefix+'y']
kwargs.update(
{
"dask_gufunc_kwargs": {
'output_sizes': {
output_core_dims[0]: np.size(x),
output_core_dims[1]: np.size(y),
},
# 'output_dtypes': {
# output_core_dims[0]: float,
# output_core_dims[1]: float,
# },
},
}
)
_x, _y = np.meshgrid(x, y)
_x = _x.flatten()
_y = _y.flatten()
return xr.apply_ufunc(self._eval_2D, fitResultArray, kwargs={"x":_x, "y":_y, "shape":(len(x), len(y))}, **kwargs)