Update 'Selection code'

Renata Kopecná 2022-01-24 11:10:54 +01:00
parent 75dcaaeb37
commit d4845eb143

@ -1,46 +1,83 @@
The selection code is a set of C++ scripts.
The selection code is a set of C++ scripts. First, the running of the code is introduced. Then, each part of the code is explained.
# Running the code
When re-running everything do the following
When re-running everything, do the following
First, compile and run the preselection
```
.L BDTSelection.cpp+
runAllSignalData(1); runAllSignalData(2);
runAllSignalMC(1); runAllSignalMC(2);
runAllRefMC(1); runAllRefMC(2);
runAllPHSPMC(1); runAllPHSPMC(2);
```
Then,run a python script performing the Kstar MacGyver DTF
```
lb-conda default python Rescale_pi0momentum.py
```
Next step is to compile and perform the MC Truth-Matching
```
.L MCtruthmatching.cpp+
TruthMatchAllAll(1); TruthMatchAllAll(2);
```
Then, we need to add the XMuMu mass variable and apply the KplusMuMu veto
```
.L CodeForTests/AddVariable.cpp+
addAllXMuMuMass(true,true,1); addAllXMuMuMass(false,true,1); applyAllVetoKplusMuMuMass(1);
addAllXMuMuMass(true,true,2); addAllXMuMuMass(false,true,2); applyAllVetoKplusMuMuMass(2);
```
We have all the preselection finished. Now we will need to fit the reconstructed B mass peak. For the instructions how to compile the code and make RooFit use double-sided Crystal Ball or ExpGauss, see [B mass model section](https://git.physi.uni-heidelberg.de/kopecna/EWP-BplusToKstMuMu-AngAna/wiki/B-mass-model).
Now the peaking background is removed, we can proceed to reweighting
```
.L nTrackWeights.cpp+
WeightAll(true,1,true); ReweightReferenceMC(true,1,true); ReweightPHSPMC(true,1,true);
WeightAll(true,2,true); ReweightReferenceMC(true,2,true); ReweightPHSPMC(true,2,true);
```
*** now compare all the variables ***
.L MVA.cpp+
RunMVA(1); RunMVA(2);
.L TMVAClassApp.cpp+
TMVAClassAppAll(1); TMVAClassAppAll(2);
python RemoveMultipleCandidates.py -all
*** Now rerunning the weights as they are fixed to after-mva ***
.L nTrackWeights.cpp+
WeightAll(true,1,true); ReweightReferenceMC(true,1,true); ReweightPHSPMC(true,1,true);
WeightAll(true,2,true); ReweightReferenceMC(true,2,true); ReweightPHSPMC(true,2,true);
Check the MVA variables are agreeing after weighting them with sWeights
```
.L CodeForTests/compareVariables.cc+
compareAll(1); compareAll(2);
```
Reweighted Data and Monte Carlo can be used for the MVA training
```
.L MVA.cpp+
RunMVA(1); RunMVA(2);
```
Apply the MVA to all the MC and Data
```
.L TMVAClassApp.cpp+
TMVAClassAppAll(1); TMVAClassAppAll(2);
```
Remove all multiple candidates
```
python RemoveMultipleCandidates.py -all
```
We have to rerun the weights and therefore also the MVA: the shape of the B mass peak is fixed to the one after MVA.
```
.L nTrackWeights.cpp+
WeightAll(true,1,true); ReweightReferenceMC(true,1,true); ReweightPHSPMC(true,1,true);
WeightAll(true,2,true); ReweightReferenceMC(true,2,true); ReweightPHSPMC(true,2,true);
```
Check the variables again
```
.L CodeForTests/compareVariables.cc+
compareAll(1); compareAll(2);
```
Run the MVA training, make nice plots, apply the MVA and remove multiple candidates
```
.L MVA.cpp+
RunMVA(1); RunMVA(2);
@ -53,61 +90,93 @@ When re-running everything do the following
TMVAClassAppAll(1); TMVAClassAppAll(2);
python RemoveMultipleCandidates.py -all
```
Add variables to the MC samples **TODO**
```
.L CodeForTests/AddVariable.cpp+
addAllVariablesAllMCSamples(1); addAllVariablesAllMCSamples(2);
```
Get the eficiencies needed for the estimation of the best MVA response cut
```
.L Efficiency.cpp+
runAllEff();
```
Scan the significance in the MVA cut. Don't mind the 2012 and 2016 tags, they are just dummies
```
.L BDTcutScanner.cpp+
ScanSignalAndBckgndEstimation("2012",1,0.01,false,false,false,true)
ScanSignalAndBckgndEstimation("2016",2,0.01,false,false,false,true)
getMaxBDTresponse("2012",1,true,true,0,false,false)
getMaxBDTresponse("2016",2,true,false,0,false,false)
```
Make a nice TGraph from the scan; when creating the scan, it can happen that eg an estimation at cut at 0.95 happens before a cut at 0.92. This script just takes it and makes a pretty clean plot.
```
python ReorganizeTGraph.py
```
Use the MVA scan to plot the signal yields, apply the MVA cut and compare the yields to the CMS results.
```
.L SignalStudy.cpp+
plotYieldInQ2(true); plotYieldInQ2(false);
ApplyCutPerYearAll(1); ApplyCutPerYearAll(2);
printYileds(false); printYileds(true)
yieldComparison(1,getTMVAcut(1));
yieldComparison(2,getTMVAcut(2));
```
## Mass Fit compilation
Recompile mass fit
```
.L BmassShape/SignalType.cpp+
.L BmassShape/SignalPdf.cpp+
.L BmassShape/BackgroundType.cpp+
.L BmassShape/BackgroundPdf.cpp+
.L BmassShape/ParamValues.cpp+
.L MassFit.cpp+
```
Check the inclusive sample
## Checking the inclusive sample
```
.L BDTSelection.cpp+
runAllIncMC(1); runAllIncMC(2)
```
lb-conda default python Rescale_pi0momentum.py (CAREFUL, NEEDS TO BE SET BY HAND)
```
.L MCtruthmatching.cpp+
TruthMatchAllBkg(true,1,false,false,true); TruthMatchAllBkg(true,2,false,false,true);
```
```
.L CodeForTests/AddVariable.cpp+ (CAREFUL, NEEDS TO BE SET BY HAND)
addAllXMuMuMass(true,true,1,true,true,false); addAllXMuMuMass(false,true,1,true,true,false); applyAllVetoKplusMuMuMass(1,true,true,false);
addAllXMuMuMass(true,true,2,true,true,false); addAllXMuMuMass(false,true,2,true,true,false); applyAllVetoKplusMuMuMass(2,true,true,false);
```
```
lb-conda default python Rescale_pi0momentum.py (CAREFUL, NEEDS TO BE SET BY HAND)
```
```
.L TMVAClassApp.cpp+
TMVAClassAppInc(1); TMVAClassAppInc(2);
```
```
python RemoveMultipleCandidates.py -all (CAREFUL, NEEDS TO BE SET BY HAND)
```
```
.L CodeForTests/InclusiveCheck.cpp+
plotTM(1,true); plotTM(2,true)
plotTM(1,false); plotTM(2,false)
```