From d4845eb143f754a14708d8d697d0fcafb0ae8847 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Renata=20Kopecn=C3=A1?= Date: Mon, 24 Jan 2022 11:10:54 +0100 Subject: [PATCH] Update 'Selection code' --- Selection-code.md | 145 ++++++++++++++++++++++++++++++++++------------ 1 file changed, 107 insertions(+), 38 deletions(-) diff --git a/Selection-code.md b/Selection-code.md index 1b79bbb..e3bc954 100644 --- a/Selection-code.md +++ b/Selection-code.md @@ -1,113 +1,182 @@ -The selection code is a set of C++ scripts. +The selection code is a set of C++ scripts. First, the running of the code is introduced. Then, each part of the code is explained. # Running the code -When re-running everything do the following +When re-running everything, do the following +First, compile and run the preselection +``` .L BDTSelection.cpp+ runAllSignalData(1); runAllSignalData(2); runAllSignalMC(1); runAllSignalMC(2); runAllRefMC(1); runAllRefMC(2); runAllPHSPMC(1); runAllPHSPMC(2); +``` +Then,run a python script performing the Kstar MacGyver DTF +``` lb-conda default python Rescale_pi0momentum.py +``` +Next step is to compile and perform the MC Truth-Matching +``` .L MCtruthmatching.cpp+ - TruthMatchAllAll(1); TruthMatchAllAll(2); +``` - .L CodeForTests/AddVariable.cpp+ +Then, we need to add the XMuMu mass variable and apply the KplusMuMu veto + ``` +.L CodeForTests/AddVariable.cpp+ addAllXMuMuMass(true,true,1); addAllXMuMuMass(false,true,1); applyAllVetoKplusMuMuMass(1); addAllXMuMuMass(true,true,2); addAllXMuMuMass(false,true,2); applyAllVetoKplusMuMuMass(2); +``` +We have all the preselection finished. Now we will need to fit the reconstructed B mass peak. For the instructions how to compile the code and make RooFit use double-sided Crystal Ball or ExpGauss, see [B mass model section](https://git.physi.uni-heidelberg.de/kopecna/EWP-BplusToKstMuMu-AngAna/wiki/B-mass-model). + +Now the peaking background is removed, we can proceed to reweighting +``` .L nTrackWeights.cpp+ WeightAll(true,1,true); ReweightReferenceMC(true,1,true); ReweightPHSPMC(true,1,true); WeightAll(true,2,true); ReweightReferenceMC(true,2,true); ReweightPHSPMC(true,2,true); +``` - *** now compare all the variables *** - - .L MVA.cpp+ - RunMVA(1); RunMVA(2); - - .L TMVAClassApp.cpp+ - TMVAClassAppAll(1); TMVAClassAppAll(2); - - python RemoveMultipleCandidates.py -all - - *** Now rerunning the weights as they are fixed to after-mva *** - .L nTrackWeights.cpp+ - WeightAll(true,1,true); ReweightReferenceMC(true,1,true); ReweightPHSPMC(true,1,true); - WeightAll(true,2,true); ReweightReferenceMC(true,2,true); ReweightPHSPMC(true,2,true); - +Check the MVA variables are agreeing after weighting them with sWeights +``` .L CodeForTests/compareVariables.cc+ compareAll(1); compareAll(2); +``` - .L MVA.cpp+ +Reweighted Data and Monte Carlo can be used for the MVA training + ``` +.L MVA.cpp+ RunMVA(1); RunMVA(2); +``` - .L PlotMVA.cpp+ - SaveAllFromOneFile(2011,1,false,false,0,false,"",false); - SaveAllFromOneFile(2016,2,false,false,0,false,"",false); - testFunction(1); testFunction(2) - - .L TMVAClassApp.cpp+ +Apply the MVA to all the MC and Data + ``` +.L TMVAClassApp.cpp+ TMVAClassAppAll(1); TMVAClassAppAll(2); +``` - python RemoveMultipleCandidates.py -all +Remove all multiple candidates +``` +python RemoveMultipleCandidates.py -all +``` +We have to rerun the weights and therefore also the MVA: the shape of the B mass peak is fixed to the one after MVA. +``` +.L nTrackWeights.cpp+ + WeightAll(true,1,true); ReweightReferenceMC(true,1,true); ReweightPHSPMC(true,1,true); + WeightAll(true,2,true); ReweightReferenceMC(true,2,true); ReweightPHSPMC(true,2,true); +``` + +Check the variables again +``` +.L CodeForTests/compareVariables.cc+ +compareAll(1); compareAll(2); +``` + +Run the MVA training, make nice plots, apply the MVA and remove multiple candidates + +``` +.L MVA.cpp+ +RunMVA(1); RunMVA(2); + +.L PlotMVA.cpp+ +SaveAllFromOneFile(2011,1,false,false,0,false,"",false); +SaveAllFromOneFile(2016,2,false,false,0,false,"",false); +testFunction(1); testFunction(2) + +.L TMVAClassApp.cpp+ +TMVAClassAppAll(1); TMVAClassAppAll(2); + +python RemoveMultipleCandidates.py -all +``` + +Add variables to the MC samples **TODO** +``` .L CodeForTests/AddVariable.cpp+ addAllVariablesAllMCSamples(1); addAllVariablesAllMCSamples(2); +``` +Get the eficiencies needed for the estimation of the best MVA response cut +``` .L Efficiency.cpp+ runAllEff(); +``` - .L BDTcutScanner.cpp+ - ScanSignalAndBckgndEstimation("2012",1,0.01,false,false,false,true) - ScanSignalAndBckgndEstimation("2016",2,0.01,false,false,false,true) - getMaxBDTresponse("2012",1,true,true,0,false,false) - getMaxBDTresponse("2016",2,true,false,0,false,false) +Scan the significance in the MVA cut. Don't mind the 2012 and 2016 tags, they are just dummies +``` +.L BDTcutScanner.cpp+ +ScanSignalAndBckgndEstimation("2012",1,0.01,false,false,false,true) +ScanSignalAndBckgndEstimation("2016",2,0.01,false,false,false,true) +getMaxBDTresponse("2012",1,true,true,0,false,false) +getMaxBDTresponse("2016",2,true,false,0,false,false) +``` +Make a nice TGraph from the scan; when creating the scan, it can happen that eg an estimation at cut at 0.95 happens before a cut at 0.92. This script just takes it and makes a pretty clean plot. +``` +python ReorganizeTGraph.py +``` - python ReorganizeTGraph.py - - .L SignalStudy.cpp+ +Use the MVA scan to plot the signal yields, apply the MVA cut and compare the yields to the CMS results. + ``` +.L SignalStudy.cpp+ plotYieldInQ2(true); plotYieldInQ2(false); ApplyCutPerYearAll(1); ApplyCutPerYearAll(2); printYileds(false); printYileds(true) yieldComparison(1,getTMVAcut(1)); yieldComparison(2,getTMVAcut(2)); +``` +## Mass Fit compilation Recompile mass fit +``` .L BmassShape/SignalType.cpp+ .L BmassShape/SignalPdf.cpp+ .L BmassShape/BackgroundType.cpp+ .L BmassShape/BackgroundPdf.cpp+ .L BmassShape/ParamValues.cpp+ .L MassFit.cpp+ +``` - - Check the inclusive sample + ## Checking the inclusive sample +``` .L BDTSelection.cpp+ runAllIncMC(1); runAllIncMC(2) +``` lb-conda default python Rescale_pi0momentum.py (CAREFUL, NEEDS TO BE SET BY HAND) +``` .L MCtruthmatching.cpp+ TruthMatchAllBkg(true,1,false,false,true); TruthMatchAllBkg(true,2,false,false,true); +``` +``` .L CodeForTests/AddVariable.cpp+ (CAREFUL, NEEDS TO BE SET BY HAND) addAllXMuMuMass(true,true,1,true,true,false); addAllXMuMuMass(false,true,1,true,true,false); applyAllVetoKplusMuMuMass(1,true,true,false); addAllXMuMuMass(true,true,2,true,true,false); addAllXMuMuMass(false,true,2,true,true,false); applyAllVetoKplusMuMuMass(2,true,true,false); +``` +``` +lb-conda default python Rescale_pi0momentum.py (CAREFUL, NEEDS TO BE SET BY HAND) +``` - lb-conda default python Rescale_pi0momentum.py (CAREFUL, NEEDS TO BE SET BY HAND) +``` .L TMVAClassApp.cpp+ TMVAClassAppInc(1); TMVAClassAppInc(2); +``` +``` python RemoveMultipleCandidates.py -all (CAREFUL, NEEDS TO BE SET BY HAND) +``` + +``` .L CodeForTests/InclusiveCheck.cpp+ plotTM(1,true); plotTM(2,true) plotTM(1,false); plotTM(2,false) +```