Update 'Selection code'
parent
be9b56cbff
commit
126d0ed840
@ -38,7 +38,7 @@ addAllXMuMuMass(true,true,2); addAllXMuMuMass(false,true,2); applyAllVetoKplusMu
|
||||
|
||||
We have all the preselection finished. Now we will need to fit the reconstructed B mass peak. For the instructions how to compile the code and make RooFit use double-sided Crystal Ball or ExpGauss, see [B mass model section](https://git.physi.uni-heidelberg.de/kopecna/EWP-BplusToKstMuMu-AngAna/wiki/B-mass-model).
|
||||
|
||||
Now the peaking background is removed, we can proceed to reweighting via [[nTrackWeights.cpp][nTrackWeights]]
|
||||
Now the peaking background is removed, we can proceed to reweighting via [[nTrackWeights.cpp|nTrackWeights]]
|
||||
```
|
||||
.L nTrackWeights.cpp+
|
||||
WeightAll(true,1,true); ReweightReferenceMC(true,1,true); ReweightPHSPMC(true,1,true);
|
||||
@ -51,13 +51,13 @@ Check the MVA variables are agreeing after weighting them with sWeights
|
||||
compareAll(1); compareAll(2);
|
||||
```
|
||||
|
||||
Reweighted Data and Monte Carlo can be used for the MVA training
|
||||
Reweighted Data and Monte Carlo can be used for the [[MVA.cpp|MVA training]]
|
||||
```
|
||||
.L MVA.cpp+
|
||||
RunMVA(1); RunMVA(2);
|
||||
```
|
||||
|
||||
Apply the MVA to all the MC and Data
|
||||
Apply the MVA to all the MC and Data using [[TMVA.cpp|TMVA Class application]]
|
||||
```
|
||||
.L TMVAClassApp.cpp+
|
||||
TMVAClassAppAll(1); TMVAClassAppAll(2);
|
||||
@ -81,7 +81,7 @@ Check the variables again
|
||||
compareAll(1); compareAll(2);
|
||||
```
|
||||
|
||||
Run the MVA training, make nice plots, apply the MVA and remove multiple candidates
|
||||
Run the MVA training, [[make nice plots|Plot MVA]], apply the MVA and remove multiple candidates
|
||||
|
||||
```
|
||||
.L MVA.cpp+
|
||||
@ -104,13 +104,13 @@ Add variables to the MC samples **TODO**
|
||||
addAllVariablesAllMCSamples(1); addAllVariablesAllMCSamples(2);
|
||||
```
|
||||
|
||||
Get the eficiencies needed for the estimation of the best MVA response cut
|
||||
Get the eficiencies needed for the estimation of the best MVA response cut, defined in [[Efficiency.cpp|Efficiency.cpp]]
|
||||
```
|
||||
.L Efficiency.cpp+
|
||||
runAllEff();
|
||||
```
|
||||
|
||||
Scan the significance in the MVA cut. Don't mind the 2012 and 2016 tags, they are just dummies
|
||||
Scan the significance in the MVA cut using the code in [[BDTcutScanner.cpp|BDTcutScanner]]. Don't mind the 2012 and 2016 tags, they are just dummies
|
||||
```
|
||||
.L BDTcutScanner.cpp+
|
||||
ScanSignalAndBckgndEstimation("2012",1,0.01,false,false,false,true)
|
||||
@ -124,7 +124,7 @@ Make a nice TGraph from the scan; when creating the scan, it can happen that eg
|
||||
python ReorganizeTGraph.py
|
||||
```
|
||||
|
||||
Use the MVA scan to plot the signal yields, apply the MVA cut and compare the yields to the CMS results.
|
||||
Use the MVA scan to plot the signal yields, apply the MVA cut and compare the yields to the CMS results (see [[SignalStudy.cpp|Signal Study]].
|
||||
```
|
||||
.L SignalStudy.cpp+
|
||||
plotYieldInQ2(true); plotYieldInQ2(false);
|
||||
|
Loading…
Reference in New Issue
Block a user