From 126d0ed84026667d4139b3b6de8dbc6776c707ce Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Renata=20Kopecn=C3=A1?= Date: Tue, 25 Jan 2022 17:58:07 +0100 Subject: [PATCH] Update 'Selection code' --- Selection-code.md | 14 +++++++------- 1 file changed, 7 insertions(+), 7 deletions(-) diff --git a/Selection-code.md b/Selection-code.md index 6514ba5..e7881ad 100644 --- a/Selection-code.md +++ b/Selection-code.md @@ -38,7 +38,7 @@ addAllXMuMuMass(true,true,2); addAllXMuMuMass(false,true,2); applyAllVetoKplusMu We have all the preselection finished. Now we will need to fit the reconstructed B mass peak. For the instructions how to compile the code and make RooFit use double-sided Crystal Ball or ExpGauss, see [B mass model section](https://git.physi.uni-heidelberg.de/kopecna/EWP-BplusToKstMuMu-AngAna/wiki/B-mass-model). -Now the peaking background is removed, we can proceed to reweighting via [[nTrackWeights.cpp][nTrackWeights]] +Now the peaking background is removed, we can proceed to reweighting via [[nTrackWeights.cpp|nTrackWeights]] ``` .L nTrackWeights.cpp+ WeightAll(true,1,true); ReweightReferenceMC(true,1,true); ReweightPHSPMC(true,1,true); @@ -51,13 +51,13 @@ Check the MVA variables are agreeing after weighting them with sWeights compareAll(1); compareAll(2); ``` -Reweighted Data and Monte Carlo can be used for the MVA training +Reweighted Data and Monte Carlo can be used for the [[MVA.cpp|MVA training]] ``` .L MVA.cpp+ RunMVA(1); RunMVA(2); ``` -Apply the MVA to all the MC and Data +Apply the MVA to all the MC and Data using [[TMVA.cpp|TMVA Class application]] ``` .L TMVAClassApp.cpp+ TMVAClassAppAll(1); TMVAClassAppAll(2); @@ -81,7 +81,7 @@ Check the variables again compareAll(1); compareAll(2); ``` -Run the MVA training, make nice plots, apply the MVA and remove multiple candidates +Run the MVA training, [[make nice plots|Plot MVA]], apply the MVA and remove multiple candidates ``` .L MVA.cpp+ @@ -104,13 +104,13 @@ Add variables to the MC samples **TODO** addAllVariablesAllMCSamples(1); addAllVariablesAllMCSamples(2); ``` -Get the eficiencies needed for the estimation of the best MVA response cut +Get the eficiencies needed for the estimation of the best MVA response cut, defined in [[Efficiency.cpp|Efficiency.cpp]] ``` .L Efficiency.cpp+ runAllEff(); ``` -Scan the significance in the MVA cut. Don't mind the 2012 and 2016 tags, they are just dummies +Scan the significance in the MVA cut using the code in [[BDTcutScanner.cpp|BDTcutScanner]]. Don't mind the 2012 and 2016 tags, they are just dummies ``` .L BDTcutScanner.cpp+ ScanSignalAndBckgndEstimation("2012",1,0.01,false,false,false,true) @@ -124,7 +124,7 @@ Make a nice TGraph from the scan; when creating the scan, it can happen that eg python ReorganizeTGraph.py ``` -Use the MVA scan to plot the signal yields, apply the MVA cut and compare the yields to the CMS results. +Use the MVA scan to plot the signal yields, apply the MVA cut and compare the yields to the CMS results (see [[SignalStudy.cpp|Signal Study]]. ``` .L SignalStudy.cpp+ plotYieldInQ2(true); plotYieldInQ2(false);