Script to plot an experiment sequence executed for a shot as extracted from the shot file.

This commit is contained in:
Karthik 2023-01-27 20:15:25 +01:00
parent 5ed159fecb
commit 159f46345c
2 changed files with 352 additions and 15 deletions

View File

@ -71,7 +71,9 @@ def parse_NIST_data(path, min_J, max_J, max_wavenumber):
def plot_level_structure_with_red_and_blue_transitions(*args, **kwargs): def plot_level_structure_with_red_and_blue_transitions(*args, **kwargs):
#start plotting #start plotting
f, ax = plt.subplots(figsize=(4, 8)) f, ax = plt.subplots(figsize=(4.5, 7))
#plt.subplots_adjust(top=0.973, bottom=0.121, left=0.244, right=0.959, hspace=0.2, wspace=0.2)
named_colors = ['r', 'm'] named_colors = ['r', 'm']
Red_Blue_colors = ['#ab162a', '#cf5246', '#eb9172', '#fac8af', '#faeae1', '#e6eff4', '#bbdaea', '#7bb6d6', '#3c8abe', '#1e61a5'] Red_Blue_colors = ['#ab162a', '#cf5246', '#eb9172', '#fac8af', '#faeae1', '#e6eff4', '#bbdaea', '#7bb6d6', '#3c8abe', '#1e61a5']
@ -79,53 +81,55 @@ def plot_level_structure_with_red_and_blue_transitions(*args, **kwargs):
plot_handle = sns.scatterplot(x='J', y='Wavenumber', data = dataframe, s=2000, hue = 'Parity', palette = sns.color_palette(named_colors), marker = '_', linewidth=1.5, legend=False) plot_handle = sns.scatterplot(x='J', y='Wavenumber', data = dataframe, s=2000, hue = 'Parity', palette = sns.color_palette(named_colors), marker = '_', linewidth=1.5, legend=False)
#write electronic configuration for GS #write electronic configuration for GS
ax.text(gs_J + 0.15, gs_wavenumber + 400, '$6s^2$') #ax.text(gs_J + 0.15, gs_wavenumber + 400, '$6s^2$')
#draw guide line for GS #draw guide line for GS
#plt.axhline(y=gs_wavenumber, color='m', linestyle='--', linewidth=1, alpha=0.5) #plt.axhline(y=gs_wavenumber, color='m', linestyle='--', linewidth=1, alpha=0.5)
#write wavelength of red transition #write wavelength of red transition
ax.text(red_J - 0.4, red_wavenumber * 0.5, '$626.082 ~ \mathrm{nm}$', color = '#db2929') ax.text(red_J - 0.4, red_wavenumber * 0.5, '626.082 nm', color = '#db2929', fontsize = 16, fontweight = 'bold')
ax.text(red_J - 0.4, red_wavenumber * 0.46, '$(\\Gamma = 2\\pi\\times 136 ~ \mathrm{kHz})$', fontsize = 8, color = '#db2929') #ax.text(red_J - 0.49, red_wavenumber * 0.42, '$(\\Gamma = 2\\pi\\times 136 ~ \mathrm{kHz})$', fontsize = 12, color = '#db2929')
#draw red transition arrow #draw red transition arrow
ax.annotate('', ax.annotate('',
xy=(red_J, red_wavenumber), xy=(red_J, red_wavenumber),
xytext=(gs_J, gs_wavenumber), xytext=(gs_J, gs_wavenumber),
arrowprops=dict(color='#db2929', alpha=0.8, width=1.5), arrowprops=dict(color='#db2929', width=1.5),
horizontalalignment='right', horizontalalignment='right',
verticalalignment='top') verticalalignment='top')
#write electronic configuration for triplet excited state #write electronic configuration for triplet excited state
ax.text(red_J + 0.35, red_wavenumber + 200, '$6s6p(^3P_1)$', fontsize = 10) #ax.text(red_J + 0.35, red_wavenumber + 200, '$6s6p(^3P_1)$', fontsize = 10)
#draw guide line for triplet excited state #draw guide line for triplet excited state
plt.axhline(y=red_wavenumber, color='m', linestyle='--', linewidth=1, alpha=0.5) plt.axhline(y=red_wavenumber, color='m', linestyle='--', linewidth=1, alpha=0.5)
#write wavelength of red transition #write wavelength of red transition
ax.text(blue_J - 1.5, blue_wavenumber * 0.55, '$421.291~ \mathrm{nm}$', color = '#2630ea') ax.text(blue_J - 1.8, blue_wavenumber * 0.4, '421.291 nm', color = '#2630ea', fontsize = 16, fontweight = 'bold')
ax.text(blue_J - 1.55, blue_wavenumber * 0.52, '$(\\Gamma = 2\\pi\\times 32.2 ~ \mathrm{MHz})$', fontsize = 8, color = '#2630ea') #ax.text(blue_J - 1.85, blue_wavenumber * 0.4, '$(\\Gamma = 2\\pi\\times$', fontsize = 12, color = '#2630ea') #$(\\Gamma = 2\\pi\\times 32.2 ~ \mathrm{MHz})$
#ax.text(blue_J - 1.5, blue_wavenumber * 0.35, '$32.2 ~ \mathrm{MHz})$', fontsize = 12, color = '#2630ea')
#draw blue transition arrow #draw blue transition arrow
ax.annotate('', ax.annotate('',
xy=(blue_J, blue_wavenumber), xy=(blue_J, blue_wavenumber),
xytext=(gs_J, gs_wavenumber), xytext=(gs_J, gs_wavenumber),
arrowprops=dict(color='#2630ea', alpha=0.8, width=3.5), arrowprops=dict(color='#2630ea', width=3.5),
horizontalalignment='right', horizontalalignment='right',
verticalalignment='top') verticalalignment='top')
#write electronic configuration for singlet excited state #write electronic configuration for singlet excited state
ax.text(blue_J + 0.35, blue_wavenumber + 200, '$6s6p(^1P_1)$', fontsize = 10) #ax.text(blue_J + 0.35, blue_wavenumber + 200, '$6s6p(^1P_1)$', fontsize = 10)
#draw guide line for singlet excited state #draw guide line for singlet excited state
plt.axhline(y=blue_wavenumber, color='m', linestyle='--', linewidth=1, alpha=0.5) plt.axhline(y=blue_wavenumber, color='m', linestyle='--', linewidth=1, alpha=0.5)
#figure options #figure options
f.canvas.draw() f.canvas.draw()
plt.xlabel('J', fontsize=16) plt.xlabel('J', fontsize=20, fontweight = 'bold')
#plt.ylabel('$\\tilde{v}~(cm^{-1})$', fontsize=16) #plt.ylabel('$\\tilde{v}~(cm^{-1})$', fontsize=16)
plt.ylabel('Wavelength (nm)', fontsize=16) plt.ylabel('Wavelength (nm)', fontsize=20, fontweight = 'bold')
plot_handle.set_xticks(range(min_J-1, max_J+2)) plot_handle.set_xticks(range(min_J-1, max_J+2))
ax.get_xticklabels()[0].set_visible(False) ax.get_xticklabels()[0].set_visible(False)
ax.get_xticklabels()[-1].set_visible(False) ax.get_xticklabels()[-1].set_visible(False)
ax.get_xticklines()[0].set_visible(False) ax.get_xticklines()[0].set_visible(False)
ax.get_xticklines()[-2].set_visible(False) ax.get_xticklines()[-2].set_visible(False)
ax.set_xticklabels(ax.get_xticks(), weight='bold')
yticklabels = [item.get_text() for item in ax.get_yticklabels()] yticklabels = [item.get_text() for item in ax.get_yticklabels()]
yticklabels = ['' if item.startswith('') or item.startswith('0') else item for item in yticklabels] yticklabels = ['' if item.startswith('') or item.startswith('0') else item for item in yticklabels]
@ -133,14 +137,15 @@ def plot_level_structure_with_red_and_blue_transitions(*args, **kwargs):
new_yticks = np.arange(min(yticks), max_wavenumber, 4000) new_yticks = np.arange(min(yticks), max_wavenumber, 4000)
plot_handle.set_yticks(new_yticks) plot_handle.set_yticks(new_yticks)
new_yticklabels = [round(1e7/item) if item != 0 else item for item in new_yticks] new_yticklabels = [round(1e7/item) if item != 0 else item for item in new_yticks]
ax.set_yticklabels(new_yticklabels) ax.set_yticklabels(new_yticklabels, weight='bold')
ax.get_yticklabels()[0].set_visible(False) ax.get_yticklabels()[0].set_visible(False)
#ax.get_yticklabels()[-1].set_visible(False) #ax.get_yticklabels()[-1].set_visible(False)
ax.get_yticklines()[0].set_visible(False) ax.get_yticklines()[0].set_visible(False)
#ax.get_yticklines()[-2].set_visible(False) #ax.get_yticklines()[-2].set_visible(False)
plt.tick_params(axis='both', which='major', labelsize=14) plt.tick_params(axis='both', which='major', labelsize=16)
#f.tight_layout()
#plt.show() #plt.show()
f.savefig(Path(home_path + os.sep + 'result.pdf'), format='pdf', bbox_inches = "tight") f.savefig(Path(home_path + os.sep + 'result.pdf'), format='pdf', bbox_inches = "tight")
@ -149,7 +154,8 @@ if __name__ == '__main__':
min_J = 8 min_J = 8
max_J = 9 max_J = 9
max_wavenumber = 24500.0 #max_wavenumber = 24500.0
max_wavenumber = 28500.0
#Ground State: [Xe]4f^{10} 6s^2(^5I_8) #Ground State: [Xe]4f^{10} 6s^2(^5I_8)
gs_J = 8 gs_J = 8

331
readAndPlotSequence.py Normal file
View File

@ -0,0 +1,331 @@
import numpy, imageio, os
from scipy import interpolate
import matplotlib.pyplot as plt
from qtutils import *
from labscript_utils.connections import ConnectionTable
from labscript_utils import device_registry
from labscript_c_extensions.runviewer.resample import resample as _resample
import h5py
def generate_ylabel(channel_name):
if channel_name == 'AO_MOT_Grad_Coil_current':
label = '$ \\nabla B_{AHH}$'
elif channel_name == 'AO_MOT_CompZ_Coil_current':
label = '$B_{HH}$'
elif channel_name == 'AO_MOT_3D_freq':
label = '$\Delta \\nu$'
elif channel_name == 'AO_MOT_3D_amp':
label = '$P_{3D}$'
elif channel_name == 'AO_Red_Push_amp':
label = '$P_{Push}$'
elif channel_name == 'MOT_2D_Shutter':
label = '$P_{2D}$'
elif channel_name == 'AO_ODT1_Pow':
label = '$P_{cODT1}$'
elif channel_name == 'Imaging_RF_Switch':
label = '$P_{img}$'
elif channel_name == 'MOT_3D_Camera_Trigger':
label = '$Cam$'
return label
def plotSequence(Channels, Switches, animate = False, idx = 0):
axs = plt.subplots(len(Channels), figsize = (10, 6), constrained_layout=True, sharex=True)[1]
for i, channel_name in enumerate(Channels):
#markers_unscaled = sorted(list(shotObj.markers.keys()))
#scalehandler = ScaleHandler(markers_unscaled, markers_unscaled, shotObj.stop_time)
#unscaled_time = numpy.asarray(Traces[channel_name])[0]
#scaled_time = scalehandler.get_scaled_time(unscaled_time)
channel_time = numpy.asarray(Traces[channel_name])[0]
channel_trace = numpy.asarray(Traces[channel_name])[1]
xmin = 0
xmax = shotObj.stop_time
dx = 1e-9
resampled_channel_trace = shotObj.resample(channel_time, channel_trace, xmin, xmax, shotObj.stop_time, dx)[1]
time = numpy.arange(xmin, xmax, (xmax-xmin)/len(resampled_channel_trace))
switch_time = numpy.asarray(Traces[Switches[i]])[0]
switch_trace = numpy.asarray(Traces[Switches[i]])[1]
xmin = 0
xmax = shotObj.stop_time
dx = 1e-9
resampled_switch_trace = shotObj.resample(switch_time, switch_trace, xmin, xmax, shotObj.stop_time, dx)[1]
trace = numpy.multiply(resampled_channel_trace, resampled_switch_trace)
if not animate:
axs[i].plot(time, trace, '-b') #'-ob'
axs[i].fill_between(time, trace, alpha=0.4)
else:
axs[i].plot(time[0:idx], trace[0:idx], '-b') #'-ob'
axs[i].fill_between(time[0:idx], trace[0:idx], alpha=0.4)
axs[i].axvline(x=0, color = 'b', linestyle = '--')
axs[i].axvline(x=4, color = 'b', linestyle = '--')
axs[i].axvline(x=4.315, color = 'b', linestyle = '--')
axs[i].axvline(x=shotObj.stop_time, color = 'b', linestyle = '--')
axs[i].set_xlim(0, shotObj.stop_time)
axs[i].set_ylim(0, max(resampled_channel_trace) + 0.2)
if i == len(Channels)-1:
axs[i].set_xlabel('Time (s)', fontsize = 16)
axs[i].set_ylabel(generate_ylabel(channel_name), fontsize = 16)
if not animate:
plt.savefig(f'seq.png', format='png', bbox_inches = "tight")
plt.show()
else:
plt.savefig(f'seq-{idx}.png')
plt.close()
def animateSequence(Channels, Switches):
SIZE = 6000
STEP = 58
for i in range(2, SIZE, STEP):
plotSequence(Channels, Switches, animate = True, idx = i)
with imageio.get_writer('seq_animated.gif', mode='i', fps = 24, loop = 1) as writer:
for i in range(2, SIZE, STEP):
image = imageio.imread(f'seq-{i}.png')
writer.append_data(image)
os.remove(f'seq-{i}.png')
class ScaleHandler():
def __init__(self, input_times, target_positions, stop_time):
# input_times is a list (may be unsorted) of times which should be scaled evenly with target_length
# an input list of [1,2,4,6] and target_length of 1.0 will result in:
# get_scaled_time(1) -> 1
# get_scaled_time(1.5) -> 1.5
# get_scaled_time(3) -> 2.5
# get_scaled_time(4) -> 3
# get_scaled_time(5) -> 3.5 ...
self.org_stop_time = float(stop_time)
if not all((x >= 0) and (x <= self.org_stop_time) for x in input_times):
raise Exception('shot contains at least one marker before t=0 and/or after the stop time. Non-linear time currently does not support this.')
unscaled_times = sorted(input_times)
scaled_times = sorted(target_positions)
# append values for linear scaling before t=0 and after stop time
unscaled_times = [min(unscaled_times)-1e-9] + unscaled_times + [max(unscaled_times) + 1e-9]
scaled_times = [min(scaled_times)-1e-9] + scaled_times + [max(scaled_times) + 1e-9]
self.get_scaled_time = interpolate.interp1d(unscaled_times, scaled_times, assume_sorted=True, bounds_error=False, fill_value='extrapolate')
self.get_unscaled_time = interpolate.interp1d(scaled_times, unscaled_times, assume_sorted=True, bounds_error=False, fill_value='extrapolate')
self.scaled_stop_time = self.get_scaled_time(self.org_stop_time)
class Shot(object):
def __init__(self, path):
self.path = path
# Store list of traces
self._traces = None
# store list of channels
self._channels = None
# store list of markers
self._markers = None
# store list of shutter changes and callibrations
self._shutter_times = None
self._shutter_calibrations = {}
# Load connection table
self.connection_table = ConnectionTable(path)
# open h5 file
with h5py.File(path, 'r') as file:
# Get master pseudoclock
self.master_pseudoclock_name = file['connection table'].attrs['master_pseudoclock']
if isinstance(self.master_pseudoclock_name, bytes):
self.master_pseudoclock_name = self.master_pseudoclock_name.decode('utf8')
else:
self.master_pseudoclock_name = str(self.master_pseudoclock_name)
# get stop time
self.stop_time = file['devices'][self.master_pseudoclock_name].attrs['stop_time']
self.device_names = list(file['devices'].keys())
# Get Shutter Calibrations
if 'calibrations' in file and 'Shutter' in file['calibrations']:
for name, open_delay, close_delay in numpy.array(file['calibrations']['Shutter']):
name = name.decode('utf8') if isinstance(name, bytes) else str(name)
self._shutter_calibrations[name] = [open_delay, close_delay]
def _load(self):
if self._channels is None:
self._channels = {}
if self._traces is None:
self._traces = {}
if self._markers is None:
self._markers = {}
if self._shutter_times is None:
self._shutter_times = {}
self._load_markers()
# Let's walk the connection table, starting with the master pseudoclock
master_pseudoclock_device = self.connection_table.find_by_name(self.master_pseudoclock_name)
self._load_device(master_pseudoclock_device)
def _load_markers(self):
with h5py.File(self.path, 'r') as file:
if "time_markers" in file:
for row in file["time_markers"]:
self._markers[row['time']] = {'color': row['color'].tolist()[0], 'label': row['label']}
elif "runviewer" in file:
for time, val in file["runviewer"]["markers"].attrs.items():
props = val.strip('{}}').rsplit(",", 1)
color = list(map(int, props[0].split(":")[1].strip(" ()").split(",")))
label = props[1].split(":")[1]
self._markers[float(time)] = {'color': color, 'label': label}
if 0 not in self._markers:
self._markers[0] = {'color': [0,0,0], 'label': 'Start'}
if self.stop_time not in self._markers:
self._markers[self.stop_time] = {'color': [0,0,0], 'label' : 'End'}
def add_trace(self, name, trace, parent_device_name, connection):
name = str(name)
self._channels[name] = {'device_name': parent_device_name, 'port': connection}
self._traces[name] = trace
# add shutter times
con = self.connection_table.find_by_name(name)
if con.device_class == "Shutter" and 'open_state' in con.properties:
self.add_shutter_times([(name, con.properties['open_state'])])
# Temporary solution to physical shutter times
def add_shutter_times(self, shutters):
for name, open_state in shutters:
x_values, y_values = self._traces[name]
if len(x_values) > 0:
change_indices = numpy.where(y_values[:-1] != y_values[1:])[0]
change_indices += 1 # use the index of the value that is changed to
change_values = list(zip(x_values[change_indices], y_values[change_indices]))
change_values.insert(0, (x_values[0], y_values[0])) # insert first value
self._shutter_times[name] = {x_value + (self._shutter_calibrations[name][0] if y_value == open_state else self._shutter_calibrations[name][1]): 1 if y_value == open_state else 0 for x_value, y_value in change_values}
def _load_device(self, device, clock=None):
try:
module = device.device_class
device_class = device_registry.get_runviewer_parser(module)
device_instance = device_class(self.path, device)
clocklines_and_triggers = device_instance.get_traces(self.add_trace, clock)
for name, trace in clocklines_and_triggers.items():
child_device = self.connection_table.find_by_name(name)
for grandchild_device_name, grandchild_device in child_device.child_list.items():
self._load_device(grandchild_device, trace)
except Exception:
pass
def resample(self, data_x, data_y, xmin, xmax, stop_time, num_pixels):
"""This is a function for downsampling the data before plotting
it. Unlike using nearest neighbour interpolation, this method
preserves the features of the plot. It chooses what value to
use based on what values within a region are most different
from the values it's already chosen. This way, spikes of a short
duration won't just be skipped over as they would with any sort
of interpolation."""
# TODO: Only finely sample the currently visible region. Coarsely sample the rest
# x_out = numpy.float32(numpy.linspace(data_x[0], data_x[-1], 4000*(data_x[-1]-data_x[0])/(xmax-xmin)))
x_out = numpy.float64(numpy.linspace(xmin, xmax, 3 * 2000 + 2))
y_out = numpy.empty(len(x_out) - 1, dtype=numpy.float64)
data_x = numpy.float64(data_x)
data_y = numpy.float64(data_y)
# TODO: investigate only resampling when necessary.
# Currently pyqtgraph sometimes has trouble rendering things
# if you don't resample. If a point is far off the graph,
# and this point is the first that should be drawn for stepMode,
# because there is a long gap before the next point (which is
# visible) then there is a problem.
# Also need to explicitly handle cases where none of the data
# is visible (which resampling does by setting NaNs)
#
# x_data_slice = data_x[(data_x>=xmin)&(data_x<=xmax)]
# print len(data_x)
# if len(x_data_slice) < 3*2000+2:
# x_out = x_data_slice
# y_out = data_y[(data_x>=xmin)&(data_x<=xmax)][:-1]
# logger.info('skipping resampling')
# else:
resampling = True
if resampling:
_resample(data_x, data_y, x_out, y_out, numpy.float64(stop_time))
# self.__resample4(data_x, data_y, x_out, y_out, numpy.float32(stop_time))
else:
x_out, y_out = data_x, data_y
return x_out, y_out
@property
def channels(self):
if self._channels is None:
self._load()
return self._channels.keys()
@property
def markers(self):
if self._markers is None:
self._load()
return self._markers
@property
def traces(self):
if self._traces is None:
self._load()
return self._traces
@property
def shutter_times(self):
if self._shutter_times is None:
self._load()
return self._shutter_times
if __name__ == "__main__":
filepath = 'C:/Users/Karthik/Desktop/PreTalk/Plot Sequence/2023-01-25_0069_ODT_Imaging_9.h5'
shotObj = Shot(filepath)
shotObj._load()
Channels = list(shotObj.channels)
Traces = shotObj.traces
"""
'prawn_clock_line_0', 'prawn_clock_line_1', 'Dummy_1', 'Imaging_RF_Switch', 'Imaging_Shutter', 'MOT_2D_Shutter', 'MOT_3D_RF_Switch', 'MOT_3D_Shutter', 'Push_Beam_Blue_Shutter',
'Push_Beam_Blue_Switch', 'Push_Beam_Red_Shutter', 'Push_Beam_Red_Switch', 'CDT1_Switch', 'CDT2_Switch', 'MOT_3D_Camera_Trigger', 'MOT_3D_Camera_trigger', 'MOT_CompX_Coil_Switch',
'MOT_CompY_Coil_Switch', 'MOT_CompZ_Coil_Switch', 'MOT_Grad_Coil_Switch', 'ODT_Axis_Camera_Trigger', 'ODT_Axis_Camera_trigger', 'AO_Blue_Push_amp', 'AO_Blue_Push_freq', 'AO_Imaging_amp',
'AO_Imaging_freq', 'AO_MOT_3D_amp', 'AO_MOT_3D_freq', 'AO_MOT_CompX_Coil_current', 'AO_MOT_CompX_Coil_voltage', 'AO_MOT_CompY_Coil_current', 'AO_MOT_CompY_Coil_voltage', 'AO_MOT_CompZ_Coil_current',
'AO_MOT_CompZ_Coil_voltage', 'AO_MOT_Grad_Coil_current', 'AO_MOT_Grad_Coil_voltage', 'AO_Red_Push_amp', 'AO_Red_Push_freq', 'AO_Dummy', 'AO_ODT1_Mod', 'AO_ODT1_Pow', 'AO_ODT2_Pow'
"""
""" Without Imaging """
Channels = ['MOT_2D_Shutter', 'AO_Red_Push_amp', 'AO_MOT_3D_amp', 'AO_MOT_3D_freq', 'AO_MOT_Grad_Coil_current', 'AO_MOT_CompZ_Coil_current', 'AO_ODT1_Pow']
Switches = ['MOT_2D_Shutter', 'Push_Beam_Red_Switch', 'MOT_3D_RF_Switch', 'MOT_3D_RF_Switch', 'MOT_Grad_Coil_Switch', 'MOT_CompZ_Coil_Switch', 'CDT1_Switch']
""" With Imaging """
# Channels = ['MOT_2D_Shutter', 'AO_Red_Push_amp', 'AO_MOT_3D_amp', 'AO_MOT_3D_freq', 'AO_MOT_Grad_Coil_current', 'AO_MOT_CompZ_Coil_current', 'AO_ODT1_Pow', 'Imaging_RF_Switch', 'MOT_3D_Camera_Trigger']
# Switches = ['MOT_2D_Shutter', 'Push_Beam_Red_Switch', 'MOT_3D_RF_Switch', 'MOT_3D_RF_Switch', 'MOT_Grad_Coil_Switch', 'MOT_CompZ_Coil_Switch', 'CDT1_Switch', 'Imaging_RF_Switch', 'MOT_3D_Camera_Trigger']
plotSequence(Channels, Switches)
# animateSequence(Channels, Switches)