703 lines
28 KiB
Matlab
703 lines
28 KiB
Matlab
function results = analyzeFolder(options)
|
||
% Ensure required fields are defined in options
|
||
arguments
|
||
options.scan_parameter (1,:) char
|
||
options.scan_groups (1,:) double
|
||
options.cam (1,1) double
|
||
options.angle (1,1) double
|
||
options.center (1,2) double
|
||
options.span (1,2) double
|
||
options.fraction (1,2) double
|
||
options.ImagingMode (1,:) char
|
||
options.PulseDuration (1,1) double
|
||
options.removeFringes (1,1) logical
|
||
options.skipUnshuffling (1,1) logical
|
||
options.pixel_size (1,1) double
|
||
options.magnification (1,1) double
|
||
options.zoom_size (1,1) double
|
||
options.r_min (1,1) double
|
||
options.r_max (1,1) double
|
||
options.N_angular_bins (1,1) double
|
||
options.Angular_Threshold (1,1) double
|
||
options.Angular_Sigma (1,1) double
|
||
options.Angular_WindowSize (1,1) double
|
||
options.theta_min (1,1) double
|
||
options.theta_max (1,1) double
|
||
options.N_radial_bins (1,1) double
|
||
options.Radial_Sigma (1,1) double
|
||
options.Radial_WindowSize (1,1) double
|
||
options.k_min (1,1) double
|
||
options.k_max (1,1) double
|
||
options.skipPreprocessing (1,1) logical
|
||
options.skipMasking (1,1) logical
|
||
options.skipIntensityThresholding (1,1) logical
|
||
options.skipBinarization (1,1) logical
|
||
options.folderPath (1,:) char
|
||
end
|
||
|
||
% Assign variables from options
|
||
scan_parameter = options.scan_parameter;
|
||
scan_groups = options.scan_groups;
|
||
folderPath = options.folderPath;
|
||
center = options.center;
|
||
span = options.span;
|
||
fraction = options.fraction;
|
||
ImagingMode = options.ImagingMode;
|
||
PulseDuration = options.PulseDuration;
|
||
removeFringes = options.removeFringes;
|
||
skipUnshuffling = options.skipUnshuffling;
|
||
pixel_size = options.pixel_size;
|
||
magnification = options.magnification;
|
||
zoom_size = options.zoom_size;
|
||
r_min = options.r_min;
|
||
r_max = options.r_max;
|
||
N_angular_bins = options.N_angular_bins;
|
||
Angular_Threshold = options.Angular_Threshold;
|
||
Angular_Sigma = options.Angular_Sigma;
|
||
Angular_WindowSize = options.Angular_WindowSize;
|
||
theta_min = options.theta_min;
|
||
theta_max = options.theta_max;
|
||
N_radial_bins = options.N_radial_bins;
|
||
Radial_Sigma = options.Radial_Sigma;
|
||
Radial_WindowSize = options.Radial_WindowSize;
|
||
k_min = options.k_min;
|
||
k_max = options.k_max;
|
||
skipPreprocessing = options.skipPreprocessing;
|
||
skipMasking = options.skipMasking;
|
||
skipIntensityThresholding = options.skipIntensityThresholding;
|
||
skipBinarization = options.skipBinarization;
|
||
cam = options.cam;
|
||
angle = options.angle;
|
||
|
||
% Load images and analyze them (keep using the cleaned body of your original function)
|
||
% Fix the incorrect usage of 'cam' and 'angle' not defined locally
|
||
groupList = ["/images/MOT_3D_Camera/in_situ_absorption",
|
||
"/images/ODT_1_Axis_Camera/in_situ_absorption",
|
||
"/images/ODT_2_Axis_Camera/in_situ_absorption",
|
||
"/images/Horizontal_Axis_Camera/in_situ_absorption",
|
||
"/images/Vertical_Axis_Camera/in_situ_absorption"];
|
||
|
||
filePattern = fullfile(folderPath, '*.h5');
|
||
files = dir(filePattern);
|
||
refimages = zeros(span(1) + 1, span(2) + 1, length(files));
|
||
absimages = zeros(span(1) + 1, span(2) + 1, length(files));
|
||
|
||
for k = 1 : length(files)
|
||
baseFileName = files(k).name;
|
||
fullFileName = fullfile(files(k).folder, baseFileName);
|
||
|
||
fprintf(1, 'Now reading %s\n', fullFileName);
|
||
|
||
atm_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/atoms")), angle));
|
||
bkg_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/background")), angle));
|
||
dark_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/dark")), angle));
|
||
|
||
refimages(:,:,k) = subtractBackgroundOffset(cropODImage(bkg_img, center, span), fraction)';
|
||
absimages(:,:,k) = subtractBackgroundOffset(cropODImage(calculateODImage(atm_img, bkg_img, dark_img, ImagingMode, PulseDuration), center, span), fraction)';
|
||
end
|
||
|
||
% ===== Fringe removal =====
|
||
|
||
if removeFringes
|
||
optrefimages = removefringesInImage(absimages, refimages);
|
||
absimages_fringe_removed = absimages(:, :, :) - optrefimages(:, :, :);
|
||
|
||
nimgs = size(absimages_fringe_removed,3);
|
||
od_imgs = cell(1, nimgs);
|
||
for i = 1:nimgs
|
||
od_imgs{i} = absimages_fringe_removed(:, :, i);
|
||
end
|
||
else
|
||
nimgs = size(absimages(:, :, :),3);
|
||
od_imgs = cell(1, nimgs);
|
||
for i = 1:nimgs
|
||
od_imgs{i} = absimages(:, :, i);
|
||
end
|
||
end
|
||
|
||
% ===== Get rotation angles =====
|
||
scan_parameter_values = zeros(1, length(files));
|
||
|
||
% Get information about the '/globals' group
|
||
for k = 1 : length(files)
|
||
baseFileName = files(k).name;
|
||
fullFileName = fullfile(files(k).folder, baseFileName);
|
||
info = h5info(fullFileName, '/globals');
|
||
for i = 1:length(info.Attributes)
|
||
if strcmp(info.Attributes(i).Name, scan_parameter)
|
||
if strcmp(scan_parameter, 'rot_mag_fin_pol_angle')
|
||
scan_parameter_values(k) = 180 - info.Attributes(i).Value;
|
||
else
|
||
scan_parameter_values(k) = info.Attributes(i).Value;
|
||
end
|
||
end
|
||
end
|
||
end
|
||
|
||
% ===== Unshuffle if necessary to do so =====
|
||
|
||
if ~skipUnshuffling
|
||
n_values = length(scan_groups);
|
||
n_total = length(scan_parameter_values);
|
||
|
||
% Infer number of repetitions
|
||
n_reps = n_total / n_values;
|
||
|
||
% Preallocate ordered arrays
|
||
ordered_scan_values = zeros(1, n_total);
|
||
ordered_od_imgs = cell(1, n_total);
|
||
|
||
counter = 1;
|
||
|
||
for rep = 1:n_reps
|
||
for val = scan_groups
|
||
% Find the next unused match for this val
|
||
idx = find(scan_parameter_values == val, 1, 'first');
|
||
|
||
% Assign and remove from list to avoid duplicates
|
||
ordered_scan_values(counter) = scan_parameter_values(idx);
|
||
ordered_od_imgs{counter} = od_imgs{idx};
|
||
|
||
% Mark as used by removing
|
||
scan_parameter_values(idx) = NaN; % NaN is safe since original values are 0:5:45
|
||
od_imgs{idx} = []; % empty cell so it won't be matched again
|
||
|
||
counter = counter + 1;
|
||
end
|
||
end
|
||
|
||
% Now assign back
|
||
scan_parameter_values = ordered_scan_values;
|
||
od_imgs = ordered_od_imgs;
|
||
end
|
||
% Extract quantities
|
||
fft_imgs = cell(1, nimgs);
|
||
spectral_distribution = cell(1, nimgs);
|
||
theta_values = cell(1, nimgs);
|
||
radial_spectral_contrast = zeros(1, nimgs);
|
||
angular_spectral_weight = zeros(1, nimgs);
|
||
N_shots = length(od_imgs);
|
||
|
||
for k = 1:N_shots
|
||
IMG = od_imgs{k};
|
||
if ~(max(IMG(:)) > 1)
|
||
IMGFFT = NaN(size(IMG));
|
||
else
|
||
[IMGFFT, IMGPR] = computeFourierTransform(IMG, skipPreprocessing, skipMasking, skipIntensityThresholding, skipBinarization);
|
||
end
|
||
|
||
% Size of original image (in pixels)
|
||
[Ny, Nx] = size(IMG);
|
||
|
||
% Real-space pixel size in micrometers after magnification
|
||
dx = pixel_size / magnification;
|
||
dy = dx; % assuming square pixels
|
||
|
||
% Real-space axes
|
||
x = ((1:Nx) - ceil(Nx/2)) * dx * 1E6;
|
||
y = ((1:Ny) - ceil(Ny/2)) * dy * 1E6;
|
||
|
||
% Reciprocal space increments (frequency domain, μm⁻¹)
|
||
dvx = 1 / (Nx * dx);
|
||
dvy = 1 / (Ny * dy);
|
||
|
||
% Frequency axes
|
||
vx = (-floor(Nx/2):ceil(Nx/2)-1) * dvx;
|
||
vy = (-floor(Ny/2):ceil(Ny/2)-1) * dvy;
|
||
|
||
% Wavenumber axes
|
||
kx_full = 2 * pi * vx * 1E-6; % μm⁻¹
|
||
ky_full = 2 * pi * vy * 1E-6;
|
||
|
||
% Crop FFT image around center
|
||
mid_x = floor(Nx/2);
|
||
mid_y = floor(Ny/2);
|
||
fft_imgs{k} = IMGFFT(mid_y-zoom_size:mid_y+zoom_size, mid_x-zoom_size:mid_x+zoom_size);
|
||
|
||
% Crop wavenumber axes to match fft_imgs{k}
|
||
kx = kx_full(mid_x - zoom_size : mid_x + zoom_size);
|
||
ky = ky_full(mid_y - zoom_size : mid_y + zoom_size);
|
||
|
||
[theta_vals, S_theta] = computeAngularSpectralDistribution(fft_imgs{k}, kx, ky, k_min, k_max, N_angular_bins, Angular_Threshold, Angular_Sigma, []);
|
||
[k_rho_vals, S_k] = computeRadialSpectralDistribution(fft_imgs{k}, kx, ky, theta_min, theta_max, N_radial_bins);
|
||
S_k_smoothed = movmean(S_k, Radial_WindowSize); % Compute moving average (use convolution) or use conv for more control
|
||
spectral_distribution{k} = S_theta;
|
||
theta_values{k} = theta_vals;
|
||
radial_spectral_contrast(k) = computeRadialSpectralContrast(k_rho_vals, S_k_smoothed, k_min, k_max);
|
||
S_theta_norm = S_theta / max(S_theta); % Normalize to 1
|
||
angular_spectral_weight(k) = trapz(theta_vals, S_theta_norm);
|
||
end
|
||
|
||
% Assuming scan_parameter_values and spectral_weight are column vectors (or row vectors of same length)
|
||
[unique_scan_parameter_values, ~, idx] = unique(scan_parameter_values);
|
||
|
||
% Preallocate arrays
|
||
mean_rsc = zeros(size(unique_scan_parameter_values));
|
||
stderr_rsc = zeros(size(unique_scan_parameter_values));
|
||
|
||
% Loop through each unique theta and compute mean and standard error
|
||
for i = 1:length(unique_scan_parameter_values)
|
||
group_vals = radial_spectral_contrast(idx == i);
|
||
mean_rsc(i) = mean(group_vals, 'omitnan');
|
||
stderr_rsc(i) = std(group_vals, 'omitnan') / sqrt(length(group_vals)); % standard error = std / sqrt(N)
|
||
end
|
||
|
||
% Preallocate arrays
|
||
mean_asw = zeros(size(unique_scan_parameter_values));
|
||
stderr_asw = zeros(size(unique_scan_parameter_values));
|
||
|
||
% Loop through each unique theta and compute mean and standard error
|
||
for i = 1:length(unique_scan_parameter_values)
|
||
group_vals = angular_spectral_weight(idx == i);
|
||
mean_asw(i) = mean(group_vals, 'omitnan');
|
||
stderr_asw(i) = std(group_vals, 'omitnan') / sqrt(length(group_vals)); % standard error = std / sqrt(N)
|
||
end
|
||
|
||
% Convert spectral distribution to matrix (N_shots x N_angular_bins)
|
||
delta_nkr_all = zeros(N_shots, N_angular_bins);
|
||
for k = 1:N_shots
|
||
delta_nkr_all(k, :) = spectral_distribution{k};
|
||
end
|
||
|
||
% Group by scan parameter values (e.g., alpha, angle, etc.)
|
||
[unique_scan_parameter_values, ~, idx] = unique(scan_parameter_values);
|
||
N_params = length(unique_scan_parameter_values);
|
||
|
||
% Define angular range and conversion
|
||
angle_range = 180;
|
||
angle_per_bin = angle_range / N_angular_bins;
|
||
max_peak_angle = 180;
|
||
max_peak_bin = round(max_peak_angle / angle_per_bin);
|
||
|
||
% Parameters for search
|
||
window_size = 10;
|
||
angle_threshold = 100;
|
||
|
||
% Initialize containers for final results
|
||
mean_max_g2_values = zeros(1, N_params);
|
||
mean_max_g2_angle_values = zeros(1, N_params);
|
||
var_max_g2_values = zeros(1, N_params);
|
||
var_max_g2_angle_values = zeros(1, N_params);
|
||
std_error_g2_values = zeros(1, N_params);
|
||
|
||
% Also store raw data per group
|
||
g2_all_per_group = cell(1, N_params);
|
||
angle_all_per_group = cell(1, N_params);
|
||
|
||
for i = 1:N_params
|
||
group_idx = find(idx == i);
|
||
group_data = delta_nkr_all(group_idx, :);
|
||
N_reps = size(group_data, 1);
|
||
|
||
g2_values = zeros(1, N_reps);
|
||
angle_at_max_g2 = zeros(1, N_reps);
|
||
|
||
for j = 1:N_reps
|
||
profile = group_data(j, :);
|
||
|
||
% Restrict search to 0–60° for highest peak
|
||
restricted_profile = profile(1:max_peak_bin);
|
||
[~, peak_idx_rel] = max(restricted_profile);
|
||
peak_idx = peak_idx_rel;
|
||
peak_angle = (peak_idx - 1) * angle_per_bin;
|
||
|
||
if peak_angle < angle_threshold
|
||
offsets = round(50 / angle_per_bin) : round(70 / angle_per_bin);
|
||
else
|
||
offsets = -round(70 / angle_per_bin) : -round(50 / angle_per_bin);
|
||
end
|
||
|
||
ref_window = mod((peak_idx - window_size):(peak_idx + window_size) - 1, N_angular_bins) + 1;
|
||
ref = profile(ref_window);
|
||
|
||
correlations = zeros(size(offsets));
|
||
angles = zeros(size(offsets));
|
||
|
||
for k = 1:length(offsets)
|
||
shifted_idx = mod(peak_idx + offsets(k) - 1, N_angular_bins) + 1;
|
||
sec_window = mod((shifted_idx - window_size):(shifted_idx + window_size) - 1, N_angular_bins) + 1;
|
||
sec = profile(sec_window);
|
||
|
||
num = mean(ref .* sec, 'omitnan');
|
||
denom = mean(ref.^2, 'omitnan');
|
||
g2 = num / denom;
|
||
|
||
correlations(k) = g2;
|
||
angles(k) = mod((peak_idx - 1 + offsets(k)) * angle_per_bin, angle_range);
|
||
end
|
||
|
||
[max_corr, max_idx] = max(correlations);
|
||
g2_values(j) = max_corr;
|
||
angle_at_max_g2(j) = angles(max_idx);
|
||
end
|
||
% Store raw values
|
||
g2_all_per_group{i} = g2_values;
|
||
angle_all_per_group{i} = angle_at_max_g2;
|
||
|
||
% Final stats
|
||
mean_max_g2_values(i) = mean(g2_values, 'omitnan');
|
||
var_max_g2_values(i) = var(g2_values, 0, 'omitnan');
|
||
mean_max_g2_angle_values(i)= mean(angle_at_max_g2, 'omitnan');
|
||
var_max_g2_angle_values(i) = var(angle_at_max_g2, 0, 'omitnan');
|
||
n_i = numel(g2_all_per_group{i}); % Number of repetitions for this param
|
||
std_error_g2_values(i) = sqrt(var_max_g2_values(i) / n_i);
|
||
end
|
||
|
||
results.folderPath = folderPath;
|
||
results.scan_parameter = scan_parameter;
|
||
results.scan_groups = scan_groups;
|
||
|
||
results.mean_max_g2_values = mean_max_g2_values;
|
||
results.std_error_g2_values = std_error_g2_values;
|
||
results.mean_max_g2_angle = mean_max_g2_angle_values;
|
||
results.radial_spectral_contrast= mean_rsc;
|
||
results.angular_spectral_weight = mean_asw;
|
||
end
|
||
|
||
%% Helper Functions
|
||
function [IMGFFT, IMGPR] = computeFourierTransform(I, skipPreprocessing, skipMasking, skipIntensityThresholding, skipBinarization)
|
||
% computeFourierSpectrum - Computes the 2D Fourier power spectrum
|
||
% of binarized and enhanced lattice image features, with optional central mask.
|
||
%
|
||
% Inputs:
|
||
% I - Grayscale or RGB image matrix
|
||
%
|
||
% Output:
|
||
% F_mag - 2D Fourier power spectrum (shifted)
|
||
|
||
if ~skipPreprocessing
|
||
% Preprocessing: Denoise
|
||
filtered = imgaussfilt(I, 10);
|
||
IMGPR = I - filtered; % adjust sigma as needed
|
||
else
|
||
IMGPR = I;
|
||
end
|
||
|
||
if ~skipMasking
|
||
[rows, cols] = size(IMGPR);
|
||
[X, Y] = meshgrid(1:cols, 1:rows);
|
||
% Elliptical mask parameters
|
||
cx = cols / 2;
|
||
cy = rows / 2;
|
||
|
||
% Shifted coordinates
|
||
x = X - cx;
|
||
y = Y - cy;
|
||
|
||
% Ellipse semi-axes
|
||
rx = 0.4 * cols;
|
||
ry = 0.2 * rows;
|
||
|
||
% Rotation angle in degrees -> radians
|
||
theta_deg = 30; % Adjust as needed
|
||
theta = deg2rad(theta_deg);
|
||
|
||
% Rotated ellipse equation
|
||
cos_t = cos(theta);
|
||
sin_t = sin(theta);
|
||
|
||
x_rot = (x * cos_t + y * sin_t);
|
||
y_rot = (-x * sin_t + y * cos_t);
|
||
|
||
ellipseMask = (x_rot.^2) / rx^2 + (y_rot.^2) / ry^2 <= 1;
|
||
|
||
% Apply cutout mask
|
||
IMGPR = IMGPR .* ellipseMask;
|
||
end
|
||
|
||
if ~skipIntensityThresholding
|
||
% Apply global intensity threshold mask
|
||
intensity_thresh = 0.20;
|
||
intensity_mask = IMGPR > intensity_thresh;
|
||
IMGPR = IMGPR .* intensity_mask;
|
||
end
|
||
|
||
if ~skipBinarization
|
||
% Adaptive binarization and cleanup
|
||
IMGPR = imbinarize(IMGPR, 'adaptive', 'Sensitivity', 0.0);
|
||
IMGPR = imdilate(IMGPR, strel('disk', 2));
|
||
IMGPR = imerode(IMGPR, strel('disk', 1));
|
||
IMGPR = imfill(IMGPR, 'holes');
|
||
F = fft2(double(IMGPR)); % Compute 2D Fourier Transform
|
||
IMGFFT = abs(fftshift(F))'; % Shift zero frequency to center
|
||
else
|
||
F = fft2(double(IMGPR)); % Compute 2D Fourier Transform
|
||
IMGFFT = abs(fftshift(F))'; % Shift zero frequency to center
|
||
end
|
||
end
|
||
|
||
function [k_rho_vals, S_radial] = computeRadialSpectralDistribution(IMGFFT, kx, ky, thetamin, thetamax, num_bins)
|
||
% IMGFFT : 2D FFT image (fftshifted and cropped)
|
||
% kx, ky : 1D physical wavenumber axes [μm⁻¹] matching FFT size
|
||
% thetamin : Minimum angle (in radians)
|
||
% thetamax : Maximum angle (in radians)
|
||
% num_bins : Number of radial bins
|
||
|
||
[KX, KY] = meshgrid(kx, ky);
|
||
K_rho = sqrt(KX.^2 + KY.^2);
|
||
Theta = atan2(KY, KX);
|
||
|
||
if thetamin < thetamax
|
||
angle_mask = (Theta >= thetamin) & (Theta <= thetamax);
|
||
else
|
||
angle_mask = (Theta >= thetamin) | (Theta <= thetamax);
|
||
end
|
||
|
||
power_spectrum = abs(IMGFFT).^2;
|
||
|
||
r_min = min(K_rho(angle_mask));
|
||
r_max = max(K_rho(angle_mask));
|
||
r_edges = linspace(r_min, r_max, num_bins + 1);
|
||
k_rho_vals = 0.5 * (r_edges(1:end-1) + r_edges(2:end));
|
||
S_radial = zeros(1, num_bins);
|
||
|
||
for i = 1:num_bins
|
||
r_low = r_edges(i);
|
||
r_high = r_edges(i + 1);
|
||
radial_mask = (K_rho >= r_low) & (K_rho < r_high);
|
||
full_mask = radial_mask & angle_mask;
|
||
S_radial(i) = sum(power_spectrum(full_mask));
|
||
end
|
||
end
|
||
|
||
function [theta_vals, S_theta] = computeAngularSpectralDistribution(IMGFFT, kx, ky, k_min, k_max, num_bins, threshold, sigma, windowSize)
|
||
% Apply threshold to isolate strong peaks
|
||
IMGFFT(IMGFFT < threshold) = 0;
|
||
|
||
% Create wavenumber meshgrid
|
||
[KX, KY] = meshgrid(kx, ky);
|
||
Kmag = sqrt(KX.^2 + KY.^2); % radial wavenumber magnitude
|
||
Theta = atan2(KY, KX); % range [-pi, pi]
|
||
|
||
% Restrict to radial band in wavenumber space
|
||
radial_mask = (Kmag >= k_min) & (Kmag <= k_max);
|
||
|
||
% Initialize angular structure factor
|
||
S_theta = zeros(1, num_bins);
|
||
theta_vals = linspace(0, pi, num_bins); % only 0 to pi due to symmetry
|
||
|
||
% Loop over angular bins
|
||
for i = 1:num_bins
|
||
angle_start = (i - 1) * pi / num_bins;
|
||
angle_end = i * pi / num_bins;
|
||
angle_mask = (Theta >= angle_start) & (Theta < angle_end);
|
||
bin_mask = radial_mask & angle_mask;
|
||
fft_angle = IMGFFT .* bin_mask;
|
||
S_theta(i) = sum(sum(abs(fft_angle).^2));
|
||
end
|
||
|
||
% Optional smoothing
|
||
if exist('sigma', 'var') && ~isempty(sigma)
|
||
% Gaussian smoothing
|
||
half_width = ceil(3 * sigma);
|
||
x = -half_width:half_width;
|
||
gauss_kernel = exp(-x.^2 / (2 * sigma^2));
|
||
gauss_kernel = gauss_kernel / sum(gauss_kernel);
|
||
|
||
% Circular convolution
|
||
S_theta = conv([S_theta(end - half_width + 1:end), S_theta, S_theta(1:half_width)], ...
|
||
gauss_kernel, 'same');
|
||
S_theta = S_theta(half_width + 1:end - half_width);
|
||
elseif exist('windowSize', 'var') && ~isempty(windowSize)
|
||
% Moving average smoothing
|
||
pad = floor(windowSize / 2);
|
||
kernel = ones(1, windowSize) / windowSize;
|
||
S_theta = conv([S_theta(end - pad + 1:end), S_theta, S_theta(1:pad)], kernel, 'same');
|
||
S_theta = S_theta(pad + 1:end - pad);
|
||
end
|
||
end
|
||
|
||
function contrast = computeRadialSpectralContrast(k_rho_vals, S_k_smoothed, k_min, k_max)
|
||
% Computes the ratio of the peak in S_k_smoothed within [k_min, k_max]
|
||
% to the value at (or near) k = 0.
|
||
|
||
% Ensure inputs are column vectors
|
||
k_rho_vals = k_rho_vals(:);
|
||
S_k_smoothed = S_k_smoothed(:);
|
||
|
||
% Step 1: Find index of k ≈ 0
|
||
[~, idx_k0] = min(abs(k_rho_vals)); % Closest to zero
|
||
S_k0 = S_k_smoothed(idx_k0);
|
||
|
||
% Step 2: Find indices in specified k-range
|
||
in_range = (k_rho_vals >= k_min) & (k_rho_vals <= k_max);
|
||
|
||
if ~any(in_range)
|
||
warning('No values found in the specified k-range. Returning NaN.');
|
||
contrast = NaN;
|
||
return;
|
||
end
|
||
|
||
% Step 3: Find peak value in the specified k-range
|
||
S_k_peak = max(S_k_smoothed(in_range));
|
||
|
||
% Step 4: Compute contrast
|
||
contrast = S_k_peak / S_k0;
|
||
|
||
end
|
||
|
||
function ret = getBkgOffsetFromCorners(img, x_fraction, y_fraction)
|
||
% image must be a 2D numerical array
|
||
[dim1, dim2] = size(img);
|
||
|
||
s1 = img(1:round(dim1 * y_fraction), 1:round(dim2 * x_fraction));
|
||
s2 = img(1:round(dim1 * y_fraction), round(dim2 - dim2 * x_fraction):dim2);
|
||
s3 = img(round(dim1 - dim1 * y_fraction):dim1, 1:round(dim2 * x_fraction));
|
||
s4 = img(round(dim1 - dim1 * y_fraction):dim1, round(dim2 - dim2 * x_fraction):dim2);
|
||
|
||
ret = mean([mean(s1(:)), mean(s2(:)), mean(s3(:)), mean(s4(:))]);
|
||
end
|
||
|
||
function ret = subtractBackgroundOffset(img, fraction)
|
||
% Remove the background from the image.
|
||
% :param dataArray: The image
|
||
% :type dataArray: xarray DataArray
|
||
% :param x_fraction: The fraction of the pixels used in x axis
|
||
% :type x_fraction: float
|
||
% :param y_fraction: The fraction of the pixels used in y axis
|
||
% :type y_fraction: float
|
||
% :return: The image after removing background
|
||
% :rtype: xarray DataArray
|
||
|
||
x_fraction = fraction(1);
|
||
y_fraction = fraction(2);
|
||
offset = getBkgOffsetFromCorners(img, x_fraction, y_fraction);
|
||
ret = img - offset;
|
||
end
|
||
|
||
function ret = cropODImage(img, center, span)
|
||
% Crop the image according to the region of interest (ROI).
|
||
% :param dataSet: The images
|
||
% :type dataSet: xarray DataArray or DataSet
|
||
% :param center: The center of region of interest (ROI)
|
||
% :type center: tuple
|
||
% :param span: The span of region of interest (ROI)
|
||
% :type span: tuple
|
||
% :return: The cropped images
|
||
% :rtype: xarray DataArray or DataSet
|
||
|
||
x_start = floor(center(1) - span(1) / 2);
|
||
x_end = floor(center(1) + span(1) / 2);
|
||
y_start = floor(center(2) - span(2) / 2);
|
||
y_end = floor(center(2) + span(2) / 2);
|
||
|
||
ret = img(y_start:y_end, x_start:x_end);
|
||
end
|
||
|
||
function imageOD = calculateODImage(imageAtom, imageBackground, imageDark, mode, exposureTime)
|
||
%CALCULATEODIMAGE Calculates the optical density (OD) image for absorption imaging.
|
||
%
|
||
% imageOD = calculateODImage(imageAtom, imageBackground, imageDark, mode, exposureTime)
|
||
%
|
||
% Inputs:
|
||
% imageAtom - Image with atoms
|
||
% imageBackground - Image without atoms
|
||
% imageDark - Image without light
|
||
% mode - 'LowIntensity' (default) or 'HighIntensity'
|
||
% exposureTime - Required only for 'HighIntensity' [in seconds]
|
||
%
|
||
% Output:
|
||
% imageOD - Computed OD image
|
||
%
|
||
|
||
arguments
|
||
imageAtom (:,:) {mustBeNumeric}
|
||
imageBackground (:,:) {mustBeNumeric}
|
||
imageDark (:,:) {mustBeNumeric}
|
||
mode char {mustBeMember(mode, {'LowIntensity', 'HighIntensity'})} = 'LowIntensity'
|
||
exposureTime double = NaN
|
||
end
|
||
|
||
% Compute numerator and denominator
|
||
numerator = imageBackground - imageDark;
|
||
denominator = imageAtom - imageDark;
|
||
|
||
% Avoid division by zero
|
||
numerator(numerator == 0) = 1;
|
||
denominator(denominator == 0) = 1;
|
||
|
||
% Calculate OD based on mode
|
||
switch mode
|
||
case 'LowIntensity'
|
||
imageOD = -log(abs(denominator ./ numerator));
|
||
|
||
case 'HighIntensity'
|
||
if isnan(exposureTime)
|
||
error('Exposure time must be provided for HighIntensity mode.');
|
||
end
|
||
imageOD = abs(denominator ./ numerator);
|
||
imageOD = -log(imageOD) + (numerator - denominator) ./ (7000 * (exposureTime / 5e-6));
|
||
end
|
||
|
||
end
|
||
|
||
function [optrefimages] = removefringesInImage(absimages, refimages, bgmask)
|
||
% removefringesInImage - Fringe removal and noise reduction from absorption images.
|
||
% Creates an optimal reference image for each absorption image in a set as
|
||
% a linear combination of reference images, with coefficients chosen to
|
||
% minimize the least-squares residuals between each absorption image and
|
||
% the optimal reference image. The coefficients are obtained by solving a
|
||
% linear set of equations using matrix inverse by LU decomposition.
|
||
%
|
||
% Application of the algorithm is described in C. F. Ockeloen et al, Improved
|
||
% detection of small atom numbers through image processing, arXiv:1007.2136 (2010).
|
||
%
|
||
% Syntax:
|
||
% [optrefimages] = removefringesInImage(absimages,refimages,bgmask);
|
||
%
|
||
% Required inputs:
|
||
% absimages - Absorption image data,
|
||
% typically 16 bit grayscale images
|
||
% refimages - Raw reference image data
|
||
% absimages and refimages are both cell arrays containing
|
||
% 2D array data. The number of refimages can differ from the
|
||
% number of absimages.
|
||
%
|
||
% Optional inputs:
|
||
% bgmask - Array specifying background region used,
|
||
% 1=background, 0=data. Defaults to all ones.
|
||
% Outputs:
|
||
% optrefimages - Cell array of optimal reference images,
|
||
% equal in size to absimages.
|
||
%
|
||
|
||
% Dependencies: none
|
||
%
|
||
% Authors: Shannon Whitlock, Caspar Ockeloen
|
||
% Reference: C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and
|
||
% S. Whitlock, Improved detection of small atom numbers through
|
||
% image processing, arXiv:1007.2136
|
||
% Email:
|
||
% May 2009; Last revision: 11 August 2010
|
||
|
||
% Process inputs
|
||
|
||
% Set variables, and flatten absorption and reference images
|
||
nimgs = size(absimages,3);
|
||
nimgsR = size(refimages,3);
|
||
xdim = size(absimages(:,:,1),2);
|
||
ydim = size(absimages(:,:,1),1);
|
||
|
||
R = single(reshape(refimages,xdim*ydim,nimgsR));
|
||
A = single(reshape(absimages,xdim*ydim,nimgs));
|
||
optrefimages=zeros(size(absimages)); % preallocate
|
||
|
||
if not(exist('bgmask','var')); bgmask=ones(ydim,xdim); end
|
||
k = find(bgmask(:)==1); % Index k specifying background region
|
||
|
||
% Ensure there are no duplicate reference images
|
||
% R=unique(R','rows')'; % comment this line if you run out of memory
|
||
|
||
% Decompose B = R*R' using singular value or LU decomposition
|
||
[L,U,p] = lu(R(k,:)'*R(k,:),'vector'); % LU decomposition
|
||
|
||
for j=1:nimgs
|
||
b=R(k,:)'*A(k,j);
|
||
% Obtain coefficients c which minimise least-square residuals
|
||
lower.LT = true; upper.UT = true;
|
||
c = linsolve(U,linsolve(L,b(p,:),lower),upper);
|
||
|
||
% Compute optimised reference image
|
||
optrefimages(:,:,j)=reshape(R*c,[ydim xdim]);
|
||
end
|
||
end |