function results = analyzeFolder(options) % Ensure required fields are defined in options arguments options.scan_parameter (1,:) char options.scan_groups (1,:) double options.cam (1,1) double options.angle (1,1) double options.center (1,2) double options.span (1,2) double options.fraction (1,2) double options.ImagingMode (1,:) char options.PulseDuration (1,1) double options.removeFringes (1,1) logical options.skipUnshuffling (1,1) logical options.pixel_size (1,1) double options.magnification (1,1) double options.zoom_size (1,1) double options.r_min (1,1) double options.r_max (1,1) double options.N_angular_bins (1,1) double options.Angular_Threshold (1,1) double options.Angular_Sigma (1,1) double options.Angular_WindowSize (1,1) double options.theta_min (1,1) double options.theta_max (1,1) double options.N_radial_bins (1,1) double options.Radial_Sigma (1,1) double options.Radial_WindowSize (1,1) double options.k_min (1,1) double options.k_max (1,1) double options.skipPreprocessing (1,1) logical options.skipMasking (1,1) logical options.skipIntensityThresholding (1,1) logical options.skipBinarization (1,1) logical options.folderPath (1,:) char end % Assign variables from options scan_parameter = options.scan_parameter; scan_groups = options.scan_groups; folderPath = options.folderPath; center = options.center; span = options.span; fraction = options.fraction; ImagingMode = options.ImagingMode; PulseDuration = options.PulseDuration; removeFringes = options.removeFringes; skipUnshuffling = options.skipUnshuffling; pixel_size = options.pixel_size; magnification = options.magnification; zoom_size = options.zoom_size; r_min = options.r_min; r_max = options.r_max; N_angular_bins = options.N_angular_bins; Angular_Threshold = options.Angular_Threshold; Angular_Sigma = options.Angular_Sigma; Angular_WindowSize = options.Angular_WindowSize; theta_min = options.theta_min; theta_max = options.theta_max; N_radial_bins = options.N_radial_bins; Radial_Sigma = options.Radial_Sigma; Radial_WindowSize = options.Radial_WindowSize; k_min = options.k_min; k_max = options.k_max; skipPreprocessing = options.skipPreprocessing; skipMasking = options.skipMasking; skipIntensityThresholding = options.skipIntensityThresholding; skipBinarization = options.skipBinarization; cam = options.cam; angle = options.angle; % Load images and analyze them (keep using the cleaned body of your original function) % Fix the incorrect usage of 'cam' and 'angle' not defined locally groupList = ["/images/MOT_3D_Camera/in_situ_absorption", "/images/ODT_1_Axis_Camera/in_situ_absorption", "/images/ODT_2_Axis_Camera/in_situ_absorption", "/images/Horizontal_Axis_Camera/in_situ_absorption", "/images/Vertical_Axis_Camera/in_situ_absorption"]; filePattern = fullfile(folderPath, '*.h5'); files = dir(filePattern); refimages = zeros(span(1) + 1, span(2) + 1, length(files)); absimages = zeros(span(1) + 1, span(2) + 1, length(files)); for k = 1 : length(files) baseFileName = files(k).name; fullFileName = fullfile(files(k).folder, baseFileName); fprintf(1, 'Now reading %s\n', fullFileName); atm_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/atoms")), angle)); bkg_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/background")), angle)); dark_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/dark")), angle)); refimages(:,:,k) = subtractBackgroundOffset(cropODImage(bkg_img, center, span), fraction)'; absimages(:,:,k) = subtractBackgroundOffset(cropODImage(calculateODImage(atm_img, bkg_img, dark_img, ImagingMode, PulseDuration), center, span), fraction)'; end % ===== Fringe removal ===== if removeFringes optrefimages = removefringesInImage(absimages, refimages); absimages_fringe_removed = absimages(:, :, :) - optrefimages(:, :, :); nimgs = size(absimages_fringe_removed,3); od_imgs = cell(1, nimgs); for i = 1:nimgs od_imgs{i} = absimages_fringe_removed(:, :, i); end else nimgs = size(absimages(:, :, :),3); od_imgs = cell(1, nimgs); for i = 1:nimgs od_imgs{i} = absimages(:, :, i); end end % ===== Get rotation angles ===== scan_parameter_values = zeros(1, length(files)); % Get information about the '/globals' group for k = 1 : length(files) baseFileName = files(k).name; fullFileName = fullfile(files(k).folder, baseFileName); info = h5info(fullFileName, '/globals'); for i = 1:length(info.Attributes) if strcmp(info.Attributes(i).Name, scan_parameter) if strcmp(scan_parameter, 'rot_mag_fin_pol_angle') scan_parameter_values(k) = 180 - info.Attributes(i).Value; else scan_parameter_values(k) = info.Attributes(i).Value; end end end end % ===== Unshuffle if necessary to do so ===== if ~skipUnshuffling n_values = length(scan_groups); n_total = length(scan_parameter_values); % Infer number of repetitions n_reps = n_total / n_values; % Preallocate ordered arrays ordered_scan_values = zeros(1, n_total); ordered_od_imgs = cell(1, n_total); counter = 1; for rep = 1:n_reps for val = scan_groups % Find the next unused match for this val idx = find(scan_parameter_values == val, 1, 'first'); % Assign and remove from list to avoid duplicates ordered_scan_values(counter) = scan_parameter_values(idx); ordered_od_imgs{counter} = od_imgs{idx}; % Mark as used by removing scan_parameter_values(idx) = NaN; % NaN is safe since original values are 0:5:45 od_imgs{idx} = []; % empty cell so it won't be matched again counter = counter + 1; end end % Now assign back scan_parameter_values = ordered_scan_values; od_imgs = ordered_od_imgs; end % Extract quantities fft_imgs = cell(1, nimgs); spectral_distribution = cell(1, nimgs); theta_values = cell(1, nimgs); radial_spectral_contrast = zeros(1, nimgs); angular_spectral_weight = zeros(1, nimgs); N_shots = length(od_imgs); for k = 1:N_shots IMG = od_imgs{k}; if ~(max(IMG(:)) > 1) IMGFFT = NaN(size(IMG)); else [IMGFFT, IMGPR] = computeFourierTransform(IMG, skipPreprocessing, skipMasking, skipIntensityThresholding, skipBinarization); end % Size of original image (in pixels) [Ny, Nx] = size(IMG); % Real-space pixel size in micrometers after magnification dx = pixel_size / magnification; dy = dx; % assuming square pixels % Real-space axes x = ((1:Nx) - ceil(Nx/2)) * dx * 1E6; y = ((1:Ny) - ceil(Ny/2)) * dy * 1E6; % Reciprocal space increments (frequency domain, μm⁻¹) dvx = 1 / (Nx * dx); dvy = 1 / (Ny * dy); % Frequency axes vx = (-floor(Nx/2):ceil(Nx/2)-1) * dvx; vy = (-floor(Ny/2):ceil(Ny/2)-1) * dvy; % Wavenumber axes kx_full = 2 * pi * vx * 1E-6; % μm⁻¹ ky_full = 2 * pi * vy * 1E-6; % Crop FFT image around center mid_x = floor(Nx/2); mid_y = floor(Ny/2); fft_imgs{k} = IMGFFT(mid_y-zoom_size:mid_y+zoom_size, mid_x-zoom_size:mid_x+zoom_size); % Crop wavenumber axes to match fft_imgs{k} kx = kx_full(mid_x - zoom_size : mid_x + zoom_size); ky = ky_full(mid_y - zoom_size : mid_y + zoom_size); [theta_vals, S_theta] = computeAngularSpectralDistribution(fft_imgs{k}, kx, ky, k_min, k_max, N_angular_bins, Angular_Threshold, Angular_Sigma, []); [k_rho_vals, S_k] = computeRadialSpectralDistribution(fft_imgs{k}, kx, ky, theta_min, theta_max, N_radial_bins); S_k_smoothed = movmean(S_k, Radial_WindowSize); % Compute moving average (use convolution) or use conv for more control spectral_distribution{k} = S_theta; theta_values{k} = theta_vals; radial_spectral_contrast(k) = computeRadialSpectralContrast(k_rho_vals, S_k_smoothed, k_min, k_max); S_theta_norm = S_theta / max(S_theta); % Normalize to 1 angular_spectral_weight(k) = trapz(theta_vals, S_theta_norm); end % Assuming scan_parameter_values and spectral_weight are column vectors (or row vectors of same length) [unique_scan_parameter_values, ~, idx] = unique(scan_parameter_values); % Preallocate arrays mean_rsc = zeros(size(unique_scan_parameter_values)); stderr_rsc = zeros(size(unique_scan_parameter_values)); % Loop through each unique theta and compute mean and standard error for i = 1:length(unique_scan_parameter_values) group_vals = radial_spectral_contrast(idx == i); mean_rsc(i) = mean(group_vals, 'omitnan'); stderr_rsc(i) = std(group_vals, 'omitnan') / sqrt(length(group_vals)); % standard error = std / sqrt(N) end % Preallocate arrays mean_asw = zeros(size(unique_scan_parameter_values)); stderr_asw = zeros(size(unique_scan_parameter_values)); % Loop through each unique theta and compute mean and standard error for i = 1:length(unique_scan_parameter_values) group_vals = angular_spectral_weight(idx == i); mean_asw(i) = mean(group_vals, 'omitnan'); stderr_asw(i) = std(group_vals, 'omitnan') / sqrt(length(group_vals)); % standard error = std / sqrt(N) end % Convert spectral distribution to matrix (N_shots x N_angular_bins) delta_nkr_all = zeros(N_shots, N_angular_bins); for k = 1:N_shots delta_nkr_all(k, :) = spectral_distribution{k}; end % Group by scan parameter values (e.g., alpha, angle, etc.) [unique_scan_parameter_values, ~, idx] = unique(scan_parameter_values); N_params = length(unique_scan_parameter_values); % Define angular range and conversion angle_range = 180; angle_per_bin = angle_range / N_angular_bins; max_peak_angle = 180; max_peak_bin = round(max_peak_angle / angle_per_bin); % Parameters for search window_size = 10; angle_threshold = 100; % Initialize containers for final results mean_max_g2_values = zeros(1, N_params); mean_max_g2_angle_values = zeros(1, N_params); var_max_g2_values = zeros(1, N_params); var_max_g2_angle_values = zeros(1, N_params); std_error_g2_values = zeros(1, N_params); % Also store raw data per group g2_all_per_group = cell(1, N_params); angle_all_per_group = cell(1, N_params); for i = 1:N_params group_idx = find(idx == i); group_data = delta_nkr_all(group_idx, :); N_reps = size(group_data, 1); g2_values = zeros(1, N_reps); angle_at_max_g2 = zeros(1, N_reps); for j = 1:N_reps profile = group_data(j, :); % Restrict search to 0–60° for highest peak restricted_profile = profile(1:max_peak_bin); [~, peak_idx_rel] = max(restricted_profile); peak_idx = peak_idx_rel; peak_angle = (peak_idx - 1) * angle_per_bin; if peak_angle < angle_threshold offsets = round(50 / angle_per_bin) : round(70 / angle_per_bin); else offsets = -round(70 / angle_per_bin) : -round(50 / angle_per_bin); end ref_window = mod((peak_idx - window_size):(peak_idx + window_size) - 1, N_angular_bins) + 1; ref = profile(ref_window); correlations = zeros(size(offsets)); angles = zeros(size(offsets)); for k = 1:length(offsets) shifted_idx = mod(peak_idx + offsets(k) - 1, N_angular_bins) + 1; sec_window = mod((shifted_idx - window_size):(shifted_idx + window_size) - 1, N_angular_bins) + 1; sec = profile(sec_window); num = mean(ref .* sec, 'omitnan'); denom = mean(ref.^2, 'omitnan'); g2 = num / denom; correlations(k) = g2; angles(k) = mod((peak_idx - 1 + offsets(k)) * angle_per_bin, angle_range); end [max_corr, max_idx] = max(correlations); g2_values(j) = max_corr; angle_at_max_g2(j) = angles(max_idx); end % Store raw values g2_all_per_group{i} = g2_values; angle_all_per_group{i} = angle_at_max_g2; % Final stats mean_max_g2_values(i) = mean(g2_values, 'omitnan'); var_max_g2_values(i) = var(g2_values, 0, 'omitnan'); mean_max_g2_angle_values(i)= mean(angle_at_max_g2, 'omitnan'); var_max_g2_angle_values(i) = var(angle_at_max_g2, 0, 'omitnan'); n_i = numel(g2_all_per_group{i}); % Number of repetitions for this param std_error_g2_values(i) = sqrt(var_max_g2_values(i) / n_i); end results.folderPath = folderPath; results.scan_parameter = scan_parameter; results.scan_groups = scan_groups; results.mean_max_g2_values = mean_max_g2_values; results.std_error_g2_values = std_error_g2_values; results.mean_max_g2_angle = mean_max_g2_angle_values; results.radial_spectral_contrast= mean_rsc; results.angular_spectral_weight = mean_asw; end %% Helper Functions function [IMGFFT, IMGPR] = computeFourierTransform(I, skipPreprocessing, skipMasking, skipIntensityThresholding, skipBinarization) % computeFourierSpectrum - Computes the 2D Fourier power spectrum % of binarized and enhanced lattice image features, with optional central mask. % % Inputs: % I - Grayscale or RGB image matrix % % Output: % F_mag - 2D Fourier power spectrum (shifted) if ~skipPreprocessing % Preprocessing: Denoise filtered = imgaussfilt(I, 10); IMGPR = I - filtered; % adjust sigma as needed else IMGPR = I; end if ~skipMasking [rows, cols] = size(IMGPR); [X, Y] = meshgrid(1:cols, 1:rows); % Elliptical mask parameters cx = cols / 2; cy = rows / 2; % Shifted coordinates x = X - cx; y = Y - cy; % Ellipse semi-axes rx = 0.4 * cols; ry = 0.2 * rows; % Rotation angle in degrees -> radians theta_deg = 30; % Adjust as needed theta = deg2rad(theta_deg); % Rotated ellipse equation cos_t = cos(theta); sin_t = sin(theta); x_rot = (x * cos_t + y * sin_t); y_rot = (-x * sin_t + y * cos_t); ellipseMask = (x_rot.^2) / rx^2 + (y_rot.^2) / ry^2 <= 1; % Apply cutout mask IMGPR = IMGPR .* ellipseMask; end if ~skipIntensityThresholding % Apply global intensity threshold mask intensity_thresh = 0.20; intensity_mask = IMGPR > intensity_thresh; IMGPR = IMGPR .* intensity_mask; end if ~skipBinarization % Adaptive binarization and cleanup IMGPR = imbinarize(IMGPR, 'adaptive', 'Sensitivity', 0.0); IMGPR = imdilate(IMGPR, strel('disk', 2)); IMGPR = imerode(IMGPR, strel('disk', 1)); IMGPR = imfill(IMGPR, 'holes'); F = fft2(double(IMGPR)); % Compute 2D Fourier Transform IMGFFT = abs(fftshift(F))'; % Shift zero frequency to center else F = fft2(double(IMGPR)); % Compute 2D Fourier Transform IMGFFT = abs(fftshift(F))'; % Shift zero frequency to center end end function [k_rho_vals, S_radial] = computeRadialSpectralDistribution(IMGFFT, kx, ky, thetamin, thetamax, num_bins) % IMGFFT : 2D FFT image (fftshifted and cropped) % kx, ky : 1D physical wavenumber axes [μm⁻¹] matching FFT size % thetamin : Minimum angle (in radians) % thetamax : Maximum angle (in radians) % num_bins : Number of radial bins [KX, KY] = meshgrid(kx, ky); K_rho = sqrt(KX.^2 + KY.^2); Theta = atan2(KY, KX); if thetamin < thetamax angle_mask = (Theta >= thetamin) & (Theta <= thetamax); else angle_mask = (Theta >= thetamin) | (Theta <= thetamax); end power_spectrum = abs(IMGFFT).^2; r_min = min(K_rho(angle_mask)); r_max = max(K_rho(angle_mask)); r_edges = linspace(r_min, r_max, num_bins + 1); k_rho_vals = 0.5 * (r_edges(1:end-1) + r_edges(2:end)); S_radial = zeros(1, num_bins); for i = 1:num_bins r_low = r_edges(i); r_high = r_edges(i + 1); radial_mask = (K_rho >= r_low) & (K_rho < r_high); full_mask = radial_mask & angle_mask; S_radial(i) = sum(power_spectrum(full_mask)); end end function [theta_vals, S_theta] = computeAngularSpectralDistribution(IMGFFT, kx, ky, k_min, k_max, num_bins, threshold, sigma, windowSize) % Apply threshold to isolate strong peaks IMGFFT(IMGFFT < threshold) = 0; % Create wavenumber meshgrid [KX, KY] = meshgrid(kx, ky); Kmag = sqrt(KX.^2 + KY.^2); % radial wavenumber magnitude Theta = atan2(KY, KX); % range [-pi, pi] % Restrict to radial band in wavenumber space radial_mask = (Kmag >= k_min) & (Kmag <= k_max); % Initialize angular structure factor S_theta = zeros(1, num_bins); theta_vals = linspace(0, pi, num_bins); % only 0 to pi due to symmetry % Loop over angular bins for i = 1:num_bins angle_start = (i - 1) * pi / num_bins; angle_end = i * pi / num_bins; angle_mask = (Theta >= angle_start) & (Theta < angle_end); bin_mask = radial_mask & angle_mask; fft_angle = IMGFFT .* bin_mask; S_theta(i) = sum(sum(abs(fft_angle).^2)); end % Optional smoothing if exist('sigma', 'var') && ~isempty(sigma) % Gaussian smoothing half_width = ceil(3 * sigma); x = -half_width:half_width; gauss_kernel = exp(-x.^2 / (2 * sigma^2)); gauss_kernel = gauss_kernel / sum(gauss_kernel); % Circular convolution S_theta = conv([S_theta(end - half_width + 1:end), S_theta, S_theta(1:half_width)], ... gauss_kernel, 'same'); S_theta = S_theta(half_width + 1:end - half_width); elseif exist('windowSize', 'var') && ~isempty(windowSize) % Moving average smoothing pad = floor(windowSize / 2); kernel = ones(1, windowSize) / windowSize; S_theta = conv([S_theta(end - pad + 1:end), S_theta, S_theta(1:pad)], kernel, 'same'); S_theta = S_theta(pad + 1:end - pad); end end function contrast = computeRadialSpectralContrast(k_rho_vals, S_k_smoothed, k_min, k_max) % Computes the ratio of the peak in S_k_smoothed within [k_min, k_max] % to the value at (or near) k = 0. % Ensure inputs are column vectors k_rho_vals = k_rho_vals(:); S_k_smoothed = S_k_smoothed(:); % Step 1: Find index of k ≈ 0 [~, idx_k0] = min(abs(k_rho_vals)); % Closest to zero S_k0 = S_k_smoothed(idx_k0); % Step 2: Find indices in specified k-range in_range = (k_rho_vals >= k_min) & (k_rho_vals <= k_max); if ~any(in_range) warning('No values found in the specified k-range. Returning NaN.'); contrast = NaN; return; end % Step 3: Find peak value in the specified k-range S_k_peak = max(S_k_smoothed(in_range)); % Step 4: Compute contrast contrast = S_k_peak / S_k0; end function ret = getBkgOffsetFromCorners(img, x_fraction, y_fraction) % image must be a 2D numerical array [dim1, dim2] = size(img); s1 = img(1:round(dim1 * y_fraction), 1:round(dim2 * x_fraction)); s2 = img(1:round(dim1 * y_fraction), round(dim2 - dim2 * x_fraction):dim2); s3 = img(round(dim1 - dim1 * y_fraction):dim1, 1:round(dim2 * x_fraction)); s4 = img(round(dim1 - dim1 * y_fraction):dim1, round(dim2 - dim2 * x_fraction):dim2); ret = mean([mean(s1(:)), mean(s2(:)), mean(s3(:)), mean(s4(:))]); end function ret = subtractBackgroundOffset(img, fraction) % Remove the background from the image. % :param dataArray: The image % :type dataArray: xarray DataArray % :param x_fraction: The fraction of the pixels used in x axis % :type x_fraction: float % :param y_fraction: The fraction of the pixels used in y axis % :type y_fraction: float % :return: The image after removing background % :rtype: xarray DataArray x_fraction = fraction(1); y_fraction = fraction(2); offset = getBkgOffsetFromCorners(img, x_fraction, y_fraction); ret = img - offset; end function ret = cropODImage(img, center, span) % Crop the image according to the region of interest (ROI). % :param dataSet: The images % :type dataSet: xarray DataArray or DataSet % :param center: The center of region of interest (ROI) % :type center: tuple % :param span: The span of region of interest (ROI) % :type span: tuple % :return: The cropped images % :rtype: xarray DataArray or DataSet x_start = floor(center(1) - span(1) / 2); x_end = floor(center(1) + span(1) / 2); y_start = floor(center(2) - span(2) / 2); y_end = floor(center(2) + span(2) / 2); ret = img(y_start:y_end, x_start:x_end); end function imageOD = calculateODImage(imageAtom, imageBackground, imageDark, mode, exposureTime) %CALCULATEODIMAGE Calculates the optical density (OD) image for absorption imaging. % % imageOD = calculateODImage(imageAtom, imageBackground, imageDark, mode, exposureTime) % % Inputs: % imageAtom - Image with atoms % imageBackground - Image without atoms % imageDark - Image without light % mode - 'LowIntensity' (default) or 'HighIntensity' % exposureTime - Required only for 'HighIntensity' [in seconds] % % Output: % imageOD - Computed OD image % arguments imageAtom (:,:) {mustBeNumeric} imageBackground (:,:) {mustBeNumeric} imageDark (:,:) {mustBeNumeric} mode char {mustBeMember(mode, {'LowIntensity', 'HighIntensity'})} = 'LowIntensity' exposureTime double = NaN end % Compute numerator and denominator numerator = imageBackground - imageDark; denominator = imageAtom - imageDark; % Avoid division by zero numerator(numerator == 0) = 1; denominator(denominator == 0) = 1; % Calculate OD based on mode switch mode case 'LowIntensity' imageOD = -log(abs(denominator ./ numerator)); case 'HighIntensity' if isnan(exposureTime) error('Exposure time must be provided for HighIntensity mode.'); end imageOD = abs(denominator ./ numerator); imageOD = -log(imageOD) + (numerator - denominator) ./ (7000 * (exposureTime / 5e-6)); end end function [optrefimages] = removefringesInImage(absimages, refimages, bgmask) % removefringesInImage - Fringe removal and noise reduction from absorption images. % Creates an optimal reference image for each absorption image in a set as % a linear combination of reference images, with coefficients chosen to % minimize the least-squares residuals between each absorption image and % the optimal reference image. The coefficients are obtained by solving a % linear set of equations using matrix inverse by LU decomposition. % % Application of the algorithm is described in C. F. Ockeloen et al, Improved % detection of small atom numbers through image processing, arXiv:1007.2136 (2010). % % Syntax: % [optrefimages] = removefringesInImage(absimages,refimages,bgmask); % % Required inputs: % absimages - Absorption image data, % typically 16 bit grayscale images % refimages - Raw reference image data % absimages and refimages are both cell arrays containing % 2D array data. The number of refimages can differ from the % number of absimages. % % Optional inputs: % bgmask - Array specifying background region used, % 1=background, 0=data. Defaults to all ones. % Outputs: % optrefimages - Cell array of optimal reference images, % equal in size to absimages. % % Dependencies: none % % Authors: Shannon Whitlock, Caspar Ockeloen % Reference: C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and % S. Whitlock, Improved detection of small atom numbers through % image processing, arXiv:1007.2136 % Email: % May 2009; Last revision: 11 August 2010 % Process inputs % Set variables, and flatten absorption and reference images nimgs = size(absimages,3); nimgsR = size(refimages,3); xdim = size(absimages(:,:,1),2); ydim = size(absimages(:,:,1),1); R = single(reshape(refimages,xdim*ydim,nimgsR)); A = single(reshape(absimages,xdim*ydim,nimgs)); optrefimages=zeros(size(absimages)); % preallocate if not(exist('bgmask','var')); bgmask=ones(ydim,xdim); end k = find(bgmask(:)==1); % Index k specifying background region % Ensure there are no duplicate reference images % R=unique(R','rows')'; % comment this line if you run out of memory % Decompose B = R*R' using singular value or LU decomposition [L,U,p] = lu(R(k,:)'*R(k,:),'vector'); % LU decomposition for j=1:nimgs b=R(k,:)'*A(k,j); % Obtain coefficients c which minimise least-square residuals lower.LT = true; upper.UT = true; c = linsolve(U,linsolve(L,b(p,:),lower),upper); % Compute optimised reference image optrefimages(:,:,j)=reshape(R*c,[ydim xdim]); end end