112 lines
4.8 KiB
Matlab
112 lines
4.8 KiB
Matlab
function [Params] = setupParameters(this)
|
|
|
|
format long
|
|
|
|
CONSTANTS = Helper.PhysicsConstants;
|
|
hbar = CONSTANTS.PlanckConstantReduced; % [J.s]
|
|
kbol = CONSTANTS.BoltzmannConstant; % [J/K]
|
|
mu0 = CONSTANTS.VacuumPermeability; % [N/A^2]
|
|
muB = CONSTANTS.BohrMagneton; % [J/T]
|
|
a0 = CONSTANTS.BohrRadius; % [m]
|
|
m0 = CONSTANTS.AtomicMassUnit; % [kg]
|
|
w0 = 2*pi*61.658214297935530; % Angular frequency unit [s^-1]
|
|
mu0factor = 0.3049584233607396; % =(m0/me)*pi*alpha^2 -- me=mass of electron, alpha=fine struct. const.
|
|
% mu0=mu0factor *hbar^2*a0/(m0*muB^2)
|
|
% Number of points in each direction
|
|
Params.Nx = this.NumberOfGridPoints(1);
|
|
Params.Ny = this.NumberOfGridPoints(2);
|
|
|
|
% Dimensions (in units of l0)
|
|
Params.Lx = this.Dimensions(1);
|
|
Params.Ly = this.Dimensions(2);
|
|
|
|
% Mass
|
|
Params.m = CONSTANTS.Dy164Mass;
|
|
|
|
% Atom numbers
|
|
Params.N = this.NumberOfAtoms;
|
|
|
|
% Dipole angle
|
|
Params.theta = this.DipolarPolarAngle; % pi/2 dipoles along X-axis, theta = 0 dipoles along Z-axis
|
|
Params.eta = this.DipolarAzimuthAngle; % tilt in to the X-Y plane away from the X-axis by this angle
|
|
|
|
% Dipole lengths (units of muB)
|
|
Params.mu = CONSTANTS.DyMagneticMoment;
|
|
|
|
% Scattering lengths
|
|
Params.as = this.ScatteringLength*a0;
|
|
|
|
% Trapping frequencies
|
|
Params.wx = 2*pi*this.TrapFrequencies(1);
|
|
Params.wy = 2*pi*this.TrapFrequencies(2);
|
|
Params.wz = 2*pi*this.TrapFrequencies(3);
|
|
|
|
% Tolerances
|
|
Params.Etol = this.EnergyTolerance;
|
|
Params.rtol = this.ResidualTolerance;
|
|
Params.sim_time_cut_off = this.TimeCutOff; % sometimes the imaginary time gets a little stuck
|
|
% even though the solution is good, this just stops it going on forever
|
|
Params.mindt = this.MinimumTimeStepSize; % Minimum size for a time step using adaptive dt
|
|
|
|
Params.nsf = this.NoiseScaleFactor;
|
|
|
|
Params.njob = this.JobNumber;
|
|
|
|
|
|
% ================ Variational method parameters ================ %
|
|
% FMinCon Settings
|
|
Params.SelfConIter = this.MaxIterations; % Max number of iterations to perform self-consistent calculation
|
|
Params.ell = this.VariationalWidth; % initial [ell], ell is the "width" - psi ~ e^(z^2/ell^2)
|
|
|
|
% Window of optimization
|
|
Params.ell_lower = this.WidthLowerBound;
|
|
Params.ell_upper = this.WidthUpperBound;
|
|
|
|
% Relative cutoffs
|
|
Params.ellcutoff = this.VariationalWidthTolerance;
|
|
Params.evarcutoff = this.VariationalEnergyTolerance;
|
|
|
|
% ================ Parameters defined by those above ================ %
|
|
% Length scale
|
|
l0 = sqrt(hbar/(Params.m*w0)); % Defining a harmonic oscillator length
|
|
|
|
% Contact interaction strength (units of l0/m)
|
|
Params.gs = 4*pi*Params.as/l0;
|
|
|
|
% Dipole lengths
|
|
Params.add = mu0*Params.mu^2*Params.m/(12*pi*hbar^2);
|
|
Params.ppum2 = Params.N/(Params.Lx*Params.Ly*(l0*1e6)^2); % Particles per squared micron
|
|
Params.ppadd2 = Params.ppum2*(Params.add*1e6)^2; % Particles per squared add
|
|
|
|
% DDI strength
|
|
Params.gdd = 4*pi*Params.add/l0; % sometimes the 12 is a 4 --> depends on how Vdk (DDI) is defined
|
|
|
|
% Trap gamma
|
|
Params.gx = (Params.wx/w0)^2;
|
|
Params.gy = (Params.wy/w0)^2;
|
|
Params.gz = (Params.wz/w0)^2;
|
|
|
|
% == Calculate LHY correction to account for quantum fluctuations == %
|
|
|
|
eps_dd = Params.add/Params.as;
|
|
if eps_dd == 0
|
|
Q5 = 1;
|
|
elseif eps_dd == 1
|
|
Q5 = 3*sqrt(3)/2;
|
|
else
|
|
yeps = (1-eps_dd)/(3*eps_dd);
|
|
Q5 = (3*eps_dd)^(5/2)*( (8+26*yeps+33*yeps^2)*sqrt(1+yeps) + 15*yeps^3*log((1+sqrt(1+yeps))/sqrt(yeps)) )/48;
|
|
Q5 = real(Q5);
|
|
end
|
|
|
|
Params.gammaQF = 128/3*sqrt(pi*(Params.as/l0)^5)*Q5;
|
|
|
|
% Loading the rest into Params
|
|
Params.hbar = hbar;
|
|
Params.kbol = kbol;
|
|
Params.mu0 = mu0;
|
|
Params.muB = muB;
|
|
Params.a0 = a0;
|
|
Params.w0 = w0;
|
|
Params.l0 = l0;
|
|
end |