Added lines to calculate the trap depth.

This commit is contained in:
Karthik 2024-09-17 20:43:40 +02:00
parent d57cc41f87
commit e95284d24f

View File

@ -49,7 +49,6 @@ a = 180 * (AtomicUnitOfPolarizability / (2 * SpeedOfLight * Vacuum
Power = 5;
waist_y = 250E-6;
waist_z = 50E-6;
TrapDepth = ((8 * a * Power) / (pi * waist_y * waist_z)) / (BoltzmannConstant * 1E-6); % in µK
thetas = linspace(1.5, 18.0, 100);
LatticeSpacings = zeros(1, length(thetas));
Omega_z = zeros(1, length(thetas));
@ -74,26 +73,41 @@ ylabel('Trap frequency (kHz)', FontSize=16)
title(['\bf Upper bound = ' num2str(round(max(nu_z * 1E-3),2)) ' kHz ; \bf Lower bound = ' num2str(round(min(nu_z * 1E-3),2)) ' kHz'], FontSize=16)
grid on
%% Scaling of trap depth with power
a = 180 * (AtomicUnitOfPolarizability / (2 * SpeedOfLight * VacuumPermittivity));
waist_y = 250E-6;
waist_z = 50E-6;
Powers = linspace(0.1, 5, 100);
TrapDepth = ((8 * a .* Powers) ./ (pi * waist_y * waist_z)) / (BoltzmannConstant * 1E-6); % in µK
figure(3);
set(gcf,'Position',[100 100 950 750])
plot(Powers, TrapDepth, LineWidth=2.0)
xlim([0.0 5.5]);
xlabel('Powers (W)', FontSize=16)
ylabel('Trap depth (µK)', FontSize=16)
title(['\bf Upper bound = ' num2str(round(max(TrapDepth),2)) ' µK ; \bf Lower bound = ' num2str(round(min(TrapDepth),2)) ' µK'], FontSize=16)
grid on
%% Scaling of Recoil Energy - All energy scales in an optical lattice are naturally parametrized by the lattice recoil energy
LatticeSpacing = linspace(2E-6, 20E-6, 100);
RecoilEnergy = PlanckConstant^2 ./ (8 .* Dy164Mass .* LatticeSpacing.^2);
figure(3);
figure(4);
set(gcf,'Position',[100 100 950 750])
semilogy(LatticeSpacing * 1E6, RecoilEnergy/PlanckConstant, LineWidth=2.0, DisplayName=['\bf Max = ' num2str(round(max(RecoilEnergy / PlanckConstant),1)) ' Hz; Min = ' num2str(round(min(RecoilEnergy / PlanckConstant),1)) ' Hz'])
semilogy(LatticeSpacing * 1E6, RecoilEnergy/PlanckConstant, LineWidth=2.0)
xlim([0.5 21]);
xlabel('Lattice spacing (µm)', FontSize=16)
ylabel('Recoil Energy (Hz)', FontSize=16)
title('\bf Scaling of Recoil Energy - All energy scales in an optical lattice are naturally parametrized by the lattice recoil energy', FontSize=12)
title(['\bf Upper bound = ' num2str(round(max(RecoilEnergy / PlanckConstant),1)) ' Hz; Lower bound = ' num2str(round(min(RecoilEnergy / PlanckConstant),1)) ' Hz'], FontSize=16)
grid on
legend(FontSize=12)
%% Interference pattern spacing in ToF - de Broglie wavelength associated with the relative motion of atoms
ExpansionTime = linspace(1E-3, 20.0E-3, 100);
figure(4);
figure(5);
set(gcf,'Position',[100 100 950 750])
labels = [];