From e95284d24f89ce10d5bbb8c768d1d3c23ddacea8 Mon Sep 17 00:00:00 2001 From: Karthik Chandrashekara Date: Tue, 17 Sep 2024 20:43:40 +0200 Subject: [PATCH] Added lines to calculate the trap depth. --- EstimatesForAccordionLattice.m | 26 ++++++++++++++++++++------ 1 file changed, 20 insertions(+), 6 deletions(-) diff --git a/EstimatesForAccordionLattice.m b/EstimatesForAccordionLattice.m index 41bb0ad..34f681c 100644 --- a/EstimatesForAccordionLattice.m +++ b/EstimatesForAccordionLattice.m @@ -49,7 +49,6 @@ a = 180 * (AtomicUnitOfPolarizability / (2 * SpeedOfLight * Vacuum Power = 5; waist_y = 250E-6; waist_z = 50E-6; -TrapDepth = ((8 * a * Power) / (pi * waist_y * waist_z)) / (BoltzmannConstant * 1E-6); % in µK thetas = linspace(1.5, 18.0, 100); LatticeSpacings = zeros(1, length(thetas)); Omega_z = zeros(1, length(thetas)); @@ -74,26 +73,41 @@ ylabel('Trap frequency (kHz)', FontSize=16) title(['\bf Upper bound = ' num2str(round(max(nu_z * 1E-3),2)) ' kHz ; \bf Lower bound = ' num2str(round(min(nu_z * 1E-3),2)) ' kHz'], FontSize=16) grid on +%% Scaling of trap depth with power +a = 180 * (AtomicUnitOfPolarizability / (2 * SpeedOfLight * VacuumPermittivity)); +waist_y = 250E-6; +waist_z = 50E-6; +Powers = linspace(0.1, 5, 100); +TrapDepth = ((8 * a .* Powers) ./ (pi * waist_y * waist_z)) / (BoltzmannConstant * 1E-6); % in µK + +figure(3); +set(gcf,'Position',[100 100 950 750]) +plot(Powers, TrapDepth, LineWidth=2.0) +xlim([0.0 5.5]); +xlabel('Powers (W)', FontSize=16) +ylabel('Trap depth (µK)', FontSize=16) +title(['\bf Upper bound = ' num2str(round(max(TrapDepth),2)) ' µK ; \bf Lower bound = ' num2str(round(min(TrapDepth),2)) ' µK'], FontSize=16) +grid on + %% Scaling of Recoil Energy - All energy scales in an optical lattice are naturally parametrized by the lattice recoil energy LatticeSpacing = linspace(2E-6, 20E-6, 100); RecoilEnergy = PlanckConstant^2 ./ (8 .* Dy164Mass .* LatticeSpacing.^2); -figure(3); +figure(4); set(gcf,'Position',[100 100 950 750]) -semilogy(LatticeSpacing * 1E6, RecoilEnergy/PlanckConstant, LineWidth=2.0, DisplayName=['\bf Max = ' num2str(round(max(RecoilEnergy / PlanckConstant),1)) ' Hz; Min = ' num2str(round(min(RecoilEnergy / PlanckConstant),1)) ' Hz']) +semilogy(LatticeSpacing * 1E6, RecoilEnergy/PlanckConstant, LineWidth=2.0) xlim([0.5 21]); xlabel('Lattice spacing (µm)', FontSize=16) ylabel('Recoil Energy (Hz)', FontSize=16) -title('\bf Scaling of Recoil Energy - All energy scales in an optical lattice are naturally parametrized by the lattice recoil energy', FontSize=12) +title(['\bf Upper bound = ' num2str(round(max(RecoilEnergy / PlanckConstant),1)) ' Hz; Lower bound = ' num2str(round(min(RecoilEnergy / PlanckConstant),1)) ' Hz'], FontSize=16) grid on -legend(FontSize=12) %% Interference pattern spacing in ToF - de Broglie wavelength associated with the relative motion of atoms ExpansionTime = linspace(1E-3, 20.0E-3, 100); -figure(4); +figure(5); set(gcf,'Position',[100 100 950 750]) labels = [];