Merge branch 'master' of https://git.physi.uni-heidelberg.de/karthik/Calculations
This commit is contained in:
commit
a27ad2d256
@ -4,14 +4,15 @@ groupList = ["/images/MOT_3D_Camera/in_situ_absorption", "/images/ODT_1_Axis
|
||||
|
||||
folderPath = "C:/Users/Karthik/Documents/GitRepositories/Calculations/Imaging-Response-Function-Extractor/";
|
||||
|
||||
run = '0096';
|
||||
run = '0072';
|
||||
|
||||
folderPath = strcat(folderPath, run);
|
||||
|
||||
cam = 5;
|
||||
|
||||
angle = 0;
|
||||
center = [1137, 2023];
|
||||
% center = [1137, 2023];
|
||||
center = [1141, 2049];
|
||||
span = [255, 255];
|
||||
fraction = [0.1, 0.1];
|
||||
|
||||
@ -109,7 +110,6 @@ R = 32; % aperture radius
|
||||
A = (X.^2 + Y.^2 <= R^2); % circular aperture of radius R
|
||||
mask(A) = 1; % set mask elements inside aperture to 1
|
||||
|
||||
|
||||
% Calculate Power Spectrum and plot
|
||||
figure(1)
|
||||
clf
|
||||
@ -193,12 +193,12 @@ for k = 1 : length(od_imgs)
|
||||
drawnow;
|
||||
end
|
||||
|
||||
%% Compute the average 2D spectrum and do radial averaging to get the 1D spectrum
|
||||
%% Compute the average 2D spectrum
|
||||
|
||||
% Compute the average power spectrum.
|
||||
averagePowerSpectrum = mean(cat(3, density_noise_spectrum{:}), 3, 'double');
|
||||
|
||||
% Plot the average power spectrum.
|
||||
% Plot the average power spectrum and the 1-D Radial Imaging Response Function
|
||||
figure(2)
|
||||
clf
|
||||
set(gcf,'Position',[100, 100, 1500, 700])
|
||||
@ -223,7 +223,7 @@ yc = centers(:,2);
|
||||
[yDim, xDim] = size(averagePowerSpectrum);
|
||||
[xx,yy] = meshgrid(1:yDim,1:xDim);
|
||||
mask = false(xDim,yDim);
|
||||
for ii = 1:length(centers)
|
||||
for ii = 1:size(centers, 1)
|
||||
mask = mask | hypot(xx - xc(ii), yy - yc(ii)) <= radius;
|
||||
end
|
||||
mask = not(mask);
|
||||
@ -272,7 +272,7 @@ initialGuess = [2E6, 1E-6, 1E-6, 1E-6, 1E-6, 0.8];
|
||||
|
||||
% Set upper and lower bounds for the parameters (optional)
|
||||
lb = [-Inf, -Inf, -Inf, -Inf, -Inf, 0]; % Lower bounds
|
||||
ub = [Inf, Inf, Inf, Inf, Inf, 1]; % Upper bounds
|
||||
ub = [Inf, Inf, Inf, Inf, Inf, 1]; % Upper bounds
|
||||
|
||||
% Perform the non-linear least squares fitting using lsqcurvefit
|
||||
options = optimoptions('lsqcurvefit', 'Display', 'iter'); % Display iterations during fitting
|
||||
@ -285,14 +285,200 @@ fittedProfile = RadialImagingResponseFunction(C_fit, k_new, kmax);
|
||||
nexttile(2)
|
||||
plot(kvec, NormalisedProfile, 'o-', 'MarkerSize', 4, 'MarkerFaceColor', 'none', 'DisplayName', 'Radial (average) profile');
|
||||
hold on
|
||||
plot(k_new, fittedProfile, 'r-', 'DisplayName', 'Fitted Curve');
|
||||
plot(k_new, fittedProfile, 'r-', 'DisplayName', 'Fit');
|
||||
set(gca, 'XScale', 'log'); % Setting x-axis to log scale
|
||||
xlabel('k_\rho (\mum^{-1})', 'Interpreter', 'tex', 'FontSize', 16)
|
||||
ylabel('Normalised amplitude', 'FontSize', 16)
|
||||
title('Modulation Transfer Function', 'FontSize', 16);
|
||||
title('Imaging Response Function', 'FontSize', 16);
|
||||
legend('FontSize', 16);
|
||||
grid on;
|
||||
|
||||
%% 2-D Imaging Response Function fit
|
||||
|
||||
% Get the size of the matrix
|
||||
[nRows, nCols] = size(averagePowerSpectrum);
|
||||
|
||||
% Compute the center index
|
||||
centerRow = round(nRows / 2);
|
||||
centerCol = round(nCols / 2);
|
||||
|
||||
% Remove the central DC component by setting it to zero
|
||||
averagePowerSpectrum(centerRow, centerCol) = 0;
|
||||
|
||||
% Define the objective function for fitting
|
||||
function residuals = fitImagingResponse(params, averagePowerSpectrum)
|
||||
% Calculate the ImagingResponseFunction with the given parameters
|
||||
M = ImagingResponseFunction(params);
|
||||
|
||||
% Compute the residuals as the difference between the matrices
|
||||
residuals = M(:) - averagePowerSpectrum(:); % Flatten both matrices
|
||||
end
|
||||
|
||||
% Initial guess for parameters (from your example)
|
||||
initialParams = [0.65, 0.1, 0.1, 0.1, 0.1, 0.1, 1E-6, 1E-8, 80];
|
||||
|
||||
% Set options for the optimizer (optional, helps with debugging)
|
||||
options = optimoptions('lsqnonlin', 'Display', 'iter', 'MaxFunctionEvaluations', 5000);
|
||||
|
||||
% Perform the fitting using lsqnonlin
|
||||
optimalParams = lsqnonlin(@(params) fitImagingResponse(params, averagePowerSpectrum), initialParams, [], [], options);
|
||||
AstigmatismCoefficient = optimalParams(2);
|
||||
SphericalAberrationCoefficient = optimalParams(3);
|
||||
DefocussingCoefficient = optimalParams(5);
|
||||
|
||||
% Compute the best-fit M using the optimized parameters
|
||||
bestFitM = ImagingResponseFunction(optimalParams);
|
||||
|
||||
residuals = fitImagingResponse(optimalParams, averagePowerSpectrum);
|
||||
|
||||
% Plot the fitted result
|
||||
|
||||
figure(3)
|
||||
clf
|
||||
set(gcf,'Position',[100, 100, 1500, 500])
|
||||
|
||||
% Create tiled layout with 2 rows and 3 columns
|
||||
t = tiledlayout(1, 3, 'TileSpacing', 'compact', 'Padding', 'compact');
|
||||
|
||||
nexttile(1);
|
||||
imagesc(abs(10*log10(averagePowerSpectrum)))
|
||||
axis equal tight;
|
||||
colorbar
|
||||
colormap(flip(jet));
|
||||
title('Average Density Noise Spectrum', 'FontSize', 16);
|
||||
grid on;
|
||||
|
||||
nexttile(2);
|
||||
imagesc(abs(10*log10(bestFitM)))
|
||||
axis equal tight;
|
||||
colorbar
|
||||
colormap(flip(jet));
|
||||
title('Fitted Imaging Response Function', 'FontSize', 16);
|
||||
grid on;
|
||||
|
||||
nexttile(3);
|
||||
resmat = reshape(residuals, size(bestFitM));
|
||||
imagesc(abs(10*log10(resmat)))
|
||||
axis equal tight;
|
||||
colorbar
|
||||
colormap(flip(jet));
|
||||
title('Fit residuals', 'FontSize', 16);
|
||||
grid on;
|
||||
|
||||
%% 3-D Plot of Density Noise Spectrum
|
||||
|
||||
figure(4)
|
||||
clf
|
||||
set(gcf,'Position',[100, 100, 1500, 700])
|
||||
surf(10 * log10(averagePowerSpectrum));
|
||||
shading interp; % Creates a 3D surface plot
|
||||
xlabel('X-axis', 'FontSize', 16);
|
||||
ylabel('Y-axis', 'FontSize', 16);
|
||||
zlabel('Rescaled amplitude (a.u.)', 'FontSize', 16);
|
||||
title('Imaging Response Function', 'FontSize', 16);
|
||||
colorbar; % Shows the color scale
|
||||
|
||||
% Set axis limits based on the size of the averagePowerSpectrum
|
||||
[xSize, ySize] = size(averagePowerSpectrum);
|
||||
xlim([1, xSize]);
|
||||
ylim([1, ySize]);
|
||||
zlim([min(10 * log10(averagePowerSpectrum(:))), max(10 * log10(averagePowerSpectrum(:)))]); % Optional for Z-axis limits
|
||||
|
||||
|
||||
%% Decompose in Zernike Polynomial basis
|
||||
|
||||
N = size(averagePowerSpectrum, 1);
|
||||
[X, Y] = meshgrid(linspace(-1, 1, N));
|
||||
|
||||
max_n = 6; % Adjust based on your needs
|
||||
basis = [];
|
||||
orders = [];
|
||||
|
||||
for n = 0:max_n
|
||||
for m = -n:2:n
|
||||
% Generate Zernike polynomial for (n, m)
|
||||
Z = zernike_polynomial(n, m, X, Y);
|
||||
% Flatten and store valid points
|
||||
basis = [basis, Z(mask)];
|
||||
orders = [orders; [n, m]];
|
||||
end
|
||||
end
|
||||
|
||||
data = 10 * log10(averagePowerSpectrum);
|
||||
valid_data = data(mask);
|
||||
|
||||
% Solve Ax = b (A = basis matrix, b = data)
|
||||
coeffs = basis \ valid_data(:);
|
||||
|
||||
% Reconstruct the surface using the coefficients
|
||||
reconstructed = basis * coeffs;
|
||||
reconstructed_surface = zeros(size(X));
|
||||
reconstructed_surface(mask) = reconstructed;
|
||||
|
||||
figure(5)
|
||||
clf
|
||||
set(gcf,'Position',[100, 100, 1500, 700])
|
||||
|
||||
% Create tiled layout with 2 rows and 3 columns
|
||||
t = tiledlayout(1, 3, 'TileSpacing', 'compact', 'Padding', 'compact');
|
||||
|
||||
nexttile(1);
|
||||
imagesc(data); title('Imaging Response Function', 'FontSize', 16);
|
||||
axis square;
|
||||
colorbar
|
||||
colormap(jet);
|
||||
grid on;
|
||||
|
||||
nexttile(2);
|
||||
imagesc(reconstructed_surface); title('Reconstructed with Zernike', 'FontSize', 16);
|
||||
axis square;
|
||||
colorbar
|
||||
colormap(jet);
|
||||
grid on;
|
||||
|
||||
nexttile(3);
|
||||
imagesc(data - reconstructed_surface); title('Residuals', 'FontSize', 16);
|
||||
axis square;
|
||||
colorbar
|
||||
colormap(jet);
|
||||
grid on;
|
||||
|
||||
disp('Zernike Coefficients:');
|
||||
disp('---------------------');
|
||||
for i = 1:length(coeffs)
|
||||
fprintf('Order (n=%d, m=%d): Coefficient = %.4f\n', orders(i,1), orders(i,2), coeffs(i));
|
||||
end
|
||||
|
||||
% Plot Zernike Coeffecients
|
||||
|
||||
% Find the index of the (n=0, m=0) term
|
||||
idx_remove = find(orders(:,1) == 0 & orders(:,2) == 0);
|
||||
|
||||
% Remove the Z_0^0 term from coefficients and orders
|
||||
coeffs_filtered = coeffs;
|
||||
coeffs_filtered(idx_remove) = [];
|
||||
orders_filtered = orders;
|
||||
orders_filtered(idx_remove, :) = [];
|
||||
|
||||
% Generate labels for filtered modes (n, m)
|
||||
labels_filtered = cell(length(coeffs_filtered), 1);
|
||||
for i = 1:length(coeffs_filtered)
|
||||
labels_filtered{i} = sprintf('(%d, %d)', orders_filtered(i,1), orders_filtered(i,2));
|
||||
end
|
||||
|
||||
figure(6)
|
||||
clf
|
||||
set(gcf,'Position',[100, 100, 1500, 700])
|
||||
bar(coeffs_filtered, 'FaceColor', [0.2, 0.6, 0.8]); % Customize bar color
|
||||
ylim([-1.0, 1.0])
|
||||
title('Zernike Coefficients', 'FontSize', 16);
|
||||
xlabel('Zernike Mode (n, m)', 'FontSize', 16);
|
||||
ylabel('Coefficient Value', 'FontSize', 16);
|
||||
xticks(1:length(coeffs_filtered)); % Set x-ticks for all coefficients
|
||||
xticklabels(labels_filtered); % Assign (n, m) labels
|
||||
xtickangle(45); % Rotate labels for readability
|
||||
grid on;
|
||||
|
||||
%% Helper Functions
|
||||
|
||||
function ret = getBkgOffsetFromCorners(img, x_fraction, y_fraction)
|
||||
@ -439,25 +625,48 @@ function [optrefimages] = removefringesInImage(absimages, refimages, bgmask)
|
||||
end
|
||||
|
||||
function [M] = ImagingResponseFunction(B)
|
||||
x = -100:100;
|
||||
y = x;
|
||||
x = -128:127;
|
||||
y = x;
|
||||
[X,Y] = meshgrid(x,y);
|
||||
R = sqrt(X.^2+Y.^2);
|
||||
PHI = atan2(X,Y)+pi;
|
||||
%fit parameters
|
||||
tau = B(1);
|
||||
R = sqrt(X.^2+Y.^2);
|
||||
PHI = atan2(X,Y)+pi;
|
||||
|
||||
% Fit parameters
|
||||
tau = B(1);
|
||||
alpha = B(2);
|
||||
S0 = B(3);
|
||||
phi = B(4);
|
||||
beta = B(5);
|
||||
S0 = B(3);
|
||||
phi = B(4);
|
||||
beta = B(5);
|
||||
delta = B(6);
|
||||
A = B(7);
|
||||
C = B(8);
|
||||
a = B(9);
|
||||
U = heaviside(1-R/a).*exp(-R.^2/a^2/tau^2);
|
||||
A = B(7);
|
||||
C = B(8);
|
||||
a = B(9);
|
||||
U = heaviside(1-R/a).*exp(-R.^2/a^2/tau^2);
|
||||
THETA = S0*(R/a).^4 + alpha*(R/a).^2.*cos(2*PHI-2*phi) + beta*(R/a).^2;
|
||||
p = U.*exp(1i.*THETA);
|
||||
M = A*abs((ifft2(real(exp(1i*delta).*fftshift(fft2(p)))))).^2 + C;
|
||||
p = U.*exp(1i.*THETA);
|
||||
M = A*abs((ifft2(real(exp(1i*delta).*fftshift(fft2(p)))))).^2 + C;
|
||||
end
|
||||
|
||||
function [p] = exitPupilFunction(B)
|
||||
x = -128:127;
|
||||
y = x;
|
||||
[X,Y] = meshgrid(x,y);
|
||||
R = sqrt(X.^2+Y.^2);
|
||||
PHI = atan2(X,Y)+pi;
|
||||
|
||||
% Fit parameters
|
||||
tau = B(1);
|
||||
alpha = B(2);
|
||||
S0 = B(3);
|
||||
phi = B(4);
|
||||
beta = B(5);
|
||||
delta = B(6);
|
||||
A = B(7);
|
||||
C = B(8);
|
||||
a = B(9);
|
||||
U = heaviside(1-R/a).*exp(-R.^2/a^2/tau^2);
|
||||
THETA = S0*(R/a).^4 + alpha*(R/a).^2.*cos(2*PHI-2*phi) + beta*(R/a).^2;
|
||||
p = U.*exp(1i.*THETA);
|
||||
end
|
||||
|
||||
function [R, Zr] = getRadialProfile(data, radialStep)
|
||||
@ -483,3 +692,29 @@ function [RadialResponseFunc] = RadialImagingResponseFunction(C, k, kmax)
|
||||
end
|
||||
RadialResponseFunc = C(6) * 1/2 * A .* RadialResponseFunc;
|
||||
end
|
||||
|
||||
function R = zernike_radial(n, m, rho)
|
||||
% Compute radial part of Zernike polynomial for radial order n and azimuthal order m
|
||||
R = zeros(size(rho));
|
||||
for k = 0:(n - abs(m))/2
|
||||
coeff = (-1)^k * factorial(n - k) / ...
|
||||
(factorial(k) * factorial((n + abs(m))/2 - k) * factorial((n - abs(m))/2 - k));
|
||||
R = R + coeff * rho.^(n - 2*k);
|
||||
end
|
||||
end
|
||||
|
||||
function Z = zernike_polynomial(n, m, X, Y)
|
||||
% Convert Cartesian coordinates to polar coordinates
|
||||
[theta, rho] = cart2pol(X, Y);
|
||||
rho(rho > 1) = 0; % Restrict to unit disk
|
||||
|
||||
% Compute radial component
|
||||
R = zernike_radial(n, m, rho);
|
||||
|
||||
% Compute azimuthal component (sine/cosine terms)
|
||||
if m >= 0
|
||||
Z = R .* cos(m * theta);
|
||||
else
|
||||
Z = R .* sin(-m * theta);
|
||||
end
|
||||
end
|
Loading…
Reference in New Issue
Block a user