Removed the measurement of autocorrelation, modifications made for the bootstrap sample size and number to be user-defined.
This commit is contained in:
parent
e29c923723
commit
8ac0a018f2
@ -1,39 +1,22 @@
|
||||
function [LoadingRate, StandardError, ConfidenceInterval] = bootstrapErrorEstimation(this, ovenObj, NumberOfLoadedAtoms)
|
||||
n = this.NumberOfAtoms;
|
||||
NumberOfTimeSteps = int64(this.SimulationTime/this.TimeStep);
|
||||
|
||||
Autocorrelation = autocorr(NumberOfLoadedAtoms,'NumLags', double(NumberOfTimeSteps - 1));
|
||||
|
||||
if Autocorrelation(1)~=0
|
||||
CorrelationFactor = table(Helper.findAllZeroCrossings(linspace(1, double(NumberOfTimeSteps), double(NumberOfTimeSteps)), Autocorrelation)).Var1(1);
|
||||
if ~isnan(CorrelationFactor)
|
||||
SampleLength = floor(CorrelationFactor);
|
||||
NumberOfBootsrapSamples = 1000;
|
||||
MeanCaptureRatioInEachSample = zeros(1,NumberOfBootsrapSamples);
|
||||
for SampleNumber = 1:NumberOfBootsrapSamples
|
||||
BoostrapSample = datasample(NumberOfLoadedAtoms, SampleLength); % Sample with replacement
|
||||
MeanCaptureRatioInEachSample(SampleNumber) = mean(BoostrapSample) / n; % Empirical bootstrap distribution of sample means
|
||||
end
|
||||
|
||||
LoadingRate = mean(MeanCaptureRatioInEachSample) * ovenObj.ReducedFlux;
|
||||
|
||||
Variance = 0; % Bootstrap Estimate of Variance
|
||||
for SampleNumber = 1:NumberOfBootsrapSamples
|
||||
Variance = Variance + (MeanCaptureRatioInEachSample(SampleNumber) - mean(MeanCaptureRatioInEachSample))^2;
|
||||
end
|
||||
|
||||
StandardError = sqrt((1 / (NumberOfBootsrapSamples-1)) * Variance) * ovenObj.ReducedFlux;
|
||||
|
||||
ts = tinv([0.025 0.975],NumberOfBootsrapSamples-1); % T-Score
|
||||
ConfidenceInterval = LoadingRate + ts*StandardError; % 95% Confidence Intervals
|
||||
else
|
||||
LoadingRate = nan;
|
||||
StandardError = nan;
|
||||
ConfidenceInterval = [nan nan];
|
||||
end
|
||||
else
|
||||
LoadingRate = nan;
|
||||
StandardError = nan;
|
||||
ConfidenceInterval = [nan nan];
|
||||
n = this.NumberOfAtoms;
|
||||
SampleLength = this.BootstrapSampleLength;
|
||||
NumberOfBootsrapSamples = this.BootstrapSampleNumber;
|
||||
MeanCaptureRatioInEachSample = zeros(1,NumberOfBootsrapSamples);
|
||||
for SampleNumber = 1:NumberOfBootsrapSamples
|
||||
BoostrapSample = datasample(NumberOfLoadedAtoms, SampleLength); % Sample with replacement
|
||||
MeanCaptureRatioInEachSample(SampleNumber) = mean(BoostrapSample) / n; % Empirical bootstrap distribution of sample means
|
||||
end
|
||||
|
||||
LoadingRate = mean(MeanCaptureRatioInEachSample) * ovenObj.ReducedFlux;
|
||||
|
||||
Variance = 0; % Bootstrap Estimate of Variance
|
||||
for SampleNumber = 1:NumberOfBootsrapSamples
|
||||
Variance = Variance + (MeanCaptureRatioInEachSample(SampleNumber) - mean(MeanCaptureRatioInEachSample))^2;
|
||||
end
|
||||
|
||||
StandardError = sqrt((1 / (NumberOfBootsrapSamples-1)) * Variance) * ovenObj.ReducedFlux;
|
||||
|
||||
ts = tinv([0.025 0.975],NumberOfBootsrapSamples-1); % T-Score
|
||||
ConfidenceInterval = LoadingRate + ts*StandardError; % 95% Confidence Intervals
|
||||
end
|
Loading…
Reference in New Issue
Block a user