diff --git a/+Simulator/@TwoDimensionalMOT/bootstrapErrorEstimation.m b/+Simulator/@TwoDimensionalMOT/bootstrapErrorEstimation.m index 4c26441..a06802a 100644 --- a/+Simulator/@TwoDimensionalMOT/bootstrapErrorEstimation.m +++ b/+Simulator/@TwoDimensionalMOT/bootstrapErrorEstimation.m @@ -1,39 +1,22 @@ function [LoadingRate, StandardError, ConfidenceInterval] = bootstrapErrorEstimation(this, ovenObj, NumberOfLoadedAtoms) - n = this.NumberOfAtoms; - NumberOfTimeSteps = int64(this.SimulationTime/this.TimeStep); - - Autocorrelation = autocorr(NumberOfLoadedAtoms,'NumLags', double(NumberOfTimeSteps - 1)); - - if Autocorrelation(1)~=0 - CorrelationFactor = table(Helper.findAllZeroCrossings(linspace(1, double(NumberOfTimeSteps), double(NumberOfTimeSteps)), Autocorrelation)).Var1(1); - if ~isnan(CorrelationFactor) - SampleLength = floor(CorrelationFactor); - NumberOfBootsrapSamples = 1000; - MeanCaptureRatioInEachSample = zeros(1,NumberOfBootsrapSamples); - for SampleNumber = 1:NumberOfBootsrapSamples - BoostrapSample = datasample(NumberOfLoadedAtoms, SampleLength); % Sample with replacement - MeanCaptureRatioInEachSample(SampleNumber) = mean(BoostrapSample) / n; % Empirical bootstrap distribution of sample means - end - - LoadingRate = mean(MeanCaptureRatioInEachSample) * ovenObj.ReducedFlux; - - Variance = 0; % Bootstrap Estimate of Variance - for SampleNumber = 1:NumberOfBootsrapSamples - Variance = Variance + (MeanCaptureRatioInEachSample(SampleNumber) - mean(MeanCaptureRatioInEachSample))^2; - end - - StandardError = sqrt((1 / (NumberOfBootsrapSamples-1)) * Variance) * ovenObj.ReducedFlux; - - ts = tinv([0.025 0.975],NumberOfBootsrapSamples-1); % T-Score - ConfidenceInterval = LoadingRate + ts*StandardError; % 95% Confidence Intervals - else - LoadingRate = nan; - StandardError = nan; - ConfidenceInterval = [nan nan]; - end - else - LoadingRate = nan; - StandardError = nan; - ConfidenceInterval = [nan nan]; + n = this.NumberOfAtoms; + SampleLength = this.BootstrapSampleLength; + NumberOfBootsrapSamples = this.BootstrapSampleNumber; + MeanCaptureRatioInEachSample = zeros(1,NumberOfBootsrapSamples); + for SampleNumber = 1:NumberOfBootsrapSamples + BoostrapSample = datasample(NumberOfLoadedAtoms, SampleLength); % Sample with replacement + MeanCaptureRatioInEachSample(SampleNumber) = mean(BoostrapSample) / n; % Empirical bootstrap distribution of sample means end + + LoadingRate = mean(MeanCaptureRatioInEachSample) * ovenObj.ReducedFlux; + + Variance = 0; % Bootstrap Estimate of Variance + for SampleNumber = 1:NumberOfBootsrapSamples + Variance = Variance + (MeanCaptureRatioInEachSample(SampleNumber) - mean(MeanCaptureRatioInEachSample))^2; + end + + StandardError = sqrt((1 / (NumberOfBootsrapSamples-1)) * Variance) * ovenObj.ReducedFlux; + + ts = tinv([0.025 0.975],NumberOfBootsrapSamples-1); % T-Score + ConfidenceInterval = LoadingRate + ts*StandardError; % 95% Confidence Intervals end \ No newline at end of file