Added functionality to compute potential due to a Gaussian beam with astigmatism, plotting of ideal potential along with affected potential to show deviation.
This commit is contained in:
parent
30e6a8b7a4
commit
60b9def24e
@ -33,7 +33,7 @@ def z_R(w_0:np.ndarray, lamb:float)->np.ndarray:
|
|||||||
|
|
||||||
# Beam Radius
|
# Beam Radius
|
||||||
def w(pos, w_0, lamb):
|
def w(pos, w_0, lamb):
|
||||||
return w_0*np.sqrt(1+(pos*lamb/(np.pi*w_0**2))**2)
|
return w_0*np.sqrt(1+(pos / z_R(w_0, lamb))**2)
|
||||||
|
|
||||||
def trap_depth(w_1:"float|u.quantity.Quantity", w_2:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity", alpha:float)->"float|u.quantity.Quantity":
|
def trap_depth(w_1:"float|u.quantity.Quantity", w_2:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity", alpha:float)->"float|u.quantity.Quantity":
|
||||||
return 2*P/(np.pi*w_1*w_2) * (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
return 2*P/(np.pi*w_1*w_2) * (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
||||||
@ -47,6 +47,12 @@ def single_gaussian_beam_potential(positions: "np.ndarray|u.quantity.Quantity",
|
|||||||
U = - U_tilde * A * np.exp(-2 * ((positions[0,:]/w(positions[1,:], waists[0], wavelength))**2 + (positions[2,:]/w(positions[1,:], waists[1], wavelength))**2))
|
U = - U_tilde * A * np.exp(-2 * ((positions[0,:]/w(positions[1,:], waists[0], wavelength))**2 + (positions[2,:]/w(positions[1,:], waists[1], wavelength))**2))
|
||||||
return U
|
return U
|
||||||
|
|
||||||
|
def astigmatic_single_gaussian_beam_potential(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", del_y:"float|u.quantity.Quantity", alpha:"float|u.quantity.Quantity", P:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um)->np.ndarray:
|
||||||
|
A = 2*P/(np.pi*w(positions[1,:] - (del_y/2), waists[0], wavelength)*w(positions[1,:] + (del_y/2), waists[1], wavelength))
|
||||||
|
U_tilde = (1 / (2 * ac.eps0 * ac.c)) * alpha * (4 * np.pi * ac.eps0 * ac.a0**3)
|
||||||
|
U = - U_tilde * A * np.exp(-2 * ((positions[0,:]/w(positions[1,:] - (del_y/2), waists[0], wavelength))**2 + (positions[2,:]/w(positions[1,:] + (del_y/2), waists[1], wavelength))**2))
|
||||||
|
return U
|
||||||
|
|
||||||
def single_gaussian_beam_potential_harmonic_approximation(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", depth:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um)->np.ndarray:
|
def single_gaussian_beam_potential_harmonic_approximation(positions: "np.ndarray|u.quantity.Quantity", waists: "np.ndarray|u.quantity.Quantity", depth:"float|u.quantity.Quantity"=1, wavelength:"float|u.quantity.Quantity"=1.064*u.um)->np.ndarray:
|
||||||
U = - depth * (1 - (2 * (positions[0,:]/waists[0])**2) - (2 * (positions[2,:]/waists[1])**2) - (0.5 * positions[1,:]**2 * np.sum(np.reciprocal(z_R(waists, wavelength)))**2))
|
U = - depth * (1 - (2 * (positions[0,:]/waists[0])**2) - (2 * (positions[2,:]/waists[1])**2) - (0.5 * positions[1,:]**2 * np.sum(np.reciprocal(z_R(waists, wavelength)))**2))
|
||||||
return U
|
return U
|
||||||
@ -88,19 +94,24 @@ def plotPotential(Positions, Powers, ComputedPotentials, axis, TrapDepthLabels):
|
|||||||
|
|
||||||
## plot of the measured parameter vs. scan parameter
|
## plot of the measured parameter vs. scan parameter
|
||||||
plt.figure(figsize=(9, 7))
|
plt.figure(figsize=(9, 7))
|
||||||
|
j = 0
|
||||||
for i in range(np.size(ComputedPotentials, 0)):
|
for i in range(np.size(ComputedPotentials, 0)):
|
||||||
v, dv, popt, pcov = extractTrapFrequency(Positions, ComputedPotentials[i], TrapDepthInKelvin, axis)
|
v, dv, popt, pcov = extractTrapFrequency(Positions, ComputedPotentials[i], TrapDepthInKelvin, axis)
|
||||||
unit = 'Hz'
|
unit = 'Hz'
|
||||||
if v <= 0:
|
if v <= 0.0:
|
||||||
v = np.nan
|
v = np.nan
|
||||||
dv = np.nan
|
dv = np.nan
|
||||||
unit = 'Hz'
|
unit = 'Hz'
|
||||||
elif v > 0 and orderOfMagnitude(v) > 2:
|
elif v > 0.0 and orderOfMagnitude(v) > 2:
|
||||||
v = v / 1e3 # in kHz
|
v = v / 1e3 # in kHz
|
||||||
dv = dv / 1e3 # in kHz
|
dv = dv / 1e3 # in kHz
|
||||||
unit = 'kHz'
|
unit = 'kHz'
|
||||||
tf_label = '\u03BD = %.1f \u00B1 %.2f %s'% tuple([v,dv,unit])
|
tf_label = '\u03BD = %.1f \u00B1 %.2f %s'% tuple([v,dv,unit])
|
||||||
plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'P = ' + str(Powers[i]) + ' W; ' + TrapDepthLabels[i] + '; ' + tf_label)
|
if i % 2 == 0 and j < len(Powers):
|
||||||
|
plt.plot(Positions[axis], ComputedPotentials[i][axis], '--',label = 'P = ' + str(Powers[j]) + ' W; ' + TrapDepthLabels[j] + '; ' + tf_label)
|
||||||
|
elif i % 2 != 0 and j < len(Powers):
|
||||||
|
plt.plot(Positions[axis], ComputedPotentials[i][axis], label = 'P = ' + str(Powers[j]) + ' W; ' + tf_label)
|
||||||
|
j = j + 1
|
||||||
if axis == 0:
|
if axis == 0:
|
||||||
dir = 'X'
|
dir = 'X'
|
||||||
elif axis == 1:
|
elif axis == 1:
|
||||||
@ -111,7 +122,7 @@ def plotPotential(Positions, Powers, ComputedPotentials, axis, TrapDepthLabels):
|
|||||||
plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold')
|
plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold')
|
||||||
plt.tight_layout()
|
plt.tight_layout()
|
||||||
plt.grid(visible=1)
|
plt.grid(visible=1)
|
||||||
plt.legend(prop={'size': 12, 'weight': 'bold'})
|
plt.legend(loc=3, prop={'size': 12, 'weight': 'bold'})
|
||||||
plt.show()
|
plt.show()
|
||||||
# plt.savefig('pot_' + dir + '.png')
|
# plt.savefig('pot_' + dir + '.png')
|
||||||
|
|
||||||
@ -122,7 +133,7 @@ if __name__ == '__main__':
|
|||||||
Powers = [40]
|
Powers = [40]
|
||||||
Polarizability = 184.4 # in a.u, most precise measured value of Dy polarizability
|
Polarizability = 184.4 # in a.u, most precise measured value of Dy polarizability
|
||||||
w_x, w_z = 34*u.um, 27.5*u.um # Beam Waists in the x and y directions
|
w_x, w_z = 34*u.um, 27.5*u.um # Beam Waists in the x and y directions
|
||||||
# w_x, w_z = 70*u.um, 70*u.um # Beam Waists in the x and y directions
|
# w_x, w_z = 30*u.um, 30*u.um # Beam Waists in the x and y directions
|
||||||
# w_x, w_z = 20.5*u.um, 20.5*u.um
|
# w_x, w_z = 20.5*u.um, 20.5*u.um
|
||||||
|
|
||||||
axis = 1 # axis referenced to the beam along which you want the dipole trap potential
|
axis = 1 # axis referenced to the beam along which you want the dipole trap potential
|
||||||
@ -132,13 +143,15 @@ if __name__ == '__main__':
|
|||||||
ComputedPotentials = []
|
ComputedPotentials = []
|
||||||
TrapDepthLabels = []
|
TrapDepthLabels = []
|
||||||
|
|
||||||
gravity = True
|
gravity = False
|
||||||
astigmatism = False
|
astigmatism = True
|
||||||
|
|
||||||
tilt_gravity = True
|
tilt_gravity = True
|
||||||
theta = 1 # in degrees
|
theta = 1 # in degrees
|
||||||
tilt_axis = [1, 0, 0] # lab space coordinates are rotated about x-axis in reference frame of beam
|
tilt_axis = [1, 0, 0] # lab space coordinates are rotated about x-axis in reference frame of beam
|
||||||
|
|
||||||
|
disp_foci = 1.5 * z_R(w_0 = np.asarray([30]), lamb = 1.064)[0]*u.um # difference in position of the foci along the propagation direction (Astigmatism)
|
||||||
|
|
||||||
for p in Powers:
|
for p in Powers:
|
||||||
|
|
||||||
Power = p*u.W # Single Beam Power
|
Power = p*u.W # Single Beam Power
|
||||||
@ -163,12 +176,12 @@ if __name__ == '__main__':
|
|||||||
z_Positions = np.arange(-extent, extent, 1)*u.um
|
z_Positions = np.arange(-extent, extent, 1)*u.um
|
||||||
Positions = np.vstack((x_Positions, y_Positions, z_Positions)) * projection_axis[:, np.newaxis]
|
Positions = np.vstack((x_Positions, y_Positions, z_Positions)) * projection_axis[:, np.newaxis]
|
||||||
|
|
||||||
if not gravity and not astigmatism:
|
IdealTrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, alpha = Polarizability)
|
||||||
TrappingPotential = single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, alpha = Polarizability)
|
IdealTrappingPotential = IdealTrappingPotential + np.zeros((3, len(IdealTrappingPotential))) * IdealTrappingPotential.unit
|
||||||
TrappingPotential = TrappingPotential + np.zeros((3, len(TrappingPotential))) * TrappingPotential.unit
|
IdealTrappingPotential = (IdealTrappingPotential/ac.k_B).to(u.uK)
|
||||||
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
|
||||||
|
|
||||||
elif gravity and not astigmatism:
|
if gravity and not astigmatism:
|
||||||
|
ComputedPotentials.append(IdealTrappingPotential)
|
||||||
# Influence of Gravity
|
# Influence of Gravity
|
||||||
m = 164*u.u
|
m = 164*u.u
|
||||||
gravity_axis = np.array([0, 0, 1])
|
gravity_axis = np.array([0, 0, 1])
|
||||||
@ -180,17 +193,32 @@ if __name__ == '__main__':
|
|||||||
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
||||||
|
|
||||||
elif not gravity and astigmatism:
|
elif not gravity and astigmatism:
|
||||||
|
ComputedPotentials.append(IdealTrappingPotential)
|
||||||
# Influence of Astigmatism
|
# Influence of Astigmatism
|
||||||
pass
|
TrappingPotential = astigmatic_single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, del_y = disp_foci, alpha = Polarizability)
|
||||||
|
TrappingPotential = TrappingPotential + np.zeros((3, len(TrappingPotential))) * TrappingPotential.unit
|
||||||
|
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
||||||
|
|
||||||
|
elif gravity and astigmatism:
|
||||||
|
ComputedPotentials.append(IdealTrappingPotential)
|
||||||
|
# Influence of Gravity and Astigmatism
|
||||||
|
m = 164*u.u
|
||||||
|
gravity_axis = np.array([0, 0, 1])
|
||||||
|
if tilt_gravity:
|
||||||
|
R = rotation_matrix(tilt_axis, np.radians(theta))
|
||||||
|
gravity_axis = np.dot(R, gravity_axis)
|
||||||
|
gravity_axis_positions = np.vstack((x_Positions, y_Positions, z_Positions)) * gravity_axis[:, np.newaxis]
|
||||||
|
TrappingPotential = astigmatic_single_gaussian_beam_potential(Positions, np.asarray([w_x.value, w_z.value])*u.um, P = Power, del_y = disp_foci, alpha = Polarizability) + gravitational_potential(gravity_axis_positions, m)
|
||||||
|
TrappingPotential = (TrappingPotential/ac.k_B).to(u.uK)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
# Influence of Gravity and Astigmatism
|
TrappingPotential = IdealTrappingPotential
|
||||||
pass
|
|
||||||
|
|
||||||
# v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, TrapDepthInKelvin, axis)
|
# v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, TrapDepthInKelvin, axis)
|
||||||
# plotHarmonicFit(Positions, TrappingPotential, TrapDepthInKelvin, axis, popt, pcov)
|
# plotHarmonicFit(Positions, TrappingPotential, TrapDepthInKelvin, axis, popt, pcov)
|
||||||
|
|
||||||
ComputedPotentials.append(TrappingPotential)
|
ComputedPotentials.append(TrappingPotential)
|
||||||
|
|
||||||
|
# print(np.shape(ComputedPotentials))
|
||||||
ComputedPotentials = np.asarray(ComputedPotentials)
|
ComputedPotentials = np.asarray(ComputedPotentials)
|
||||||
plotPotential(Positions, Powers, ComputedPotentials, axis, TrapDepthLabels)
|
plotPotential(Positions, Powers, ComputedPotentials, axis, TrapDepthLabels)
|
Loading…
Reference in New Issue
Block a user