Latest Calculations repo code.

This commit is contained in:
Karthik 2024-03-25 17:52:11 +01:00
parent 294fe62c36
commit 461ca442de
95 changed files with 4803 additions and 0 deletions

5
.gitignore vendored Normal file
View File

@ -0,0 +1,5 @@
2DMOT Simulation Code/Results
AtomECS Simulation Code
TimeSeriesAnalyzer/Time Series Data
ULE Cavity Characterisitics/Data
ULE Cavity Characterisitics/Figures

Binary file not shown.

View File

@ -0,0 +1,38 @@
/*
* Based on code snippet from
* http://java.sun.com/developer/technicalArticles/releases/data/
*
* Copyright © 2008, 2010 Oracle and/or its affiliates. All rights reserved. Use is subject to license terms.
*/
import java.awt.image.BufferedImage;
import java.awt.datatransfer.*;
public class ImageSelection implements Transferable {
private static final DataFlavor flavors[] =
{DataFlavor.imageFlavor};
private BufferedImage image;
public ImageSelection(BufferedImage image) {
this.image = image;
}
// Transferable
public Object getTransferData(DataFlavor flavor) throws UnsupportedFlavorException {
if (flavor.equals(flavors[0]) == false) {
throw new UnsupportedFlavorException(flavor);
}
return image;
}
public DataFlavor[] getTransferDataFlavors() {
return flavors;
}
public boolean isDataFlavorSupported(DataFlavor
flavor) {
return flavor.equals(flavors[0]);
}
}

View File

@ -0,0 +1,46 @@
classdef PhysicsConstants < handle
properties (Constant)
% CODATA
PlanckConstant=6.62607015E-34;
PlanckConstantReduced=6.62607015E-34/(2*pi);
FineStructureConstant=7.2973525698E-3;
ElectronMass=9.10938291E-31;
GravitationalConstant=6.67384E-11;
ProtonMass=1.672621777E-27;
AtomicMassUnit=1.66053878283E-27;
BohrRadius=0.52917721092E-10;
BohrMagneton=927.400968E-26;
BoltzmannConstant=1.380649E-23;
StandardGravityAcceleration=9.80665;
SpeedOfLight=299792458;
StefanBoltzmannConstant=5.670373E-8;
ElectronCharge=1.602176634E-19;
VacuumPermeability=1.25663706212E-6;
DielectricConstant=8.8541878128E-12;
ElectronGyromagneticFactor=-2.00231930436153;
AvogadroConstant=6.02214076E23;
ZeroKelvin = 273.15;
GravitationalAcceleration = 9.80553;
% Dy specific constants
Dy164Mass = 163.929174751*1.66053878283E-27;
Dy164IsotopicAbundance = 0.2826;
BlueWavelength = 421.291e-9;
BlueLandegFactor = 1.22;
BlueLifetime = 4.94e-9;
BlueLinewidth = 1/4.94e-9;
RedWavelength = 626.086e-9;
RedLandegFactor = 1.29;
RedLifetime = 1.2e-6;
RedLinewidth = 1/1.2e-6;
PushBeamWaveLength = 626.086e-9;
PushBeamLifetime = 1.2e-6;
PushBeamLinewidth = 1/1.2e-6;
end
methods
function pc = PhysicsConstants()
end
end
end

View File

@ -0,0 +1,15 @@
function output = bringFiguresWithTagInForeground()
figure_handles = findobj('type','figure');
for idx = 1:length(figure_handles)
if ~isempty(figure_handles(idx).Tag)
figure(figure_handles(idx));
end
end
if nargout > 0
output = figure_handles;
end
end

View File

@ -0,0 +1,10 @@
function ret = calculateDistanceFromPointToLine(p0 , p1, p2)
p01 = p0 - p1;
p12 = p2 - p1;
CrossProduct = [p01(2)*p12(3) - p01(3)*p12(2), p01(3)*p12(1) - p01(1)*p12(3), p01(1)*p12(2) - p01(2)*p12(1)];
ret = norm(CrossProduct) / norm(p12);
%Height of parallelogram (Distance between point and line) = Area of parallelogram / Base
%Area = One side of parallelogram X Base
%ret = norm(cross(one side, base))./ norm(base);
end

View File

@ -0,0 +1,6 @@
function CellOut = convertstruct2cell(StructIn)
% CellOut = Convertstruct2cell(StructIn)
% converts a struct into a cell-matrix where the first column contains
% the fieldnames and the second the contents
CellOut = [fieldnames(StructIn) struct2cell(StructIn)]';
end

View File

@ -0,0 +1,18 @@
function ret = findAllZeroCrossings(x,y)
% Finds all Zero-crossing of the function y = f(x)
zci = @(v) find(v(:).*circshift(v(:), [-1 0]) <= 0); % Returns Approximate Zero-Crossing Indices Of Argument Vector
zxidx = zci(y);
if ~isempty(zxidx)
for k1 = 1:numel(zxidx)
idxrng = max([1 zxidx(k1)-1]):min([zxidx(k1)+1 numel(y)]);
xrng = x(idxrng);
yrng = y(idxrng);
[yrng2, ~, jyrng] = unique(yrng); %yrng is a new array containing the unique values of yrng. jyrng contains the indices in yrng that correspond to the original vector. yrng = yrng2(jyrng)
xrng2 = accumarray(jyrng, xrng, [], @mean); %This function creates a new array "xrng2" by applying the function "@mean" to all elements in "xrng" that have identical indices in "jyrng". Any elements with identical X values will have identical indices in jyrng. Thus, this function creates a new array by averaging values with identical X values in the original array.
ret(k1) = interp1( yrng2(:), xrng2(:), 0, 'linear', 'extrap' );
end
else
warning('No zero crossings found!')
ret = nan;
end
end

View File

@ -0,0 +1,191 @@
function figure_handle = getFigureByTag(tag_name, varargin)
% figure_handle = getFigureByTag(tag_name, varargin)
%
% Example code:
% f_h = getFigureByTag('survivalMeasurement','Name','Survival')
%
% clf(f_h);
% a_h = gca(f_h);
% xlim(a_h,[10,100]);
% % custom position
% f_h.Position = [4052.3 719.67 560 420];
assert(nargin>=1 && ischar(tag_name),'You must specify ``tag_name'' as a string.');
f_h = findobj('type','figure','tag',tag_name);
if isempty(f_h)
f_h = figure('Tag',tag_name,varargin{:});
defaultNewFigProperties = {'Color','w','NumberTitle','off','Name',sprintf('Fig. %d',f_h.Number)};
varargin = [defaultNewFigProperties,varargin];
else
f_h = f_h(1);
end
if ~isempty(varargin)
set(f_h,varargin{:});
end
addCopyButton(f_h);
if nargout > 0
figure_handle = f_h;
else
set(groot,'CurrentFigure',f_h);
end
end
function addCopyButton(f_h)
if(strcmp(f_h.ToolBar,'none'))
return
end
tb = findall(f_h,'Type','uitoolbar');
pt = findall(tb, 'tag', 'Custom.CopyPlot' );
if isempty(pt)
pt = uipushtool(tb);
else
pt = pt(1);
end
cdata = zeros(16,16,3);
% Evernote Logo
% cdata(:,:,1) =[255 NaN NaN NaN NaN 99 11 27 175 NaN NaN NaN NaN NaN NaN 255
% NaN NaN NaN 251 93 14 0 0 0 66 70 106 210 NaN NaN NaN
% NaN NaN NaN 42 0 43 0 0 0 0 0 0 20 185 NaN NaN
% NaN 243 56 0 42 82 0 0 0 0 0 0 0 45 NaN NaN
% NaN 156 44 64 113 65 0 0 0 0 0 0 0 32 NaN NaN
% 136 9 26 28 11 0 0 0 0 0 0 0 0 10 188 NaN
% 132 0 0 0 0 0 0 0 0 0 136 175 16 0 133 NaN
% NaN 28 0 0 0 0 0 0 0 0 152 238 50 0 124 NaN
% NaN 58 0 0 0 0 0 0 0 0 0 9 0 0 71 NaN
% NaN 175 0 0 0 0 0 61 15 0 0 0 0 0 100 NaN
% NaN NaN 143 12 0 0 0 210 195 87 17 0 0 0 126 NaN
% NaN NaN NaN 183 118 50 150 NaN NaN 110 219 78 0 0 160 NaN
% NaN NaN NaN NaN NaN NaN NaN 191 0 35 NaN 150 0 23 NaN NaN
% NaN NaN NaN NaN NaN NaN NaN 124 0 172 NaN 81 0 93 NaN NaN
% 255 NaN NaN NaN NaN NaN NaN 183 0 0 0 0 51 228 NaN 245
% 253 254 NaN NaN NaN NaN NaN NaN 156 63 45 100 NaN NaN 255 255]/255.;
%
%
% cdata(:,:,2) = [255 255 255 255 255 216 166 171 225 229 218 229 247 255 255 255
% 255 255 255 255 201 166 159 157 167 188 189 200 243 255 255 255
% 237 238 255 181 159 183 164 170 163 158 160 157 169 233 248 250
% 224 235 188 140 182 195 161 168 168 168 168 169 147 186 244 240
% 255 226 175 185 207 189 161 168 168 168 168 168 159 179 249 249
% 227 172 172 179 172 163 169 168 168 170 163 155 160 173 231 237
% 215 161 163 165 166 168 168 168 168 162 215 228 172 163 209 219
% 248 178 159 168 168 168 168 168 168 159 220 249 185 158 208 222
% 249 192 151 169 168 168 169 160 163 172 163 159 166 167 194 204
% 246 229 155 157 168 169 159 188 174 154 162 167 166 166 202 214
% 212 231 218 168 157 153 165 255 242 190 171 159 167 166 207 220
% 218 203 251 243 206 181 230 210 208 207 242 196 154 168 223 232
% 255 224 232 250 237 214 244 194 152 178 255 223 145 175 250 252
% 255 255 244 239 222 213 240 214 149 228 254 199 136 203 244 232
% 255 255 255 246 231 246 246 232 165 159 167 147 184 253 254 242
% 253 254 255 255 254 255 255 255 231 183 178 199 249 255 255 255]/255.;
%
%
% cdata(:,:,3) = [255 255 255 255 255 117 38 50 187 211 170 190 234 255 255 255
% 255 254 255 255 120 51 27 20 39 97 98 122 220 255 255 255
% 238 252 246 73 22 71 37 49 35 20 24 18 49 196 231 231
% 232 242 86 0 78 108 29 45 45 45 45 46 0 82 214 201
% 255 175 63 85 139 98 27 45 45 45 45 45 23 72 233 231
% 167 51 57 72 55 32 47 45 45 50 34 14 27 57 201 218
% 154 30 33 38 39 45 45 45 45 31 157 188 53 34 153 180
% 234 67 24 45 45 45 45 44 45 24 169 241 83 20 146 182
% 241 99 4 48 45 45 47 28 35 53 32 26 39 44 104 127
% 238 192 14 20 45 47 27 97 56 10 29 44 41 40 127 158
% 214 253 169 37 20 16 34 218 207 105 55 23 42 40 147 182
% 218 214 241 201 138 71 177 225 181 130 224 107 12 45 175 197
% 255 233 202 218 212 132 230 196 27 61 255 172 0 64 240 242
% 255 255 219 197 176 160 237 143 0 195 245 110 0 123 230 230
% 255 255 255 227 197 241 244 202 36 24 39 0 81 228 242 245
% 253 254 255 255 254 255 255 255 191 78 71 121 221 255 255 255]/255.;
%OneNote logo
cdata(:,:,1) =[255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
255 255 255 255 245 213 213 213 213 213 213 213 184 184 215 255
255 255 255 255 241 213 213 213 213 213 213 213 184 184 208 255
255 233 204 204 194 176 176 185 213 213 213 213 184 184 208 255
255 154 101 101 101 101 101 103 213 213 213 206 162 162 193 255
255 152 101 183 116 152 115 101 213 213 213 206 162 162 193 255
255 152 101 207 189 178 122 101 213 213 213 206 162 162 193 255
255 152 101 199 152 224 122 101 213 213 213 195 128 128 170 255
255 152 101 166 101 183 115 101 213 213 213 195 128 128 170 255
255 154 101 101 101 101 101 103 213 213 213 195 128 128 170 255
255 233 204 204 194 176 176 185 213 213 213 183 95 95 148 255
255 255 255 255 241 213 213 213 213 213 213 183 94 94 148 255
255 255 255 255 245 213 213 213 213 213 213 183 94 94 163 255
255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255]/255.;
cdata(:,:,2) =[255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
255 255 255 255 219 112 110 110 110 110 110 134 84 84 158 255
255 255 255 255 207 110 110 110 110 110 110 134 84 84 141 255
255 222 178 178 146 81 81 88 110 110 110 134 84 84 141 255
255 102 23 23 23 23 23 24 110 110 110 125 58 58 123 255
255 100 23 147 46 100 44 23 110 110 110 125 58 58 123 255
255 100 23 183 156 139 55 23 110 110 110 125 58 58 123 255
255 100 23 170 99 208 55 23 110 110 110 119 38 38 109 255
255 100 23 121 23 146 44 23 110 110 110 119 38 38 109 255
255 102 23 23 23 23 23 24 110 110 110 119 38 38 109 255
255 222 178 178 146 81 81 88 110 110 110 118 37 37 109 255
255 255 255 255 207 110 110 110 110 110 110 118 37 37 110 255
255 255 255 255 219 112 110 110 110 110 110 118 37 37 131 255
255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255]/255.;
cdata(:,:,3) =[255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255 255 255 255 246 229 229 240 255
255 255 255 255 255 255 255 255 255 255 255 246 229 229 238 255
255 242 224 224 224 224 224 232 255 255 255 246 229 229 238 255
255 194 163 163 163 163 163 164 255 255 255 244 223 223 234 255
255 194 163 212 172 194 171 163 255 255 255 244 223 223 234 255
255 194 163 226 216 209 176 163 255 255 255 244 223 223 234 255
255 194 163 221 193 236 176 163 255 255 255 240 209 209 224 255
255 194 163 202 163 212 171 163 255 255 255 240 209 209 224 255
255 194 163 163 163 163 163 164 255 255 255 240 209 209 224 255
255 242 224 224 224 224 224 232 255 255 255 223 161 161 192 255
255 255 255 255 255 255 255 255 255 255 255 223 160 160 192 255
255 255 255 255 255 255 255 255 255 255 255 223 160 160 201 255
255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255
255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255]/255.;
pt.Tag = 'Custom.CopyPlot';
pt.CData = cdata;
pt.Separator = true;
pt.ClickedCallback = @copyToClipboard;
end
function copyToClipboard(~,~)
fig_h = get(get(gcbo,'Parent'),'Parent');
if strcmp(fig_h.WindowStyle,'docked')
if ismac || ispc
matlab.graphics.internal.copyFigureHelper(fig_h);
else
%warning('Copy function to the clipboard only works if the figure is undocked.');
Helper.screencapture(fig_h,[],'clipboard');
end
else
pos = fig_h.Position;
Helper.screencapture(fig_h,[],'clipboard','position',[7,7,pos(3)-2,pos(4)]);
end
end

92
GPE Solver/+Helper/ode5.m Normal file
View File

@ -0,0 +1,92 @@
function Y = ode5(odefun,tspan,y0,varargin)
%ODE5 Solve differential equations with a non-adaptive method of order 5.
% Y = ODE5(ODEFUN,TSPAN,Y0) with TSPAN = [T1, T2, T3, ... TN] integrates
% the system of differential equations y' = f(t,y) by stepping from T0 to
% T1 to TN. Function ODEFUN(T,Y) must return f(t,y) in a column vector.
% The vector Y0 is the initial conditions at T0. Each row in the solution
% array Y corresponds to a time specified in TSPAN.
%
% Y = ODE5(ODEFUN,TSPAN,Y0,P1,P2...) passes the additional parameters
% P1,P2... to the derivative function as ODEFUN(T,Y,P1,P2...).
%
% This is a non-adaptive solver. The step sequence is determined by TSPAN
% but the derivative function ODEFUN is evaluated multiple times per step.
% The solver implements the Dormand-Prince method of order 5 in a general
% framework of explicit Runge-Kutta methods.
%
% Example
% tspan = 0:0.1:20;
% y = ode5(@vdp1,tspan,[2 0]);
% plot(tspan,y(:,1));
% solves the system y' = vdp1(t,y) with a constant step size of 0.1,
% and plots the first component of the solution.
if ~isnumeric(tspan)
error('TSPAN should be a vector of integration steps.');
end
if ~isnumeric(y0)
error('Y0 should be a vector of initial conditions.');
end
h = diff(tspan);
if any(sign(h(1))*h <= 0)
error('Entries of TSPAN are not in order.')
end
try
f0 = feval(odefun,tspan(1),y0,varargin{:});
catch
msg = ['Unable to evaluate the ODEFUN at t0,y0. ',lasterr];
error(msg);
end
y0 = y0(:); % Make a column vector.
if ~isequal(size(y0),size(f0))
error('Inconsistent sizes of Y0 and f(t0,y0).');
end
neq = length(y0);
N = length(tspan);
Y = zeros(neq,N);
% Method coefficients -- Butcher's tableau
%
% C | A
% --+---
% | B
C = [1/5; 3/10; 4/5; 8/9; 1];
A = [ 1/5, 0, 0, 0, 0
3/40, 9/40, 0, 0, 0
44/45 -56/15, 32/9, 0, 0
19372/6561, -25360/2187, 64448/6561, -212/729, 0
9017/3168, -355/33, 46732/5247, 49/176, -5103/18656];
B = [35/384, 0, 500/1113, 125/192, -2187/6784, 11/84];
% More convenient storage
A = A.';
B = B(:);
nstages = length(B);
F = zeros(neq,nstages);
Y(:,1) = y0;
for i = 2:N
ti = tspan(i-1);
hi = h(i-1);
yi = Y(:,i-1);
% General explicit Runge-Kutta framework
F(:,1) = feval(odefun,ti,yi,varargin{:});
for stage = 2:nstages
tstage = ti + C(stage-1)*hi;
ystage = yi + F(:,1:stage-1)*(hi*A(1:stage-1,stage-1));
F(:,stage) = feval(odefun,tstage,ystage,varargin{:});
end
Y(:,i) = yi + F*(hi*B);
end
Y = Y.';

View File

@ -0,0 +1,55 @@
cmap = zeros(16,16,3);
cmap(:,:,1) = [0.0000 0.0118 0.4510 0.0039 0.2078 0.1569 0.4078 0.4431 0.4510 0.1922 0.4235 0.4196 0.2235 0.4235 0.4039 0.4392
0.4471 0.1647 0.4157 0.0000 0.0235 0.4353 0.0314 0.4314 0.0196 0.2392 0.0667 0.0392 0.4431 0.3804 0.2941 0.4275
0.3686 0.3608 0.2000 0.2824 0.3059 0.0549 0.1804 0.1882 0.4392 0.4314 0.3255 0.0078 0.0902 0.1961 0.4353 0.1412
0.2314 0.3647 0.0353 0.3804 0.1647 0.2431 0.1686 0.2745 0.2980 0.4235 0.3922 0.4157 0.2784 0.3333 0.2510 0.0588
0.1020 0.0745 0.2549 0.0471 0.1216 0.4000 0.3961 0.2627 0.1098 0.1725 0.3098 0.4314 0.3529 0.3412 0.0784 0.0824
0.4471 0.1490 0.1804 0.3529 0.2196 0.3137 0.3255 0.0941 0.0078 0.3294 0.3765 0.2706 0.0510 0.0157 0.4275 0.1176
0.1294 0.1333 0.1725 0.3451 0.2118 0.3843 0.1255 0.1569 0.2118 0.1608 0.0353 0.2039 0.1608 0.4510 1.0000 0.8000
0.9882 0.6510 0.9961 0.4549 0.4549 0.6824 0.7882 0.5686 0.5373 0.5490 0.7765 0.7137 0.8510 0.7176 0.5020 0.4902
0.8941 0.9020 0.4745 0.8980 0.9098 0.4824 0.6471 0.6353 0.9922 0.9647 0.6353 0.4588 0.9647 0.9020 0.4980 0.8118
0.5059 0.4941 0.9686 0.4863 0.5451 0.9725 0.8980 0.5451 0.5333 0.6824 0.4588 0.8196 0.8314 0.8980 0.8941 0.9961
0.5255 0.8392 0.9804 0.5216 0.8588 0.8078 0.5176 0.7647 0.5608 0.9725 0.9059 0.4627 0.9882 0.8275 0.7725 0.8745
0.8235 0.8431 0.7373 1.0000 0.5137 0.4706 0.4784 0.7412 0.8863 0.9373 0.5529 0.5804 0.4510 0.9255 0.8235 0.8667
0.7569 0.8824 0.5294 0.5176 0.5373 0.9569 0.5294 0.4824 0.5098 0.5137 0.5569 0.8471 0.5098 0.9490 0.8706 0.9412
0.4902 0.6000 0.6980 0.7882 0.5490 0.7216 0.6431 0.4824 0.5569 0.4667 0.6627 0.9922 0.7804 0.8039 0.6275 0.7333
0.5725 0.5647 0.8549 0.7529 0.6235 0.8784 0.5922 0.7294 0.6118 0.7922 0.7843 0.6667 0.9294 0.6902 0.6784 0.9176
0.6706 0.7490 0.7961 0.5882 0.8627 0.4627 0.6196 0.7059 0.6078 0.9765 0.6549 0.6863 0.5373 0.7098 0.7176 0.7765];
cmap(:,:,2) = [0.0000 0.0078 0.2157 0.0000 0.0980 0.0745 0.1922 0.2157 0.2157 0.0902 0.2000 0.1961 0.1059 0.2039 0.1882 0.2078
0.2078 0.0784 0.2000 0.0000 0.0118 0.2118 0.0157 0.2039 0.0078 0.1137 0.0314 0.0196 0.2118 0.1804 0.1373 0.2078
0.1765 0.1725 0.0941 0.1333 0.1451 0.0275 0.0863 0.0902 0.2078 0.2078 0.1529 0.0039 0.0431 0.0941 0.2039 0.0667
0.1098 0.1725 0.0157 0.1804 0.0784 0.1137 0.0824 0.1333 0.1412 0.2000 0.1882 0.2000 0.1333 0.1569 0.1176 0.0275
0.0471 0.0353 0.1216 0.0196 0.0588 0.1922 0.1882 0.1255 0.0510 0.0824 0.1451 0.2039 0.1686 0.1647 0.0392 0.0392
0.2157 0.0706 0.0863 0.1686 0.1020 0.1490 0.1529 0.0431 0.0039 0.1569 0.1804 0.1255 0.0235 0.0078 0.2000 0.0549
0.0627 0.0627 0.0824 0.1647 0.1020 0.1843 0.0588 0.0745 0.1020 0.0784 0.0157 0.0980 0.0784 0.2157 1.0000 0.7137
0.9843 0.4980 0.9961 0.2235 0.2196 0.5412 0.6980 0.3843 0.3373 0.3569 0.6824 0.5922 0.7843 0.6000 0.2902 0.2706
0.8510 0.8588 0.2471 0.8549 0.8667 0.2627 0.4980 0.4784 0.9843 0.9490 0.4745 0.2235 0.9451 0.8627 0.2824 0.7333
0.2941 0.2784 0.9529 0.2667 0.3490 0.9569 0.8510 0.3490 0.3333 0.5451 0.2275 0.7412 0.7608 0.8549 0.8471 0.9922
0.3255 0.7686 0.9725 0.3176 0.8000 0.7255 0.3098 0.6627 0.3725 0.9647 0.8627 0.2314 0.9804 0.7529 0.6745 0.8235
0.7451 0.7765 0.6235 0.9961 0.3020 0.2431 0.2510 0.6314 0.8392 0.9098 0.3608 0.4000 0.2196 0.8902 0.7490 0.8078
0.6549 0.8353 0.3294 0.3137 0.3412 0.9373 0.3255 0.2588 0.2980 0.3059 0.3686 0.7843 0.3020 0.9255 0.8157 0.9176
0.2745 0.4275 0.5686 0.6980 0.3569 0.6039 0.4863 0.2627 0.3647 0.2392 0.5137 0.9922 0.6863 0.7216 0.4706 0.6196
0.3882 0.3765 0.7882 0.6471 0.4588 0.8275 0.4157 0.6118 0.4431 0.7059 0.6902 0.5255 0.8980 0.5569 0.5412 0.8824
0.5333 0.6392 0.7098 0.4078 0.8039 0.2314 0.4549 0.5804 0.4392 0.9647 0.5059 0.5529 0.3373 0.5882 0.5961 0.6784];
cmap(:,:,3) = [0.0000 0.0157 0.4980 0.0039 0.2314 0.1725 0.4627 0.5020 0.5020 0.2196 0.4745 0.4706 0.2510 0.4784 0.4510 0.4980
0.4941 0.1882 0.4667 0.0000 0.0275 0.4941 0.0353 0.4902 0.0196 0.2667 0.0745 0.0471 0.4902 0.4314 0.3294 0.4784
0.4196 0.4000 0.2235 0.3216 0.3412 0.0627 0.2039 0.2118 0.4863 0.4863 0.3608 0.0078 0.1020 0.2196 0.4824 0.1569
0.2588 0.4118 0.0392 0.4235 0.1843 0.2745 0.1882 0.3059 0.3373 0.4784 0.4392 0.4627 0.3137 0.3765 0.2824 0.0667
0.1137 0.0824 0.2863 0.0510 0.1373 0.4510 0.4471 0.2941 0.1216 0.1961 0.3490 0.4824 0.3961 0.3804 0.0902 0.0941
0.4980 0.1647 0.2000 0.4000 0.2431 0.3529 0.3647 0.1059 0.0118 0.3686 0.4196 0.3020 0.0549 0.0196 0.4824 0.1294
0.1451 0.1529 0.1922 0.3882 0.2392 0.4353 0.1412 0.1765 0.2353 0.1804 0.0353 0.2275 0.1843 0.5059 1.0000 0.8196
0.9882 0.6863 0.9961 0.5098 0.5098 0.7137 0.8118 0.6118 0.5843 0.5922 0.8000 0.7412 0.8627 0.7451 0.5529 0.5412
0.9059 0.9137 0.5255 0.9098 0.9176 0.5333 0.6824 0.6706 0.9922 0.9686 0.6706 0.5098 0.9647 0.9137 0.5490 0.8314
0.5569 0.5451 0.9725 0.5373 0.5922 0.9725 0.9059 0.5882 0.5804 0.7137 0.5137 0.8353 0.8510 0.9059 0.9020 0.9961
0.5725 0.8549 0.9843 0.5725 0.8745 0.8275 0.5647 0.7882 0.6039 0.9765 0.9137 0.5176 0.9882 0.8431 0.7961 0.8863
0.8392 0.8588 0.7647 1.0000 0.5608 0.5216 0.5294 0.7686 0.8980 0.9412 0.6000 0.6235 0.5059 0.9333 0.8431 0.8784
0.7804 0.8941 0.5765 0.5686 0.5843 0.9608 0.5765 0.5333 0.5569 0.5647 0.6039 0.8627 0.5608 0.9569 0.8863 0.9490
0.5412 0.6392 0.7294 0.8078 0.5961 0.7490 0.6784 0.5373 0.6000 0.5216 0.6941 0.9922 0.8039 0.8235 0.6667 0.7608
0.6157 0.6078 0.8667 0.7765 0.6588 0.8902 0.6314 0.7569 0.6510 0.8157 0.8039 0.7020 0.9373 0.7216 0.7098 0.9255
0.7059 0.7725 0.8196 0.6314 0.8784 0.5137 0.6549 0.7373 0.6471 0.9804 0.6902 0.7176 0.5804 0.7412 0.7451 0.8000];
%%
[cdata, cmap] = imread('onenote.png');

View File

@ -0,0 +1,148 @@
% Copyright (c) 2019 Andrea Alberti
%
% All rights reserved.
classdef parforNotifications < handle
properties
N; % number of iterations
text = 'Please wait ...'; % text to show
width = 50;
showWarning = true;
end
properties (GetAccess = public, SetAccess = private)
n;
end
properties (Access = private)
inProgress = false;
percent;
DataQueue;
usePercent;
Nstr;
NstrL;
lastComment;
end
methods
function this = parforNotifications()
this.DataQueue = parallel.pool.DataQueue;
afterEach(this.DataQueue, @this.updateStatus);
end
% Start progress bar
function PB_start(this,N,varargin)
assert(isscalar(N) && isnumeric(N) && N == floor(N) && N>0, 'Error: ''N'' must be a scalar positive integer.');
this.N = N;
p = inputParser;
addParameter(p,'message','Please wait: ');
addParameter(p,'usePercentage',true);
parse(p,varargin{:});
this.text = p.Results.message;
assert(ischar(this.text), 'Error: ''Message'' must be a string.');
this.usePercent = p.Results.usePercentage;
assert(isscalar(this.usePercent) && islogical(this.usePercent), 'Error: ''usePercentage'' must be a logical scalar.');
this.percent = 0;
this.n = 0;
this.lastComment = '';
if this.usePercent
fprintf('%s [%s]: %3d%%\n',this.text, char(32*ones(1,this.width)),0);
else
this.Nstr = sprintf('%d',this.N);
this.NstrL = numel(this.Nstr);
fprintf('%s [%s]: %s/%s\n',this.text, char(32*ones(1,this.width)),[char(32*ones(1,this.NstrL-1)),'0'],this.Nstr);
end
this.inProgress = true;
end
% Iterate progress bar
function PB_iterate(this,str)
if nargin == 1
send(this.DataQueue,'');
else
send(this.DataQueue,str);
end
end
function warning(this,warn_id,msg)
if this.showWarning
msg = struct('Action','Warning','Id',warn_id,'Message',msg);
send(this.DataQueue,msg);
end
end
function PB_reprint(this)
p = round(100*this.n/this.N);
this.percent = p;
cursor_pos=1+round((this.width-1)*p/100);
if p < 100
sep_char = '|';
else
sep_char = '.';
end
if this.usePercent
fprintf('%s [%s%s%s]: %3d%%\n', this.text, char(46*ones(1,cursor_pos-1)), sep_char, char(32*ones(1,this.width-cursor_pos)),p);
else
nstr=sprintf('%d',this.n);
fprintf('%s [%s%s%s]: %s/%s\n', this.text, char(46*ones(1,cursor_pos-1)), sep_char, char(32*ones(1,this.width-cursor_pos)),[char(32*ones(1,this.NstrL-numel(nstr))),nstr],this.Nstr);
end
end
function updateStatus(this,data)
if ischar(data)
this.n = this.n + 1;
p = round(100*this.n/this.N);
if p >= this.percent+1 || this.n == this.N
this.percent = p;
cursor_pos=1+round((this.width-1)*p/100);
if p < 100
sep_char = '|';
else
sep_char = '.';
end
if ~isempty(data)
comment = [' (',data,')'];
else
comment = '';
end
if this.usePercent
fprintf('%s%s%s%s]: %3d%%%s\n',char(8*ones(1,58+numel(this.lastComment))), char(46*ones(1,cursor_pos-1)), sep_char, char(32*ones(1,this.width-cursor_pos)),p,comment);
else
nstr=sprintf('%d',this.n);
fprintf('%s%s%s%s]: %s/%s%s\n',char(8*ones(1,55+2*numel(this.Nstr)+numel(this.lastComment))), char(46*ones(1,cursor_pos-1)), sep_char, char(32*ones(1,this.width-cursor_pos)),[char(32*ones(1,this.NstrL-numel(nstr))),nstr],this.Nstr,comment)
end
this.lastComment = comment;
if p == 100
this.inProgress = false;
end
end
else
switch data.Action
case 'Warning'
warning(data.Id,[data.Message,newline]);
if this.inProgress
this.PB_reprint();
end
end
end
end
end
end

View File

@ -0,0 +1,820 @@
function imageData = screencapture(varargin)
% screencapture - get a screen-capture of a figure frame, component handle, or screen area rectangle
%
% ScreenCapture gets a screen-capture of any Matlab GUI handle (including desktop,
% figure, axes, image or uicontrol), or a specified area rectangle located relative to
% the specified handle. Screen area capture is possible by specifying the root (desktop)
% handle (=0). The output can be either to an image file or to a Matlab matrix (useful
% for displaying via imshow() or for further processing) or to the system clipboard.
% This utility also enables adding a toolbar button for easy interactive screen-capture.
%
% Syntax:
% imageData = screencapture(handle, position, target, 'PropName',PropValue, ...)
%
% Input Parameters:
% handle - optional handle to be used for screen-capture origin.
% If empty/unsupplied then current figure (gcf) will be used.
% position - optional position array in pixels: [x,y,width,height].
% If empty/unsupplied then the handle's position vector will be used.
% If both handle and position are empty/unsupplied then the position
% will be retrieved via interactive mouse-selection.
% If handle is an image, then position is in data (not pixel) units, so the
% captured region remains the same after figure/axes resize (like imcrop)
% target - optional filename for storing the screen-capture, or the
% 'clipboard'/'printer' strings.
% If empty/unsupplied then no output to file will be done.
% The file format will be determined from the extension (JPG/PNG/...).
% Supported formats are those supported by the imwrite function.
% 'PropName',PropValue -
% optional list of property pairs (e.g., 'target','myImage.png','pos',[10,20,30,40],'handle',gca)
% PropNames may be abbreviated and are case-insensitive.
% PropNames may also be given in whichever order.
% Supported PropNames are:
% - 'handle' (default: gcf handle)
% - 'position' (default: gcf position array)
% - 'target' (default: '')
% - 'toolbar' (figure handle; default: gcf)
% this adds a screen-capture button to the figure's toolbar
% If this parameter is specified, then no screen-capture
% will take place and the returned imageData will be [].
%
% Output parameters:
% imageData - image data in a format acceptable by the imshow function
% If neither target nor imageData were specified, the user will be
% asked to interactively specify the output file.
%
% Examples:
% imageData = screencapture; % interactively select screen-capture rectangle
% imageData = screencapture(hListbox); % capture image of a uicontrol
% imageData = screencapture(0, [20,30,40,50]); % capture a small desktop region
% imageData = screencapture(gcf,[20,30,40,50]); % capture a small figure region
% imageData = screencapture(gca,[10,20,30,40]); % capture a small axes region
% imshow(imageData); % display the captured image in a matlab figure
% imwrite(imageData,'myImage.png'); % save the captured image to file
% img = imread('cameraman.tif');
% hImg = imshow(img);
% screencapture(hImg,[60,35,140,80]); % capture a region of an image
% screencapture(gcf,[],'myFigure.jpg'); % capture the entire figure into file
% screencapture(gcf,[],'clipboard'); % capture the entire figure into clipboard
% screencapture(gcf,[],'printer'); % print the entire figure
% screencapture('handle',gcf,'target','myFigure.jpg'); % same as previous, save to file
% screencapture('handle',gcf,'target','clipboard'); % same as previous, copy to clipboard
% screencapture('handle',gcf,'target','printer'); % same as previous, send to printer
% screencapture('toolbar',gcf); % adds a screen-capture button to gcf's toolbar
% screencapture('toolbar',[],'target','sc.bmp'); % same with default output filename
%
% Technical description:
% http://UndocumentedMatlab.com/blog/screencapture-utility/
%
% Bugs and suggestions:
% Please send to Yair Altman (altmany at gmail dot com)
%
% See also:
% imshow, imwrite, print
%
% Release history:
% 1.17 2016-05-16: Fix annoying warning about JavaFrame property becoming obsolete someday (yes, we know...)
% 1.16 2016-04-19: Fix for deployed application suggested by Dwight Bartholomew
% 1.10 2014-11-25: Added the 'print' target
% 1.9 2014-11-25: Fix for saving GIF files
% 1.8 2014-11-16: Fixes for R2014b
% 1.7 2014-04-28: Fixed bug when capturing interactive selection
% 1.6 2014-04-22: Only enable image formats when saving to an unspecified file via uiputfile
% 1.5 2013-04-18: Fixed bug in capture of non-square image; fixes for Win64
% 1.4 2013-01-27: Fixed capture of Desktop (root); enabled rbbox anywhere on desktop (not necesarily in a Matlab figure); enabled output to clipboard (based on Jiro Doke's imclipboard utility); edge-case fixes; added Java compatibility check
% 1.3 2012-07-23: Capture current object (uicontrol/axes/figure) if w=h=0 (e.g., by clicking a single point); extra input args sanity checks; fix for docked windows and image axes; include axes labels & ticks by default when capturing axes; use data-units position vector when capturing images; many edge-case fixes
% 1.2 2011-01-16: another performance boost (thanks to Jan Simon); some compatibility fixes for Matlab 6.5 (untested)
% 1.1 2009-06-03: Handle missing output format; performance boost (thanks to Urs); fix minor root-handle bug; added toolbar button option
% 1.0 2009-06-02: First version posted on <a href="http://www.mathworks.com/matlabcentral/fileexchange/authors/27420">MathWorks File Exchange</a>
% License to use and modify this code is granted freely to all interested, as long as the original author is
% referenced and attributed as such. The original author maintains the right to be solely associated with this work.
% Programmed and Copyright by Yair M. Altman: altmany(at)gmail.com
% $Revision: 1.17 $ $Date: 2016/05/16 17:59:36 $
% Ensure that java awt is enabled...
if ~usejava('awt')
error('YMA:screencapture:NeedAwt','ScreenCapture requires Java to run.');
end
% Ensure that our Java version supports the Robot class (requires JVM 1.3+)
try
robot = java.awt.Robot; %#ok<NASGU>
catch
uiwait(msgbox({['Your Matlab installation is so old that its Java engine (' version('-java') ...
') does not have a java.awt.Robot class. '], ' ', ...
'Without this class, taking a screen-capture is impossible.', ' ', ...
'So, either install JVM 1.3 or higher, or use a newer Matlab release.'}, ...
'ScreenCapture', 'warn'));
if nargout, imageData = []; end
return;
end
% Process optional arguments
paramsStruct = processArgs(varargin{:});
% If toolbar button requested, add it and exit
if ~isempty(paramsStruct.toolbar)
% Add the toolbar button
addToolbarButton(paramsStruct);
% Return the figure to its pre-undocked state (when relevant)
redockFigureIfRelevant(paramsStruct);
% Exit immediately (do NOT take a screen-capture)
if nargout, imageData = []; end
return;
end
% Convert position from handle-relative to desktop Java-based pixels
[paramsStruct, msgStr] = convertPos(paramsStruct);
% Capture the requested screen rectangle using java.awt.Robot
imgData = getScreenCaptureImageData(paramsStruct.position);
% Return the figure to its pre-undocked state (when relevant)
redockFigureIfRelevant(paramsStruct);
% Save image data in file or clipboard, if specified
if ~isempty(paramsStruct.target)
if strcmpi(paramsStruct.target,'clipboard')
if ~isempty(imgData)
imclipboard(imgData);
else
msgbox('No image area selected - not copying image to clipboard','ScreenCapture','warn');
end
elseif strncmpi(paramsStruct.target,'print',5) % 'print' or 'printer'
if ~isempty(imgData)
hNewFig = figure('visible','off');
imshow(imgData);
print(hNewFig);
delete(hNewFig);
else
msgbox('No image area selected - not printing screenshot','ScreenCapture','warn');
end
else % real filename
if ~isempty(imgData)
imwrite(imgData,paramsStruct.target);
else
msgbox(['No image area selected - not saving image file ' paramsStruct.target],'ScreenCapture','warn');
end
end
end
% Return image raster data to user, if requested
if nargout
imageData = imgData;
% If neither output formats was specified (neither target nor output data)
elseif isempty(paramsStruct.target) & ~isempty(imgData) %#ok ML6
% Ask the user to specify a file
%error('YMA:screencapture:noOutput','No output specified for ScreenCapture: specify the output filename and/or output data');
%format = '*.*';
formats = imformats;
for idx = 1 : numel(formats)
ext = sprintf('*.%s;',formats(idx).ext{:});
format(idx,1:2) = {ext(1:end-1), formats(idx).description}; %#ok<AGROW>
end
[filename,pathname] = uiputfile(format,'Save screen capture as');
if ~isequal(filename,0) & ~isequal(pathname,0) %#ok Matlab6 compatibility
try
filename = fullfile(pathname,filename);
imwrite(imgData,filename);
catch % possibly a GIF file that requires indexed colors
[imgData,map] = rgb2ind(imgData,256);
imwrite(imgData,map,filename);
end
else
% TODO - copy to clipboard
end
end
% Display msgStr, if relevant
if ~isempty(msgStr)
uiwait(msgbox(msgStr,'ScreenCapture'));
drawnow; pause(0.05); % time for the msgbox to disappear
end
return; % debug breakpoint
%% Process optional arguments
function paramsStruct = processArgs(varargin)
% Get the properties in either direct or P-V format
[regParams, pvPairs] = parseparams(varargin);
% Now process the optional P-V params
try
% Initialize
paramName = [];
paramsStruct = [];
paramsStruct.handle = [];
paramsStruct.position = [];
paramsStruct.target = '';
paramsStruct.toolbar = [];
paramsStruct.wasDocked = 0; % no false available in ML6
paramsStruct.wasInteractive = 0; % no false available in ML6
% Parse the regular (non-named) params in recption order
if ~isempty(regParams) & (isempty(regParams{1}) | ishandle(regParams{1}(1))) %#ok ML6
paramsStruct.handle = regParams{1};
regParams(1) = [];
end
if ~isempty(regParams) & isnumeric(regParams{1}) & (length(regParams{1}) == 4) %#ok ML6
paramsStruct.position = regParams{1};
regParams(1) = [];
end
if ~isempty(regParams) & ischar(regParams{1}) %#ok ML6
paramsStruct.target = regParams{1};
end
% Parse the optional param PV pairs
supportedArgs = {'handle','position','target','toolbar'};
while ~isempty(pvPairs)
% Disregard empty propNames (may be due to users mis-interpretting the syntax help)
while ~isempty(pvPairs) & isempty(pvPairs{1}) %#ok ML6
pvPairs(1) = [];
end
if isempty(pvPairs)
break;
end
% Ensure basic format is valid
paramName = '';
if ~ischar(pvPairs{1})
error('YMA:screencapture:invalidProperty','Invalid property passed to ScreenCapture');
elseif length(pvPairs) == 1
if isempty(paramsStruct.target)
paramsStruct.target = pvPairs{1};
break;
else
error('YMA:screencapture:noPropertyValue',['No value specified for property ''' pvPairs{1} '''']);
end
end
% Process parameter values
paramName = pvPairs{1};
if strcmpi(paramName,'filename') % backward compatibility
paramName = 'target';
end
paramValue = pvPairs{2};
pvPairs(1:2) = [];
idx = find(strncmpi(paramName,supportedArgs,length(paramName)));
if ~isempty(idx)
%paramsStruct.(lower(supportedArgs{idx(1)})) = paramValue; % incompatible with ML6
paramsStruct = setfield(paramsStruct, lower(supportedArgs{idx(1)}), paramValue); %#ok ML6
% If 'toolbar' param specified, then it cannot be left empty - use gcf
if strncmpi(paramName,'toolbar',length(paramName)) & isempty(paramsStruct.toolbar) %#ok ML6
paramsStruct.toolbar = getCurrentFig;
end
elseif isempty(paramsStruct.target)
paramsStruct.target = paramName;
pvPairs = {paramValue, pvPairs{:}}; %#ok (more readable this way, although a bit less efficient...)
else
supportedArgsStr = sprintf('''%s'',',supportedArgs{:});
error('YMA:screencapture:invalidProperty','%s \n%s', ...
'Invalid property passed to ScreenCapture', ...
['Supported property names are: ' supportedArgsStr(1:end-1)]);
end
end % loop pvPairs
catch
if ~isempty(paramName), paramName = [' ''' paramName '''']; end
error('YMA:screencapture:invalidProperty','Error setting ScreenCapture property %s:\n%s',paramName,lasterr); %#ok<LERR>
end
%end % processArgs
%% Convert position from handle-relative to desktop Java-based pixels
function [paramsStruct, msgStr] = convertPos(paramsStruct)
msgStr = '';
try
% Get the screen-size for later use
screenSize = get(0,'ScreenSize');
% Get the containing figure's handle
hParent = paramsStruct.handle;
if isempty(paramsStruct.handle)
paramsStruct.hFigure = getCurrentFig;
hParent = paramsStruct.hFigure;
else
paramsStruct.hFigure = ancestor(paramsStruct.handle,'figure');
end
% To get the acurate pixel position, the figure window must be undocked
try
if strcmpi(get(paramsStruct.hFigure,'WindowStyle'),'docked')
set(paramsStruct.hFigure,'WindowStyle','normal');
drawnow; pause(0.25);
paramsStruct.wasDocked = 1; % no true available in ML6
end
catch
% never mind - ignore...
end
% The figure (if specified) must be in focus
if ~isempty(paramsStruct.hFigure) & ishandle(paramsStruct.hFigure) %#ok ML6
isFigureValid = 1; % no true available in ML6
figure(paramsStruct.hFigure);
else
isFigureValid = 0; % no false available in ML6
end
% Flush all graphic events to ensure correct rendering
drawnow; pause(0.01);
% No handle specified
wasPositionGiven = 1; % no true available in ML6
if isempty(paramsStruct.handle)
% Set default handle, if not supplied
paramsStruct.handle = paramsStruct.hFigure;
% If position was not specified, get it interactively using RBBOX
if isempty(paramsStruct.position)
[paramsStruct.position, jFrameUsed, msgStr] = getInteractivePosition(paramsStruct.hFigure); %#ok<ASGLU> jFrameUsed is unused
paramsStruct.wasInteractive = 1; % no true available in ML6
wasPositionGiven = 0; % no false available in ML6
end
elseif ~ishandle(paramsStruct.handle)
% Handle was supplied - ensure it is a valid handle
error('YMA:screencapture:invalidHandle','Invalid handle passed to ScreenCapture');
elseif isempty(paramsStruct.position)
% Handle was supplied but position was not, so use the handle's position
paramsStruct.position = getPixelPos(paramsStruct.handle);
paramsStruct.position(1:2) = 0;
wasPositionGiven = 0; % no false available in ML6
elseif ~isnumeric(paramsStruct.position) | (length(paramsStruct.position) ~= 4) %#ok ML6
% Both handle & position were supplied - ensure a valid pixel position vector
error('YMA:screencapture:invalidPosition','Invalid position vector passed to ScreenCapture: \nMust be a [x,y,w,h] numeric pixel array');
end
% Capture current object (uicontrol/axes/figure) if w=h=0 (single-click in interactive mode)
if paramsStruct.position(3)<=0 | paramsStruct.position(4)<=0 %#ok ML6
%TODO - find a way to single-click another Matlab figure (the following does not work)
%paramsStruct.position = getPixelPos(ancestor(hittest,'figure'));
paramsStruct.position = getPixelPos(paramsStruct.handle);
paramsStruct.position(1:2) = 0;
paramsStruct.wasInteractive = 0; % no false available in ML6
wasPositionGiven = 0; % no false available in ML6
end
% First get the parent handle's desktop-based Matlab pixel position
parentPos = [0,0,0,0];
dX = 0;
dY = 0;
dW = 0;
dH = 0;
if ~isFigure(hParent)
% Get the reguested component's pixel position
parentPos = getPixelPos(hParent, 1); % no true available in ML6
% Axes position inaccuracy estimation
deltaX = 3;
deltaY = -1;
% Fix for images
if isImage(hParent) % | (isAxes(hParent) & strcmpi(get(hParent,'YDir'),'reverse')) %#ok ML6
% Compensate for resized image axes
hAxes = get(hParent,'Parent');
if all(get(hAxes,'DataAspectRatio')==1) % sanity check: this is the normal behavior
% Note 18/4/2013: the following fails for non-square images
%actualImgSize = min(parentPos(3:4));
%dX = (parentPos(3) - actualImgSize) / 2;
%dY = (parentPos(4) - actualImgSize) / 2;
%parentPos(3:4) = actualImgSize;
% The following should work for all types of images
actualImgSize = size(get(hParent,'CData'));
dX = (parentPos(3) - min(parentPos(3),actualImgSize(2))) / 2;
dY = (parentPos(4) - min(parentPos(4),actualImgSize(1))) / 2;
parentPos(3:4) = actualImgSize([2,1]);
%parentPos(3) = max(parentPos(3),actualImgSize(2));
%parentPos(4) = max(parentPos(4),actualImgSize(1));
end
% Fix user-specified img positions (but not auto-inferred ones)
if wasPositionGiven
% In images, use data units rather than pixel units
% Reverse the YDir
ymax = max(get(hParent,'YData'));
paramsStruct.position(2) = ymax - paramsStruct.position(2) - paramsStruct.position(4);
% Note: it would be best to use hgconvertunits, but:
% ^^^^ (1) it fails on Matlab 6, and (2) it doesn't accept Data units
%paramsStruct.position = hgconvertunits(hFig, paramsStruct.position, 'Data', 'pixel', hParent); % fails!
xLims = get(hParent,'XData');
yLims = get(hParent,'YData');
xPixelsPerData = parentPos(3) / (diff(xLims) + 1);
yPixelsPerData = parentPos(4) / (diff(yLims) + 1);
paramsStruct.position(1) = round((paramsStruct.position(1)-xLims(1)) * xPixelsPerData);
paramsStruct.position(2) = round((paramsStruct.position(2)-yLims(1)) * yPixelsPerData + 2*dY);
paramsStruct.position(3) = round( paramsStruct.position(3) * xPixelsPerData);
paramsStruct.position(4) = round( paramsStruct.position(4) * yPixelsPerData);
% Axes position inaccuracy estimation
if strcmpi(computer('arch'),'win64')
deltaX = 7;
deltaY = -7;
else
deltaX = 3;
deltaY = -3;
end
else % axes/image position was auto-infered (entire image)
% Axes position inaccuracy estimation
if strcmpi(computer('arch'),'win64')
deltaX = 6;
deltaY = -6;
else
deltaX = 2;
deltaY = -2;
end
dW = -2*dX;
dH = -2*dY;
end
end
%hFig = ancestor(hParent,'figure');
hParent = paramsStruct.hFigure;
elseif paramsStruct.wasInteractive % interactive figure rectangle
% Compensate for 1px rbbox inaccuracies
deltaX = 2;
deltaY = -2;
else % non-interactive figure
% Compensate 4px figure boundaries = difference betweeen OuterPosition and Position
deltaX = -1;
deltaY = 1;
end
%disp(paramsStruct.position) % for debugging
% Now get the pixel position relative to the monitor
figurePos = getPixelPos(hParent);
desktopPos = figurePos + parentPos;
% Now convert to Java-based pixels based on screen size
% Note: multiple monitors are automatically handled correctly, since all
% ^^^^ Java positions are relative to the main monitor's top-left corner
javaX = desktopPos(1) + paramsStruct.position(1) + deltaX + dX;
javaY = screenSize(4) - desktopPos(2) - paramsStruct.position(2) - paramsStruct.position(4) + deltaY + dY;
width = paramsStruct.position(3) + dW;
height = paramsStruct.position(4) + dH;
paramsStruct.position = round([javaX, javaY, width, height]);
%paramsStruct.position
% Ensure the figure is at the front so it can be screen-captured
if isFigureValid
figure(hParent);
drawnow;
pause(0.02);
end
catch
% Maybe root/desktop handle (root does not have a 'Position' prop so getPixelPos croaks
if isequal(double(hParent),0) % =root/desktop handle; handles case of hParent=[]
javaX = paramsStruct.position(1) - 1;
javaY = screenSize(4) - paramsStruct.position(2) - paramsStruct.position(4) - 1;
paramsStruct.position = [javaX, javaY, paramsStruct.position(3:4)];
end
end
%end % convertPos
%% Interactively get the requested capture rectangle
function [positionRect, jFrameUsed, msgStr] = getInteractivePosition(hFig)
msgStr = '';
try
% First try the invisible-figure approach, in order to
% enable rbbox outside any existing figure boundaries
f = figure('units','pixel','pos',[-100,-100,10,10],'HitTest','off');
drawnow; pause(0.01);
oldWarn = warning('off','MATLAB:HandleGraphics:ObsoletedProperty:JavaFrame');
jf = get(handle(f),'JavaFrame');
warning(oldWarn);
try
jWindow = jf.fFigureClient.getWindow;
catch
try
jWindow = jf.fHG1Client.getWindow;
catch
jWindow = jf.getFigurePanelContainer.getParent.getTopLevelAncestor;
end
end
com.sun.awt.AWTUtilities.setWindowOpacity(jWindow,0.05); %=nearly transparent (not fully so that mouse clicks are captured)
jWindow.setMaximized(1); % no true available in ML6
jFrameUsed = 1; % no true available in ML6
msg = {'Mouse-click and drag a bounding rectangle for screen-capture ' ...
... %'or single-click any Matlab figure to capture the entire figure.' ...
};
catch
% Something failed, so revert to a simple rbbox on a visible figure
try delete(f); drawnow; catch, end %Cleanup...
jFrameUsed = 0; % no false available in ML6
msg = {'Mouse-click within any Matlab figure and then', ...
'drag a bounding rectangle for screen-capture,', ...
'or single-click to capture the entire figure'};
end
uiwait(msgbox(msg,'ScreenCapture'));
k = waitforbuttonpress; %#ok k is unused
%hFig = getCurrentFig;
%p1 = get(hFig,'CurrentPoint');
positionRect = rbbox;
%p2 = get(hFig,'CurrentPoint');
if jFrameUsed
jFrameOrigin = getPixelPos(f);
delete(f); drawnow;
try
figOrigin = getPixelPos(hFig);
catch % empty/invalid hFig handle
figOrigin = [0,0,0,0];
end
else
if isempty(hFig)
jFrameOrigin = getPixelPos(gcf);
else
jFrameOrigin = [0,0,0,0];
end
figOrigin = [0,0,0,0];
end
positionRect(1:2) = positionRect(1:2) + jFrameOrigin(1:2) - figOrigin(1:2);
if prod(positionRect(3:4)) > 0
msgStr = sprintf('%dx%d area captured',positionRect(3),positionRect(4));
end
%end % getInteractivePosition
%% Get current figure (even if its handle is hidden)
function hFig = getCurrentFig
oldState = get(0,'showHiddenHandles');
set(0,'showHiddenHandles','on');
hFig = get(0,'CurrentFigure');
set(0,'showHiddenHandles',oldState);
%end % getCurrentFig
%% Get ancestor figure - used for old Matlab versions that don't have a built-in ancestor()
function hObj = ancestor(hObj,type)
if ~isempty(hObj) & ishandle(hObj) %#ok for Matlab 6 compatibility
try
hObj = get(hObj,'Ancestor');
catch
% never mind...
end
try
%if ~isa(handle(hObj),type) % this is best but always returns 0 in Matlab 6!
%if ~isprop(hObj,'type') | ~strcmpi(get(hObj,'type'),type) % no isprop() in ML6!
try
objType = get(hObj,'type');
catch
objType = '';
end
if ~strcmpi(objType,type)
try
parent = get(handle(hObj),'parent');
catch
parent = hObj.getParent; % some objs have no 'Parent' prop, just this method...
end
if ~isempty(parent) % empty parent means root ancestor, so exit
hObj = ancestor(parent,type);
end
end
catch
% never mind...
end
end
%end % ancestor
%% Get position of an HG object in specified units
function pos = getPos(hObj,field,units)
% Matlab 6 did not have hgconvertunits so use the old way...
oldUnits = get(hObj,'units');
if strcmpi(oldUnits,units) % don't modify units unless we must!
pos = get(hObj,field);
else
set(hObj,'units',units);
pos = get(hObj,field);
set(hObj,'units',oldUnits);
end
%end % getPos
%% Get pixel position of an HG object - for Matlab 6 compatibility
function pos = getPixelPos(hObj,varargin)
persistent originalObj
try
stk = dbstack;
if ~strcmp(stk(2).name,'getPixelPos')
originalObj = hObj;
end
if isFigure(hObj) %| isAxes(hObj)
%try
pos = getPos(hObj,'OuterPosition','pixels');
else %catch
% getpixelposition is unvectorized unfortunately!
pos = getpixelposition(hObj,varargin{:});
% add the axes labels/ticks if relevant (plus a tiny margin to fix 2px label/title inconsistencies)
if isAxes(hObj) & ~isImage(originalObj) %#ok ML6
tightInsets = getPos(hObj,'TightInset','pixel');
pos = pos + tightInsets.*[-1,-1,1,1] + [-1,1,1+tightInsets(1:2)];
end
end
catch
try
% Matlab 6 did not have getpixelposition nor hgconvertunits so use the old way...
pos = getPos(hObj,'Position','pixels');
catch
% Maybe the handle does not have a 'Position' prop (e.g., text/line/plot) - use its parent
pos = getPixelPos(get(hObj,'parent'),varargin{:});
end
end
% Handle the case of missing/invalid/empty HG handle
if isempty(pos)
pos = [0,0,0,0];
end
%end % getPixelPos
%% Adds a ScreenCapture toolbar button
function addToolbarButton(paramsStruct)
% Ensure we have a valid toolbar handle
hFig = ancestor(paramsStruct.toolbar,'figure');
if isempty(hFig)
error('YMA:screencapture:badToolbar','the ''Toolbar'' parameter must contain a valid GUI handle');
end
set(hFig,'ToolBar','figure');
hToolbar = findall(hFig,'type','uitoolbar');
if isempty(hToolbar)
error('YMA:screencapture:noToolbar','the ''Toolbar'' parameter must contain a figure handle possessing a valid toolbar');
end
hToolbar = hToolbar(1); % just in case there are several toolbars... - use only the first
% Prepare the camera icon
icon = ['3333333333333333'; ...
'3333333333333333'; ...
'3333300000333333'; ...
'3333065556033333'; ...
'3000000000000033'; ...
'3022222222222033'; ...
'3022220002222033'; ...
'3022203110222033'; ...
'3022201110222033'; ...
'3022204440222033'; ...
'3022220002222033'; ...
'3022222222222033'; ...
'3000000000000033'; ...
'3333333333333333'; ...
'3333333333333333'; ...
'3333333333333333'];
cm = [ 0 0 0; ... % black
0 0.60 1; ... % light blue
0.53 0.53 0.53; ... % light gray
NaN NaN NaN; ... % transparent
0 0.73 0; ... % light green
0.27 0.27 0.27; ... % gray
0.13 0.13 0.13]; % dark gray
cdata = ind2rgb(uint8(icon-'0'),cm);
% If the button does not already exit
hButton = findall(hToolbar,'Tag','ScreenCaptureButton');
tooltip = 'Screen capture';
if ~isempty(paramsStruct.target)
tooltip = [tooltip ' to ' paramsStruct.target];
end
if isempty(hButton)
% Add the button with the icon to the figure's toolbar
hButton = uipushtool(hToolbar, 'CData',cdata, 'Tag','ScreenCaptureButton', 'TooltipString',tooltip, 'ClickedCallback',['screencapture(''' paramsStruct.target ''')']); %#ok unused
else
% Otherwise, simply update the existing button
set(hButton, 'CData',cdata, 'Tag','ScreenCaptureButton', 'TooltipString',tooltip, 'ClickedCallback',['screencapture(''' paramsStruct.target ''')']);
end
%end % addToolbarButton
%% Java-get the actual screen-capture image data
function imgData = getScreenCaptureImageData(positionRect)
if isempty(positionRect) | all(positionRect==0) | positionRect(3)<=0 | positionRect(4)<=0 %#ok ML6
imgData = [];
else
% Use java.awt.Robot to take a screen-capture of the specified screen area
rect = java.awt.Rectangle(positionRect(1), positionRect(2), positionRect(3), positionRect(4));
robot = java.awt.Robot;
jImage = robot.createScreenCapture(rect);
% Convert the resulting Java image to a Matlab image
% Adapted for a much-improved performance from:
% http://www.mathworks.com/support/solutions/data/1-2WPAYR.html
h = jImage.getHeight;
w = jImage.getWidth;
%imgData = zeros([h,w,3],'uint8');
%pixelsData = uint8(jImage.getData.getPixels(0,0,w,h,[]));
%for i = 1 : h
% base = (i-1)*w*3+1;
% imgData(i,1:w,:) = deal(reshape(pixelsData(base:(base+3*w-1)),3,w)');
%end
% Performance further improved based on feedback from Urs Schwartz:
%pixelsData = reshape(typecast(jImage.getData.getDataStorage,'uint32'),w,h).';
%imgData(:,:,3) = bitshift(bitand(pixelsData,256^1-1),-8*0);
%imgData(:,:,2) = bitshift(bitand(pixelsData,256^2-1),-8*1);
%imgData(:,:,1) = bitshift(bitand(pixelsData,256^3-1),-8*2);
% Performance even further improved based on feedback from Jan Simon:
pixelsData = reshape(typecast(jImage.getData.getDataStorage, 'uint8'), 4, w, h);
imgData = cat(3, ...
transpose(reshape(pixelsData(3, :, :), w, h)), ...
transpose(reshape(pixelsData(2, :, :), w, h)), ...
transpose(reshape(pixelsData(1, :, :), w, h)));
end
%end % getInteractivePosition
%% Return the figure to its pre-undocked state (when relevant)
function redockFigureIfRelevant(paramsStruct)
if paramsStruct.wasDocked
try
set(paramsStruct.hFigure,'WindowStyle','docked');
%drawnow;
catch
% never mind - ignore...
end
end
%end % redockFigureIfRelevant
%% Copy screen-capture to the system clipboard
% Adapted from http://www.mathworks.com/matlabcentral/fileexchange/28708-imclipboard/content/imclipboard.m
function imclipboard(imgData)
% Import necessary Java classes
import java.awt.Toolkit.*
import java.awt.image.BufferedImage
import java.awt.datatransfer.DataFlavor
% Add the necessary Java class (ImageSelection) to the Java classpath
if ~exist('ImageSelection', 'class')
% Obtain the directory of the executable (or of the M-file if not deployed)
%javaaddpath(fileparts(which(mfilename)), '-end');
if isdeployed % Stand-alone mode.
[status, result] = system('path'); %#ok<ASGLU>
MatLabFilePath = char(regexpi(result, 'Path=(.*?);', 'tokens', 'once'));
else % MATLAB mode.
MatLabFilePath = fileparts(mfilename('fullpath'));
end
javaaddpath(MatLabFilePath, '-end');
end
% Get System Clipboard object (java.awt.Toolkit)
cb = getDefaultToolkit.getSystemClipboard; % can't use () in ML6!
% Get image size
ht = size(imgData, 1);
wd = size(imgData, 2);
% Convert to Blue-Green-Red format
imgData = imgData(:, :, [3 2 1]);
% Convert to 3xWxH format
imgData = permute(imgData, [3, 2, 1]);
% Append Alpha data (not used)
imgData = cat(1, imgData, 255*ones(1, wd, ht, 'uint8'));
% Create image buffer
imBuffer = BufferedImage(wd, ht, BufferedImage.TYPE_INT_RGB);
imBuffer.setRGB(0, 0, wd, ht, typecast(imgData(:), 'int32'), 0, wd);
% Create ImageSelection object
% % custom java class
imSelection = ImageSelection(imBuffer);
% Set clipboard content to the image
cb.setContents(imSelection, []);
%end %imclipboard
%% Is the provided handle a figure?
function flag = isFigure(hObj)
flag = isa(handle(hObj),'figure') | isa(hObj,'matlab.ui.Figure');
%end %isFigure
%% Is the provided handle an axes?
function flag = isAxes(hObj)
flag = isa(handle(hObj),'axes') | isa(hObj,'matlab.graphics.axis.Axes');
%end %isFigure
%% Is the provided handle an image?
function flag = isImage(hObj)
flag = isa(handle(hObj),'image') | isa(hObj,'matlab.graphics.primitive.Image');
%end %isFigure
%%%%%%%%%%%%%%%%%%%%%%%%%% TODO %%%%%%%%%%%%%%%%%%%%%%%%%
% find a way in interactive-mode to single-click another Matlab figure for screen-capture

View File

@ -0,0 +1,50 @@
set(0,'defaulttextInterpreter','latex')
set(groot, 'defaultAxesTickLabelInterpreter','latex'); set(groot, 'defaultLegendInterpreter','latex');
format long
runIdx = 6;
load(sprintf('./Data/Run_%03i/psi_gs.mat',runIdx),'psi','muchem','Observ','t_idx','Transf','Params','VDk','V');
x = Transf.x*Params.l0*1e6;
y = Transf.y*Params.l0*1e6;
z = Transf.z*Params.l0*1e6;
%percentcomplete = linspace(0,1,Params.cut_off/200);
dx = x(2)-x(1); dy = y(2)-y(1); dz = z(2)-z(1);
%Plotting
subplot(2,3,1)
n = abs(psi).^2;
nxz = squeeze(trapz(n*dy,2));
nyz = squeeze(trapz(n*dx,1));
nxy = squeeze(trapz(n*dz,3));
plotxz = pcolor(x,z,nxz');
set(plotxz, 'EdgeColor', 'none');
xlabel('$x$ [$\mu$m]'); ylabel('$z$ [$\mu$m]');
subplot(2,3,2)
plotyz = pcolor(y,z,nyz');
set(plotyz, 'EdgeColor', 'none');
xlabel('$y$ [$\mu$m]'); ylabel('$z$ [$\mu$m]');
subplot(2,3,3)
plotxy = pcolor(x,y,nxy');
set(plotxy, 'EdgeColor', 'none');
xlabel('$x$ [$\mu$m]'); ylabel('$y$ [$\mu$m]');
subplot(2,3,4)
plot(-log10(Observ.residual),'-b')
ylabel('$-\mathrm{log}_{10}(r)$'); xlabel('steps');
subplot(2,3,5)
plot(Observ.EVec,'-b')
ylabel('$E$'); xlabel('steps');
subplot(2,3,6)
plot(Observ.mucVec,'-b')
ylabel('$\mu$'); xlabel('steps');
% xlim([0,1]); ylim([0,8]);
% xlim([0,1]); ylim([0,8]);
Ecomp = energy_components(psi,Params,Transf,VDk,V);

View File

@ -0,0 +1,77 @@
set(0,'defaulttextInterpreter','latex')
set(groot, 'defaultAxesTickLabelInterpreter','latex'); set(groot, 'defaultLegendInterpreter','latex');
RunIdx = 1;
FileDir = dir(sprintf('./Data/Run_%03i/TimeEvolution/*.mat',RunIdx));
NumFiles = numel(FileDir);
QuenchSettings = load(sprintf('./Data/Run_%03i/QuenchSettings',RunIdx),'Quench','Params','Transf','VDk','V');
Transf = QuenchSettings.Transf; Params = QuenchSettings.Params;
x = Transf.x; y = Transf.y; z = Transf.z;
dx = x(2)-x(1); dy = y(2)-y(1); dz = z(2)-z(1);
mkdir(sprintf('./Data/Run_%03i/Figures',RunIdx))
outputVideo = VideoWriter(fullfile('./Data/Movie.avi'));
outputVideo.FrameRate = 10;
open(outputVideo)
figure(1);
x0 = 800;
y0 = 200;
width = 800;
height = 600;
set(gcf,'position',[x0,y0,width,height])
EVecTemp = [];
for ii = 2:(NumFiles-1)
load(sprintf('./Data/Run_%03i/TimeEvolution/psi_%i.mat',RunIdx,ii),'psi','muchem','T','Observ','t_idx');
%Plotting
subplot(2,3,1)
n = abs(psi).^2;
nxz = squeeze(trapz(n*dy,2));
nyz = squeeze(trapz(n*dx,1));
nxy = squeeze(trapz(n*dz,3));
plotxz = pcolor(x,z,nxz'); shading interp
set(plotxz, 'EdgeColor', 'none');
xlabel('$x$ [$\mu$m]'); ylabel('$z$ [$\mu$m]');
subplot(2,3,2)
plotyz = pcolor(y,z,nyz'); shading interp
set(plotyz, 'EdgeColor', 'none');
xlabel('$y$ [$\mu$m]'); ylabel('$z$ [$\mu$m]');
subplot(2,3,3)
plotxy = pcolor(x,y,nxy'); shading interp
set(plotxy, 'EdgeColor', 'none');
xlabel('$x$ [$\mu$m]'); ylabel('$y$ [$\mu$m]');
subplot(2,3,4)
plot(Observ.tVecPlot*1000/Params.w0,Observ.NormVec,'-b')
ylabel('Normalization'); xlabel('$t$ [$m$s]');
subplot(2,3,5)
plot(Observ.tVecPlot*1000/Params.w0,1-2*Observ.PCVec/pi,'-b')
ylabel('Coherence'); xlabel('$t$ [$m$s]');
ylim([0,1])
subplot(2,3,6)
plot(Observ.tVecPlot*1000/Params.w0,Observ.EVec,'-b')
ylabel('E'); xlabel('$t$ [$m$s]');
tVal = Observ.tVecPlot(end)*1000/Params.w0;
sgtitle(sprintf('$\\mu =%.3f \\hbar\\omega_0$, $T=%.1f$nK, $t=%.1f$ms',muchem,T,tVal))
drawnow
saveas(gcf,sprintf('./Data/Run_%03i/Figures/Image_%i.jpg',RunIdx,ii))
img = imread(sprintf('./Data/Run_%03i/Figures/Image_%i.jpg',RunIdx,ii));
writeVideo(outputVideo,img)
% hold off;
clf
end
close(outputVideo)
close(figure(1))
delete(sprintf('./Data/Run_%03i/Figures/*.jpg',RunIdx)) % deleting images after movie is made

View File

@ -0,0 +1,58 @@
function [m_Order] = OrderParameter_m(psi,Transf,Params,VDk,V,T,muchem)
NumRealiz = 100;
Mx = numel(Transf.x);
My = numel(Transf.y);
Mz = numel(Transf.z);
r = normrnd(0,1,size(psi));
theta = rand(size(psi));
noise = r.*exp(2*pi*1i*theta);
KEop= 0.5*(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2);
Gamma = 1-1i*Params.gamma_S;
dt = Params.dt;
avgpsi = 0;
avgpsi2 = 0;
for jj = 1:NumRealiz
%generate initial state
xi = sqrt(2*Params.gamma_S*Params.kbol*T*10^(-9)*dt/(Params.hbar*Params.w0*Transf.dx*Transf.dy*Transf.dz));
swapx = randi(length(Transf.x),1,length(Transf.x));
swapy = randi(length(Transf.y),1,length(Transf.y));
swapz = randi(length(Transf.z),1,length(Transf.z));
psi_j = psi + xi * noise(swapx,swapy,swapz);
% --- % propagate forward in time 1 time step:
%kin
psi_j = fftn(psi_j);
psi_j = psi_j.*exp(-0.5*1i*Gamma*dt*KEop);
psi_j = ifftn(psi_j);
%DDI
frho = fftn(abs(psi_j).^2);
Phi = real(ifftn(frho.*VDk));
%Real-space
psi_j = psi_j.*exp(-1i*Gamma*dt*(V + Params.gs*abs(psi_j).^2 + Params.gammaQF*abs(psi_j).^3 + Params.gdd*Phi - muchem));
%kin
psi_j = fftn(psi_j);
psi_j = psi_j.*exp(-0.5*1i*Gamma*dt*KEop);
psi_j = ifftn(psi_j);
%Projection
kcut = sqrt(2*Params.e_cut);
K = (Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2)<kcut.^2;
psi_j = ifftn(K.*fftn(psi_j));
% --- %
avgpsi = avgpsi + abs(sum(psi_j(:)))/NumRealiz;
avgpsi2 = avgpsi2 + sum(abs(psi_j(:)).^2)/NumRealiz;
end
m_Order = 1/sqrt(Mx*My*Mz)*avgpsi/sqrt(avgpsi2);
end

View File

@ -0,0 +1,47 @@
function RPlot = runningplot(psi,Params,Transf,Observ)
set(0,'defaulttextInterpreter','latex')
set(groot, 'defaultAxesTickLabelInterpreter','latex'); set(groot, 'defaultLegendInterpreter','latex');
format long
x = Transf.x*Params.l0*1e6;
y = Transf.y*Params.l0*1e6;
z = Transf.z*Params.l0*1e6;
%percentcomplete = linspace(0,1,Params.cut_off/200);
dx = x(2)-x(1); dy = y(2)-y(1); dz = z(2)-z(1);
%Plotting
subplot(2,3,1)
n = abs(psi).^2;
nxz = squeeze(trapz(n*dy,2));
nyz = squeeze(trapz(n*dx,1));
nxy = squeeze(trapz(n*dz,3));
plotxz = pcolor(x,z,nxz');
set(plotxz, 'EdgeColor', 'none');
xlabel('$x$ [$\mu$m]'); ylabel('$z$ [$\mu$m]');
subplot(2,3,2)
plotyz = pcolor(y,z,nyz');
set(plotyz, 'EdgeColor', 'none');
xlabel('$y$ [$\mu$m]'); ylabel('$z$ [$\mu$m]');
subplot(2,3,3)
plotxy = pcolor(x,y,nxy');
set(plotxy, 'EdgeColor', 'none');
xlabel('$x$ [$\mu$m]'); ylabel('$y$ [$\mu$m]');
subplot(2,3,4)
plot(-log10(Observ.residual),'-b')
ylabel('$-\mathrm{log}_{10}(r)$'); xlabel('steps');
subplot(2,3,5)
plot(Observ.EVec,'-b')
ylabel('$E$'); xlabel('steps');
subplot(2,3,6)
plot(Observ.mucVec,'-b')
ylabel('$\mu$'); xlabel('steps');
% xlim([0,1]); ylim([0,8]);
% xlim([0,1]); ylim([0,8]);

View File

@ -0,0 +1,94 @@
function [psi,V,VDk,gammaQF] = Initialize(Params,Transf)
format long
X = Transf.X; Y = Transf.Y; Z = Transf.Z;
m = Params.m;
Zcutoff = Params.Lz/2;
% == Potential == %
V = 0.5*(Params.gx.*X.^2+Params.gy.*Y.^2+Params.gz*Z.^2);
% == Calulating the DDIs == %
% For a cylindrical cutoff, we first construct a kr grid based on the 3D parameters using Bessel quadrature
loadDDI = 1;
if loadDDI == 1
VDk = load(sprintf('./Data/VDk_M.mat'));
VDk = VDk.VDk;
else
Params.Lr = 0.5*min(Params.Lx,Params.Ly);
Params.Nr = max(Params.Nx,Params.Ny);
[TransfRad] = setup_space_radial(Params); %morder really doesn't matter
VDk = VDcutoff(TransfRad.kr,TransfRad.kz,TransfRad.Rmax,Zcutoff);
disp('Calculated radial grid and cutoff')
% VDk = interp2(DDI.kz,DDI.kr,DDI.VDk,Transf.kz,Transf.kr,'spline');
fullkr = [-flip(TransfRad.kr)',TransfRad.kr'];
[KR,KZ] = ndgrid(fullkr,TransfRad.kz);
[KX3D,KY3D,KZ3D] = ndgrid(ifftshift(Transf.kx),ifftshift(Transf.ky),ifftshift(Transf.kz));
KR3D = sqrt(KX3D.^2 + KY3D.^2);
fullVDK = [flip(VDk',2),VDk']';
VDk = interpn(KR,KZ,fullVDK,KR3D,KZ3D,'spline',-1/3); %Interpolating the radial VDk onto a new grid
VDk = fftshift(VDk);
save(sprintf('./Data/VDk_M.mat'),'VDk');
end
disp('Finished DDI')
%XXXX
% alph=acos((Transf.KZ*cos(Params.theta)+Transf.KX*sin(Params.theta))./sqrt(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2));
% alph(1)=pi/2;
% rhoc = max([abs(Transf.x),abs(Transf.y)]);
% KR = sqrt(Transf.KX.^2+Transf.KY.^2);
% func = @(n,u,v) v.^2./(u.^2+v.^2).*(v.*besselj(n,u).*besselk(n+1,v) - u.*besselj(n+1,u).*besselk(n,v));
% % func2 = @(n,u) (8*besselj(n,u) - 2*u.*besselj(n+1,u))./u.^2;
%
% VDk = -0.5*func(0,KR*rhoc,abs(Transf.KZ)*rhoc) + (Transf.KX.^2./KR.^2 - 0.5).*func(2,KR*rhoc,abs(Transf.KZ)*rhoc);
% VDk=(1/3)*(3*(cos(alph).^2)-1) - VDk;
%
% VDk(KR==0) = -1/3 + 1/2*abs(Transf.KZ(KR==0))*rhoc.*besselk(1,abs(Transf.KZ(KR==0))*rhoc);
% VDk(Transf.KZ==0) = 1/6 + (Transf.KX(Transf.KZ==0).^2-Transf.KY(Transf.KZ==0).^2)./(KR(Transf.KZ==0).^2).*(1/2 - besselj(1,KR(Transf.KZ==0)*rhoc)./(KR(Transf.KZ==0)*rhoc));
% VDk(1,1,1) = 1/6;
%XXXX
% % == Setting up the initial wavefunction == %
loadstate = 0;
if loadstate == 1
loadnumber = 1250;
% load(sprintf('./Data/Seed/psi_%i.mat',loadnumber),'psi');
load(sprintf('./Data/Run_004/psi_gs.mat'),'psi');
Norm = trapz(abs(psi(:)).^2)*Transf.dx*Transf.dy*Transf.dz;
psi = sqrt(Params.N)*psi/sqrt(Norm);
else
ellx = sqrt(Params.hbar/(Params.m*Params.wx))/Params.l0;
elly = sqrt(Params.hbar/(Params.m*Params.wy))/Params.l0;
ellz = sqrt(Params.hbar/(Params.m*Params.wz))/Params.l0;
Rx = 4*sqrt(2)*ellx; Ry = 4*sqrt(2)*elly; Rz = sqrt(2)*ellz;
X0 = 0.0*Transf.Xmax; Y0 = 0.0*Transf.Ymax; Z0 = 0*Transf.Zmax;
% psi = exp(-(X-X0).^2/Rx^2-(Y-Y0).^2/Ry^2-(Z-Z0).^2/Rz^2);
% cur_norm = trapz(abs(psi(:)).^2)*Transf.dx*Transf.dy*Transf.dz;
% psi = psi/sqrt(cur_norm);
psiz = exp(-(Z-Z0).^2/Rz^2)/sqrt(ellz*sqrt(pi));
psi2d = load(sprintf('./Data/Seed/psi_2d_SS.mat'),'psiseed_2d'); psi2d = psi2d.psiseed_2d;
psi = psiz.*repmat(psi2d,[1 1 length(Transf.z)]);
%add some noise
r = normrnd(0,1,size(X));
theta = rand(size(X));
noise = r.*exp(2*pi*1i*theta);
psi = psi + 0.00*noise;
Norm = trapz(abs(psi(:)).^2)*Transf.dx*Transf.dy*Transf.dz;
Norm
psi = sqrt(Params.N)*psi/sqrt(Norm);
end

View File

@ -0,0 +1,18 @@
function [PhaseC] = PhaseCoherence(psi,Transf,Params)
norm = sum(sum(sum(abs(psi).^2,1),2),3)*Transf.dx*Transf.dy*Transf.dz;
psi = psi/sqrt(norm);
NumGlobalShifts = 800;
betas = []; phishift = [];
for jj = 1:NumGlobalShifts
phishift(jj) = -pi + 2*pi*(jj-1)/NumGlobalShifts;
betas(jj) = sum(sum(sum(abs(angle(psi*exp(-1i*phishift(jj)))).*abs(psi).^2)));
end
[minbeta,minidx] = min(betas);
psi = psi*exp(-1i*phishift(minidx));
phi = angle(psi);
avgphi = sum(sum(sum(phi.*abs(psi).^2,1),2),3)*Transf.dx*Transf.dy*Transf.dz;
PhaseC = sum(sum(sum(abs(angle(psi)-avgphi).*abs(psi).^2)))*Transf.dx*Transf.dy*Transf.dz;

View File

@ -0,0 +1,54 @@
function VDk = VDcutoff(kr, kz, Rmax, Zmax, Nr)
% makes the dipolar direct interaction matrix, size numel(kr) * numel(kz)
% Rmax and Zmax are the interaction cutoffs. I use 4*(where the density goes to 10^-4 of its peak)
% VDk needs to be multiplied by Cdd
% approach is that of Lu, PRA 82, 023622 (2010)
% blame Danny Baillie, 9 Aug 2011
% accuracy inputs for numerical integration
if(nargin==4)
Nr = 5e4;
end
Nz = 64;
farRmultiple = 2000;
% analytical transform without cutoff
[KR, KZ]=ndgrid(kr,kz);
Ksq = KR.^2 + KZ.^2;
cossq = KZ.^2./Ksq;
VDk = cossq-1/3;
% analytical cutoff for slice 0<z<Zmax, 0<r<Inf Ronen, PRL 98, 030406 (2007)
sinsq = 1 - cossq;
VDk = VDk + exp(-Zmax*KR).*( sinsq .* cos(Zmax * KZ) - sqrt(sinsq.*cossq).*sin(Zmax * KZ) );
% midpoint grids for the integration over 0<z<Zmax, Rmax<r<farRmultiple*Rmax (i.e. starts at Rmax)
dr=(farRmultiple-1)*Rmax/Nr;
r = ((1:Nr)'-0.5)*dr+Rmax;
dz=Zmax/Nz;
z = ((1:Nz)-0.5)*dz;
[R, Z] = ndgrid(r,z);
Rsq = R.^2 + Z.^2;
% real space interaction to be transformed
igrandbase = (1 - 3*Z.^2./Rsq)./Rsq.^(3/2);
% do the Fourier transform numerically
% prestore to ensure each besselj is only calculated once
% cell is faster than (:,:,krn) slicing
Nkr = numel(kr);
besselr = cell(Nkr,1);
for krn = 1:Nkr
besselr{krn} = repmat(r.*besselj(0,kr(krn)*r),1,Nz);
end
for kzn = 1:numel(kz) % what goes wrong when kzn = 33?
igrandbasez = repmat(cos(kz(kzn)*z),Nr,1) .* igrandbase;
for krn = 1:Nkr
igrand = igrandbasez.*besselr{krn};
VDk(krn,kzn) = VDk(krn,kzn) - sum(igrand(:))*dz*dr;
end
end
% why are so few z values used?
% are the z and kz values without the bounds intended?

View File

@ -0,0 +1,28 @@
function muchem = chemicalpotential(psi,Params,Transf,VDk,V)
%Parameters
normfac = Params.Lx*Params.Ly*Params.Lz/numel(psi);
KEop= 0.5*(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2);
% DDIs
frho=fftn(abs(psi).^2);
Phi=real(ifftn(frho.*VDk));
Eddi = (Params.gdd*Phi.*abs(psi).^2);
%Kinetic energy
Ekin = KEop.*abs(fftn(psi)*normfac).^2;
Ekin = trapz(Ekin(:))*Transf.dkx*Transf.dky*Transf.dkz/(2*pi)^3;
%Potential energy
Epot = V.*abs(psi).^2;
%Contact interactions
Eint = Params.gs*abs(psi).^4;
%Quantum fluctuations
Eqf = Params.gammaQF*abs(psi).^5;
%Total energy
muchem = Ekin + trapz(Epot(:) + Eint(:) + Eddi(:) + Eqf(:))*Transf.dx*Transf.dy*Transf.dz; %
muchem = muchem / Params.N;

View File

@ -0,0 +1,35 @@
function E = energy_components(psi,Params,Transf,VDk,V)
%Parameters
KEop= 0.5*(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2);
normfac = Params.Lx*Params.Ly*Params.Lz/numel(psi);
% DDIs
frho = fftn(abs(psi).^2);
Phi = real(ifftn(frho.*VDk));
Eddi = 0.5*Params.gdd*Phi.*abs(psi).^2;
E.Eddi = trapz(Eddi(:))*Transf.dx*Transf.dy*Transf.dz;
% EddiTot = trapz(Eddi(:))*Transf.dx*Transf.dy*Transf.dz;
%Kinetic energy
% psik = ifftshift(fftn(fftshift(psi)))*normfac;
Ekin = KEop.*abs(fftn(psi)*normfac).^2;
E.Ekin = trapz(Ekin(:))*Transf.dkx*Transf.dky*Transf.dkz/(2*pi)^3;
% Potential energy
Epot = V.*abs(psi).^2;
E.Epot = trapz(Epot(:))*Transf.dx*Transf.dy*Transf.dz;
%Contact interactions
Eint = 0.5*Params.gs*abs(psi).^4;
E.Eint = trapz(Eint(:))*Transf.dx*Transf.dy*Transf.dz;
%Quantum fluctuations
Eqf = 0.4*Params.gammaQF*abs(psi).^5;
E.Eqf = trapz(Eqf(:))*Transf.dx*Transf.dy*Transf.dz;
% plot(Transf.x,abs(psi(:,end/2,end/2+1)).^2)

View File

@ -0,0 +1,31 @@
function E = energytotal(psi,Params,Transf,VDk,V)
%Parameters
KEop= 0.5*(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2);
normfac = Params.Lx*Params.Ly*Params.Lz/numel(psi);
% DDIs
frho = fftn(abs(psi).^2);
Phi = real(ifftn(frho.*VDk));
Eddi = 0.5*Params.gdd*Phi.*abs(psi).^2;
% EddiTot = trapz(Eddi(:))*Transf.dx*Transf.dy*Transf.dz;
%Kinetic energy
% psik = ifftshift(fftn(fftshift(psi)))*normfac;
Ekin = KEop.*abs(fftn(psi)*normfac).^2;
Ekin = trapz(Ekin(:))*Transf.dkx*Transf.dky*Transf.dkz/(2*pi)^3;
% Potential energy
Epot = V.*abs(psi).^2;
%Contact interactions
Eint = 0.5*Params.gs*abs(psi).^4;
%Quantum fluctuations
Eqf = 0.4*Params.gammaQF*abs(psi).^5;
E = Ekin + trapz(Epot(:) + Eint(:) + Eddi(:) + Eqf(:))*Transf.dx*Transf.dy*Transf.dz;

View File

@ -0,0 +1,24 @@
function res = norm_resid(psi,Params,Transf,VDk,V,muchem)
KEop= 0.5*(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2);
% DDIs
frho=fftn(abs(psi).^2);
Phi=real(ifftn(frho.*VDk));
Eddi = Params.gdd*Phi.*psi;
%Kinetic energy
Ekin = ifftn(KEop.*fftn(psi));
%Potential energy
Epot = V.*psi;
%Contact interactions
Eint = Params.gs*abs(psi).^2.*psi;
%Quantum fluctuations
Eqf = Params.gammaQF*abs(psi).^3.*psi;
%Total energy
res = trapz(abs(Ekin(:) + Epot(:) + Eint(:) + Eddi(:) + Eqf(:) - muchem*psi(:))*Transf.dx*Transf.dy*Transf.dz)/trapz(abs(muchem*psi(:))*Transf.dx*Transf.dy*Transf.dz);

View File

@ -0,0 +1,99 @@
function [Params] = parameters()
%%--%% Parameters %%--%%
%========= Simulation =========%
pert=0; %0 = no perturbation during real-time, 1=perturbation
%method=1; %0 = normal dipolar potential, 1=spherical cut-off, 2=cylindrical cut-off
%Energy tolerance
Params.Etol=5e-10;
Params.rtol = 1e-5;
Params.theta=pi/2; %pi/2 dipoles along x, theta=0 dipoles along z
Params.cut_off=2e6; %sometimes the imaginary time gets a little stuck
%even though the solution is good, this just stops it going on forever
%========= Constants =========%
hbar = 1.0545718e-34; %Planck constant [J.s]
kbol = 1.38064852e-23; %Boltzmann Constant [J/K]
mu0 = 1.25663706212e-6; %Vacuum Permeability [N/A^2] --
muB = 9.274009994e-24; %Bohr Magneton [J/T]
a0 = 5.2917721067e-11; %Bohr radius [m]
m0 = 1.660539066e-27; %Atomic mass [kg]
w0 = 2*pi*100; %angular frequency unit [s^-1]
mu0factor = 0.3049584233607396;% =(m0/me)*pi*alpha^2 -- me=mass of electron, alpha=fine struct. const.
% mu0=mu0factor *hbar^2*a0/(m0*muB^2)
%=============================%
%Number of points in each direction
Params.Nx = 128;
Params.Ny = 128;
Params.Nz = 96;
%Dimensions (in units of l0)
Params.Lx = 40;
Params.Ly = 40;
Params.Lz = 20;
%Masses
Params.m = 162*m0;
l0 = sqrt(hbar/(Params.m*w0)); %Defining a harmonic oscillator length
%Atom numbers
% Params.ppum = 2500; %particles per micron
% Params.N = Params.Lz*Params.ppum*l0*1e6;
Params.N = 10^6;
%Dipole lengths (units of muB)
Params.mu = 9.93*muB;
%scattering lengths
Params.as = 86*a0;
%trapping frequencies
Params.wx = 2*pi*125;
Params.wy = 2*pi*125;
Params.wz = 2*pi*250;
%Time step
Params.dt = 0.0005;
Params.mindt = 1e-6; %Minimum size for a time step using adaptive dt
%Stochastic GPE
Params.gamma_S = 7.5*10^(-3); %gamma for the stochastic GPE
Params.muchem = 12.64*Params.wz/w0;
%================ Parameters defined by those above ================%
% == Calculating quantum fluctuations == %
eps_dd = Params.add/Params.as;
if eps_dd == 0
Q5 = 1;
elseif eps_dd == 1
Q5 = 3*sqrt(3)/2;
else
yeps = (1-eps_dd)/(3*eps_dd);
Q5 = (3*eps_dd)^(5/2)*( (8+26*yeps+33*yeps^2)*sqrt(1+yeps) + 15*yeps^3*log((1+sqrt(1+yeps))/sqrt(yeps)) )/48;
Q5 = real(Q5);
end
Params.gammaQF = 128/3*sqrt(pi*(Params.as/l0)^5)*Q5;
%Contact interaction strength (units of l0/m)
Params.gs = 4*pi*Params.as/l0;
%Dipole lengths
Params.add = mu0*Params.mu^2*Params.m/(12*pi*hbar^2);
%DDI strength
Params.gdd = 12*pi*Params.add/l0; %sometimes the 12 is a 4? --> depends on how Vdk (DDI) is defined
%Trap gamma
Params.gx=(Params.wx/w0)^2;
Params.gy=(Params.wy/w0)^2;
Params.gz=(Params.wz/w0)^2;
%Loading the rest into Params
Params.hbar = hbar; Params.kbol = kbol; Params.mu0 = mu0; Params.muB = muB; Params.a0 = a0;
Params.w0 = w0; Params.l0 = l0;

View File

@ -0,0 +1,23 @@
%-% Running file %-%
clearvars
njob = 6;
mkdir(sprintf('./Data'))
mkdir(sprintf('./Data/Run_%03i',njob))
%Obtain simulation parameters
[Params] = parameters();
%Set up spatial grids and transforms
[Transf] = setup_space(Params);
[psi,V,VDk] = Initialize(Params,Transf);
% --- Initialize
Observ.EVec = []; Observ.NormVec = []; Observ.PCVec = []; Observ.tVecPlot = []; Observ.mucVec = [];
t_idx = 1; %Start at t = 0;
Observ.res_idx = 1;
[psi] = ssfm_imag(psi,Params,Transf,VDk,V,njob,t_idx,Observ);

View File

@ -0,0 +1,32 @@
function [Transf] = setup_space(Params)
Transf.Xmax = 0.5*Params.Lx;
Transf.Ymax = 0.5*Params.Ly;
Transf.Zmax = 0.5*Params.Lz;
Nz = Params.Nz; Nx = Params.Nx; Ny = Params.Ny;
% Fourier grids
x = linspace(-0.5*Params.Lx,0.5*Params.Lx-Params.Lx/Params.Nx,Params.Nx);
Kmax = pi*Params.Nx/Params.Lx;
kx = linspace(-Kmax,Kmax,Nx+1);
kx = kx(1:end-1); dkx = kx(2)-kx(1);
kx = fftshift(kx);
y = linspace(-0.5*Params.Ly,0.5*Params.Ly-Params.Ly/Params.Ny,Params.Ny);
Kmax = pi*Params.Ny/Params.Ly;
ky = linspace(-Kmax,Kmax,Ny+1);
ky = ky(1:end-1); dky = ky(2)-ky(1);
ky = fftshift(ky);
z = linspace(-0.5*Params.Lz,0.5*Params.Lz-Params.Lz/Params.Nz,Params.Nz);
Kmax = pi*Params.Nz/Params.Lz;
kz = linspace(-Kmax,Kmax,Nz+1);
kz = kz(1:end-1); dkz = kz(2)-kz(1);
kz = fftshift(kz);
[Transf.X,Transf.Y,Transf.Z]=ndgrid(x,y,z);
[Transf.KX,Transf.KY,Transf.KZ]=ndgrid(kx,ky,kz);
Transf.x = x; Transf.y = y; Transf.z = z;
Transf.kx = kx; Transf.ky = ky; Transf.kz = kz;
Transf.dx = x(2)-x(1); Transf.dy = y(2)-y(1); Transf.dz = z(2)-z(1);
Transf.dkx = dkx; Transf.dky = dky; Transf.dkz = dkz;

View File

@ -0,0 +1,311 @@
function [Transf] = setup_space_radial(Params,morder)
Zmax = 0.5*Params.Lz;
Rmax = Params.Lr;
Nz = Params.Nz;
Nr = Params.Nr;
if(nargin==1)
morder=0; %only do Bessel J0
end
% Fourier grids
z=linspace(-Zmax,Zmax,Nz+1);
z=z(1:end-1);
dz=z(2)-z(1);
Kmax=Nz*2*pi/(4*Zmax);
kz=linspace(-Kmax,Kmax,Nz+1);
kz=kz(1:end-1);
% Hankel grids and transform
H = hankelmatrix(morder,Rmax,Nr);
r=H.r(:);
kr=H.kr(:);
T = diag(H.J/H.kmax)*H.T*diag(Rmax./H.J)*dz*(2*pi);
Tinv = diag(H.J./Rmax)*H.T'*diag(H.kmax./H.J)/dz/(2*pi);
wr=H.wr;
wk=H.wk;
% H.T'*diag(H.J/H.vmax)*H.T*diag(Rmax./H.J)
[Transf.R,Transf.Z]=ndgrid(r,z);
[Transf.KR,Transf.KZ]=ndgrid(kr,kz);
Transf.T=T;
Transf.Tinv=Tinv;
Transf.r=r;
Transf.kr=kr;
Transf.z=z;
Transf.kz=kz;
Transf.wr=wr;
Transf.wk=wk;
Transf.Rmax=Rmax;
Transf.Zmax=Zmax;
Transf.dz=z(2)-z(1);
Transf.dkz=kz(2)-kz(1);
%b1=Transf;
function s_HT = hankelmatrix(order, rmax, Nr, eps_roots)
%HANKEL_MATRIX: Generates data to use for Hankel Transforms
%
% s_HT = hankel_matrix(order, rmax, Nr, eps_roots)
%
% s_HT = Structure containing data to use for the pQDHT
% order = Transform order
% rmax = Radial extent of transform
% Nr = Number of sample points
% eps_roots = Error in estimation of roots of Bessel function (optional)
%
% s_HT:
% order, rmax, Nr = As above
% J_roots = Roots of the pth order Bessel fn.
% J_roots_N1 = (N+1)th root
% r = Radial co-ordinate vector
% v = frequency co-ordinate vector
% kr = Radial wave number co-ordinate vector
% vmax = Limiting frequency
% = roots_N1 / (2*pi*rmax)
% S = rmax * 2*pi*vmax (S product)
% T = Transform matrix
% J = Scaling vector
% = J_(order+1){roots}
%
% The algorithm used is that from:
% "Computation of quasi-discrete Hankel transforms of the integer
% order for propagating optical wave fields"
% Manuel Guizar-Sicairos and Julio C. Guitierrez-Vega
% J. Opt. Soc. Am. A 21(1) 53-58 (2004)
%
% The algorithm also calls the function:
% zn = bessel_zeros(1, p, Nr+1, 1e-6),
% where p and N are defined above, to calculate the roots of the bessel
% function. This algorithm is taken from:
% "An Algorithm with ALGOL 60 Program for the Computation of the
% zeros of the Ordinary Bessel Functions and those of their
% Derivatives".
% N. M. Temme
% Journal of Computational Physics, 32, 270-279 (1979)
%
% Example: Propagation of radial field
%
% % Note the use of matrix and element products / divisions
% H = hankel_matrix(0, 1e-3, 512);
% DR0 = 50e-6;
% Ur0 = exp(-(H.r/DR0).^2);
% Ukr0 = H.T * (Ur0./H.J);
% k0 = 2*pi/800e-9;
% kz = realsqrt((k0^2 - H.kr.^2).*(k0>H.kr));
% z = (-5e-3:1e-5:5e-3);
% Ukrz = (Ukr0*ones(1,length(z))).*exp(i*kz*z);
% Urz = (H.T * Ukrz) .* (H.J * ones(1,length(z)));
%
% See also bessel_zeros, besselj
if (~exist('eps_roots', 'var')||isemtpy(eps_roots))
s_HT.eps_roots = 1e-6;
else
s_HT.eps_roots = eps_roots;
end
s_HT.order = order;
s_HT.rmax = rmax;
s_HT.Nr = Nr;
% Calculate N+1 roots:
J_roots = bessel_zeros(1, s_HT.order, s_HT.Nr+1, s_HT.eps_roots);
s_HT.J_roots = J_roots(1:end-1);
s_HT.J_roots_N1 = J_roots(end);
% Calculate co-ordinate vectors
s_HT.r = s_HT.J_roots * s_HT.rmax / s_HT.J_roots_N1;
s_HT.v = s_HT.J_roots / (2*pi * s_HT.rmax);
s_HT.kr = 2*pi * s_HT.v;
s_HT.kmax = s_HT.J_roots_N1 / (s_HT.rmax);
s_HT.vmax = s_HT.J_roots_N1 / (2*pi * s_HT.rmax);
s_HT.S = s_HT.J_roots_N1;
% Calculate hankel matrix and vectors
% I use (p=order) and (p1=order+1)
Jp = besselj(s_HT.order, (s_HT.J_roots) * (s_HT.J_roots.') / s_HT.S);
Jp1 = abs(besselj(s_HT.order+1, s_HT.J_roots));
s_HT.T = 2*Jp./(Jp1 * (Jp1.') * s_HT.S);
s_HT.J = Jp1;
s_HT.wr=2./((s_HT.kmax)^2*abs(Jp1).^2);
s_HT.wk=2./((s_HT.rmax)^2*abs(Jp1).^2);
return
function z = bessel_zeros(d, a, n, e)
%BESSEL_ZEROS: Finds the first n zeros of a bessel function
%
% z = bessel_zeros(d, a, n, e)
%
% z = zeros of the bessel function
% d = Bessel function type:
% 1: Ja
% 2: Ya
% 3: Ja'
% 4: Ya'
% a = Bessel order (a>=0)
% n = Number of zeros to find
% e = Relative error in root
%
% This function uses the routine described in:
% "An Algorithm with ALGOL 60 Program for the Computation of the
% zeros of the Ordinary Bessel Functions and those of their
% Derivatives".
% N. M. Temme
% Journal of Computational Physics, 32, 270-279 (1979)
z = zeros(n, 1);
aa = a^2;
mu = 4*aa;
mu2 = mu^2;
mu3 = mu^3;
mu4 = mu^4;
if (d<3)
p = 7*mu - 31;
p0 = mu - 1;
if ((1+p)==p)
p1 = 0;
q1 = 0;
else
p1 = 4*(253*mu2 - 3722*mu+17869)*p0/(15*p);
q1 = 1.6*(83*mu2 - 982*mu + 3779)/p;
end
else
p = 7*mu2 + 82*mu - 9;
p0 = mu + 3;
if ((p+1)==1)
p1 = 0;
q1 = 0;
else
p1 = (4048*mu4 + 131264*mu3 - 221984*mu2 - 417600*mu + 1012176)/(60*p);
q1 = 1.6*(83*mu3 + 2075*mu2 - 3039*mu + 3537)/p;
end
end
if (d==1)|(d==4)
t = .25;
else
t = .75;
end
tt = 4*t;
if (d<3)
pp1 = 5/48;
qq1 = -5/36;
else
pp1 = -7/48;
qq1 = 35/288;
end
y = .375*pi;
if (a>=3)
bb = a^(-2/3);
else
bb = 1;
end
a1 = 3*a - 8;
% psi = (.5*a + .25)*pi;
for s=1:n
if ((a==0)&(s==1)&(d==3))
x = 0;
j = 0;
else
if (s>=a1)
b = (s + .5*a - t)*pi;
c = .015625/(b^2);
x = b - .125*(p0 - p1*c)/(b*(1 - q1*c));
else
if (s==1)
switch (d)
case (1)
x = -2.33811;
case (2)
x = -1.17371;
case (3)
x = -1.01879;
otherwise
x = -2.29444;
end
else
x = y*(4*s - tt);
v = x^(-2);
x = -x^(2/3) * (1 + v*(pp1 + qq1*v));
end
u = x*bb;
v = fi(2/3 * (-u)^1.5);
w = 1/cos(v);
xx = 1 - w^2;
c = sqrt(u/xx);
if (d<3)
x = w*(a + c*(-5/u - c*(6 - 10/xx))/(48*a*u));
else
x = w*(a + c*(7/u + c*(18 - 14/xx))/(48*a*u));
end
end
j = 0;
while ((j==0)|((j<5)&(abs(w/x)>e)))
xx = x^2;
x4 = x^4;
a2 = aa - xx;
r0 = bessr(d, a, x);
j = j+1;
if (d<3)
u = r0;
w = 6*x*(2*a + 1);
p = (1 - 4*a2)/w;
q = (4*(xx-mu) - 2 - 12*a)/w;
else
u = -xx*r0/a2;
v = 2*x*a2/(3*(aa+xx));
w = 64*a2^3;
q = 2*v*(1 + mu2 + 32*mu*xx + 48*x4)/w;
p = v*(1 + (40*mu*xx + 48*x4 - mu2)/w);
end
w = u*(1 + p*r0)/(1 + q*r0);
x = x+w;
end
z(s) = x;
end
end
function FI = fi(y)
c1 = 1.570796;
if (~y)
FI = 0;
elseif (y>1e5)
FI = c1;
else
if (y<1)
p = (3*y)^(1/3);
pp = p^2;
p = p*(1 + pp*(pp*(27 - 2*pp) - 210)/1575);
else
p = 1/(y + c1);
pp = p^2;
p = c1 - p*(1 + pp*(2310 + pp*(3003 + pp*(4818 + pp*(8591 + pp*16328))))/3465);
end
pp = (y+p)^2;
r = (p - atan(p+y))/pp;
FI = p - (1+pp)*r*(1 + r/(p+y));
end
return
function Jr = bessr(d, a, x)
switch (d)
case (1)
Jr = besselj(a, x)./besselj(a+1, x);
case (2)
Jr = bessely(a, x)./bessely(a+1, x);
case (3)
Jr = a./x - besselj(a+1, x)./besselj(a, x);
otherwise
Jr = a./x - bessely(a+1, x)./bessely(a, x);
end
return

View File

@ -0,0 +1,98 @@
function [psi] = ssfm_imag(psi,Params,Transf,VDk,V,njob,t_idx,Observ)
set(0,'defaulttextInterpreter','latex')
set(groot, 'defaultAxesTickLabelInterpreter','latex'); set(groot, 'defaultLegendInterpreter','latex');
dt=-1j*abs(Params.dt);
KEop= 0.5*(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2);
Observ.residual = 1; Observ.res = 1;
figure(1)
muchem = chemicalpotential(psi,Params,Transf,VDk,V);
runningplot(psi,Params,Transf,Observ)
drawnow
AdaptIdx = 0;
while t_idx < Params.cut_off
%kin
psi = fftn(psi);
psi = psi.*exp(-0.5*1i*dt*KEop);
psi = ifftn(psi);
%DDI
frho = fftn(abs(psi).^2);
Phi = real(ifftn(frho.*VDk));
%Real-space
psi = psi.*exp(-1i*dt*(V + Params.gs*abs(psi).^2 + Params.gammaQF*abs(psi).^3 + Params.gdd*Phi - muchem));
%kin
psi = fftn(psi);
psi = psi.*exp(-0.5*1i*dt*KEop);
psi = ifftn(psi);
%Renorm
Norm = trapz(abs(psi(:)).^2)*Transf.dx*Transf.dy*Transf.dz;
psi = sqrt(Params.N)*psi/sqrt(Norm);
muchem = chemicalpotential(psi,Params,Transf,VDk,V);
%Plotting loop
if mod(t_idx,1000) == 0
%Change in Energy
E = energytotal(psi,Params,Transf,VDk,V);
E = E/Norm;
Observ.EVec = [Observ.EVec E];
%Chemical potential
Observ.mucVec = [Observ.mucVec muchem];
%Normalized residuals
res = norm_resid(psi,Params,Transf,VDk,V,muchem);
Observ.residual = [Observ.residual res];
Observ.res_idx = Observ.res_idx + 1;
figure(1)
runningplot(psi,Params,Transf,Observ)
drawnow
save(sprintf('./Data/Run_%03i/psi_gs.mat',njob),'psi','muchem','Observ','t_idx','Transf','Params','VDk','V');
%Adaptive time step -- Careful, this can quickly get out of control
relres = abs(Observ.residual(Observ.res_idx)-Observ.residual(Observ.res_idx-1))/Observ.residual(Observ.res_idx);
if relres <1e-5
if AdaptIdx > 4 && abs(dt) > Params.mindt
dt = dt / 2;
fprintf('Time step changed to '); disp(dt);
AdaptIdx = 0;
elseif AdaptIdx > 4 && abs(dt) < Params.mindt
break
else
AdaptIdx = AdaptIdx + 1;
end
else
AdaptIdx = 0;
end
end
if any(isnan(psi(:)))
disp('Idiot.')
break
end
t_idx=t_idx+1;
end
%Change in Energy
E = energytotal(psi,Params,Transf,VDk,V)
E = E/Norm;
Observ.EVec = [Observ.EVec E];
% Phase coherence
[PhaseC] = PhaseCoherence(psi,Transf,Params);
Observ.PCVec = [Observ.PCVec PhaseC];
Observ.res_idx = Observ.res_idx + 1;
save(sprintf('./Data/Run_%03i/psi_gs.mat',njob),'psi','muchem','Observ','t_idx','Transf','Params','VDk','V');

View File

@ -0,0 +1,233 @@
"""
@author: Adam Newton Wright, https://github.com/adamnewtonwright/GaussianBeamPropagation
"""
import numpy as np
import matplotlib.pyplot as plt
import sympy as sym
from sympy import oo
# Input Ray parameter, i.e. height and angle
def ray(y,theta):
'''
Parameters
----------
y : float or integer or sympy symbol in meters
The vertical height of a ray.
theta : float or integer in radians
The angle of divergence of the ray.
Returns
-------
mat : 2x1 matrix
[
[y],
[teta]
]
'''
mat = np.array([[y],[theta]])
return mat
# Ray Transfer Matrix for ideal lens with focal length f
def lens(f):
'''
Parameters
----------
f : float or integer or sympy symbol in meters
Thin lens focal length in meters
Returns
-------
mat : 2x2 matrix
[
[ 1, 0],
[-1/f, 1]
]
'''
mat = np.array([[1,0], [-1/f, 1]])
return mat
# Ray Transfer Matrix for propagation of distance d
def prop(d):
'''
Parameters
----------
d : float or integer or sympy symbol
Distance light is propagating along the z-axis.
Returns
-------
mat: 2x2 matrix
[
[1, d],
[0, 1]
]
'''
mat = np.array([[1,d], [0,1]])
return mat
# multiplying the matrices together. mat1 is the last matrix the light interacts with
def mult(mat1,*argv):
'''
Parameters
----------
mat1 : 2x2 ABCD matrix
Last matrix light interacts with.
*argv : 2x2 ABCD matrices
From left to right, the matrices should be entered such that the leftmost matrix interacts
with light temporally after the rightmost matrix.
Returns
-------
Mat : 2x2 matrix
The ABCd matrix describing the whole optical system.
'''
Mat = mat1
for arg in argv:
Mat = np.dot(Mat, arg)
return Mat
# Adding Gaussian beam parameters
def Zr(wo, lam):
'''
Parameters
----------
wo : float, integer, or symbol
Beam waist radius in meters.
lam : float, integer, or symbol
Wavelength of light in meters.
Returns
-------
zr : float, int, symbols
Rayleigh range for given beam waist and wavelength.
'''
zr = np.pi * wo**2 / lam
return zr
def W0(zr, lam):
'''
Parameters
----------
zr : float, integer, symbol
Rayleigh range in meters
lam : float, integer, symbol
Wavelength of light in meters
Returns
-------
w0 : float, integer, symbol
Beam waist radius in meters
'''
w0 = np.sqrt(lam * zr / np.pi)
return w0
# Remember, there should be an i in front of zr
# but this complicates the calculations, so we usually just let z = 0
# and don't explicitly deal with the i, but still do the math accordingly
#def q0_func(z,zr):
# qz = z + zr
# return qz
def q1_func(z, w0, lam, mat):
'''
Parameters
----------
z : float, int, symbol
Position of the beam waist in meters.
w0 : float, int, symbol
Radial waist size in meters (of the embedded Gaussian, i.e. W0/M).
lam : float, int, symbol
Wavelength of light in meters.
mat : float, int, symbol
The ABCD 2x2 matrix describing the optical system.
Returns
-------
z: float, int, symbol
Position of the beam waist after the optical system
zr: float, int, symbol
Rayleigh range of the beam after the optical system
'''
A = mat[0][0]
B = mat[0][1]
C = mat[1][0]
D = mat[1][1]
zr = Zr(w0, lam)
real = (A*C*(z**2 + zr**2) + z*(A*D + B*C) + B*D) / (C**2*(z**2 + zr**2) + 2*C*D*z + D**2)
imag = (zr * (A*D - B*C)) / (C**2*(z**2 + zr**2) + 2*C*D*z + D**2)
z = real
zr = imag
return z, zr
def q1_inv_func(z, w0, lam, mat):
'''
Parameters
----------
z : float, int, symbol
Position of the beam waist in meters.
w0 : float, int, symbol
Radial waist size in meters (of the embedded Gaussian, i.e. W0/M).
lam : float, int, symbol
Wavelength of light in meters.
mat : float, int, symbol
The ABCD 2x2 matrix describing the optical system.
Returns
-------
R : float, int, symbol
Radius of curvature of the wavefront in meters.
w : float, int, symbol
Radius of the beam in meters.
'''
A = mat[0][0]
B = mat[0][1]
C = mat[1,0]
D = mat[1][1]
zr = Zr(w0, lam)
real = (A*C*(z**2 + zr**2) + z*(A*D + B*C) + B*D) / (A**2*(z**2 + zr**2) + 2*A*B*z + B**2)
imag = -zr * (A*D-B*C) / (A**2 *(z**2 + zr**2) + 2*A*B*z + B**2)
R = 1/real
w = (-lam / imag / np.pi)**.5
return R, w
def plot(func, var, rang = np.arange(0,3,.01)):
'''
Parameters
----------
func : Sympy function of one variable
Sympy function defining the beam width after the last optical element.
var : sympy variable
Variable in func that will be plotted.
rang : numpy array
Array of the values along the optical axis to be plotted
Returns
-------
plot : matplotlib graph
Graph of the beam width of var
'''
func = sym.lambdify(var, func)
plt.figure()
plt.plot(rang, func(rang), color = 'b')
plt.plot(rang, -func(rang), color = 'b')
plt.grid()
plt.xlabel('Optic Axis (m)')
plt.ylabel('Beam size (m)')
plt.show()

View File

@ -0,0 +1,70 @@
import BeamPropagation as bp # This is the script that handles the propagation
import sympy as sym # For Symbolic examples
import numpy as np # Handling of lists and for plotting
import matplotlib.pyplot as plt # Plotting
"""A Gaussian beam can be defined by it's (radial) waist wo, it's Rayleigh range zR, and the location of its waist zO"""
w0 = 5.2E-3 # 1mm beam waist
lam = 532E-9 # wavelength of 355 nm (UV)
zR = bp.Zr(w0, lam) # Rayleigh range in m
z0 = 0 # location of waist in m
"""Define first 4-f optical system using matrices"""
d1, d2, d3, f1, f2 = sym.symbols('d1 d2 d3 f1 f2')
M = bp.mult(bp.prop(d3),bp.lens(f2),bp.prop(d2), bp.lens(f1), bp.prop(d1))
"""Use script to do all the ABCD and q-parameter math, and return the waist and radius of curvature functions"""
R, w = bp.q1_inv_func(0, w0, lam, M)
"""Substitute and extract the required separation between lenses of first 4-f system"""
distance_between_dmd_first_lens = 250E-3
first_focal_length = 250.9E-3
second_focal_length = 50E-3
demag = 1/5
target_w0 = demag*w0
w = w.subs(f1, first_focal_length).subs(f2, second_focal_length).subs(d1, distance_between_dmd_first_lens).subs(d3,0)
eq = sym.solve(w - target_w0, d2)[0]
distance_between_lens_of_first_4f = list(eq.atoms())[0]
print('Distance between lenses of first 4-f system = {} mm'.format(distance_between_lens_of_first_4f * 1E3))
# Sanity check
# expansion_factor = w.subs(d2,distance_between_lens_of_first_4f).subs(d3,0)/ w0
# print('beam is w = {:.2f} x w0'.format(expansion_factor))
# """Plot beam propagation up to 3 m after the first 4-f system"""
# M = bp.mult(bp.prop(d3),bp.lens(second_focal_length),bp.prop(distance_between_lens_of_first_4f), bp.lens(first_focal_length), bp.prop(distance_between_dmd_first_lens))
# R, w = bp.q1_inv_func(0, w0, lam, M)
# bp.plot(w,d3, rang = np.arange(0,0.050,.0005))
"""Define the full optical system of two 4-f setups using matrices"""
d1, d2, d3, d4, f1, f2, f3 = sym.symbols('d1 d2 d3 d4 f1 f2 f3')
M = bp.mult(bp.prop(d4),bp.lens(f3), bp.prop(d3),bp.lens(f2),bp.prop(d2), bp.lens(f1), bp.prop(d1))
"""Use script to do all the ABCD and q-parameter math, and return the waist and radius of curvature functions"""
R, w = bp.q1_inv_func(0, w0, lam, M)
# """Find the focal length of lens required after the first 4-f system to have a collimated beam, given a certain separation between the first 4-f system and this lens"""
distance_between_4fs = 550E-3
R_coll = R.subs(d1,distance_between_dmd_first_lens).subs(d2,distance_between_lens_of_first_4f).subs(d3,distance_between_4fs).subs(d4,0).subs(f1,first_focal_length).subs(f2,second_focal_length)
f3_coll = sym.solve(1/R_coll,f3)[0]
third_focal_length = list(f3_coll.atoms())[0]
print('For a fixed separation between first 4-f and third lens of {:.3f} mm, f3 = {:.3f} mm for a collimated beam'.format(distance_between_4fs* 1E3, third_focal_length * 1E3))
# # """Plot beam propagation up to 3 m after the first 4-f system"""
# M = bp.mult(bp.prop(d4),bp.lens(third_focal_length),bp.prop(distance_between_4fs), bp.lens(second_focal_length), bp.prop(distance_between_lens_of_first_4f), bp.lens(first_focal_length), bp.prop(distance_between_dmd_first_lens))
# R, w = bp.q1_inv_func(0, w0, lam, M)
# bp.plot(w,d4, rang = np.arange(0,0.050,.0005))
third_focal_length = 501.8E-3
R_coll = R.subs(d1,distance_between_dmd_first_lens).subs(d2,distance_between_lens_of_first_4f).subs(d4,0).subs(f1,first_focal_length).subs(f2,second_focal_length).subs(f3,third_focal_length)
d3_coll = sym.solve(1/R_coll,d3)[1]
distance_between_4fs = list(d3_coll.atoms())[0]
print('For a fixed third focal length of {:.3f} mm, d3 = {:.3f} mm, for a collimated beam'.format(third_focal_length* 1E3, distance_between_4fs * 1E3))
# """Plot beam propagation up to 3 m after the first 4-f system"""
# M = bp.mult(bp.prop(d4),bp.lens(third_focal_length),bp.prop(distance_between_4fs), bp.lens(second_focal_length), bp.prop(distance_between_lens_of_first_4f), bp.lens(first_focal_length), bp.prop(distance_between_dmd_first_lens))
# R, w = bp.q1_inv_func(0, w0, lam, M)
# bp.plot(w,d4, rang = np.arange(0,0.050,.0005))

File diff suppressed because one or more lines are too long

359
GaussianBeamABCD/README.md Normal file
View File

@ -0,0 +1,359 @@
# Gaussian Beam Propagation
## Import files
```python
import BeamProp_Script as bs # This is the script that handles the propagation
import sympy as sym # For Symbolic examples
import numpy as np # Handling of lists and for plotting
import matplotlib.pyplot as plt # Plotting
```
### Let's show what BeamProp_Script has
```python
help(bs)
```
Help on module BeamProp_Script:
NAME
BeamProp_Script - Created on Wed Feb 19 15:51:54 2020
DESCRIPTION
@author: wrighta
FUNCTIONS
W0(zr, lam)
Parameters
----------
zr : float, integer, symbol
Rayleigh range in meters
lam : float, integer, symbol
Wavelength of light in meters
Returns
-------
w0 : float, integer, symbol
Beam waist radius in meters
Zr(wo, lam)
Parameters
----------
wo : float, integer, or symbol
Beam waist radius in meters.
lam : float, integer, or symbol
Wavelength of light in meters.
Returns
-------
zr : float, int, symbols
Rayleigh range for given beam waist and wavelength.
lens(f)
Parameters
----------
f : float or integer or sympy symbol in meters
Thin lens focal length in meters
Returns
-------
mat : 2x2 matrix
[
[ 1, 0],
[-1/f, 1]
]
mult(mat1, *argv)
Parameters
----------
mat1 : 2x2 ABCD matrix
Last matrix light interacts with.
*argv : 2x2 ABCD matrices
From left to right, the matrices should be entered such that the leftmost matrix interacts
with light temporally after the rightmost matrix.
Returns
-------
Mat : 2x2 matrix
The ABCd matrix describing the whole optical system.
plot(func, var, rang=array([0. , 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 ,
0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2 , 0.21,
0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3 , 0.31, 0.32,
0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4 , 0.41, 0.42, 0.43,
0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5 , 0.51, 0.52, 0.53, 0.54,
0.55, 0.56, 0.57, 0.58, 0.59, 0.6 , 0.61, 0.62, 0.63, 0.64, 0.65,
0.66, 0.67, 0.68, 0.69, 0.7 , 0.71, 0.72, 0.73, 0.74, 0.75, 0.76,
0.77, 0.78, 0.79, 0.8 , 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87,
0.88, 0.89, 0.9 , 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98,
0.99, 1. , 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09,
1.1 , 1.11, 1.12, 1.13, 1.14, 1.15, 1.16, 1.17, 1.18, 1.19, 1.2 ,
1.21, 1.22, 1.23, 1.24, 1.25, 1.26, 1.27, 1.28, 1.29, 1.3 , 1.31,
1.32, 1.33, 1.34, 1.35, 1.36, 1.37, 1.38, 1.39, 1.4 , 1.41, 1.42,
1.43, 1.44, 1.45, 1.46, 1.47, 1.48, 1.49, 1.5 , 1.51, 1.52, 1.53,
1.54, 1.55, 1.56, 1.57, 1.58, 1.59, 1.6 , 1.61, 1.62, 1.63, 1.64,
1.65, 1.66, 1.67, 1.68, 1.69, 1.7 , 1.71, 1.72, 1.73, 1.74, 1.75,
1.76, 1.77, 1.78, 1.79, 1.8 , 1.81, 1.82, 1.83, 1.84, 1.85, 1.86,
1.87, 1.88, 1.89, 1.9 , 1.91, 1.92, 1.93, 1.94, 1.95, 1.96, 1.97,
1.98, 1.99, 2. , 2.01, 2.02, 2.03, 2.04, 2.05, 2.06, 2.07, 2.08,
2.09, 2.1 , 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19,
2.2 , 2.21, 2.22, 2.23, 2.24, 2.25, 2.26, 2.27, 2.28, 2.29, 2.3 ,
2.31, 2.32, 2.33, 2.34, 2.35, 2.36, 2.37, 2.38, 2.39, 2.4 , 2.41,
2.42, 2.43, 2.44, 2.45, 2.46, 2.47, 2.48, 2.49, 2.5 , 2.51, 2.52,
2.53, 2.54, 2.55, 2.56, 2.57, 2.58, 2.59, 2.6 , 2.61, 2.62, 2.63,
2.64, 2.65, 2.66, 2.67, 2.68, 2.69, 2.7 , 2.71, 2.72, 2.73, 2.74,
2.75, 2.76, 2.77, 2.78, 2.79, 2.8 , 2.81, 2.82, 2.83, 2.84, 2.85,
2.86, 2.87, 2.88, 2.89, 2.9 , 2.91, 2.92, 2.93, 2.94, 2.95, 2.96,
2.97, 2.98, 2.99]))
Parameters
----------
func : Sympy function of one variable
Sympy function defining the beam width after the last optical element.
var : sympy variable
Variable in func that will be plotted.
rang : numpy array
Array of the values along the optical axis to be plotted
Returns
-------
plot : matplotlib graph
Graph of the beam width of var
prop(d)
Parameters
----------
d : float or integer or sympy symbol
Distance light is propagating along the z-axis.
Returns
-------
mat: 2x2 matrix
[
[1, d],
[0, 1]
]
q1_func(z, w0, lam, mat)
Parameters
----------
z : float, int, symbol
Position of the beam waist in meters.
w0 : float, int, symbol
Radial waist size in meters (of the embedded Gaussian, i.e. W0/M).
lam : float, int, symbol
Wavelength of light in meters.
mat : float, int, symbol
The ABCD 2x2 matrix describing the optical system.
Returns
-------
z: float, int, symbol
Position of the beam waist after the optical system
zr: float, int, symbol
Rayleigh range of the beam after the optical system
q1_inv_func(z, w0, lam, mat)
Parameters
----------
z : float, int, symbol
Position of the beam waist in meters.
w0 : float, int, symbol
Radial waist size in meters (of the embedded Gaussian, i.e. W0/M).
lam : float, int, symbol
Wavelength of light in meters.
mat : float, int, symbol
The ABCD 2x2 matrix describing the optical system.
Returns
-------
R : float, int, symbol
Radius of curvature of the wavefront in meters.
w : float, int, symbol
Radius of the beam in meters.
ray(y, theta)
Parameters
----------
y : float or integer or sympy symbol in meters
The vertical height of a ray.
theta : float or integer in radians
The angle of divergence of the ray.
Returns
-------
mat : 2x1 matrix
[
[y],
[teta]
]
DATA
oo = oo
FILE
c:\users\wrighta\documents\beamprop\beamprop_script.py
## Let's first see how we define a beam and how we can visualize it propagating.
### A Gaussian beam can be defined by it's (radial) waist, $w_0$, it's Rayleigh range, $z_R = \frac{\pi * w_0^2}{\lambda}$, and the location of its waist, $z_0$.
```python
w0 = 1E-3 # 1mm beam waist
lam = 355E-9 # wavelength of 355 nm (UV)
zR = bs.Zr(w0, lam) # Rayleigh range in m
z0 = 0 # location of waist in m
```
### We now want to define our "optical system" using matrices. For this first example, we will just use a free space propagation matrix, and let the beam propagate a distance $d$ which we will define using a symbol.
```python
d = sym.symbols('d')
M = bs.prop(d)
```
### We now use the bs script to do all the ABCD and q-parameter math, and return the waist and radius of curvature functions
```python
R, w = bs.q1_inv_func(0, w0, lam, M)
```
```python
print('w = {}'.format(w))
```
w = 0.001*(0.0127690021685256*d**2 + 1)**0.5
### And as simple as that, we have a function for our waist. Let's plot it and see what it looks like
```python
bs.plot(w, d, rang = np.arange(0,10))
```
![png](output_14_0.png)
### Let's show what happens when a beam travels through a lens. We use the "mult" function to multiply multiple ABCD matrices together.
```python
w0 = 1E-3 # 1mm beam waist
lam = 355E-9 # wavelength of 355 nm (UV)
zR = bs.Zr(w0, lam) # Rayleigh range in m
z0 = 0 # location of waist in m
d = sym.symbols('d')
M = bs.mult(bs.prop(d), bs.lens(.5), bs.prop(1))
R, w = bs.q1_inv_func(0, w0, lam, M)
bs.plot(w, d, rang = np.arange(0,1,.01))
```
![png](output_16_0.png)
### Lets look at how to expand and collimate a beam with a two lens system
```python
w0 = 1E-3 # 1mm beam waist
lam = 355E-9 # wavelength of 355 nm (UV)
zR = bs.Zr(w0, lam) # Rayleigh range in m
z0 = 0 # location of waist in m
d1, d2, d3, f1, f2 = sym.symbols('d1 d2 d3 f1 f2')
M = bs.mult(bs.prop(d3),bs.lens(f2),bs.prop(d2), bs.lens(f1), bs.prop(d1))
R, w = bs.q1_inv_func(0, w0, lam, M)
```
### For example, lets say the beam travels 1 m before hitting the first lens, and we want the beam to be 5x w0 after coming out of the second lens. We substitute d1 for 1 meter, since the beam propagates 1 meter, and we substitute d3 for 0, since we only care about the beam size right at the second lens. This gives us a relation between f1 and d2 (the separation between the lenses).
```python
w = w.subs(d1,1).subs(d3,0)
f1_eq = sym.solve(w - 5*w0, f1)[0]
print('f = {}'.format(f1_eq))
```
f = 1.0084642216545e+15*d2*(1.12051580183833e+27*d2 - 4.41556446152598e+29*sqrt(1 - 0.000504320418227052*d2**2) + 8.88733242867719e+28)/(1.13000009595246e+42*d2**2 + 2.26000019190491e+42*d2 - 2.12276362486616e+45)
#### Suppose we wanted the distance between the lenses to be 1 meter, we could find what f1 we need.
```python
print('f1 = {:.2f} m, for a lens separation of 1 meter'.format(f1_eq.subs(d2, 1)))
```
f1 = 0.17 m, for a lens separation of 1 meter
### Now we need to collimate the beam. Lets still assume the beam propagates 1 m, and f1 = .17 m.
There are a couple different ways to think about collimation. One is that the beam size doesn't change over a long distance. The other is that the radius of curvature is infinite (i.e. a plane wave). Lets us the latter interpretation. Thus, we want to find the focal length f2 that makes R infinite, or that makes 1/R =0.
```python
R_coll = R.subs(d1,1).subs(d2,1).subs(f1,.17).subs(d3,0)
f2_coll = sym.solve(1/R_coll,f2)[0]
print('f2 = {:.2f}, for a collimated beam, 5x the original waist, after propagating 1m to the first lens of f1 = .17m, and propagating another 1m to the second lens'.format(f2_coll))
```
f2 = 0.83, for a collimated beam, 5x the original waist, after propagating 1m to the first lens of f1 = .17m, and propagating another 1m to the second lens
### Lets plot the beam profile after the second lens, and see if it is collimated.
```python
M = bs.mult(bs.prop(d3),bs.lens(.83),bs.prop(1), bs.lens(.17), bs.prop(1))
R, w = bs.q1_inv_func(0, w0, lam, M)
bs.plot(w,d3)
```
![png](output_27_0.png)
### Looks very collimated. Lets check the beam size (to make sure its 5* w0) and check the collimation
```python
expansion_factor = w.subs(d3,0)/ w0
print('beam is w = {:.2f} x w0'.format(expansion_factor))
```
beam is w = 4.90 x w0
```python
beam_size_change = (w.subs(d3,10) - w.subs(d3,0)) / w.subs(d3,0) * 100
print('Over 10 m after second lens, beam changes by {:.0f}%'.format(beam_size_change))
```
Over 10 m after second lens, beam changes by 1%
```python
```

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,333 @@
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
from scipy.signal import find_peaks, resample, detrend
import csv
"""
NOTES
When you compute the Fourier transform of a signal, you obtain a set of complex-valued coefficients corresponding to different frequency components present in the signal. These coefficients represent the amplitude and phase of sinusoidal components at specific frequencies.
The frequency range covered by the Fourier transform output is divided into discrete frequency bins, each representing a specific frequency component. The width of these bins depends on the sampling rate and the length of the input signal. In a typical implementation, the frequency bins are evenly spaced.
In practical terms, the power spectrum bins correspond to the frequency components at which the power spectral density (PSD) or magnitude squared of the Fourier coefficients are evaluated. These bins are used to represent the distribution of signal power across different frequency components, providing insights into the frequency content of the signal.
The bin width, also called the resolution bandwidth, is simply sampling rate / Total number of samples = (1/dt)/N
N can be re-written in terms of t, dt. Putting this in to the expression for Sxx = 2 * |fft|^2/(Resolution Bandwidth * Noise Power Bandwidth) We get the expression used here. Note that the fft computed above is scaled by N which results eventually in the factor dt^2/T.
The noise power bandwidth is typically 1 Hz if no windowing/tapering function is used.
Compute the broadband noise level in Vrms2/Hz by summing all the power spectrum bins, excluding any peaks and the DC component, and dividing the sum by the equivalent noise bandwidth of the window
The equivalent noise bandwidth (ENBW) of a window in the context of a power spectrum refers to a measure of the effective bandwidth of the window function applied to the signal before taking the Fourier transform.
When you compute the power spectrum of a signal using a windowing function (e.g., Hamming window, Hann window, etc.), the window modifies the original signal by tapering its edges. This tapering reduces the spectral leakage and improves frequency resolution but also introduces a smoothing effect, which can affect the estimation of the signal's power at different frequencies.
The equivalent noise bandwidth provides a way to quantify the effective bandwidth of the window function in terms of its impact on noise power. It represents the width of a rectangular filter that would have the same noise power as the windowed signal.
In practical terms, when calculating the power spectrum of a signal using a window, the ENBW is used to adjust the power spectrum to account for the smoothing effect of the window. Dividing the sum of the power spectrum bins by the ENBW yields an estimate of the noise power per unit frequency bandwidth.
ENBW is often used in the context of noise measurements or signal processing applications where accurate estimation of noise power is important. It helps ensure that the power spectrum accurately reflects the true power distribution of the signal, accounting for the effects of windowing.
The noise floor refers to the minimum level of signal that can be reliably distinguished from the background noise. It represents the lowest amplitude of a signal that can be detected or measured with reasonable accuracy.
The noise floor is often defined as the RMS (Root Mean Square) value of the background noise in a given frequency band.
To compute the noise floor value from the power spectral density (PSD) values, you typically need to analyze the portion of the PSD that corresponds to the background noise.
"""
def compute_autocorrelation(data):
print("Calculating autocorrelation...")
yunbiased = data-np.mean(data)
ynorm = np.sum(yunbiased**2)
acor = np.correlate(yunbiased, yunbiased, "same")/ynorm
return acor
def pre_process_data(data, new_sampling_rate):
# Resample the time series
# Define the new sampling rate and calculate the new time values
n_points = int((len(data[:, 0]) * (data[:, 0][1] - data[:, 0][0])) * new_sampling_rate)
t = np.linspace(data[:, 0][0], data[:, 0][-1], n_points)
x_array = resample(data[:, 1], n_points)
x = detrend(x_array - x_array.mean())
return np.column_stack((t, x))
def smoothen_data(data, window_size):
# Smooth data by doing a moving average
return np.convolve(data, np.ones(window_size, dtype=int)/window_size, mode='valid')
def compute_psd(data, new_sampling_rate, window_size = 21):
"""
A power spectral density (PSD) takes the amplitude of the FFT, multiplies it by its complex conjugate and normalizes it to the frequency bin width.
"""
processed_data = pre_process_data(data, new_sampling_rate)
t, x = processed_data[:, 0], processed_data[:, 1]
dt = t[1] - t[0] # Define the sampling interval
N = x.shape[0] # Define the total number of data points
T = N * dt # Define the total duration of the data
# Calculate fft
print("Calculating power spectrum...")
fft_ts = np.fft.fft(x) # Compute Fourier transform of x
Sxx = 2 * (dt ** 2 / T) * (fft_ts * fft_ts.conj()) # Compute spectrum
Sxx = Sxx[:int(len(x) / 2)] # Ignore negative frequencies, we have accounted for this by the scaling factor of 2 in the previous step
return processed_data, smoothen_data(Sxx.real, window_size)
def compute_RIN(time, voltages, Sxx_smooth):
dt = time[1] - time[0] # Define the sampling interval
N = voltages.shape[0] # Define the total number of data points
T = N * dt # Define the total duration of the data
df = 1 / T.max()
# Compute the average power
average_P = np.mean(np.squared(voltages))
# Calculate the RIN
RIN_Sxx_smooth = 10 * np.log10(Sxx_smooth / (average_P * df))
return RIN_Sxx_smooth
def find_noise_peaks(psd, faxis, freq_range, threshold):
"""
Compute the peak power in the specified frequency range.
Parameters:
psd_values: array-like
Power spectral density values.
faxis: array-like
Frequencies corresponding to the PSD values.
freq_range: tuple
Tuple containing the start and end frequencies of the range of interest.
threshold: scalar
Threshold for peak heights
Returns:
float: Peak power in the specified frequency range.
"""
start_freq, end_freq = freq_range
idx_start = np.argmax(faxis >= start_freq)
idx_end = np.argmax(faxis >= end_freq)
sliced_psd = psd[idx_start:idx_end]
sliced_faxis = faxis[idx_start:idx_end]
peak_indices, _ = find_peaks(sliced_psd, height=threshold)
peak_powers = 10 * np.log10(sliced_psd[peak_indices])
peak_frequencies = np.around(sliced_faxis[peak_indices], 2)
return peak_powers, peak_frequencies
def compute_noise_level(psd, resolution_bandwidth, exclude_peaks=False, faxis=None, freq_range=None, threshold=None):
"""
Compute the noise level from a power spectral density (PSD).
Parameters:
psd: array-like
One-sided power spectral density.
resolution_bandwidth: float
Bin width
Returns:
float: Noise level (Vrms^2).
"""
noise_level = None
# Exclude peaks from the sum
if exclude_peaks and threshold is not None:
threshold = 10**(threshold/10)
if freq_range is None:
peak_indices, _ = find_peaks(psd, height=threshold)
noise_level = resolution_bandwidth * np.sum([psd[i] for i in range(len(psd)) if i not in peak_indices])
else:
start_freq, end_freq = freq_range
idx_start = np.argmax(faxis >= start_freq)
idx_end = np.argmax(faxis >= end_freq)
sliced_psd = psd[idx_start:idx_end]
peak_indices, _ = find_peaks(sliced_psd, height=threshold)
noise_level = resolution_bandwidth * np.sum([sliced_psd[i] for i in range(len(sliced_psd)) if i not in peak_indices])
else:
if freq_range is None:
noise_level = resolution_bandwidth * np.sum([psd[i] for i in range(len(psd))])
else:
start_freq, end_freq = freq_range
idx_start = np.argmax(faxis >= start_freq)
idx_end = np.argmax(faxis >= end_freq)
sliced_psd = psd[idx_start:idx_end]
noise_level = resolution_bandwidth * np.sum([sliced_psd[i] for i in range(len(sliced_psd))])
return noise_level
def extract_data(filepath):
# Open the CSV file
with open(filepath, newline='') as csvfile:
# Skip the first line (header)
next(csvfile)
# Read the CSV file using csv.reader
reader = csv.reader(csvfile)
# Read the headers from the second line
next_header = next(reader)
string_number = next_header[-1]
try:
time_step = int(string_number)
except ValueError:
try:
time_step = float(string_number)
except ValueError:
print("The string does not represent a valid number.")
# Initialize lists to store the first and second values
first_column = []
second_column = []
# Iterate over each row in the CSV file
for row in reader:
# Extract the first and second values from the row and convert to float
first_value = float(row[0])
second_value = float(row[1])
# Append the values to their respective lists
first_column.append(first_value)
second_column.append(second_value)
# Convert the lists into numpy arrays
time_array = np.arange(0, len(first_column)*time_step, time_step)
voltage_array = np.array(second_column)
# Stack the arrays horizontally to form a single 2D array
data_array = np.column_stack((time_array, voltage_array))
return data_array
def plot_analysis(data, data_bkg, Sxx, Sxx_bkg, data_str, bkg_str, peak_find_threshold, window_size = 21, plot_only_psd = True):
time, voltages = data[:, 0], data[:, 1]
time_bkg, voltages_bkg = data_bkg[:, 0], data_bkg[:, 1]
dt = time[1] - time[0] # Define the sampling interval
N = voltages.shape[0] # Define the total number of data points
T = N * dt # Define the total duration of the data
df = 1 / T.max()
fNQ = 1 / dt / 2 # Determine Nyquist frequency
faxis = smoothen_data(np.linspace(0,fNQ,N//2), window_size) # Construct frequency axis
""" Noise levels in units of Vrms^2/Hz"""
# resolution_bandwidth = (1/dt)/N
# broadband_noise_level = compute_noise_level(Sxx, resolution_bandwidth) # Integrates across PSD from DC to Nyquist frequency, gives result in in units of Vrms^2/Hz
# noise_floor = np.mean(Sxx_bkg)
freq_range = (50, max(faxis))
threshold = 10**(peak_find_threshold/10)
peak_powers, peak_frequencies = find_noise_peaks(Sxx, faxis, freq_range, threshold)
if plot_only_psd:
plt.figure(figsize=(12, 8))
# Plot Power Spectrum in dB
plt.semilogx(faxis, 10 * np.log10(Sxx_bkg), color='orange', linewidth=0.5, label = bkg_str)
plt.semilogx(faxis, 10 * np.log10(Sxx), color='green', linewidth=2, label = data_str)
# plt.axhline(y=10 * np.log10(broadband_noise_level), color='red', linewidth=2, linestyle='--', label=f'Broadband cumulative noise level: {10 * np.log10(broadband_noise_level):.1f} dB')
# plt.axhline(y=10 * np.log10(noise_floor), color='blue', linewidth=2, linestyle='--', label=f'Broadband noise floor: {10 * np.log10(noise_floor):.1f} dB')
plt.plot(peak_frequencies, peak_powers, 'o', markerfacecolor='none', markeredgecolor='r', markersize=10) # Plot power against frequency as hollow circles
for freq, power in zip(peak_frequencies, peak_powers):
plt.text(freq, power, str(freq)+' Hz', verticalalignment='bottom', horizontalalignment='right') # Add text next to each circle indicating the frequency
plt.grid(True, which="both", linestyle='-', linewidth=0.5, color='gray') # Thin lines for non-decade grid
plt.grid(True, which="both", linestyle=':', linewidth=1, color='gray', axis='x') # Thick lines for decade grid
# Calculate the x-axis values for multiples of 10
x_multiples_of_10 = [10**i for i in range(int(np.log10(min(faxis[faxis > 0]))), int(np.log10(max(faxis[faxis > 0]))) + 1)]
# Add thick lines for multiples of 10
for val in x_multiples_of_10:
plt.axvline(x=val, color='black', linestyle='-', linewidth=2) # Thick lines for multiples of 10
f_sig_idx = np.argmax(Sxx)
# SNR_f = 10 * np.log10(Sxx[f_sig_idx] / np.sum(np.delete(Sxx, f_sig_idx)))
# SNR_f = 10 * np.log10(Sxx[f_sig_idx] / noise_floor)
plt.xlim([min(faxis), max(faxis)])
# plt.ylim([-100, 10])
plt.legend(loc = 3, fontsize=12)
plt.xlabel('Frequency [Hz]', fontsize=14)
plt.ylabel('Power Spectral Density [dB/Hz]', fontsize=14)
# plt.title('SNR= %.2f dB' % (SNR_f), fontsize=14)
# Adjust layout
plt.tight_layout()
# Show plot
plt.show()
else:
# Create subplots
plt.figure(figsize=(12, 8))
gs = gridspec.GridSpec(2, 3, width_ratios=[1, 1, 1], height_ratios=[1, 1])
# Plot 1: Time vs Voltage
axs1 = plt.subplot(gs[0, 0:])
axs1.plot(time_bkg, voltages_bkg, marker='o', color='orange', linewidth=0.5, ms=1, label = bkg_str)
axs1.plot(time, voltages, marker='o', color='green', linewidth=0.5, ms=1, label = data_str)
axs1.set_ylim([-0.5, 0.5])
axs1.set_xlabel('Time (s)', fontsize=14)
axs1.set_ylabel('Voltage (V)', fontsize=14)
axs1.legend(loc = 1, fontsize=12)
axs1.autoscale(tight=True)
axs1.grid(True)
# Plot 2: Power Spectrum in dB
axs2 = plt.subplot(gs[1, 0:])
axs2.semilogx(faxis, 10 * np.log10(Sxx_bkg), color='orange', linewidth=0.5, label = bkg_str)
axs2.semilogx(faxis, 10 * np.log10(Sxx), color='green', linewidth=2, label = data_str)
# axs2.axhline(y=10 * np.log10(broadband_noise_level), color='red', linewidth=2, linestyle='--', label=f'Broadband cumulative noise level: {10 * np.log10(broadband_noise_level):.1f} dB')
# axs2.axhline(y=10 * np.log10(noise_floor), color='blue', linewidth=2, linestyle='--', label=f'Broadband noise floor: {10 * np.log10(noise_floor):.1f} dB')
axs2.plot(peak_frequencies, peak_powers, 'o', markerfacecolor='none', markeredgecolor='r', markersize=10) # Plot power against frequency as hollow circles
for freq, power in zip(peak_frequencies, peak_powers):
axs2.text(freq, power, str(freq)+' Hz', verticalalignment='bottom', horizontalalignment='right') # Add text next to each circle indicating the frequency
axs2.grid(True, which="both", linestyle='-', linewidth=0.5, color='gray') # Thin lines for non-decade grid
axs2.grid(True, which="both", linestyle=':', linewidth=1, color='gray', axis='x') # Thick lines for decade grid
# Calculate the x-axis values for multiples of 10
x_multiples_of_10 = [10**i for i in range(int(np.log10(min(faxis[faxis > 0]))), int(np.log10(max(faxis[faxis > 0]))) + 1)]
# Add thick lines for multiples of 10
for val in x_multiples_of_10:
axs2.axvline(x=val, color='black', linestyle='-', linewidth=2) # Thick lines for multiples of 10
f_sig_idx = np.argmax(Sxx)
# SNR_f = 10 * np.log10(Sxx[f_sig_idx] / np.sum(np.delete(Sxx, f_sig_idx)))
# SNR_f = 10 * np.log10(Sxx[f_sig_idx] / noise_floor)
axs2.set_xlim([min(faxis), max(faxis)])
# axs2.set_ylim([-100, 10])
axs2.legend(loc = 3, fontsize=12)
axs2.set_xlabel('Frequency [Hz]', fontsize=14)
axs2.set_ylabel('Power Spectral Density [dB/Hz]', fontsize=14)
# axs2.set_title('SNR= %.2f dB' % (SNR_f), fontsize=14)
# Adjust layout
plt.tight_layout()
# Show plot
plt.show()

View File

@ -0,0 +1,50 @@
%read CSV file
filename = 'C:\Users\Karthik\Documents\Git Repos\ULE Cavity Characterisitics\ReflectivityCurve_ULECavity.csv';
delimiter = ',';
startRow = 1;
formatSpec = '%f%f';
fileID = fopen(filename,'r');
dataset = textscan(fileID, formatSpec, 'Delimiter', delimiter, 'EmptyValue', NaN, 'ReturnOnError', false, 'EndOfLine', '\r\n');
fclose(fileID);
wavelengths = dataset{1};
reflectance = dataset{2};
figure(1);
clf;
xq = 549:1:1100;
vq1 = interp1(wavelengths(30:end),reflectance(30:end),xq);
plot(wavelengths,reflectance,'o',xq, vq1,':.');
%scatter(wavelengths, reflectance, 'LineWidth', 2)
R_626 = vq1(xq==626);
R_842 = vq1(xq==842);
F_626 = pi * sqrt(R_626) / (1 - R_626);
F_842 = pi * sqrt(R_842) / (1 - R_842);
hold on
plot(626, R_626, 'o', 'MarkerSize', 15, 'LineWidth', 3)
line([626 626], [0 2],'Color','red','LineStyle','--')
line([500 1100], [R_626 R_626],'Color','red','LineStyle','--')
text(630, R_626 - 0.1, sprintf('626, %.3f', R_626))
text(630, R_626 - 0.15, sprintf('F = %.3f', F_626))
%annotation('arrow', [0.293 0.293], [0.11 0.3]);
plot(842, R_842, 'o', 'MarkerSize', 15, 'LineWidth', 3)
line([842 842], [0 2],'Color','red','LineStyle','--')
line([500 1100], [R_842 R_842],'Color','red','LineStyle','--')
text(846, R_842 - 0.1, sprintf('842, %.3f', R_842))
text(846, R_842 - 0.15, sprintf('F = %.3f', F_842))
%annotation('arrow', [0.571 0.571], [0.11 0.2]);
hold off
hXLabel = xlabel('Wavelength (nm)');
hYLabel = ylabel('?? Mirror Reflectivity R(%) ??');
hTitle = sgtitle('??Reflectivity Curve of the ULE Cavity Mirrors??');
set([hXLabel, hYLabel] , ...
'FontSize' , 14 );
set( hTitle , ...
'FontSize' , 18 );
grid on

View File

@ -0,0 +1,94 @@
%read CSV file
filename = 'C:\Users\Karthik\Documents\Git Repos\ULE Cavity Characterisitics\TransmissionCurve_ULECavity.csv';
delimiter = ',';
startRow = 1;
formatSpec = '%f%f';
fileID = fopen(filename,'r');
dataset = textscan(fileID, formatSpec, 'Delimiter', delimiter, 'EmptyValue', NaN, 'ReturnOnError', false, 'EndOfLine', '\r\n');
fclose(fileID);
wavelengths = dataset{1};
transmission = dataset{2};
f_h = Helper.getFigureByTag('CavityCharacteristics');
set(groot,'CurrentFigure',f_h);
a_h = get(f_h, 'CurrentAxes');
if ~isempty(get(a_h, 'Children'))
clf(f_h);
end
f_h.Name = 'Wavelength dependence';
f_h.Units = 'pixels';
set(0,'units','pixels');
screensize = get(0,'ScreenSize');
f_h.Position = [[screensize(3)/30 screensize(4)/4] 1812 429];
clf;
W = 600:1:850;
T = interp1(wavelengths(51:149), transmission(51:149), W);
subplot(1,3,1)
plot(wavelengths,transmission,'o', 'MarkerSize', 5);
hold on
plot(W, T,':.');
FSR = 1.5e+9;
T_626 = T(W==626) * 1e-2;
R_626 = 1 - T_626;
T_842 = T(W==842) * 1e-2;
R_842 = 1 - T_842;
F_626 = pi * sqrt(R_626) / (1 - R_626);
F_842 = pi * sqrt(R_842) / (1 - R_842);
L_626 = FSR / F_626;
L_842 = FSR / F_842;
R = 1 - (T * 1e-2);
F = pi .* sqrt(R) ./ (1 - R);
L = FSR ./ F;
% plot(626, T_626 * 1e2, 'o', 'MarkerSize', 15, 'LineWidth', 3)
% line([626 626], [0 0.06],'Color',[0.9586 0.7372 0.2537],'LineStyle','--')
% line([500 1000], [T_626 T_626] * 1e2,'Color',[0.9586 0.7372 0.2537],'LineStyle','--')
text(630, T_626 * 1e2 - 0.002, sprintf('R @ 626 = %.5f', R_626), 'FontSize' , 10)
% text(630, T_626 * 1e2 - 0.006, sprintf('F = %.3f', F_626), 'FontSize' , 10)
% annotation('arrow', [0.293 0.293], [0.11 0.3]);
% plot(842, T_842 * 1e2, 'o', 'MarkerSize', 15, 'LineWidth', 3)
% line([842 842], [0 0.06],'Color','red','LineStyle','--')
% line([500 1000], [T_842 T_842] * 1e2,'Color','red','LineStyle','--')
text(825, T_842 * 1e2 + 0.006, sprintf('R @ 842 = %.5f', R_842), 'FontSize' , 10)
% text(846, T_842 * 1e2 + 0.002, sprintf('F = %.3f', F_842), 'FontSize' , 10)
% annotation('arrow', [0.571 0.571], [0.11 0.2]);
hold off
hXLabel = xlabel('Wavelength (nm)');
hYLabel = ylabel('Mirror Transmission T(%)');
set([hXLabel, hYLabel] , ...
'FontSize' , 14 );
grid on
subplot(1,3,2)
plot(W, F * 1e-4)
text(626, F_626 * 1e-4 + 0.2, sprintf('F @ 626 = %1.f', F_626), 'FontSize' , 10)
text(750, F_842 * 1e-4 - 0.5, sprintf('F @ 842 = %1.f', F_842), 'FontSize' , 10)
hXLabel = xlabel('Wavelength (nm)');
hYLabel = ylabel('Finesse (x 10^{4})');
set([hXLabel, hYLabel] , ...
'FontSize' , 14 );
grid on
subplot(1,3,3)
plot(W, L * 1e-3)
text(626, L_626 * 1e-3 - 5, sprintf('L @ 626 = %1.f kHz', L_626* 1e-3), 'FontSize' , 10)
text(750, L_842 * 1e-3 + 12, sprintf('L @ 842 = %1.f kHz', L_842* 1e-3), 'FontSize' , 10)
hXLabel = xlabel('Wavelength (nm)');
hYLabel = ylabel('Linewidth (kHz)');
set([hXLabel, hYLabel] , ...
'FontSize' , 14 );
grid on
hTitle = sgtitle('SLS ULE Cavity Characterisitics');
set( hTitle , ...
'FontSize' , 18 );