From 461ca442deaabccde09ebc9cdc3403b183adc9a6 Mon Sep 17 00:00:00 2001 From: Karthik Chandrashekara Date: Mon, 25 Mar 2024 17:52:11 +0100 Subject: [PATCH] Latest Calculations repo code. --- .gitignore | 5 + .../+Helper}/ImageSelection.class | Bin .../+Helper}/ImageSelection.java | 0 .../+Helper}/PhysicsConstants.m | 0 .../bringFiguresWithTagInForeground.m | 0 .../calculateDistanceFromPointToLine.m | 0 .../+Helper}/convertstruct2cell.m | 0 .../+Helper}/findAllZeroCrossings.m | 0 .../+Helper}/getFigureByTag.m | 0 .../+Helper}/ode5.m | 0 .../+Helper}/onenoteccdata.m | 0 .../+Helper}/parforNotifications.m | 0 .../+Helper}/screencapture.m | 0 .../plotAngularDistributionForDifferentBeta.m | 0 .../+Plotter}/plotCaptureVelocityVsAngle.m | 0 .../+Plotter}/plotConfidenceIntervalRegion.m | 0 .../+Plotter}/plotDynamicalQuantities.m | 0 .../+Plotter}/plotFreeMolecularFluxVsTemp.m | 0 .../plotInitialVeloctiySamplingVsAngle.m | 0 .../plotMeanFreePathAndVapourPressureVsTemp.m | 0 .../plotPhaseSpaceWithAccelerationField.m | 0 .../plotPositionAndVelocitySampling.m | 0 .../+Plotter}/plotResultForOneParameterScan.m | 0 .../plotResultForThreeParameterScan.m | 0 .../+Plotter}/plotResultForTwoParameterScan.m | 0 .../+Plotter}/visualizeMagneticField.m | 0 .../optimizingForSidebandEnhancement.m | 0 .../+Scripts}/scanForSidebandEnhancement.m | 0 .../+Simulator}/+Scan/doOneParameter.m | 0 .../+Simulator}/+Scan/doThreeParameters.m | 0 .../+Simulator}/+Scan/doTwoParameters.m | 0 .../+Simulator}/@Beams/Beams.m | 0 .../@MOTCaptureProcess/MOTCaptureProcess.m | 0 .../+Simulator}/@Oven/Oven.m | 0 .../@Oven/angularDistributionFunction.m | 0 .../@Oven/calculateClausingFactor.m | 0 .../@Oven/calculateFreeMolecularRegimeFlux.m | 0 .../@Oven/calculateReducedClausingFactor.m | 0 .../@Oven/initialPositionSampling.m | 0 .../@Oven/initialVelocitySampling.m | 0 .../@Oven/velocityDistributionFunction.m | 0 .../@TwoDimensionalMOT/TwoDimensionalMOT.m | 0 .../accelerationDueToPushBeam.m | 0 ...elerationDueToSpontaneousEmissionProcess.m | 0 .../bootstrapErrorEstimation.m | 0 .../calculateCaptureVelocity.m | 0 .../@TwoDimensionalMOT/calculateLoadingRate.m | 0 .../calculateLocalSaturationIntensity.m | 0 .../calculateTotalAcceleration.m | 0 .../computeCollisionProbability.m | 0 .../computeTimeSpentInInteractionRegion.m | 0 .../@TwoDimensionalMOT/exitCondition.m | 0 .../jackknifeErrorEstimation.m | 0 .../@TwoDimensionalMOT/magneticFieldForMOT.m | 0 .../@TwoDimensionalMOT/runSimulation.m | 0 .../+Simulator}/@TwoDimensionalMOT/solver.m | 0 .../test_MOTCaptureProcessSimulation.m | 0 GPE Solver/+Helper/ImageSelection.class | Bin 0 -> 1092 bytes GPE Solver/+Helper/ImageSelection.java | 38 + GPE Solver/+Helper/PhysicsConstants.m | 46 + .../+Helper/bringFiguresWithTagInForeground.m | 15 + .../calculateDistanceFromPointToLine.m | 10 + GPE Solver/+Helper/convertstruct2cell.m | 6 + GPE Solver/+Helper/findAllZeroCrossings.m | 18 + GPE Solver/+Helper/getFigureByTag.m | 191 ++++ GPE Solver/+Helper/ode5.m | 92 ++ GPE Solver/+Helper/onenoteccdata.m | 55 ++ GPE Solver/+Helper/parforNotifications.m | 148 ++++ GPE Solver/+Helper/screencapture.m | 820 ++++++++++++++++++ GPE Solver/+Plotter/Analysis.m | 50 ++ GPE Solver/+Plotter/MakeMovie.m | 77 ++ GPE Solver/+Plotter/OrderParameter_m.m | 58 ++ GPE Solver/+Plotter/runningplot.m | 47 + GPE Solver/+Simulator/Initialize.m | 94 ++ GPE Solver/+Simulator/PhaseCoherence.m | 18 + GPE Solver/+Simulator/VDcutoff.m | 54 ++ GPE Solver/+Simulator/chemicalpotential.m | 28 + GPE Solver/+Simulator/energy_components.m | 35 + GPE Solver/+Simulator/energytotal.m | 31 + GPE Solver/+Simulator/norm_resid.m | 24 + GPE Solver/+Simulator/parameters.m | 99 +++ GPE Solver/+Simulator/running_file.m | 23 + GPE Solver/+Simulator/setup_space.m | 32 + GPE Solver/+Simulator/setup_space_radial.m | 311 +++++++ GPE Solver/+Simulator/ssfm_imag.m | 98 +++ GaussianBeamABCD/BeamPropagation.py | 233 +++++ GaussianBeamABCD/DMD_Setup.py | 70 ++ GaussianBeamABCD/Example.ipynb | 589 +++++++++++++ GaussianBeamABCD/README.md | 359 ++++++++ .../ODTCalculations.ipynb | 0 .../calculateDipoleTrapPotential.py | 0 TimeSeriesAnalyzer/TimeSeriesAnalysis.ipynb | 552 ++++++++++++ TimeSeriesAnalyzer/TimeSeriesAnalyzer.py | 333 +++++++ .../Code/ReflectanceCurve_ULECavity.m | 50 ++ .../Code/TransmissionCurve_ULECavity.m | 94 ++ 95 files changed, 4803 insertions(+) create mode 100644 .gitignore rename {+Helper => 2DMOT Simulation Code/+Helper}/ImageSelection.class (100%) rename {+Helper => 2DMOT Simulation Code/+Helper}/ImageSelection.java (100%) rename {+Helper => 2DMOT Simulation Code/+Helper}/PhysicsConstants.m (100%) rename {+Helper => 2DMOT Simulation Code/+Helper}/bringFiguresWithTagInForeground.m (100%) rename {+Helper => 2DMOT Simulation Code/+Helper}/calculateDistanceFromPointToLine.m (100%) rename {+Helper => 2DMOT Simulation Code/+Helper}/convertstruct2cell.m (100%) rename {+Helper => 2DMOT Simulation Code/+Helper}/findAllZeroCrossings.m (100%) rename {+Helper => 2DMOT Simulation Code/+Helper}/getFigureByTag.m (100%) rename {+Helper => 2DMOT Simulation Code/+Helper}/ode5.m (100%) rename {+Helper => 2DMOT Simulation Code/+Helper}/onenoteccdata.m (100%) rename {+Helper => 2DMOT Simulation Code/+Helper}/parforNotifications.m (100%) rename {+Helper => 2DMOT Simulation Code/+Helper}/screencapture.m (100%) rename {+Plotter => 2DMOT Simulation Code/+Plotter}/plotAngularDistributionForDifferentBeta.m (100%) rename {+Plotter => 2DMOT Simulation Code/+Plotter}/plotCaptureVelocityVsAngle.m (100%) rename {+Plotter => 2DMOT Simulation Code/+Plotter}/plotConfidenceIntervalRegion.m (100%) rename {+Plotter => 2DMOT Simulation Code/+Plotter}/plotDynamicalQuantities.m (100%) rename {+Plotter => 2DMOT Simulation Code/+Plotter}/plotFreeMolecularFluxVsTemp.m (100%) rename {+Plotter => 2DMOT Simulation Code/+Plotter}/plotInitialVeloctiySamplingVsAngle.m (100%) rename {+Plotter => 2DMOT Simulation Code/+Plotter}/plotMeanFreePathAndVapourPressureVsTemp.m (100%) rename {+Plotter => 2DMOT Simulation Code/+Plotter}/plotPhaseSpaceWithAccelerationField.m (100%) rename {+Plotter => 2DMOT Simulation Code/+Plotter}/plotPositionAndVelocitySampling.m (100%) rename {+Plotter => 2DMOT Simulation Code/+Plotter}/plotResultForOneParameterScan.m (100%) rename {+Plotter => 2DMOT Simulation Code/+Plotter}/plotResultForThreeParameterScan.m (100%) rename {+Plotter => 2DMOT Simulation Code/+Plotter}/plotResultForTwoParameterScan.m (100%) rename {+Plotter => 2DMOT Simulation Code/+Plotter}/visualizeMagneticField.m (100%) rename {+Scripts => 2DMOT Simulation Code/+Scripts}/optimizingForSidebandEnhancement.m (100%) rename {+Scripts => 2DMOT Simulation Code/+Scripts}/scanForSidebandEnhancement.m (100%) rename {+Simulator => 2DMOT Simulation Code/+Simulator}/+Scan/doOneParameter.m (100%) rename {+Simulator => 2DMOT Simulation Code/+Simulator}/+Scan/doThreeParameters.m (100%) rename {+Simulator => 2DMOT Simulation Code/+Simulator}/+Scan/doTwoParameters.m (100%) rename {+Simulator => 2DMOT Simulation Code/+Simulator}/@Beams/Beams.m (100%) rename {+Simulator => 2DMOT Simulation Code/+Simulator}/@MOTCaptureProcess/MOTCaptureProcess.m (100%) rename {+Simulator => 2DMOT Simulation Code/+Simulator}/@Oven/Oven.m (100%) rename {+Simulator => 2DMOT Simulation Code/+Simulator}/@Oven/angularDistributionFunction.m (100%) rename {+Simulator => 2DMOT Simulation Code/+Simulator}/@Oven/calculateClausingFactor.m (100%) rename {+Simulator => 2DMOT Simulation Code/+Simulator}/@Oven/calculateFreeMolecularRegimeFlux.m (100%) rename {+Simulator => 2DMOT Simulation Code/+Simulator}/@Oven/calculateReducedClausingFactor.m (100%) rename {+Simulator => 2DMOT Simulation Code/+Simulator}/@Oven/initialPositionSampling.m (100%) rename {+Simulator => 2DMOT Simulation Code/+Simulator}/@Oven/initialVelocitySampling.m (100%) rename {+Simulator => 2DMOT Simulation Code/+Simulator}/@Oven/velocityDistributionFunction.m (100%) rename {+Simulator => 2DMOT Simulation Code/+Simulator}/@TwoDimensionalMOT/TwoDimensionalMOT.m (100%) rename {+Simulator => 2DMOT Simulation Code/+Simulator}/@TwoDimensionalMOT/accelerationDueToPushBeam.m (100%) rename {+Simulator => 2DMOT Simulation Code/+Simulator}/@TwoDimensionalMOT/accelerationDueToSpontaneousEmissionProcess.m (100%) rename {+Simulator => 2DMOT Simulation Code/+Simulator}/@TwoDimensionalMOT/bootstrapErrorEstimation.m (100%) rename {+Simulator => 2DMOT Simulation Code/+Simulator}/@TwoDimensionalMOT/calculateCaptureVelocity.m (100%) rename {+Simulator => 2DMOT Simulation Code/+Simulator}/@TwoDimensionalMOT/calculateLoadingRate.m (100%) rename {+Simulator => 2DMOT Simulation Code/+Simulator}/@TwoDimensionalMOT/calculateLocalSaturationIntensity.m (100%) rename {+Simulator => 2DMOT Simulation Code/+Simulator}/@TwoDimensionalMOT/calculateTotalAcceleration.m (100%) rename {+Simulator => 2DMOT Simulation Code/+Simulator}/@TwoDimensionalMOT/computeCollisionProbability.m (100%) rename {+Simulator => 2DMOT Simulation Code/+Simulator}/@TwoDimensionalMOT/computeTimeSpentInInteractionRegion.m (100%) rename {+Simulator => 2DMOT Simulation Code/+Simulator}/@TwoDimensionalMOT/exitCondition.m (100%) rename {+Simulator => 2DMOT Simulation Code/+Simulator}/@TwoDimensionalMOT/jackknifeErrorEstimation.m (100%) rename {+Simulator => 2DMOT Simulation Code/+Simulator}/@TwoDimensionalMOT/magneticFieldForMOT.m (100%) rename {+Simulator => 2DMOT Simulation Code/+Simulator}/@TwoDimensionalMOT/runSimulation.m (100%) rename {+Simulator => 2DMOT Simulation Code/+Simulator}/@TwoDimensionalMOT/solver.m (100%) rename test_MOTCaptureProcessSimulation.m => 2DMOT Simulation Code/test_MOTCaptureProcessSimulation.m (100%) create mode 100644 GPE Solver/+Helper/ImageSelection.class create mode 100644 GPE Solver/+Helper/ImageSelection.java create mode 100644 GPE Solver/+Helper/PhysicsConstants.m create mode 100644 GPE Solver/+Helper/bringFiguresWithTagInForeground.m create mode 100644 GPE Solver/+Helper/calculateDistanceFromPointToLine.m create mode 100644 GPE Solver/+Helper/convertstruct2cell.m create mode 100644 GPE Solver/+Helper/findAllZeroCrossings.m create mode 100644 GPE Solver/+Helper/getFigureByTag.m create mode 100644 GPE Solver/+Helper/ode5.m create mode 100644 GPE Solver/+Helper/onenoteccdata.m create mode 100644 GPE Solver/+Helper/parforNotifications.m create mode 100644 GPE Solver/+Helper/screencapture.m create mode 100644 GPE Solver/+Plotter/Analysis.m create mode 100644 GPE Solver/+Plotter/MakeMovie.m create mode 100644 GPE Solver/+Plotter/OrderParameter_m.m create mode 100644 GPE Solver/+Plotter/runningplot.m create mode 100644 GPE Solver/+Simulator/Initialize.m create mode 100644 GPE Solver/+Simulator/PhaseCoherence.m create mode 100644 GPE Solver/+Simulator/VDcutoff.m create mode 100644 GPE Solver/+Simulator/chemicalpotential.m create mode 100644 GPE Solver/+Simulator/energy_components.m create mode 100644 GPE Solver/+Simulator/energytotal.m create mode 100644 GPE Solver/+Simulator/norm_resid.m create mode 100644 GPE Solver/+Simulator/parameters.m create mode 100644 GPE Solver/+Simulator/running_file.m create mode 100644 GPE Solver/+Simulator/setup_space.m create mode 100644 GPE Solver/+Simulator/setup_space_radial.m create mode 100644 GPE Solver/+Simulator/ssfm_imag.m create mode 100644 GaussianBeamABCD/BeamPropagation.py create mode 100644 GaussianBeamABCD/DMD_Setup.py create mode 100644 GaussianBeamABCD/Example.ipynb create mode 100644 GaussianBeamABCD/README.md rename ODTCalculations.ipynb => ODT Calculator/ODTCalculations.ipynb (100%) rename calculateDipoleTrapPotential.py => ODT Calculator/calculateDipoleTrapPotential.py (100%) create mode 100644 TimeSeriesAnalyzer/TimeSeriesAnalysis.ipynb create mode 100644 TimeSeriesAnalyzer/TimeSeriesAnalyzer.py create mode 100644 ULE Cavity Characterisitics/Code/ReflectanceCurve_ULECavity.m create mode 100644 ULE Cavity Characterisitics/Code/TransmissionCurve_ULECavity.m diff --git a/.gitignore b/.gitignore new file mode 100644 index 0000000..6ed4c25 --- /dev/null +++ b/.gitignore @@ -0,0 +1,5 @@ +2DMOT Simulation Code/Results +AtomECS Simulation Code +TimeSeriesAnalyzer/Time Series Data +ULE Cavity Characterisitics/Data +ULE Cavity Characterisitics/Figures \ No newline at end of file diff --git a/+Helper/ImageSelection.class b/2DMOT Simulation Code/+Helper/ImageSelection.class similarity index 100% rename from +Helper/ImageSelection.class rename to 2DMOT Simulation Code/+Helper/ImageSelection.class diff --git a/+Helper/ImageSelection.java b/2DMOT Simulation Code/+Helper/ImageSelection.java similarity index 100% rename from +Helper/ImageSelection.java rename to 2DMOT Simulation Code/+Helper/ImageSelection.java diff --git a/+Helper/PhysicsConstants.m b/2DMOT Simulation Code/+Helper/PhysicsConstants.m similarity index 100% rename from +Helper/PhysicsConstants.m rename to 2DMOT Simulation Code/+Helper/PhysicsConstants.m diff --git a/+Helper/bringFiguresWithTagInForeground.m b/2DMOT Simulation Code/+Helper/bringFiguresWithTagInForeground.m similarity index 100% rename from +Helper/bringFiguresWithTagInForeground.m rename to 2DMOT Simulation Code/+Helper/bringFiguresWithTagInForeground.m diff --git a/+Helper/calculateDistanceFromPointToLine.m b/2DMOT Simulation Code/+Helper/calculateDistanceFromPointToLine.m similarity index 100% rename from +Helper/calculateDistanceFromPointToLine.m rename to 2DMOT Simulation Code/+Helper/calculateDistanceFromPointToLine.m diff --git a/+Helper/convertstruct2cell.m b/2DMOT Simulation Code/+Helper/convertstruct2cell.m similarity index 100% rename from +Helper/convertstruct2cell.m rename to 2DMOT Simulation Code/+Helper/convertstruct2cell.m diff --git a/+Helper/findAllZeroCrossings.m b/2DMOT Simulation Code/+Helper/findAllZeroCrossings.m similarity index 100% rename from +Helper/findAllZeroCrossings.m rename to 2DMOT Simulation Code/+Helper/findAllZeroCrossings.m diff --git a/+Helper/getFigureByTag.m b/2DMOT Simulation Code/+Helper/getFigureByTag.m similarity index 100% rename from +Helper/getFigureByTag.m rename to 2DMOT Simulation Code/+Helper/getFigureByTag.m diff --git a/+Helper/ode5.m b/2DMOT Simulation Code/+Helper/ode5.m similarity index 100% rename from +Helper/ode5.m rename to 2DMOT Simulation Code/+Helper/ode5.m diff --git a/+Helper/onenoteccdata.m b/2DMOT Simulation Code/+Helper/onenoteccdata.m similarity index 100% rename from +Helper/onenoteccdata.m rename to 2DMOT Simulation Code/+Helper/onenoteccdata.m diff --git a/+Helper/parforNotifications.m b/2DMOT Simulation Code/+Helper/parforNotifications.m similarity index 100% rename from +Helper/parforNotifications.m rename to 2DMOT Simulation Code/+Helper/parforNotifications.m diff --git a/+Helper/screencapture.m b/2DMOT Simulation Code/+Helper/screencapture.m similarity index 100% rename from +Helper/screencapture.m rename to 2DMOT Simulation Code/+Helper/screencapture.m diff --git a/+Plotter/plotAngularDistributionForDifferentBeta.m b/2DMOT Simulation Code/+Plotter/plotAngularDistributionForDifferentBeta.m similarity index 100% rename from +Plotter/plotAngularDistributionForDifferentBeta.m rename to 2DMOT Simulation Code/+Plotter/plotAngularDistributionForDifferentBeta.m diff --git a/+Plotter/plotCaptureVelocityVsAngle.m b/2DMOT Simulation Code/+Plotter/plotCaptureVelocityVsAngle.m similarity index 100% rename from +Plotter/plotCaptureVelocityVsAngle.m rename to 2DMOT Simulation Code/+Plotter/plotCaptureVelocityVsAngle.m diff --git a/+Plotter/plotConfidenceIntervalRegion.m b/2DMOT Simulation Code/+Plotter/plotConfidenceIntervalRegion.m similarity index 100% rename from +Plotter/plotConfidenceIntervalRegion.m rename to 2DMOT Simulation Code/+Plotter/plotConfidenceIntervalRegion.m diff --git a/+Plotter/plotDynamicalQuantities.m b/2DMOT Simulation Code/+Plotter/plotDynamicalQuantities.m similarity index 100% rename from +Plotter/plotDynamicalQuantities.m rename to 2DMOT Simulation Code/+Plotter/plotDynamicalQuantities.m diff --git a/+Plotter/plotFreeMolecularFluxVsTemp.m b/2DMOT Simulation Code/+Plotter/plotFreeMolecularFluxVsTemp.m similarity index 100% rename from +Plotter/plotFreeMolecularFluxVsTemp.m rename to 2DMOT Simulation Code/+Plotter/plotFreeMolecularFluxVsTemp.m diff --git a/+Plotter/plotInitialVeloctiySamplingVsAngle.m b/2DMOT Simulation Code/+Plotter/plotInitialVeloctiySamplingVsAngle.m similarity index 100% rename from +Plotter/plotInitialVeloctiySamplingVsAngle.m rename to 2DMOT Simulation Code/+Plotter/plotInitialVeloctiySamplingVsAngle.m diff --git a/+Plotter/plotMeanFreePathAndVapourPressureVsTemp.m b/2DMOT Simulation Code/+Plotter/plotMeanFreePathAndVapourPressureVsTemp.m similarity index 100% rename from +Plotter/plotMeanFreePathAndVapourPressureVsTemp.m rename to 2DMOT Simulation Code/+Plotter/plotMeanFreePathAndVapourPressureVsTemp.m diff --git a/+Plotter/plotPhaseSpaceWithAccelerationField.m b/2DMOT Simulation Code/+Plotter/plotPhaseSpaceWithAccelerationField.m similarity index 100% rename from +Plotter/plotPhaseSpaceWithAccelerationField.m rename to 2DMOT Simulation Code/+Plotter/plotPhaseSpaceWithAccelerationField.m diff --git a/+Plotter/plotPositionAndVelocitySampling.m b/2DMOT Simulation Code/+Plotter/plotPositionAndVelocitySampling.m similarity index 100% rename from +Plotter/plotPositionAndVelocitySampling.m rename to 2DMOT Simulation Code/+Plotter/plotPositionAndVelocitySampling.m diff --git a/+Plotter/plotResultForOneParameterScan.m b/2DMOT Simulation Code/+Plotter/plotResultForOneParameterScan.m similarity index 100% rename from +Plotter/plotResultForOneParameterScan.m rename to 2DMOT Simulation Code/+Plotter/plotResultForOneParameterScan.m diff --git a/+Plotter/plotResultForThreeParameterScan.m b/2DMOT Simulation Code/+Plotter/plotResultForThreeParameterScan.m similarity index 100% rename from +Plotter/plotResultForThreeParameterScan.m rename to 2DMOT Simulation Code/+Plotter/plotResultForThreeParameterScan.m diff --git a/+Plotter/plotResultForTwoParameterScan.m b/2DMOT Simulation Code/+Plotter/plotResultForTwoParameterScan.m similarity index 100% rename from +Plotter/plotResultForTwoParameterScan.m rename to 2DMOT Simulation Code/+Plotter/plotResultForTwoParameterScan.m diff --git a/+Plotter/visualizeMagneticField.m b/2DMOT Simulation Code/+Plotter/visualizeMagneticField.m similarity index 100% rename from +Plotter/visualizeMagneticField.m rename to 2DMOT Simulation Code/+Plotter/visualizeMagneticField.m diff --git a/+Scripts/optimizingForSidebandEnhancement.m b/2DMOT Simulation Code/+Scripts/optimizingForSidebandEnhancement.m similarity index 100% rename from +Scripts/optimizingForSidebandEnhancement.m rename to 2DMOT Simulation Code/+Scripts/optimizingForSidebandEnhancement.m diff --git a/+Scripts/scanForSidebandEnhancement.m b/2DMOT Simulation Code/+Scripts/scanForSidebandEnhancement.m similarity index 100% rename from +Scripts/scanForSidebandEnhancement.m rename to 2DMOT Simulation Code/+Scripts/scanForSidebandEnhancement.m diff --git a/+Simulator/+Scan/doOneParameter.m b/2DMOT Simulation Code/+Simulator/+Scan/doOneParameter.m similarity index 100% rename from +Simulator/+Scan/doOneParameter.m rename to 2DMOT Simulation Code/+Simulator/+Scan/doOneParameter.m diff --git a/+Simulator/+Scan/doThreeParameters.m b/2DMOT Simulation Code/+Simulator/+Scan/doThreeParameters.m similarity index 100% rename from +Simulator/+Scan/doThreeParameters.m rename to 2DMOT Simulation Code/+Simulator/+Scan/doThreeParameters.m diff --git a/+Simulator/+Scan/doTwoParameters.m b/2DMOT Simulation Code/+Simulator/+Scan/doTwoParameters.m similarity index 100% rename from +Simulator/+Scan/doTwoParameters.m rename to 2DMOT Simulation Code/+Simulator/+Scan/doTwoParameters.m diff --git a/+Simulator/@Beams/Beams.m b/2DMOT Simulation Code/+Simulator/@Beams/Beams.m similarity index 100% rename from +Simulator/@Beams/Beams.m rename to 2DMOT Simulation Code/+Simulator/@Beams/Beams.m diff --git a/+Simulator/@MOTCaptureProcess/MOTCaptureProcess.m b/2DMOT Simulation Code/+Simulator/@MOTCaptureProcess/MOTCaptureProcess.m similarity index 100% rename from +Simulator/@MOTCaptureProcess/MOTCaptureProcess.m rename to 2DMOT Simulation Code/+Simulator/@MOTCaptureProcess/MOTCaptureProcess.m diff --git a/+Simulator/@Oven/Oven.m b/2DMOT Simulation Code/+Simulator/@Oven/Oven.m similarity index 100% rename from +Simulator/@Oven/Oven.m rename to 2DMOT Simulation Code/+Simulator/@Oven/Oven.m diff --git a/+Simulator/@Oven/angularDistributionFunction.m b/2DMOT Simulation Code/+Simulator/@Oven/angularDistributionFunction.m similarity index 100% rename from +Simulator/@Oven/angularDistributionFunction.m rename to 2DMOT Simulation Code/+Simulator/@Oven/angularDistributionFunction.m diff --git a/+Simulator/@Oven/calculateClausingFactor.m b/2DMOT Simulation Code/+Simulator/@Oven/calculateClausingFactor.m similarity index 100% rename from +Simulator/@Oven/calculateClausingFactor.m rename to 2DMOT Simulation Code/+Simulator/@Oven/calculateClausingFactor.m diff --git a/+Simulator/@Oven/calculateFreeMolecularRegimeFlux.m b/2DMOT Simulation Code/+Simulator/@Oven/calculateFreeMolecularRegimeFlux.m similarity index 100% rename from +Simulator/@Oven/calculateFreeMolecularRegimeFlux.m rename to 2DMOT Simulation Code/+Simulator/@Oven/calculateFreeMolecularRegimeFlux.m diff --git a/+Simulator/@Oven/calculateReducedClausingFactor.m b/2DMOT Simulation Code/+Simulator/@Oven/calculateReducedClausingFactor.m similarity index 100% rename from +Simulator/@Oven/calculateReducedClausingFactor.m rename to 2DMOT Simulation Code/+Simulator/@Oven/calculateReducedClausingFactor.m diff --git a/+Simulator/@Oven/initialPositionSampling.m b/2DMOT Simulation Code/+Simulator/@Oven/initialPositionSampling.m similarity index 100% rename from +Simulator/@Oven/initialPositionSampling.m rename to 2DMOT Simulation Code/+Simulator/@Oven/initialPositionSampling.m diff --git a/+Simulator/@Oven/initialVelocitySampling.m b/2DMOT Simulation Code/+Simulator/@Oven/initialVelocitySampling.m similarity index 100% rename from +Simulator/@Oven/initialVelocitySampling.m rename to 2DMOT Simulation Code/+Simulator/@Oven/initialVelocitySampling.m diff --git a/+Simulator/@Oven/velocityDistributionFunction.m b/2DMOT Simulation Code/+Simulator/@Oven/velocityDistributionFunction.m similarity index 100% rename from +Simulator/@Oven/velocityDistributionFunction.m rename to 2DMOT Simulation Code/+Simulator/@Oven/velocityDistributionFunction.m diff --git a/+Simulator/@TwoDimensionalMOT/TwoDimensionalMOT.m b/2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/TwoDimensionalMOT.m similarity index 100% rename from +Simulator/@TwoDimensionalMOT/TwoDimensionalMOT.m rename to 2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/TwoDimensionalMOT.m diff --git a/+Simulator/@TwoDimensionalMOT/accelerationDueToPushBeam.m b/2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/accelerationDueToPushBeam.m similarity index 100% rename from +Simulator/@TwoDimensionalMOT/accelerationDueToPushBeam.m rename to 2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/accelerationDueToPushBeam.m diff --git a/+Simulator/@TwoDimensionalMOT/accelerationDueToSpontaneousEmissionProcess.m b/2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/accelerationDueToSpontaneousEmissionProcess.m similarity index 100% rename from +Simulator/@TwoDimensionalMOT/accelerationDueToSpontaneousEmissionProcess.m rename to 2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/accelerationDueToSpontaneousEmissionProcess.m diff --git a/+Simulator/@TwoDimensionalMOT/bootstrapErrorEstimation.m b/2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/bootstrapErrorEstimation.m similarity index 100% rename from +Simulator/@TwoDimensionalMOT/bootstrapErrorEstimation.m rename to 2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/bootstrapErrorEstimation.m diff --git a/+Simulator/@TwoDimensionalMOT/calculateCaptureVelocity.m b/2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/calculateCaptureVelocity.m similarity index 100% rename from +Simulator/@TwoDimensionalMOT/calculateCaptureVelocity.m rename to 2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/calculateCaptureVelocity.m diff --git a/+Simulator/@TwoDimensionalMOT/calculateLoadingRate.m b/2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/calculateLoadingRate.m similarity index 100% rename from +Simulator/@TwoDimensionalMOT/calculateLoadingRate.m rename to 2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/calculateLoadingRate.m diff --git a/+Simulator/@TwoDimensionalMOT/calculateLocalSaturationIntensity.m b/2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/calculateLocalSaturationIntensity.m similarity index 100% rename from +Simulator/@TwoDimensionalMOT/calculateLocalSaturationIntensity.m rename to 2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/calculateLocalSaturationIntensity.m diff --git a/+Simulator/@TwoDimensionalMOT/calculateTotalAcceleration.m b/2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/calculateTotalAcceleration.m similarity index 100% rename from +Simulator/@TwoDimensionalMOT/calculateTotalAcceleration.m rename to 2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/calculateTotalAcceleration.m diff --git a/+Simulator/@TwoDimensionalMOT/computeCollisionProbability.m b/2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/computeCollisionProbability.m similarity index 100% rename from +Simulator/@TwoDimensionalMOT/computeCollisionProbability.m rename to 2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/computeCollisionProbability.m diff --git a/+Simulator/@TwoDimensionalMOT/computeTimeSpentInInteractionRegion.m b/2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/computeTimeSpentInInteractionRegion.m similarity index 100% rename from +Simulator/@TwoDimensionalMOT/computeTimeSpentInInteractionRegion.m rename to 2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/computeTimeSpentInInteractionRegion.m diff --git a/+Simulator/@TwoDimensionalMOT/exitCondition.m b/2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/exitCondition.m similarity index 100% rename from +Simulator/@TwoDimensionalMOT/exitCondition.m rename to 2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/exitCondition.m diff --git a/+Simulator/@TwoDimensionalMOT/jackknifeErrorEstimation.m b/2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/jackknifeErrorEstimation.m similarity index 100% rename from +Simulator/@TwoDimensionalMOT/jackknifeErrorEstimation.m rename to 2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/jackknifeErrorEstimation.m diff --git a/+Simulator/@TwoDimensionalMOT/magneticFieldForMOT.m b/2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/magneticFieldForMOT.m similarity index 100% rename from +Simulator/@TwoDimensionalMOT/magneticFieldForMOT.m rename to 2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/magneticFieldForMOT.m diff --git a/+Simulator/@TwoDimensionalMOT/runSimulation.m b/2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/runSimulation.m similarity index 100% rename from +Simulator/@TwoDimensionalMOT/runSimulation.m rename to 2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/runSimulation.m diff --git a/+Simulator/@TwoDimensionalMOT/solver.m b/2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/solver.m similarity index 100% rename from +Simulator/@TwoDimensionalMOT/solver.m rename to 2DMOT Simulation Code/+Simulator/@TwoDimensionalMOT/solver.m diff --git a/test_MOTCaptureProcessSimulation.m b/2DMOT Simulation Code/test_MOTCaptureProcessSimulation.m similarity index 100% rename from test_MOTCaptureProcessSimulation.m rename to 2DMOT Simulation Code/test_MOTCaptureProcessSimulation.m diff --git a/GPE Solver/+Helper/ImageSelection.class b/GPE Solver/+Helper/ImageSelection.class new file mode 100644 index 0000000000000000000000000000000000000000..cfac41d4d552a6c83b184c77190049bc9ccc5c9a GIT binary patch literal 1092 zcma)5%Wl&^6g^`nabnywl(w{?v`zXT4`_e|3#eG|sDxC(A_b|ia*|2p%5{R{6uyOT zU;*V(2?XrjthEC>baV7;V=+==yzul^5H4_JLiqUj?<69oT_yd;PZbYY%wY3cKzIB%OV` zBLx=Y<}g#cH)yk2wjQZE8&jK(=LB~J3Z;LymY)eE?sr=xo!oXj`FOD3kp7O{a8;%w zgPmg`N{7I$5xUc4mZOQT?R9ET8hf%CP>}iXbyM~Nr|WUq*}r(B{a9ElmCxkEjMI;O zsSkR+t{=#j!pGa5D(|^Kdb8;s8>E+%1!lcF@SAeWQEOiaU93x&(kXaDJ&c7M7A#~j zX~DvTg$nWl*T=uvQ?GxbDOzo~yrQWJERV;P}Zs_nC9HJrT!tW|l&l&#*p}-H`1d-5?S03>np((?7CYjISJmVB^73MXbX5|Q? zQvC$&J#X}#F$3JKmam}YhwGwfEl+pH;EzIq5PO`xw0EqI z^2|}kJn@$>%SwVZrQ{;!7!~6JPoXL#jIpUOx5PNlO`^`?@oaNA`|WU6)W3=}=O{+S fyv}LrmrZ 0 + output = figure_handles; +end + +end \ No newline at end of file diff --git a/GPE Solver/+Helper/calculateDistanceFromPointToLine.m b/GPE Solver/+Helper/calculateDistanceFromPointToLine.m new file mode 100644 index 0000000..df5c8c6 --- /dev/null +++ b/GPE Solver/+Helper/calculateDistanceFromPointToLine.m @@ -0,0 +1,10 @@ +function ret = calculateDistanceFromPointToLine(p0 , p1, p2) + p01 = p0 - p1; + p12 = p2 - p1; + CrossProduct = [p01(2)*p12(3) - p01(3)*p12(2), p01(3)*p12(1) - p01(1)*p12(3), p01(1)*p12(2) - p01(2)*p12(1)]; + ret = norm(CrossProduct) / norm(p12); + + %Height of parallelogram (Distance between point and line) = Area of parallelogram / Base + %Area = One side of parallelogram X Base + %ret = norm(cross(one side, base))./ norm(base); +end \ No newline at end of file diff --git a/GPE Solver/+Helper/convertstruct2cell.m b/GPE Solver/+Helper/convertstruct2cell.m new file mode 100644 index 0000000..90fdf2c --- /dev/null +++ b/GPE Solver/+Helper/convertstruct2cell.m @@ -0,0 +1,6 @@ +function CellOut = convertstruct2cell(StructIn) + % CellOut = Convertstruct2cell(StructIn) + % converts a struct into a cell-matrix where the first column contains + % the fieldnames and the second the contents + CellOut = [fieldnames(StructIn) struct2cell(StructIn)]'; +end \ No newline at end of file diff --git a/GPE Solver/+Helper/findAllZeroCrossings.m b/GPE Solver/+Helper/findAllZeroCrossings.m new file mode 100644 index 0000000..4b8d9db --- /dev/null +++ b/GPE Solver/+Helper/findAllZeroCrossings.m @@ -0,0 +1,18 @@ +function ret = findAllZeroCrossings(x,y) +% Finds all Zero-crossing of the function y = f(x) + zci = @(v) find(v(:).*circshift(v(:), [-1 0]) <= 0); % Returns Approximate Zero-Crossing Indices Of Argument Vector + zxidx = zci(y); + if ~isempty(zxidx) + for k1 = 1:numel(zxidx) + idxrng = max([1 zxidx(k1)-1]):min([zxidx(k1)+1 numel(y)]); + xrng = x(idxrng); + yrng = y(idxrng); + [yrng2, ~, jyrng] = unique(yrng); %yrng is a new array containing the unique values of yrng. jyrng contains the indices in yrng that correspond to the original vector. yrng = yrng2(jyrng) + xrng2 = accumarray(jyrng, xrng, [], @mean); %This function creates a new array "xrng2" by applying the function "@mean" to all elements in "xrng" that have identical indices in "jyrng". Any elements with identical X values will have identical indices in jyrng. Thus, this function creates a new array by averaging values with identical X values in the original array. + ret(k1) = interp1( yrng2(:), xrng2(:), 0, 'linear', 'extrap' ); + end + else + warning('No zero crossings found!') + ret = nan; + end +end \ No newline at end of file diff --git a/GPE Solver/+Helper/getFigureByTag.m b/GPE Solver/+Helper/getFigureByTag.m new file mode 100644 index 0000000..8fc6bf9 --- /dev/null +++ b/GPE Solver/+Helper/getFigureByTag.m @@ -0,0 +1,191 @@ +function figure_handle = getFigureByTag(tag_name, varargin) + % figure_handle = getFigureByTag(tag_name, varargin) + % + % Example code: + % f_h = getFigureByTag('survivalMeasurement','Name','Survival') + % + % clf(f_h); + % a_h = gca(f_h); + % xlim(a_h,[10,100]); + % % custom position + % f_h.Position = [4052.3 719.67 560 420]; + + assert(nargin>=1 && ischar(tag_name),'You must specify ``tag_name'' as a string.'); + + f_h = findobj('type','figure','tag',tag_name); + + if isempty(f_h) + f_h = figure('Tag',tag_name,varargin{:}); + + defaultNewFigProperties = {'Color','w','NumberTitle','off','Name',sprintf('Fig. %d',f_h.Number)}; + + varargin = [defaultNewFigProperties,varargin]; + else + f_h = f_h(1); + end + + if ~isempty(varargin) + set(f_h,varargin{:}); + end + + addCopyButton(f_h); + + if nargout > 0 + figure_handle = f_h; + else + set(groot,'CurrentFigure',f_h); + end + +end + +function addCopyButton(f_h) + + if(strcmp(f_h.ToolBar,'none')) + return + end + + tb = findall(f_h,'Type','uitoolbar'); + + pt = findall(tb, 'tag', 'Custom.CopyPlot' ); + if isempty(pt) + pt = uipushtool(tb); + else + pt = pt(1); + end + + cdata = zeros(16,16,3); + + % Evernote Logo +% cdata(:,:,1) =[255 NaN NaN NaN NaN 99 11 27 175 NaN NaN NaN NaN NaN NaN 255 +% NaN NaN NaN 251 93 14 0 0 0 66 70 106 210 NaN NaN NaN +% NaN NaN NaN 42 0 43 0 0 0 0 0 0 20 185 NaN NaN +% NaN 243 56 0 42 82 0 0 0 0 0 0 0 45 NaN NaN +% NaN 156 44 64 113 65 0 0 0 0 0 0 0 32 NaN NaN +% 136 9 26 28 11 0 0 0 0 0 0 0 0 10 188 NaN +% 132 0 0 0 0 0 0 0 0 0 136 175 16 0 133 NaN +% NaN 28 0 0 0 0 0 0 0 0 152 238 50 0 124 NaN +% NaN 58 0 0 0 0 0 0 0 0 0 9 0 0 71 NaN +% NaN 175 0 0 0 0 0 61 15 0 0 0 0 0 100 NaN +% NaN NaN 143 12 0 0 0 210 195 87 17 0 0 0 126 NaN +% NaN NaN NaN 183 118 50 150 NaN NaN 110 219 78 0 0 160 NaN +% NaN NaN NaN NaN NaN NaN NaN 191 0 35 NaN 150 0 23 NaN NaN +% NaN NaN NaN NaN NaN NaN NaN 124 0 172 NaN 81 0 93 NaN NaN +% 255 NaN NaN NaN NaN NaN NaN 183 0 0 0 0 51 228 NaN 245 +% 253 254 NaN NaN NaN NaN NaN NaN 156 63 45 100 NaN NaN 255 255]/255.; +% +% +% cdata(:,:,2) = [255 255 255 255 255 216 166 171 225 229 218 229 247 255 255 255 +% 255 255 255 255 201 166 159 157 167 188 189 200 243 255 255 255 +% 237 238 255 181 159 183 164 170 163 158 160 157 169 233 248 250 +% 224 235 188 140 182 195 161 168 168 168 168 169 147 186 244 240 +% 255 226 175 185 207 189 161 168 168 168 168 168 159 179 249 249 +% 227 172 172 179 172 163 169 168 168 170 163 155 160 173 231 237 +% 215 161 163 165 166 168 168 168 168 162 215 228 172 163 209 219 +% 248 178 159 168 168 168 168 168 168 159 220 249 185 158 208 222 +% 249 192 151 169 168 168 169 160 163 172 163 159 166 167 194 204 +% 246 229 155 157 168 169 159 188 174 154 162 167 166 166 202 214 +% 212 231 218 168 157 153 165 255 242 190 171 159 167 166 207 220 +% 218 203 251 243 206 181 230 210 208 207 242 196 154 168 223 232 +% 255 224 232 250 237 214 244 194 152 178 255 223 145 175 250 252 +% 255 255 244 239 222 213 240 214 149 228 254 199 136 203 244 232 +% 255 255 255 246 231 246 246 232 165 159 167 147 184 253 254 242 +% 253 254 255 255 254 255 255 255 231 183 178 199 249 255 255 255]/255.; +% +% +% cdata(:,:,3) = [255 255 255 255 255 117 38 50 187 211 170 190 234 255 255 255 +% 255 254 255 255 120 51 27 20 39 97 98 122 220 255 255 255 +% 238 252 246 73 22 71 37 49 35 20 24 18 49 196 231 231 +% 232 242 86 0 78 108 29 45 45 45 45 46 0 82 214 201 +% 255 175 63 85 139 98 27 45 45 45 45 45 23 72 233 231 +% 167 51 57 72 55 32 47 45 45 50 34 14 27 57 201 218 +% 154 30 33 38 39 45 45 45 45 31 157 188 53 34 153 180 +% 234 67 24 45 45 45 45 44 45 24 169 241 83 20 146 182 +% 241 99 4 48 45 45 47 28 35 53 32 26 39 44 104 127 +% 238 192 14 20 45 47 27 97 56 10 29 44 41 40 127 158 +% 214 253 169 37 20 16 34 218 207 105 55 23 42 40 147 182 +% 218 214 241 201 138 71 177 225 181 130 224 107 12 45 175 197 +% 255 233 202 218 212 132 230 196 27 61 255 172 0 64 240 242 +% 255 255 219 197 176 160 237 143 0 195 245 110 0 123 230 230 +% 255 255 255 227 197 241 244 202 36 24 39 0 81 228 242 245 +% 253 254 255 255 254 255 255 255 191 78 71 121 221 255 255 255]/255.; + + %OneNote logo + + cdata(:,:,1) =[255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 + 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 + 255 255 255 255 245 213 213 213 213 213 213 213 184 184 215 255 + 255 255 255 255 241 213 213 213 213 213 213 213 184 184 208 255 + 255 233 204 204 194 176 176 185 213 213 213 213 184 184 208 255 + 255 154 101 101 101 101 101 103 213 213 213 206 162 162 193 255 + 255 152 101 183 116 152 115 101 213 213 213 206 162 162 193 255 + 255 152 101 207 189 178 122 101 213 213 213 206 162 162 193 255 + 255 152 101 199 152 224 122 101 213 213 213 195 128 128 170 255 + 255 152 101 166 101 183 115 101 213 213 213 195 128 128 170 255 + 255 154 101 101 101 101 101 103 213 213 213 195 128 128 170 255 + 255 233 204 204 194 176 176 185 213 213 213 183 95 95 148 255 + 255 255 255 255 241 213 213 213 213 213 213 183 94 94 148 255 + 255 255 255 255 245 213 213 213 213 213 213 183 94 94 163 255 + 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 + 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255]/255.; + + + cdata(:,:,2) =[255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 + 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 + 255 255 255 255 219 112 110 110 110 110 110 134 84 84 158 255 + 255 255 255 255 207 110 110 110 110 110 110 134 84 84 141 255 + 255 222 178 178 146 81 81 88 110 110 110 134 84 84 141 255 + 255 102 23 23 23 23 23 24 110 110 110 125 58 58 123 255 + 255 100 23 147 46 100 44 23 110 110 110 125 58 58 123 255 + 255 100 23 183 156 139 55 23 110 110 110 125 58 58 123 255 + 255 100 23 170 99 208 55 23 110 110 110 119 38 38 109 255 + 255 100 23 121 23 146 44 23 110 110 110 119 38 38 109 255 + 255 102 23 23 23 23 23 24 110 110 110 119 38 38 109 255 + 255 222 178 178 146 81 81 88 110 110 110 118 37 37 109 255 + 255 255 255 255 207 110 110 110 110 110 110 118 37 37 110 255 + 255 255 255 255 219 112 110 110 110 110 110 118 37 37 131 255 + 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 + 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255]/255.; + + + cdata(:,:,3) =[255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 + 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 + 255 255 255 255 255 255 255 255 255 255 255 246 229 229 240 255 + 255 255 255 255 255 255 255 255 255 255 255 246 229 229 238 255 + 255 242 224 224 224 224 224 232 255 255 255 246 229 229 238 255 + 255 194 163 163 163 163 163 164 255 255 255 244 223 223 234 255 + 255 194 163 212 172 194 171 163 255 255 255 244 223 223 234 255 + 255 194 163 226 216 209 176 163 255 255 255 244 223 223 234 255 + 255 194 163 221 193 236 176 163 255 255 255 240 209 209 224 255 + 255 194 163 202 163 212 171 163 255 255 255 240 209 209 224 255 + 255 194 163 163 163 163 163 164 255 255 255 240 209 209 224 255 + 255 242 224 224 224 224 224 232 255 255 255 223 161 161 192 255 + 255 255 255 255 255 255 255 255 255 255 255 223 160 160 192 255 + 255 255 255 255 255 255 255 255 255 255 255 223 160 160 201 255 + 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 + 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255 255]/255.; + + + pt.Tag = 'Custom.CopyPlot'; + pt.CData = cdata; + pt.Separator = true; + pt.ClickedCallback = @copyToClipboard; + +end + +function copyToClipboard(~,~) + fig_h = get(get(gcbo,'Parent'),'Parent'); + if strcmp(fig_h.WindowStyle,'docked') + if ismac || ispc + matlab.graphics.internal.copyFigureHelper(fig_h); + else + %warning('Copy function to the clipboard only works if the figure is undocked.'); + Helper.screencapture(fig_h,[],'clipboard'); + end + else + pos = fig_h.Position; + Helper.screencapture(fig_h,[],'clipboard','position',[7,7,pos(3)-2,pos(4)]); + end +end + + + diff --git a/GPE Solver/+Helper/ode5.m b/GPE Solver/+Helper/ode5.m new file mode 100644 index 0000000..3eb003f --- /dev/null +++ b/GPE Solver/+Helper/ode5.m @@ -0,0 +1,92 @@ +function Y = ode5(odefun,tspan,y0,varargin) +%ODE5 Solve differential equations with a non-adaptive method of order 5. +% Y = ODE5(ODEFUN,TSPAN,Y0) with TSPAN = [T1, T2, T3, ... TN] integrates +% the system of differential equations y' = f(t,y) by stepping from T0 to +% T1 to TN. Function ODEFUN(T,Y) must return f(t,y) in a column vector. +% The vector Y0 is the initial conditions at T0. Each row in the solution +% array Y corresponds to a time specified in TSPAN. +% +% Y = ODE5(ODEFUN,TSPAN,Y0,P1,P2...) passes the additional parameters +% P1,P2... to the derivative function as ODEFUN(T,Y,P1,P2...). +% +% This is a non-adaptive solver. The step sequence is determined by TSPAN +% but the derivative function ODEFUN is evaluated multiple times per step. +% The solver implements the Dormand-Prince method of order 5 in a general +% framework of explicit Runge-Kutta methods. +% +% Example +% tspan = 0:0.1:20; +% y = ode5(@vdp1,tspan,[2 0]); +% plot(tspan,y(:,1)); +% solves the system y' = vdp1(t,y) with a constant step size of 0.1, +% and plots the first component of the solution. + +if ~isnumeric(tspan) + error('TSPAN should be a vector of integration steps.'); +end + +if ~isnumeric(y0) + error('Y0 should be a vector of initial conditions.'); +end + +h = diff(tspan); +if any(sign(h(1))*h <= 0) + error('Entries of TSPAN are not in order.') +end + +try + f0 = feval(odefun,tspan(1),y0,varargin{:}); +catch + msg = ['Unable to evaluate the ODEFUN at t0,y0. ',lasterr]; + error(msg); +end + +y0 = y0(:); % Make a column vector. +if ~isequal(size(y0),size(f0)) + error('Inconsistent sizes of Y0 and f(t0,y0).'); +end + +neq = length(y0); +N = length(tspan); +Y = zeros(neq,N); + +% Method coefficients -- Butcher's tableau +% +% C | A +% --+--- +% | B + +C = [1/5; 3/10; 4/5; 8/9; 1]; + +A = [ 1/5, 0, 0, 0, 0 + 3/40, 9/40, 0, 0, 0 + 44/45 -56/15, 32/9, 0, 0 + 19372/6561, -25360/2187, 64448/6561, -212/729, 0 + 9017/3168, -355/33, 46732/5247, 49/176, -5103/18656]; + +B = [35/384, 0, 500/1113, 125/192, -2187/6784, 11/84]; + +% More convenient storage +A = A.'; +B = B(:); + +nstages = length(B); +F = zeros(neq,nstages); + +Y(:,1) = y0; +for i = 2:N + ti = tspan(i-1); + hi = h(i-1); + yi = Y(:,i-1); + + % General explicit Runge-Kutta framework + F(:,1) = feval(odefun,ti,yi,varargin{:}); + for stage = 2:nstages + tstage = ti + C(stage-1)*hi; + ystage = yi + F(:,1:stage-1)*(hi*A(1:stage-1,stage-1)); + F(:,stage) = feval(odefun,tstage,ystage,varargin{:}); + end + Y(:,i) = yi + F*(hi*B); + +end +Y = Y.'; diff --git a/GPE Solver/+Helper/onenoteccdata.m b/GPE Solver/+Helper/onenoteccdata.m new file mode 100644 index 0000000..5f3c177 --- /dev/null +++ b/GPE Solver/+Helper/onenoteccdata.m @@ -0,0 +1,55 @@ +cmap = zeros(16,16,3); + +cmap(:,:,1) = [0.0000 0.0118 0.4510 0.0039 0.2078 0.1569 0.4078 0.4431 0.4510 0.1922 0.4235 0.4196 0.2235 0.4235 0.4039 0.4392 + 0.4471 0.1647 0.4157 0.0000 0.0235 0.4353 0.0314 0.4314 0.0196 0.2392 0.0667 0.0392 0.4431 0.3804 0.2941 0.4275 + 0.3686 0.3608 0.2000 0.2824 0.3059 0.0549 0.1804 0.1882 0.4392 0.4314 0.3255 0.0078 0.0902 0.1961 0.4353 0.1412 + 0.2314 0.3647 0.0353 0.3804 0.1647 0.2431 0.1686 0.2745 0.2980 0.4235 0.3922 0.4157 0.2784 0.3333 0.2510 0.0588 + 0.1020 0.0745 0.2549 0.0471 0.1216 0.4000 0.3961 0.2627 0.1098 0.1725 0.3098 0.4314 0.3529 0.3412 0.0784 0.0824 + 0.4471 0.1490 0.1804 0.3529 0.2196 0.3137 0.3255 0.0941 0.0078 0.3294 0.3765 0.2706 0.0510 0.0157 0.4275 0.1176 + 0.1294 0.1333 0.1725 0.3451 0.2118 0.3843 0.1255 0.1569 0.2118 0.1608 0.0353 0.2039 0.1608 0.4510 1.0000 0.8000 + 0.9882 0.6510 0.9961 0.4549 0.4549 0.6824 0.7882 0.5686 0.5373 0.5490 0.7765 0.7137 0.8510 0.7176 0.5020 0.4902 + 0.8941 0.9020 0.4745 0.8980 0.9098 0.4824 0.6471 0.6353 0.9922 0.9647 0.6353 0.4588 0.9647 0.9020 0.4980 0.8118 + 0.5059 0.4941 0.9686 0.4863 0.5451 0.9725 0.8980 0.5451 0.5333 0.6824 0.4588 0.8196 0.8314 0.8980 0.8941 0.9961 + 0.5255 0.8392 0.9804 0.5216 0.8588 0.8078 0.5176 0.7647 0.5608 0.9725 0.9059 0.4627 0.9882 0.8275 0.7725 0.8745 + 0.8235 0.8431 0.7373 1.0000 0.5137 0.4706 0.4784 0.7412 0.8863 0.9373 0.5529 0.5804 0.4510 0.9255 0.8235 0.8667 + 0.7569 0.8824 0.5294 0.5176 0.5373 0.9569 0.5294 0.4824 0.5098 0.5137 0.5569 0.8471 0.5098 0.9490 0.8706 0.9412 + 0.4902 0.6000 0.6980 0.7882 0.5490 0.7216 0.6431 0.4824 0.5569 0.4667 0.6627 0.9922 0.7804 0.8039 0.6275 0.7333 + 0.5725 0.5647 0.8549 0.7529 0.6235 0.8784 0.5922 0.7294 0.6118 0.7922 0.7843 0.6667 0.9294 0.6902 0.6784 0.9176 + 0.6706 0.7490 0.7961 0.5882 0.8627 0.4627 0.6196 0.7059 0.6078 0.9765 0.6549 0.6863 0.5373 0.7098 0.7176 0.7765]; + +cmap(:,:,2) = [0.0000 0.0078 0.2157 0.0000 0.0980 0.0745 0.1922 0.2157 0.2157 0.0902 0.2000 0.1961 0.1059 0.2039 0.1882 0.2078 + 0.2078 0.0784 0.2000 0.0000 0.0118 0.2118 0.0157 0.2039 0.0078 0.1137 0.0314 0.0196 0.2118 0.1804 0.1373 0.2078 + 0.1765 0.1725 0.0941 0.1333 0.1451 0.0275 0.0863 0.0902 0.2078 0.2078 0.1529 0.0039 0.0431 0.0941 0.2039 0.0667 + 0.1098 0.1725 0.0157 0.1804 0.0784 0.1137 0.0824 0.1333 0.1412 0.2000 0.1882 0.2000 0.1333 0.1569 0.1176 0.0275 + 0.0471 0.0353 0.1216 0.0196 0.0588 0.1922 0.1882 0.1255 0.0510 0.0824 0.1451 0.2039 0.1686 0.1647 0.0392 0.0392 + 0.2157 0.0706 0.0863 0.1686 0.1020 0.1490 0.1529 0.0431 0.0039 0.1569 0.1804 0.1255 0.0235 0.0078 0.2000 0.0549 + 0.0627 0.0627 0.0824 0.1647 0.1020 0.1843 0.0588 0.0745 0.1020 0.0784 0.0157 0.0980 0.0784 0.2157 1.0000 0.7137 + 0.9843 0.4980 0.9961 0.2235 0.2196 0.5412 0.6980 0.3843 0.3373 0.3569 0.6824 0.5922 0.7843 0.6000 0.2902 0.2706 + 0.8510 0.8588 0.2471 0.8549 0.8667 0.2627 0.4980 0.4784 0.9843 0.9490 0.4745 0.2235 0.9451 0.8627 0.2824 0.7333 + 0.2941 0.2784 0.9529 0.2667 0.3490 0.9569 0.8510 0.3490 0.3333 0.5451 0.2275 0.7412 0.7608 0.8549 0.8471 0.9922 + 0.3255 0.7686 0.9725 0.3176 0.8000 0.7255 0.3098 0.6627 0.3725 0.9647 0.8627 0.2314 0.9804 0.7529 0.6745 0.8235 + 0.7451 0.7765 0.6235 0.9961 0.3020 0.2431 0.2510 0.6314 0.8392 0.9098 0.3608 0.4000 0.2196 0.8902 0.7490 0.8078 + 0.6549 0.8353 0.3294 0.3137 0.3412 0.9373 0.3255 0.2588 0.2980 0.3059 0.3686 0.7843 0.3020 0.9255 0.8157 0.9176 + 0.2745 0.4275 0.5686 0.6980 0.3569 0.6039 0.4863 0.2627 0.3647 0.2392 0.5137 0.9922 0.6863 0.7216 0.4706 0.6196 + 0.3882 0.3765 0.7882 0.6471 0.4588 0.8275 0.4157 0.6118 0.4431 0.7059 0.6902 0.5255 0.8980 0.5569 0.5412 0.8824 + 0.5333 0.6392 0.7098 0.4078 0.8039 0.2314 0.4549 0.5804 0.4392 0.9647 0.5059 0.5529 0.3373 0.5882 0.5961 0.6784]; + +cmap(:,:,3) = [0.0000 0.0157 0.4980 0.0039 0.2314 0.1725 0.4627 0.5020 0.5020 0.2196 0.4745 0.4706 0.2510 0.4784 0.4510 0.4980 + 0.4941 0.1882 0.4667 0.0000 0.0275 0.4941 0.0353 0.4902 0.0196 0.2667 0.0745 0.0471 0.4902 0.4314 0.3294 0.4784 + 0.4196 0.4000 0.2235 0.3216 0.3412 0.0627 0.2039 0.2118 0.4863 0.4863 0.3608 0.0078 0.1020 0.2196 0.4824 0.1569 + 0.2588 0.4118 0.0392 0.4235 0.1843 0.2745 0.1882 0.3059 0.3373 0.4784 0.4392 0.4627 0.3137 0.3765 0.2824 0.0667 + 0.1137 0.0824 0.2863 0.0510 0.1373 0.4510 0.4471 0.2941 0.1216 0.1961 0.3490 0.4824 0.3961 0.3804 0.0902 0.0941 + 0.4980 0.1647 0.2000 0.4000 0.2431 0.3529 0.3647 0.1059 0.0118 0.3686 0.4196 0.3020 0.0549 0.0196 0.4824 0.1294 + 0.1451 0.1529 0.1922 0.3882 0.2392 0.4353 0.1412 0.1765 0.2353 0.1804 0.0353 0.2275 0.1843 0.5059 1.0000 0.8196 + 0.9882 0.6863 0.9961 0.5098 0.5098 0.7137 0.8118 0.6118 0.5843 0.5922 0.8000 0.7412 0.8627 0.7451 0.5529 0.5412 + 0.9059 0.9137 0.5255 0.9098 0.9176 0.5333 0.6824 0.6706 0.9922 0.9686 0.6706 0.5098 0.9647 0.9137 0.5490 0.8314 + 0.5569 0.5451 0.9725 0.5373 0.5922 0.9725 0.9059 0.5882 0.5804 0.7137 0.5137 0.8353 0.8510 0.9059 0.9020 0.9961 + 0.5725 0.8549 0.9843 0.5725 0.8745 0.8275 0.5647 0.7882 0.6039 0.9765 0.9137 0.5176 0.9882 0.8431 0.7961 0.8863 + 0.8392 0.8588 0.7647 1.0000 0.5608 0.5216 0.5294 0.7686 0.8980 0.9412 0.6000 0.6235 0.5059 0.9333 0.8431 0.8784 + 0.7804 0.8941 0.5765 0.5686 0.5843 0.9608 0.5765 0.5333 0.5569 0.5647 0.6039 0.8627 0.5608 0.9569 0.8863 0.9490 + 0.5412 0.6392 0.7294 0.8078 0.5961 0.7490 0.6784 0.5373 0.6000 0.5216 0.6941 0.9922 0.8039 0.8235 0.6667 0.7608 + 0.6157 0.6078 0.8667 0.7765 0.6588 0.8902 0.6314 0.7569 0.6510 0.8157 0.8039 0.7020 0.9373 0.7216 0.7098 0.9255 + 0.7059 0.7725 0.8196 0.6314 0.8784 0.5137 0.6549 0.7373 0.6471 0.9804 0.6902 0.7176 0.5804 0.7412 0.7451 0.8000]; + +%% +[cdata, cmap] = imread('onenote.png'); \ No newline at end of file diff --git a/GPE Solver/+Helper/parforNotifications.m b/GPE Solver/+Helper/parforNotifications.m new file mode 100644 index 0000000..4ad3af4 --- /dev/null +++ b/GPE Solver/+Helper/parforNotifications.m @@ -0,0 +1,148 @@ +% Copyright (c) 2019 Andrea Alberti +% +% All rights reserved. +classdef parforNotifications < handle + properties + N; % number of iterations + text = 'Please wait ...'; % text to show + width = 50; + showWarning = true; + end + properties (GetAccess = public, SetAccess = private) + n; + end + properties (Access = private) + inProgress = false; + percent; + DataQueue; + usePercent; + Nstr; + NstrL; + lastComment; + end + methods + function this = parforNotifications() + this.DataQueue = parallel.pool.DataQueue; + afterEach(this.DataQueue, @this.updateStatus); + end + % Start progress bar + function PB_start(this,N,varargin) + assert(isscalar(N) && isnumeric(N) && N == floor(N) && N>0, 'Error: ''N'' must be a scalar positive integer.'); + + this.N = N; + + p = inputParser; + addParameter(p,'message','Please wait: '); + addParameter(p,'usePercentage',true); + + parse(p,varargin{:}); + + this.text = p.Results.message; + assert(ischar(this.text), 'Error: ''Message'' must be a string.'); + + this.usePercent = p.Results.usePercentage; + assert(isscalar(this.usePercent) && islogical(this.usePercent), 'Error: ''usePercentage'' must be a logical scalar.'); + + this.percent = 0; + this.n = 0; + this.lastComment = ''; + if this.usePercent + fprintf('%s [%s]: %3d%%\n',this.text, char(32*ones(1,this.width)),0); + else + this.Nstr = sprintf('%d',this.N); + this.NstrL = numel(this.Nstr); + fprintf('%s [%s]: %s/%s\n',this.text, char(32*ones(1,this.width)),[char(32*ones(1,this.NstrL-1)),'0'],this.Nstr); + end + + this.inProgress = true; + end + % Iterate progress bar + function PB_iterate(this,str) + if nargin == 1 + send(this.DataQueue,''); + else + send(this.DataQueue,str); + end + end + function warning(this,warn_id,msg) + if this.showWarning + msg = struct('Action','Warning','Id',warn_id,'Message',msg); + send(this.DataQueue,msg); + end + end + function PB_reprint(this) + p = round(100*this.n/this.N); + + this.percent = p; + + cursor_pos=1+round((this.width-1)*p/100); + + if p < 100 + sep_char = '|'; + else + sep_char = '.'; + end + + if this.usePercent + fprintf('%s [%s%s%s]: %3d%%\n', this.text, char(46*ones(1,cursor_pos-1)), sep_char, char(32*ones(1,this.width-cursor_pos)),p); + else + nstr=sprintf('%d',this.n); + fprintf('%s [%s%s%s]: %s/%s\n', this.text, char(46*ones(1,cursor_pos-1)), sep_char, char(32*ones(1,this.width-cursor_pos)),[char(32*ones(1,this.NstrL-numel(nstr))),nstr],this.Nstr); + end + end + function updateStatus(this,data) + + if ischar(data) + + this.n = this.n + 1; + + p = round(100*this.n/this.N); + + if p >= this.percent+1 || this.n == this.N + this.percent = p; + + cursor_pos=1+round((this.width-1)*p/100); + + if p < 100 + sep_char = '|'; + else + sep_char = '.'; + end + + if ~isempty(data) + comment = [' (',data,')']; + else + comment = ''; + end + + if this.usePercent + fprintf('%s%s%s%s]: %3d%%%s\n',char(8*ones(1,58+numel(this.lastComment))), char(46*ones(1,cursor_pos-1)), sep_char, char(32*ones(1,this.width-cursor_pos)),p,comment); + else + nstr=sprintf('%d',this.n); + fprintf('%s%s%s%s]: %s/%s%s\n',char(8*ones(1,55+2*numel(this.Nstr)+numel(this.lastComment))), char(46*ones(1,cursor_pos-1)), sep_char, char(32*ones(1,this.width-cursor_pos)),[char(32*ones(1,this.NstrL-numel(nstr))),nstr],this.Nstr,comment) + end + + this.lastComment = comment; + + + if p == 100 + this.inProgress = false; + end + end + + else + switch data.Action + case 'Warning' + warning(data.Id,[data.Message,newline]); + if this.inProgress + this.PB_reprint(); + end + end + + end + + end + end +end + + diff --git a/GPE Solver/+Helper/screencapture.m b/GPE Solver/+Helper/screencapture.m new file mode 100644 index 0000000..206312e --- /dev/null +++ b/GPE Solver/+Helper/screencapture.m @@ -0,0 +1,820 @@ +function imageData = screencapture(varargin) +% screencapture - get a screen-capture of a figure frame, component handle, or screen area rectangle +% +% ScreenCapture gets a screen-capture of any Matlab GUI handle (including desktop, +% figure, axes, image or uicontrol), or a specified area rectangle located relative to +% the specified handle. Screen area capture is possible by specifying the root (desktop) +% handle (=0). The output can be either to an image file or to a Matlab matrix (useful +% for displaying via imshow() or for further processing) or to the system clipboard. +% This utility also enables adding a toolbar button for easy interactive screen-capture. +% +% Syntax: +% imageData = screencapture(handle, position, target, 'PropName',PropValue, ...) +% +% Input Parameters: +% handle - optional handle to be used for screen-capture origin. +% If empty/unsupplied then current figure (gcf) will be used. +% position - optional position array in pixels: [x,y,width,height]. +% If empty/unsupplied then the handle's position vector will be used. +% If both handle and position are empty/unsupplied then the position +% will be retrieved via interactive mouse-selection. +% If handle is an image, then position is in data (not pixel) units, so the +% captured region remains the same after figure/axes resize (like imcrop) +% target - optional filename for storing the screen-capture, or the +% 'clipboard'/'printer' strings. +% If empty/unsupplied then no output to file will be done. +% The file format will be determined from the extension (JPG/PNG/...). +% Supported formats are those supported by the imwrite function. +% 'PropName',PropValue - +% optional list of property pairs (e.g., 'target','myImage.png','pos',[10,20,30,40],'handle',gca) +% PropNames may be abbreviated and are case-insensitive. +% PropNames may also be given in whichever order. +% Supported PropNames are: +% - 'handle' (default: gcf handle) +% - 'position' (default: gcf position array) +% - 'target' (default: '') +% - 'toolbar' (figure handle; default: gcf) +% this adds a screen-capture button to the figure's toolbar +% If this parameter is specified, then no screen-capture +% will take place and the returned imageData will be []. +% +% Output parameters: +% imageData - image data in a format acceptable by the imshow function +% If neither target nor imageData were specified, the user will be +% asked to interactively specify the output file. +% +% Examples: +% imageData = screencapture; % interactively select screen-capture rectangle +% imageData = screencapture(hListbox); % capture image of a uicontrol +% imageData = screencapture(0, [20,30,40,50]); % capture a small desktop region +% imageData = screencapture(gcf,[20,30,40,50]); % capture a small figure region +% imageData = screencapture(gca,[10,20,30,40]); % capture a small axes region +% imshow(imageData); % display the captured image in a matlab figure +% imwrite(imageData,'myImage.png'); % save the captured image to file +% img = imread('cameraman.tif'); +% hImg = imshow(img); +% screencapture(hImg,[60,35,140,80]); % capture a region of an image +% screencapture(gcf,[],'myFigure.jpg'); % capture the entire figure into file +% screencapture(gcf,[],'clipboard'); % capture the entire figure into clipboard +% screencapture(gcf,[],'printer'); % print the entire figure +% screencapture('handle',gcf,'target','myFigure.jpg'); % same as previous, save to file +% screencapture('handle',gcf,'target','clipboard'); % same as previous, copy to clipboard +% screencapture('handle',gcf,'target','printer'); % same as previous, send to printer +% screencapture('toolbar',gcf); % adds a screen-capture button to gcf's toolbar +% screencapture('toolbar',[],'target','sc.bmp'); % same with default output filename +% +% Technical description: +% http://UndocumentedMatlab.com/blog/screencapture-utility/ +% +% Bugs and suggestions: +% Please send to Yair Altman (altmany at gmail dot com) +% +% See also: +% imshow, imwrite, print +% +% Release history: +% 1.17 2016-05-16: Fix annoying warning about JavaFrame property becoming obsolete someday (yes, we know...) +% 1.16 2016-04-19: Fix for deployed application suggested by Dwight Bartholomew +% 1.10 2014-11-25: Added the 'print' target +% 1.9 2014-11-25: Fix for saving GIF files +% 1.8 2014-11-16: Fixes for R2014b +% 1.7 2014-04-28: Fixed bug when capturing interactive selection +% 1.6 2014-04-22: Only enable image formats when saving to an unspecified file via uiputfile +% 1.5 2013-04-18: Fixed bug in capture of non-square image; fixes for Win64 +% 1.4 2013-01-27: Fixed capture of Desktop (root); enabled rbbox anywhere on desktop (not necesarily in a Matlab figure); enabled output to clipboard (based on Jiro Doke's imclipboard utility); edge-case fixes; added Java compatibility check +% 1.3 2012-07-23: Capture current object (uicontrol/axes/figure) if w=h=0 (e.g., by clicking a single point); extra input args sanity checks; fix for docked windows and image axes; include axes labels & ticks by default when capturing axes; use data-units position vector when capturing images; many edge-case fixes +% 1.2 2011-01-16: another performance boost (thanks to Jan Simon); some compatibility fixes for Matlab 6.5 (untested) +% 1.1 2009-06-03: Handle missing output format; performance boost (thanks to Urs); fix minor root-handle bug; added toolbar button option +% 1.0 2009-06-02: First version posted on MathWorks File Exchange + +% License to use and modify this code is granted freely to all interested, as long as the original author is +% referenced and attributed as such. The original author maintains the right to be solely associated with this work. + +% Programmed and Copyright by Yair M. Altman: altmany(at)gmail.com +% $Revision: 1.17 $ $Date: 2016/05/16 17:59:36 $ + + % Ensure that java awt is enabled... + if ~usejava('awt') + error('YMA:screencapture:NeedAwt','ScreenCapture requires Java to run.'); + end + + % Ensure that our Java version supports the Robot class (requires JVM 1.3+) + try + robot = java.awt.Robot; %#ok + catch + uiwait(msgbox({['Your Matlab installation is so old that its Java engine (' version('-java') ... + ') does not have a java.awt.Robot class. '], ' ', ... + 'Without this class, taking a screen-capture is impossible.', ' ', ... + 'So, either install JVM 1.3 or higher, or use a newer Matlab release.'}, ... + 'ScreenCapture', 'warn')); + if nargout, imageData = []; end + return; + end + + % Process optional arguments + paramsStruct = processArgs(varargin{:}); + + % If toolbar button requested, add it and exit + if ~isempty(paramsStruct.toolbar) + + % Add the toolbar button + addToolbarButton(paramsStruct); + + % Return the figure to its pre-undocked state (when relevant) + redockFigureIfRelevant(paramsStruct); + + % Exit immediately (do NOT take a screen-capture) + if nargout, imageData = []; end + return; + end + + % Convert position from handle-relative to desktop Java-based pixels + [paramsStruct, msgStr] = convertPos(paramsStruct); + + % Capture the requested screen rectangle using java.awt.Robot + imgData = getScreenCaptureImageData(paramsStruct.position); + + % Return the figure to its pre-undocked state (when relevant) + redockFigureIfRelevant(paramsStruct); + + % Save image data in file or clipboard, if specified + if ~isempty(paramsStruct.target) + if strcmpi(paramsStruct.target,'clipboard') + if ~isempty(imgData) + imclipboard(imgData); + else + msgbox('No image area selected - not copying image to clipboard','ScreenCapture','warn'); + end + elseif strncmpi(paramsStruct.target,'print',5) % 'print' or 'printer' + if ~isempty(imgData) + hNewFig = figure('visible','off'); + imshow(imgData); + print(hNewFig); + delete(hNewFig); + else + msgbox('No image area selected - not printing screenshot','ScreenCapture','warn'); + end + else % real filename + if ~isempty(imgData) + imwrite(imgData,paramsStruct.target); + else + msgbox(['No image area selected - not saving image file ' paramsStruct.target],'ScreenCapture','warn'); + end + end + end + + % Return image raster data to user, if requested + if nargout + imageData = imgData; + + % If neither output formats was specified (neither target nor output data) + elseif isempty(paramsStruct.target) & ~isempty(imgData) %#ok ML6 + % Ask the user to specify a file + %error('YMA:screencapture:noOutput','No output specified for ScreenCapture: specify the output filename and/or output data'); + %format = '*.*'; + formats = imformats; + for idx = 1 : numel(formats) + ext = sprintf('*.%s;',formats(idx).ext{:}); + format(idx,1:2) = {ext(1:end-1), formats(idx).description}; %#ok + end + [filename,pathname] = uiputfile(format,'Save screen capture as'); + if ~isequal(filename,0) & ~isequal(pathname,0) %#ok Matlab6 compatibility + try + filename = fullfile(pathname,filename); + imwrite(imgData,filename); + catch % possibly a GIF file that requires indexed colors + [imgData,map] = rgb2ind(imgData,256); + imwrite(imgData,map,filename); + end + else + % TODO - copy to clipboard + end + end + + % Display msgStr, if relevant + if ~isempty(msgStr) + uiwait(msgbox(msgStr,'ScreenCapture')); + drawnow; pause(0.05); % time for the msgbox to disappear + end + + return; % debug breakpoint + +%% Process optional arguments +function paramsStruct = processArgs(varargin) + + % Get the properties in either direct or P-V format + [regParams, pvPairs] = parseparams(varargin); + + % Now process the optional P-V params + try + % Initialize + paramName = []; + paramsStruct = []; + paramsStruct.handle = []; + paramsStruct.position = []; + paramsStruct.target = ''; + paramsStruct.toolbar = []; + paramsStruct.wasDocked = 0; % no false available in ML6 + paramsStruct.wasInteractive = 0; % no false available in ML6 + + % Parse the regular (non-named) params in recption order + if ~isempty(regParams) & (isempty(regParams{1}) | ishandle(regParams{1}(1))) %#ok ML6 + paramsStruct.handle = regParams{1}; + regParams(1) = []; + end + if ~isempty(regParams) & isnumeric(regParams{1}) & (length(regParams{1}) == 4) %#ok ML6 + paramsStruct.position = regParams{1}; + regParams(1) = []; + end + if ~isempty(regParams) & ischar(regParams{1}) %#ok ML6 + paramsStruct.target = regParams{1}; + end + + % Parse the optional param PV pairs + supportedArgs = {'handle','position','target','toolbar'}; + while ~isempty(pvPairs) + + % Disregard empty propNames (may be due to users mis-interpretting the syntax help) + while ~isempty(pvPairs) & isempty(pvPairs{1}) %#ok ML6 + pvPairs(1) = []; + end + if isempty(pvPairs) + break; + end + + % Ensure basic format is valid + paramName = ''; + if ~ischar(pvPairs{1}) + error('YMA:screencapture:invalidProperty','Invalid property passed to ScreenCapture'); + elseif length(pvPairs) == 1 + if isempty(paramsStruct.target) + paramsStruct.target = pvPairs{1}; + break; + else + error('YMA:screencapture:noPropertyValue',['No value specified for property ''' pvPairs{1} '''']); + end + end + + % Process parameter values + paramName = pvPairs{1}; + if strcmpi(paramName,'filename') % backward compatibility + paramName = 'target'; + end + paramValue = pvPairs{2}; + pvPairs(1:2) = []; + idx = find(strncmpi(paramName,supportedArgs,length(paramName))); + if ~isempty(idx) + %paramsStruct.(lower(supportedArgs{idx(1)})) = paramValue; % incompatible with ML6 + paramsStruct = setfield(paramsStruct, lower(supportedArgs{idx(1)}), paramValue); %#ok ML6 + + % If 'toolbar' param specified, then it cannot be left empty - use gcf + if strncmpi(paramName,'toolbar',length(paramName)) & isempty(paramsStruct.toolbar) %#ok ML6 + paramsStruct.toolbar = getCurrentFig; + end + + elseif isempty(paramsStruct.target) + paramsStruct.target = paramName; + pvPairs = {paramValue, pvPairs{:}}; %#ok (more readable this way, although a bit less efficient...) + + else + supportedArgsStr = sprintf('''%s'',',supportedArgs{:}); + error('YMA:screencapture:invalidProperty','%s \n%s', ... + 'Invalid property passed to ScreenCapture', ... + ['Supported property names are: ' supportedArgsStr(1:end-1)]); + end + end % loop pvPairs + + catch + if ~isempty(paramName), paramName = [' ''' paramName '''']; end + error('YMA:screencapture:invalidProperty','Error setting ScreenCapture property %s:\n%s',paramName,lasterr); %#ok + end +%end % processArgs + +%% Convert position from handle-relative to desktop Java-based pixels +function [paramsStruct, msgStr] = convertPos(paramsStruct) + msgStr = ''; + try + % Get the screen-size for later use + screenSize = get(0,'ScreenSize'); + + % Get the containing figure's handle + hParent = paramsStruct.handle; + if isempty(paramsStruct.handle) + paramsStruct.hFigure = getCurrentFig; + hParent = paramsStruct.hFigure; + else + paramsStruct.hFigure = ancestor(paramsStruct.handle,'figure'); + end + + % To get the acurate pixel position, the figure window must be undocked + try + if strcmpi(get(paramsStruct.hFigure,'WindowStyle'),'docked') + set(paramsStruct.hFigure,'WindowStyle','normal'); + drawnow; pause(0.25); + paramsStruct.wasDocked = 1; % no true available in ML6 + end + catch + % never mind - ignore... + end + + % The figure (if specified) must be in focus + if ~isempty(paramsStruct.hFigure) & ishandle(paramsStruct.hFigure) %#ok ML6 + isFigureValid = 1; % no true available in ML6 + figure(paramsStruct.hFigure); + else + isFigureValid = 0; % no false available in ML6 + end + + % Flush all graphic events to ensure correct rendering + drawnow; pause(0.01); + + % No handle specified + wasPositionGiven = 1; % no true available in ML6 + if isempty(paramsStruct.handle) + + % Set default handle, if not supplied + paramsStruct.handle = paramsStruct.hFigure; + + % If position was not specified, get it interactively using RBBOX + if isempty(paramsStruct.position) + [paramsStruct.position, jFrameUsed, msgStr] = getInteractivePosition(paramsStruct.hFigure); %#ok jFrameUsed is unused + paramsStruct.wasInteractive = 1; % no true available in ML6 + wasPositionGiven = 0; % no false available in ML6 + end + + elseif ~ishandle(paramsStruct.handle) + % Handle was supplied - ensure it is a valid handle + error('YMA:screencapture:invalidHandle','Invalid handle passed to ScreenCapture'); + + elseif isempty(paramsStruct.position) + % Handle was supplied but position was not, so use the handle's position + paramsStruct.position = getPixelPos(paramsStruct.handle); + paramsStruct.position(1:2) = 0; + wasPositionGiven = 0; % no false available in ML6 + + elseif ~isnumeric(paramsStruct.position) | (length(paramsStruct.position) ~= 4) %#ok ML6 + % Both handle & position were supplied - ensure a valid pixel position vector + error('YMA:screencapture:invalidPosition','Invalid position vector passed to ScreenCapture: \nMust be a [x,y,w,h] numeric pixel array'); + end + + % Capture current object (uicontrol/axes/figure) if w=h=0 (single-click in interactive mode) + if paramsStruct.position(3)<=0 | paramsStruct.position(4)<=0 %#ok ML6 + %TODO - find a way to single-click another Matlab figure (the following does not work) + %paramsStruct.position = getPixelPos(ancestor(hittest,'figure')); + paramsStruct.position = getPixelPos(paramsStruct.handle); + paramsStruct.position(1:2) = 0; + paramsStruct.wasInteractive = 0; % no false available in ML6 + wasPositionGiven = 0; % no false available in ML6 + end + + % First get the parent handle's desktop-based Matlab pixel position + parentPos = [0,0,0,0]; + dX = 0; + dY = 0; + dW = 0; + dH = 0; + if ~isFigure(hParent) + % Get the reguested component's pixel position + parentPos = getPixelPos(hParent, 1); % no true available in ML6 + + % Axes position inaccuracy estimation + deltaX = 3; + deltaY = -1; + + % Fix for images + if isImage(hParent) % | (isAxes(hParent) & strcmpi(get(hParent,'YDir'),'reverse')) %#ok ML6 + + % Compensate for resized image axes + hAxes = get(hParent,'Parent'); + if all(get(hAxes,'DataAspectRatio')==1) % sanity check: this is the normal behavior + % Note 18/4/2013: the following fails for non-square images + %actualImgSize = min(parentPos(3:4)); + %dX = (parentPos(3) - actualImgSize) / 2; + %dY = (parentPos(4) - actualImgSize) / 2; + %parentPos(3:4) = actualImgSize; + + % The following should work for all types of images + actualImgSize = size(get(hParent,'CData')); + dX = (parentPos(3) - min(parentPos(3),actualImgSize(2))) / 2; + dY = (parentPos(4) - min(parentPos(4),actualImgSize(1))) / 2; + parentPos(3:4) = actualImgSize([2,1]); + %parentPos(3) = max(parentPos(3),actualImgSize(2)); + %parentPos(4) = max(parentPos(4),actualImgSize(1)); + end + + % Fix user-specified img positions (but not auto-inferred ones) + if wasPositionGiven + + % In images, use data units rather than pixel units + % Reverse the YDir + ymax = max(get(hParent,'YData')); + paramsStruct.position(2) = ymax - paramsStruct.position(2) - paramsStruct.position(4); + + % Note: it would be best to use hgconvertunits, but: + % ^^^^ (1) it fails on Matlab 6, and (2) it doesn't accept Data units + %paramsStruct.position = hgconvertunits(hFig, paramsStruct.position, 'Data', 'pixel', hParent); % fails! + xLims = get(hParent,'XData'); + yLims = get(hParent,'YData'); + xPixelsPerData = parentPos(3) / (diff(xLims) + 1); + yPixelsPerData = parentPos(4) / (diff(yLims) + 1); + paramsStruct.position(1) = round((paramsStruct.position(1)-xLims(1)) * xPixelsPerData); + paramsStruct.position(2) = round((paramsStruct.position(2)-yLims(1)) * yPixelsPerData + 2*dY); + paramsStruct.position(3) = round( paramsStruct.position(3) * xPixelsPerData); + paramsStruct.position(4) = round( paramsStruct.position(4) * yPixelsPerData); + + % Axes position inaccuracy estimation + if strcmpi(computer('arch'),'win64') + deltaX = 7; + deltaY = -7; + else + deltaX = 3; + deltaY = -3; + end + + else % axes/image position was auto-infered (entire image) + % Axes position inaccuracy estimation + if strcmpi(computer('arch'),'win64') + deltaX = 6; + deltaY = -6; + else + deltaX = 2; + deltaY = -2; + end + dW = -2*dX; + dH = -2*dY; + end + end + + %hFig = ancestor(hParent,'figure'); + hParent = paramsStruct.hFigure; + + elseif paramsStruct.wasInteractive % interactive figure rectangle + + % Compensate for 1px rbbox inaccuracies + deltaX = 2; + deltaY = -2; + + else % non-interactive figure + + % Compensate 4px figure boundaries = difference betweeen OuterPosition and Position + deltaX = -1; + deltaY = 1; + end + %disp(paramsStruct.position) % for debugging + + % Now get the pixel position relative to the monitor + figurePos = getPixelPos(hParent); + desktopPos = figurePos + parentPos; + + % Now convert to Java-based pixels based on screen size + % Note: multiple monitors are automatically handled correctly, since all + % ^^^^ Java positions are relative to the main monitor's top-left corner + javaX = desktopPos(1) + paramsStruct.position(1) + deltaX + dX; + javaY = screenSize(4) - desktopPos(2) - paramsStruct.position(2) - paramsStruct.position(4) + deltaY + dY; + width = paramsStruct.position(3) + dW; + height = paramsStruct.position(4) + dH; + paramsStruct.position = round([javaX, javaY, width, height]); + %paramsStruct.position + + % Ensure the figure is at the front so it can be screen-captured + if isFigureValid + figure(hParent); + drawnow; + pause(0.02); + end + catch + % Maybe root/desktop handle (root does not have a 'Position' prop so getPixelPos croaks + if isequal(double(hParent),0) % =root/desktop handle; handles case of hParent=[] + javaX = paramsStruct.position(1) - 1; + javaY = screenSize(4) - paramsStruct.position(2) - paramsStruct.position(4) - 1; + paramsStruct.position = [javaX, javaY, paramsStruct.position(3:4)]; + end + end +%end % convertPos + +%% Interactively get the requested capture rectangle +function [positionRect, jFrameUsed, msgStr] = getInteractivePosition(hFig) + msgStr = ''; + try + % First try the invisible-figure approach, in order to + % enable rbbox outside any existing figure boundaries + f = figure('units','pixel','pos',[-100,-100,10,10],'HitTest','off'); + drawnow; pause(0.01); + oldWarn = warning('off','MATLAB:HandleGraphics:ObsoletedProperty:JavaFrame'); + jf = get(handle(f),'JavaFrame'); + warning(oldWarn); + try + jWindow = jf.fFigureClient.getWindow; + catch + try + jWindow = jf.fHG1Client.getWindow; + catch + jWindow = jf.getFigurePanelContainer.getParent.getTopLevelAncestor; + end + end + com.sun.awt.AWTUtilities.setWindowOpacity(jWindow,0.05); %=nearly transparent (not fully so that mouse clicks are captured) + jWindow.setMaximized(1); % no true available in ML6 + jFrameUsed = 1; % no true available in ML6 + msg = {'Mouse-click and drag a bounding rectangle for screen-capture ' ... + ... %'or single-click any Matlab figure to capture the entire figure.' ... + }; + catch + % Something failed, so revert to a simple rbbox on a visible figure + try delete(f); drawnow; catch, end %Cleanup... + jFrameUsed = 0; % no false available in ML6 + msg = {'Mouse-click within any Matlab figure and then', ... + 'drag a bounding rectangle for screen-capture,', ... + 'or single-click to capture the entire figure'}; + end + uiwait(msgbox(msg,'ScreenCapture')); + + k = waitforbuttonpress; %#ok k is unused + %hFig = getCurrentFig; + %p1 = get(hFig,'CurrentPoint'); + positionRect = rbbox; + %p2 = get(hFig,'CurrentPoint'); + + if jFrameUsed + jFrameOrigin = getPixelPos(f); + delete(f); drawnow; + try + figOrigin = getPixelPos(hFig); + catch % empty/invalid hFig handle + figOrigin = [0,0,0,0]; + end + else + if isempty(hFig) + jFrameOrigin = getPixelPos(gcf); + else + jFrameOrigin = [0,0,0,0]; + end + figOrigin = [0,0,0,0]; + end + positionRect(1:2) = positionRect(1:2) + jFrameOrigin(1:2) - figOrigin(1:2); + + if prod(positionRect(3:4)) > 0 + msgStr = sprintf('%dx%d area captured',positionRect(3),positionRect(4)); + end +%end % getInteractivePosition + +%% Get current figure (even if its handle is hidden) +function hFig = getCurrentFig + oldState = get(0,'showHiddenHandles'); + set(0,'showHiddenHandles','on'); + hFig = get(0,'CurrentFigure'); + set(0,'showHiddenHandles',oldState); +%end % getCurrentFig + +%% Get ancestor figure - used for old Matlab versions that don't have a built-in ancestor() +function hObj = ancestor(hObj,type) + if ~isempty(hObj) & ishandle(hObj) %#ok for Matlab 6 compatibility + try + hObj = get(hObj,'Ancestor'); + catch + % never mind... + end + try + %if ~isa(handle(hObj),type) % this is best but always returns 0 in Matlab 6! + %if ~isprop(hObj,'type') | ~strcmpi(get(hObj,'type'),type) % no isprop() in ML6! + try + objType = get(hObj,'type'); + catch + objType = ''; + end + if ~strcmpi(objType,type) + try + parent = get(handle(hObj),'parent'); + catch + parent = hObj.getParent; % some objs have no 'Parent' prop, just this method... + end + if ~isempty(parent) % empty parent means root ancestor, so exit + hObj = ancestor(parent,type); + end + end + catch + % never mind... + end + end +%end % ancestor + +%% Get position of an HG object in specified units +function pos = getPos(hObj,field,units) + % Matlab 6 did not have hgconvertunits so use the old way... + oldUnits = get(hObj,'units'); + if strcmpi(oldUnits,units) % don't modify units unless we must! + pos = get(hObj,field); + else + set(hObj,'units',units); + pos = get(hObj,field); + set(hObj,'units',oldUnits); + end +%end % getPos + +%% Get pixel position of an HG object - for Matlab 6 compatibility +function pos = getPixelPos(hObj,varargin) + persistent originalObj + try + stk = dbstack; + if ~strcmp(stk(2).name,'getPixelPos') + originalObj = hObj; + end + + if isFigure(hObj) %| isAxes(hObj) + %try + pos = getPos(hObj,'OuterPosition','pixels'); + else %catch + % getpixelposition is unvectorized unfortunately! + pos = getpixelposition(hObj,varargin{:}); + + % add the axes labels/ticks if relevant (plus a tiny margin to fix 2px label/title inconsistencies) + if isAxes(hObj) & ~isImage(originalObj) %#ok ML6 + tightInsets = getPos(hObj,'TightInset','pixel'); + pos = pos + tightInsets.*[-1,-1,1,1] + [-1,1,1+tightInsets(1:2)]; + end + end + catch + try + % Matlab 6 did not have getpixelposition nor hgconvertunits so use the old way... + pos = getPos(hObj,'Position','pixels'); + catch + % Maybe the handle does not have a 'Position' prop (e.g., text/line/plot) - use its parent + pos = getPixelPos(get(hObj,'parent'),varargin{:}); + end + end + + % Handle the case of missing/invalid/empty HG handle + if isempty(pos) + pos = [0,0,0,0]; + end +%end % getPixelPos + +%% Adds a ScreenCapture toolbar button +function addToolbarButton(paramsStruct) + % Ensure we have a valid toolbar handle + hFig = ancestor(paramsStruct.toolbar,'figure'); + if isempty(hFig) + error('YMA:screencapture:badToolbar','the ''Toolbar'' parameter must contain a valid GUI handle'); + end + set(hFig,'ToolBar','figure'); + hToolbar = findall(hFig,'type','uitoolbar'); + if isempty(hToolbar) + error('YMA:screencapture:noToolbar','the ''Toolbar'' parameter must contain a figure handle possessing a valid toolbar'); + end + hToolbar = hToolbar(1); % just in case there are several toolbars... - use only the first + + % Prepare the camera icon + icon = ['3333333333333333'; ... + '3333333333333333'; ... + '3333300000333333'; ... + '3333065556033333'; ... + '3000000000000033'; ... + '3022222222222033'; ... + '3022220002222033'; ... + '3022203110222033'; ... + '3022201110222033'; ... + '3022204440222033'; ... + '3022220002222033'; ... + '3022222222222033'; ... + '3000000000000033'; ... + '3333333333333333'; ... + '3333333333333333'; ... + '3333333333333333']; + cm = [ 0 0 0; ... % black + 0 0.60 1; ... % light blue + 0.53 0.53 0.53; ... % light gray + NaN NaN NaN; ... % transparent + 0 0.73 0; ... % light green + 0.27 0.27 0.27; ... % gray + 0.13 0.13 0.13]; % dark gray + cdata = ind2rgb(uint8(icon-'0'),cm); + + % If the button does not already exit + hButton = findall(hToolbar,'Tag','ScreenCaptureButton'); + tooltip = 'Screen capture'; + if ~isempty(paramsStruct.target) + tooltip = [tooltip ' to ' paramsStruct.target]; + end + if isempty(hButton) + % Add the button with the icon to the figure's toolbar + hButton = uipushtool(hToolbar, 'CData',cdata, 'Tag','ScreenCaptureButton', 'TooltipString',tooltip, 'ClickedCallback',['screencapture(''' paramsStruct.target ''')']); %#ok unused + else + % Otherwise, simply update the existing button + set(hButton, 'CData',cdata, 'Tag','ScreenCaptureButton', 'TooltipString',tooltip, 'ClickedCallback',['screencapture(''' paramsStruct.target ''')']); + end +%end % addToolbarButton + +%% Java-get the actual screen-capture image data +function imgData = getScreenCaptureImageData(positionRect) + if isempty(positionRect) | all(positionRect==0) | positionRect(3)<=0 | positionRect(4)<=0 %#ok ML6 + imgData = []; + else + % Use java.awt.Robot to take a screen-capture of the specified screen area + rect = java.awt.Rectangle(positionRect(1), positionRect(2), positionRect(3), positionRect(4)); + robot = java.awt.Robot; + jImage = robot.createScreenCapture(rect); + + % Convert the resulting Java image to a Matlab image + % Adapted for a much-improved performance from: + % http://www.mathworks.com/support/solutions/data/1-2WPAYR.html + h = jImage.getHeight; + w = jImage.getWidth; + %imgData = zeros([h,w,3],'uint8'); + %pixelsData = uint8(jImage.getData.getPixels(0,0,w,h,[])); + %for i = 1 : h + % base = (i-1)*w*3+1; + % imgData(i,1:w,:) = deal(reshape(pixelsData(base:(base+3*w-1)),3,w)'); + %end + + % Performance further improved based on feedback from Urs Schwartz: + %pixelsData = reshape(typecast(jImage.getData.getDataStorage,'uint32'),w,h).'; + %imgData(:,:,3) = bitshift(bitand(pixelsData,256^1-1),-8*0); + %imgData(:,:,2) = bitshift(bitand(pixelsData,256^2-1),-8*1); + %imgData(:,:,1) = bitshift(bitand(pixelsData,256^3-1),-8*2); + + % Performance even further improved based on feedback from Jan Simon: + pixelsData = reshape(typecast(jImage.getData.getDataStorage, 'uint8'), 4, w, h); + imgData = cat(3, ... + transpose(reshape(pixelsData(3, :, :), w, h)), ... + transpose(reshape(pixelsData(2, :, :), w, h)), ... + transpose(reshape(pixelsData(1, :, :), w, h))); + end +%end % getInteractivePosition + +%% Return the figure to its pre-undocked state (when relevant) +function redockFigureIfRelevant(paramsStruct) + if paramsStruct.wasDocked + try + set(paramsStruct.hFigure,'WindowStyle','docked'); + %drawnow; + catch + % never mind - ignore... + end + end +%end % redockFigureIfRelevant + +%% Copy screen-capture to the system clipboard +% Adapted from http://www.mathworks.com/matlabcentral/fileexchange/28708-imclipboard/content/imclipboard.m +function imclipboard(imgData) + % Import necessary Java classes + import java.awt.Toolkit.* + import java.awt.image.BufferedImage + import java.awt.datatransfer.DataFlavor + + % Add the necessary Java class (ImageSelection) to the Java classpath + if ~exist('ImageSelection', 'class') + % Obtain the directory of the executable (or of the M-file if not deployed) + %javaaddpath(fileparts(which(mfilename)), '-end'); + if isdeployed % Stand-alone mode. + [status, result] = system('path'); %#ok + MatLabFilePath = char(regexpi(result, 'Path=(.*?);', 'tokens', 'once')); + else % MATLAB mode. + MatLabFilePath = fileparts(mfilename('fullpath')); + end + javaaddpath(MatLabFilePath, '-end'); + end + + % Get System Clipboard object (java.awt.Toolkit) + cb = getDefaultToolkit.getSystemClipboard; % can't use () in ML6! + + % Get image size + ht = size(imgData, 1); + wd = size(imgData, 2); + + % Convert to Blue-Green-Red format + imgData = imgData(:, :, [3 2 1]); + + % Convert to 3xWxH format + imgData = permute(imgData, [3, 2, 1]); + + % Append Alpha data (not used) + imgData = cat(1, imgData, 255*ones(1, wd, ht, 'uint8')); + + % Create image buffer + imBuffer = BufferedImage(wd, ht, BufferedImage.TYPE_INT_RGB); + imBuffer.setRGB(0, 0, wd, ht, typecast(imgData(:), 'int32'), 0, wd); + + % Create ImageSelection object + % % custom java class + imSelection = ImageSelection(imBuffer); + + % Set clipboard content to the image + cb.setContents(imSelection, []); +%end %imclipboard + +%% Is the provided handle a figure? +function flag = isFigure(hObj) + flag = isa(handle(hObj),'figure') | isa(hObj,'matlab.ui.Figure'); +%end %isFigure + +%% Is the provided handle an axes? +function flag = isAxes(hObj) + flag = isa(handle(hObj),'axes') | isa(hObj,'matlab.graphics.axis.Axes'); +%end %isFigure + +%% Is the provided handle an image? +function flag = isImage(hObj) + flag = isa(handle(hObj),'image') | isa(hObj,'matlab.graphics.primitive.Image'); +%end %isFigure + +%%%%%%%%%%%%%%%%%%%%%%%%%% TODO %%%%%%%%%%%%%%%%%%%%%%%%% +% find a way in interactive-mode to single-click another Matlab figure for screen-capture \ No newline at end of file diff --git a/GPE Solver/+Plotter/Analysis.m b/GPE Solver/+Plotter/Analysis.m new file mode 100644 index 0000000..df85ab4 --- /dev/null +++ b/GPE Solver/+Plotter/Analysis.m @@ -0,0 +1,50 @@ + set(0,'defaulttextInterpreter','latex') + set(groot, 'defaultAxesTickLabelInterpreter','latex'); set(groot, 'defaultLegendInterpreter','latex'); + format long + + runIdx = 6; + + load(sprintf('./Data/Run_%03i/psi_gs.mat',runIdx),'psi','muchem','Observ','t_idx','Transf','Params','VDk','V'); + + x = Transf.x*Params.l0*1e6; + y = Transf.y*Params.l0*1e6; + z = Transf.z*Params.l0*1e6; + %percentcomplete = linspace(0,1,Params.cut_off/200); + + dx = x(2)-x(1); dy = y(2)-y(1); dz = z(2)-z(1); + %Plotting + subplot(2,3,1) + n = abs(psi).^2; + nxz = squeeze(trapz(n*dy,2)); + nyz = squeeze(trapz(n*dx,1)); + nxy = squeeze(trapz(n*dz,3)); + + plotxz = pcolor(x,z,nxz'); + set(plotxz, 'EdgeColor', 'none'); + xlabel('$x$ [$\mu$m]'); ylabel('$z$ [$\mu$m]'); + + subplot(2,3,2) + plotyz = pcolor(y,z,nyz'); + set(plotyz, 'EdgeColor', 'none'); + xlabel('$y$ [$\mu$m]'); ylabel('$z$ [$\mu$m]'); + + subplot(2,3,3) + plotxy = pcolor(x,y,nxy'); + set(plotxy, 'EdgeColor', 'none'); + xlabel('$x$ [$\mu$m]'); ylabel('$y$ [$\mu$m]'); + + subplot(2,3,4) + plot(-log10(Observ.residual),'-b') + ylabel('$-\mathrm{log}_{10}(r)$'); xlabel('steps'); + + subplot(2,3,5) + plot(Observ.EVec,'-b') + ylabel('$E$'); xlabel('steps'); + + subplot(2,3,6) + plot(Observ.mucVec,'-b') + ylabel('$\mu$'); xlabel('steps'); +% xlim([0,1]); ylim([0,8]); +% xlim([0,1]); ylim([0,8]); + + Ecomp = energy_components(psi,Params,Transf,VDk,V); diff --git a/GPE Solver/+Plotter/MakeMovie.m b/GPE Solver/+Plotter/MakeMovie.m new file mode 100644 index 0000000..8842cbd --- /dev/null +++ b/GPE Solver/+Plotter/MakeMovie.m @@ -0,0 +1,77 @@ +set(0,'defaulttextInterpreter','latex') +set(groot, 'defaultAxesTickLabelInterpreter','latex'); set(groot, 'defaultLegendInterpreter','latex'); + +RunIdx = 1; + +FileDir = dir(sprintf('./Data/Run_%03i/TimeEvolution/*.mat',RunIdx)); +NumFiles = numel(FileDir); +QuenchSettings = load(sprintf('./Data/Run_%03i/QuenchSettings',RunIdx),'Quench','Params','Transf','VDk','V'); +Transf = QuenchSettings.Transf; Params = QuenchSettings.Params; +x = Transf.x; y = Transf.y; z = Transf.z; +dx = x(2)-x(1); dy = y(2)-y(1); dz = z(2)-z(1); + +mkdir(sprintf('./Data/Run_%03i/Figures',RunIdx)) +outputVideo = VideoWriter(fullfile('./Data/Movie.avi')); +outputVideo.FrameRate = 10; +open(outputVideo) + +figure(1); +x0 = 800; +y0 = 200; +width = 800; +height = 600; +set(gcf,'position',[x0,y0,width,height]) + +EVecTemp = []; + +for ii = 2:(NumFiles-1) + load(sprintf('./Data/Run_%03i/TimeEvolution/psi_%i.mat',RunIdx,ii),'psi','muchem','T','Observ','t_idx'); + + %Plotting + subplot(2,3,1) + n = abs(psi).^2; + nxz = squeeze(trapz(n*dy,2)); + nyz = squeeze(trapz(n*dx,1)); + nxy = squeeze(trapz(n*dz,3)); + + plotxz = pcolor(x,z,nxz'); shading interp + set(plotxz, 'EdgeColor', 'none'); + xlabel('$x$ [$\mu$m]'); ylabel('$z$ [$\mu$m]'); + + subplot(2,3,2) + plotyz = pcolor(y,z,nyz'); shading interp + set(plotyz, 'EdgeColor', 'none'); + xlabel('$y$ [$\mu$m]'); ylabel('$z$ [$\mu$m]'); + + subplot(2,3,3) + plotxy = pcolor(x,y,nxy'); shading interp + set(plotxy, 'EdgeColor', 'none'); + xlabel('$x$ [$\mu$m]'); ylabel('$y$ [$\mu$m]'); + + subplot(2,3,4) + plot(Observ.tVecPlot*1000/Params.w0,Observ.NormVec,'-b') + ylabel('Normalization'); xlabel('$t$ [$m$s]'); + + subplot(2,3,5) + plot(Observ.tVecPlot*1000/Params.w0,1-2*Observ.PCVec/pi,'-b') + ylabel('Coherence'); xlabel('$t$ [$m$s]'); + ylim([0,1]) + + subplot(2,3,6) + plot(Observ.tVecPlot*1000/Params.w0,Observ.EVec,'-b') + ylabel('E'); xlabel('$t$ [$m$s]'); + + tVal = Observ.tVecPlot(end)*1000/Params.w0; + sgtitle(sprintf('$\\mu =%.3f \\hbar\\omega_0$, $T=%.1f$nK, $t=%.1f$ms',muchem,T,tVal)) + + drawnow + saveas(gcf,sprintf('./Data/Run_%03i/Figures/Image_%i.jpg',RunIdx,ii)) + img = imread(sprintf('./Data/Run_%03i/Figures/Image_%i.jpg',RunIdx,ii)); + writeVideo(outputVideo,img) +% hold off; + clf +end + +close(outputVideo) +close(figure(1)) +delete(sprintf('./Data/Run_%03i/Figures/*.jpg',RunIdx)) % deleting images after movie is made \ No newline at end of file diff --git a/GPE Solver/+Plotter/OrderParameter_m.m b/GPE Solver/+Plotter/OrderParameter_m.m new file mode 100644 index 0000000..2ce76dc --- /dev/null +++ b/GPE Solver/+Plotter/OrderParameter_m.m @@ -0,0 +1,58 @@ +function [m_Order] = OrderParameter_m(psi,Transf,Params,VDk,V,T,muchem) + + NumRealiz = 100; + + Mx = numel(Transf.x); + My = numel(Transf.y); + Mz = numel(Transf.z); + + r = normrnd(0,1,size(psi)); + theta = rand(size(psi)); + noise = r.*exp(2*pi*1i*theta); + + KEop= 0.5*(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2); + Gamma = 1-1i*Params.gamma_S; + dt = Params.dt; + + avgpsi = 0; + avgpsi2 = 0; + + for jj = 1:NumRealiz + %generate initial state + xi = sqrt(2*Params.gamma_S*Params.kbol*T*10^(-9)*dt/(Params.hbar*Params.w0*Transf.dx*Transf.dy*Transf.dz)); + swapx = randi(length(Transf.x),1,length(Transf.x)); + swapy = randi(length(Transf.y),1,length(Transf.y)); + swapz = randi(length(Transf.z),1,length(Transf.z)); + psi_j = psi + xi * noise(swapx,swapy,swapz); + + % --- % propagate forward in time 1 time step: + %kin + psi_j = fftn(psi_j); + psi_j = psi_j.*exp(-0.5*1i*Gamma*dt*KEop); + psi_j = ifftn(psi_j); + + %DDI + frho = fftn(abs(psi_j).^2); + Phi = real(ifftn(frho.*VDk)); + + %Real-space + psi_j = psi_j.*exp(-1i*Gamma*dt*(V + Params.gs*abs(psi_j).^2 + Params.gammaQF*abs(psi_j).^3 + Params.gdd*Phi - muchem)); + + %kin + psi_j = fftn(psi_j); + psi_j = psi_j.*exp(-0.5*1i*Gamma*dt*KEop); + psi_j = ifftn(psi_j); + + %Projection + kcut = sqrt(2*Params.e_cut); + K = (Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2) depends on how Vdk (DDI) is defined + +%Trap gamma +Params.gx=(Params.wx/w0)^2; +Params.gy=(Params.wy/w0)^2; +Params.gz=(Params.wz/w0)^2; + +%Loading the rest into Params +Params.hbar = hbar; Params.kbol = kbol; Params.mu0 = mu0; Params.muB = muB; Params.a0 = a0; +Params.w0 = w0; Params.l0 = l0; \ No newline at end of file diff --git a/GPE Solver/+Simulator/running_file.m b/GPE Solver/+Simulator/running_file.m new file mode 100644 index 0000000..f980611 --- /dev/null +++ b/GPE Solver/+Simulator/running_file.m @@ -0,0 +1,23 @@ +%-% Running file %-% +clearvars + +njob = 6; + +mkdir(sprintf('./Data')) +mkdir(sprintf('./Data/Run_%03i',njob)) + +%Obtain simulation parameters +[Params] = parameters(); + +%Set up spatial grids and transforms +[Transf] = setup_space(Params); + +[psi,V,VDk] = Initialize(Params,Transf); + +% --- Initialize +Observ.EVec = []; Observ.NormVec = []; Observ.PCVec = []; Observ.tVecPlot = []; Observ.mucVec = []; +t_idx = 1; %Start at t = 0; +Observ.res_idx = 1; + + +[psi] = ssfm_imag(psi,Params,Transf,VDk,V,njob,t_idx,Observ); \ No newline at end of file diff --git a/GPE Solver/+Simulator/setup_space.m b/GPE Solver/+Simulator/setup_space.m new file mode 100644 index 0000000..9929e31 --- /dev/null +++ b/GPE Solver/+Simulator/setup_space.m @@ -0,0 +1,32 @@ +function [Transf] = setup_space(Params) +Transf.Xmax = 0.5*Params.Lx; +Transf.Ymax = 0.5*Params.Ly; +Transf.Zmax = 0.5*Params.Lz; + +Nz = Params.Nz; Nx = Params.Nx; Ny = Params.Ny; + +% Fourier grids +x = linspace(-0.5*Params.Lx,0.5*Params.Lx-Params.Lx/Params.Nx,Params.Nx); +Kmax = pi*Params.Nx/Params.Lx; +kx = linspace(-Kmax,Kmax,Nx+1); +kx = kx(1:end-1); dkx = kx(2)-kx(1); +kx = fftshift(kx); + +y = linspace(-0.5*Params.Ly,0.5*Params.Ly-Params.Ly/Params.Ny,Params.Ny); +Kmax = pi*Params.Ny/Params.Ly; +ky = linspace(-Kmax,Kmax,Ny+1); +ky = ky(1:end-1); dky = ky(2)-ky(1); +ky = fftshift(ky); + +z = linspace(-0.5*Params.Lz,0.5*Params.Lz-Params.Lz/Params.Nz,Params.Nz); +Kmax = pi*Params.Nz/Params.Lz; +kz = linspace(-Kmax,Kmax,Nz+1); +kz = kz(1:end-1); dkz = kz(2)-kz(1); +kz = fftshift(kz); + +[Transf.X,Transf.Y,Transf.Z]=ndgrid(x,y,z); +[Transf.KX,Transf.KY,Transf.KZ]=ndgrid(kx,ky,kz); +Transf.x = x; Transf.y = y; Transf.z = z; +Transf.kx = kx; Transf.ky = ky; Transf.kz = kz; +Transf.dx = x(2)-x(1); Transf.dy = y(2)-y(1); Transf.dz = z(2)-z(1); +Transf.dkx = dkx; Transf.dky = dky; Transf.dkz = dkz; \ No newline at end of file diff --git a/GPE Solver/+Simulator/setup_space_radial.m b/GPE Solver/+Simulator/setup_space_radial.m new file mode 100644 index 0000000..3887b9e --- /dev/null +++ b/GPE Solver/+Simulator/setup_space_radial.m @@ -0,0 +1,311 @@ +function [Transf] = setup_space_radial(Params,morder) +Zmax = 0.5*Params.Lz; +Rmax = Params.Lr; +Nz = Params.Nz; +Nr = Params.Nr; + +if(nargin==1) + morder=0; %only do Bessel J0 +end + +% Fourier grids +z=linspace(-Zmax,Zmax,Nz+1); +z=z(1:end-1); +dz=z(2)-z(1); +Kmax=Nz*2*pi/(4*Zmax); +kz=linspace(-Kmax,Kmax,Nz+1); +kz=kz(1:end-1); + +% Hankel grids and transform +H = hankelmatrix(morder,Rmax,Nr); +r=H.r(:); +kr=H.kr(:); +T = diag(H.J/H.kmax)*H.T*diag(Rmax./H.J)*dz*(2*pi); +Tinv = diag(H.J./Rmax)*H.T'*diag(H.kmax./H.J)/dz/(2*pi); +wr=H.wr; +wk=H.wk; +% H.T'*diag(H.J/H.vmax)*H.T*diag(Rmax./H.J) + +[Transf.R,Transf.Z]=ndgrid(r,z); +[Transf.KR,Transf.KZ]=ndgrid(kr,kz); +Transf.T=T; +Transf.Tinv=Tinv; +Transf.r=r; +Transf.kr=kr; +Transf.z=z; +Transf.kz=kz; +Transf.wr=wr; +Transf.wk=wk; +Transf.Rmax=Rmax; +Transf.Zmax=Zmax; +Transf.dz=z(2)-z(1); +Transf.dkz=kz(2)-kz(1); +%b1=Transf; + +function s_HT = hankelmatrix(order, rmax, Nr, eps_roots) +%HANKEL_MATRIX: Generates data to use for Hankel Transforms +% +% s_HT = hankel_matrix(order, rmax, Nr, eps_roots) +% +% s_HT = Structure containing data to use for the pQDHT +% order = Transform order +% rmax = Radial extent of transform +% Nr = Number of sample points +% eps_roots = Error in estimation of roots of Bessel function (optional) +% +% s_HT: +% order, rmax, Nr = As above +% J_roots = Roots of the pth order Bessel fn. +% J_roots_N1 = (N+1)th root +% r = Radial co-ordinate vector +% v = frequency co-ordinate vector +% kr = Radial wave number co-ordinate vector +% vmax = Limiting frequency +% = roots_N1 / (2*pi*rmax) +% S = rmax * 2*pi*vmax (S product) +% T = Transform matrix +% J = Scaling vector +% = J_(order+1){roots} +% +% The algorithm used is that from: +% "Computation of quasi-discrete Hankel transforms of the integer +% order for propagating optical wave fields" +% Manuel Guizar-Sicairos and Julio C. Guitierrez-Vega +% J. Opt. Soc. Am. A 21(1) 53-58 (2004) +% +% The algorithm also calls the function: +% zn = bessel_zeros(1, p, Nr+1, 1e-6), +% where p and N are defined above, to calculate the roots of the bessel +% function. This algorithm is taken from: +% "An Algorithm with ALGOL 60 Program for the Computation of the +% zeros of the Ordinary Bessel Functions and those of their +% Derivatives". +% N. M. Temme +% Journal of Computational Physics, 32, 270-279 (1979) +% +% Example: Propagation of radial field +% +% % Note the use of matrix and element products / divisions +% H = hankel_matrix(0, 1e-3, 512); +% DR0 = 50e-6; +% Ur0 = exp(-(H.r/DR0).^2); +% Ukr0 = H.T * (Ur0./H.J); +% k0 = 2*pi/800e-9; +% kz = realsqrt((k0^2 - H.kr.^2).*(k0>H.kr)); +% z = (-5e-3:1e-5:5e-3); +% Ukrz = (Ukr0*ones(1,length(z))).*exp(i*kz*z); +% Urz = (H.T * Ukrz) .* (H.J * ones(1,length(z))); +% +% See also bessel_zeros, besselj + +if (~exist('eps_roots', 'var')||isemtpy(eps_roots)) + s_HT.eps_roots = 1e-6; +else + s_HT.eps_roots = eps_roots; +end + +s_HT.order = order; +s_HT.rmax = rmax; +s_HT.Nr = Nr; + +% Calculate N+1 roots: +J_roots = bessel_zeros(1, s_HT.order, s_HT.Nr+1, s_HT.eps_roots); +s_HT.J_roots = J_roots(1:end-1); +s_HT.J_roots_N1 = J_roots(end); + +% Calculate co-ordinate vectors +s_HT.r = s_HT.J_roots * s_HT.rmax / s_HT.J_roots_N1; +s_HT.v = s_HT.J_roots / (2*pi * s_HT.rmax); +s_HT.kr = 2*pi * s_HT.v; +s_HT.kmax = s_HT.J_roots_N1 / (s_HT.rmax); +s_HT.vmax = s_HT.J_roots_N1 / (2*pi * s_HT.rmax); +s_HT.S = s_HT.J_roots_N1; + +% Calculate hankel matrix and vectors +% I use (p=order) and (p1=order+1) +Jp = besselj(s_HT.order, (s_HT.J_roots) * (s_HT.J_roots.') / s_HT.S); +Jp1 = abs(besselj(s_HT.order+1, s_HT.J_roots)); +s_HT.T = 2*Jp./(Jp1 * (Jp1.') * s_HT.S); +s_HT.J = Jp1; +s_HT.wr=2./((s_HT.kmax)^2*abs(Jp1).^2); +s_HT.wk=2./((s_HT.rmax)^2*abs(Jp1).^2); + +return + + + + +function z = bessel_zeros(d, a, n, e) +%BESSEL_ZEROS: Finds the first n zeros of a bessel function +% +% z = bessel_zeros(d, a, n, e) +% +% z = zeros of the bessel function +% d = Bessel function type: +% 1: Ja +% 2: Ya +% 3: Ja' +% 4: Ya' +% a = Bessel order (a>=0) +% n = Number of zeros to find +% e = Relative error in root +% +% This function uses the routine described in: +% "An Algorithm with ALGOL 60 Program for the Computation of the +% zeros of the Ordinary Bessel Functions and those of their +% Derivatives". +% N. M. Temme +% Journal of Computational Physics, 32, 270-279 (1979) + +z = zeros(n, 1); +aa = a^2; +mu = 4*aa; +mu2 = mu^2; +mu3 = mu^3; +mu4 = mu^4; + +if (d<3) + p = 7*mu - 31; + p0 = mu - 1; + if ((1+p)==p) + p1 = 0; + q1 = 0; + else + p1 = 4*(253*mu2 - 3722*mu+17869)*p0/(15*p); + q1 = 1.6*(83*mu2 - 982*mu + 3779)/p; + end +else + p = 7*mu2 + 82*mu - 9; + p0 = mu + 3; + if ((p+1)==1) + p1 = 0; + q1 = 0; + else + p1 = (4048*mu4 + 131264*mu3 - 221984*mu2 - 417600*mu + 1012176)/(60*p); + q1 = 1.6*(83*mu3 + 2075*mu2 - 3039*mu + 3537)/p; + end +end + +if (d==1)|(d==4) + t = .25; +else + t = .75; +end +tt = 4*t; + +if (d<3) + pp1 = 5/48; + qq1 = -5/36; +else + pp1 = -7/48; + qq1 = 35/288; +end + +y = .375*pi; +if (a>=3) + bb = a^(-2/3); +else + bb = 1; +end +a1 = 3*a - 8; +% psi = (.5*a + .25)*pi; + +for s=1:n + if ((a==0)&(s==1)&(d==3)) + x = 0; + j = 0; + else + if (s>=a1) + b = (s + .5*a - t)*pi; + c = .015625/(b^2); + x = b - .125*(p0 - p1*c)/(b*(1 - q1*c)); + else + if (s==1) + switch (d) + case (1) + x = -2.33811; + case (2) + x = -1.17371; + case (3) + x = -1.01879; + otherwise + x = -2.29444; + end + else + x = y*(4*s - tt); + v = x^(-2); + x = -x^(2/3) * (1 + v*(pp1 + qq1*v)); + end + u = x*bb; + v = fi(2/3 * (-u)^1.5); + w = 1/cos(v); + xx = 1 - w^2; + c = sqrt(u/xx); + if (d<3) + x = w*(a + c*(-5/u - c*(6 - 10/xx))/(48*a*u)); + else + x = w*(a + c*(7/u + c*(18 - 14/xx))/(48*a*u)); + end + end + j = 0; + +while ((j==0)|((j<5)&(abs(w/x)>e))) + xx = x^2; + x4 = x^4; + a2 = aa - xx; + r0 = bessr(d, a, x); + j = j+1; + if (d<3) + u = r0; + w = 6*x*(2*a + 1); + p = (1 - 4*a2)/w; + q = (4*(xx-mu) - 2 - 12*a)/w; + else + u = -xx*r0/a2; + v = 2*x*a2/(3*(aa+xx)); + w = 64*a2^3; + q = 2*v*(1 + mu2 + 32*mu*xx + 48*x4)/w; + p = v*(1 + (40*mu*xx + 48*x4 - mu2)/w); + end + w = u*(1 + p*r0)/(1 + q*r0); + x = x+w; + end + z(s) = x; + end +end + + +function FI = fi(y) + c1 = 1.570796; + if (~y) + FI = 0; + elseif (y>1e5) + FI = c1; + else + if (y<1) + p = (3*y)^(1/3); + pp = p^2; + p = p*(1 + pp*(pp*(27 - 2*pp) - 210)/1575); + else + p = 1/(y + c1); + pp = p^2; + p = c1 - p*(1 + pp*(2310 + pp*(3003 + pp*(4818 + pp*(8591 + pp*16328))))/3465); + end + pp = (y+p)^2; + r = (p - atan(p+y))/pp; + FI = p - (1+pp)*r*(1 + r/(p+y)); + end +return + +function Jr = bessr(d, a, x) + switch (d) + case (1) + Jr = besselj(a, x)./besselj(a+1, x); + case (2) + Jr = bessely(a, x)./bessely(a+1, x); + case (3) + Jr = a./x - besselj(a+1, x)./besselj(a, x); + otherwise + Jr = a./x - bessely(a+1, x)./bessely(a, x); + end +return \ No newline at end of file diff --git a/GPE Solver/+Simulator/ssfm_imag.m b/GPE Solver/+Simulator/ssfm_imag.m new file mode 100644 index 0000000..dc84401 --- /dev/null +++ b/GPE Solver/+Simulator/ssfm_imag.m @@ -0,0 +1,98 @@ +function [psi] = ssfm_imag(psi,Params,Transf,VDk,V,njob,t_idx,Observ) + +set(0,'defaulttextInterpreter','latex') +set(groot, 'defaultAxesTickLabelInterpreter','latex'); set(groot, 'defaultLegendInterpreter','latex'); + +dt=-1j*abs(Params.dt); + +KEop= 0.5*(Transf.KX.^2+Transf.KY.^2+Transf.KZ.^2); +Observ.residual = 1; Observ.res = 1; + +figure(1) +muchem = chemicalpotential(psi,Params,Transf,VDk,V); +runningplot(psi,Params,Transf,Observ) +drawnow + +AdaptIdx = 0; + +while t_idx < Params.cut_off + %kin + psi = fftn(psi); + psi = psi.*exp(-0.5*1i*dt*KEop); + psi = ifftn(psi); + + %DDI + frho = fftn(abs(psi).^2); + Phi = real(ifftn(frho.*VDk)); + + %Real-space + psi = psi.*exp(-1i*dt*(V + Params.gs*abs(psi).^2 + Params.gammaQF*abs(psi).^3 + Params.gdd*Phi - muchem)); + + %kin + psi = fftn(psi); + psi = psi.*exp(-0.5*1i*dt*KEop); + psi = ifftn(psi); + + %Renorm + Norm = trapz(abs(psi(:)).^2)*Transf.dx*Transf.dy*Transf.dz; + psi = sqrt(Params.N)*psi/sqrt(Norm); + + muchem = chemicalpotential(psi,Params,Transf,VDk,V); + + %Plotting loop + if mod(t_idx,1000) == 0 + + %Change in Energy + E = energytotal(psi,Params,Transf,VDk,V); + E = E/Norm; + Observ.EVec = [Observ.EVec E]; + + %Chemical potential + Observ.mucVec = [Observ.mucVec muchem]; + + %Normalized residuals + res = norm_resid(psi,Params,Transf,VDk,V,muchem); + Observ.residual = [Observ.residual res]; + + Observ.res_idx = Observ.res_idx + 1; + figure(1) + runningplot(psi,Params,Transf,Observ) + drawnow + + save(sprintf('./Data/Run_%03i/psi_gs.mat',njob),'psi','muchem','Observ','t_idx','Transf','Params','VDk','V'); + + %Adaptive time step -- Careful, this can quickly get out of control + relres = abs(Observ.residual(Observ.res_idx)-Observ.residual(Observ.res_idx-1))/Observ.residual(Observ.res_idx); + if relres <1e-5 + if AdaptIdx > 4 && abs(dt) > Params.mindt + dt = dt / 2; + fprintf('Time step changed to '); disp(dt); + AdaptIdx = 0; + elseif AdaptIdx > 4 && abs(dt) < Params.mindt + break + else + AdaptIdx = AdaptIdx + 1; + end + else + AdaptIdx = 0; + end + end + if any(isnan(psi(:))) + disp('Idiot.') + break + end + t_idx=t_idx+1; +end + + +%Change in Energy +E = energytotal(psi,Params,Transf,VDk,V) +E = E/Norm; +Observ.EVec = [Observ.EVec E]; + +% Phase coherence +[PhaseC] = PhaseCoherence(psi,Transf,Params); +Observ.PCVec = [Observ.PCVec PhaseC]; + +Observ.res_idx = Observ.res_idx + 1; +save(sprintf('./Data/Run_%03i/psi_gs.mat',njob),'psi','muchem','Observ','t_idx','Transf','Params','VDk','V'); \ No newline at end of file diff --git a/GaussianBeamABCD/BeamPropagation.py b/GaussianBeamABCD/BeamPropagation.py new file mode 100644 index 0000000..2dfbb46 --- /dev/null +++ b/GaussianBeamABCD/BeamPropagation.py @@ -0,0 +1,233 @@ +""" +@author: Adam Newton Wright, https://github.com/adamnewtonwright/GaussianBeamPropagation +""" + +import numpy as np +import matplotlib.pyplot as plt +import sympy as sym +from sympy import oo + + +# Input Ray parameter, i.e. height and angle +def ray(y,theta): + ''' + Parameters + ---------- + y : float or integer or sympy symbol in meters + The vertical height of a ray. + theta : float or integer in radians + The angle of divergence of the ray. + + Returns + ------- + mat : 2x1 matrix + [ + [y], + [teta] + ] + + ''' + + mat = np.array([[y],[theta]]) + return mat + +# Ray Transfer Matrix for ideal lens with focal length f +def lens(f): + ''' + Parameters + ---------- + f : float or integer or sympy symbol in meters + Thin lens focal length in meters + + Returns + ------- + mat : 2x2 matrix + [ + [ 1, 0], + [-1/f, 1] + ] + + ''' + + mat = np.array([[1,0], [-1/f, 1]]) + return mat + +# Ray Transfer Matrix for propagation of distance d +def prop(d): + ''' + Parameters + ---------- + d : float or integer or sympy symbol + Distance light is propagating along the z-axis. + + Returns + ------- + mat: 2x2 matrix + [ + [1, d], + [0, 1] + ] + + ''' + mat = np.array([[1,d], [0,1]]) + return mat + +# multiplying the matrices together. mat1 is the last matrix the light interacts with +def mult(mat1,*argv): + ''' + Parameters + ---------- + mat1 : 2x2 ABCD matrix + Last matrix light interacts with. + *argv : 2x2 ABCD matrices + From left to right, the matrices should be entered such that the leftmost matrix interacts + with light temporally after the rightmost matrix. + + Returns + ------- + Mat : 2x2 matrix + The ABCd matrix describing the whole optical system. + + ''' + + Mat = mat1 + for arg in argv: + Mat = np.dot(Mat, arg) + return Mat + +# Adding Gaussian beam parameters +def Zr(wo, lam): + ''' + Parameters + ---------- + wo : float, integer, or symbol + Beam waist radius in meters. + lam : float, integer, or symbol + Wavelength of light in meters. + + Returns + ------- + zr : float, int, symbols + Rayleigh range for given beam waist and wavelength. + + ''' + + zr = np.pi * wo**2 / lam + return zr + +def W0(zr, lam): + ''' + Parameters + ---------- + zr : float, integer, symbol + Rayleigh range in meters + lam : float, integer, symbol + Wavelength of light in meters + + Returns + ------- + w0 : float, integer, symbol + Beam waist radius in meters + + ''' + + w0 = np.sqrt(lam * zr / np.pi) + return w0 + +# Remember, there should be an i in front of zr +# but this complicates the calculations, so we usually just let z = 0 +# and don't explicitly deal with the i, but still do the math accordingly +#def q0_func(z,zr): +# qz = z + zr +# return qz + +def q1_func(z, w0, lam, mat): + ''' + Parameters + ---------- + z : float, int, symbol + Position of the beam waist in meters. + w0 : float, int, symbol + Radial waist size in meters (of the embedded Gaussian, i.e. W0/M). + lam : float, int, symbol + Wavelength of light in meters. + mat : float, int, symbol + The ABCD 2x2 matrix describing the optical system. + + Returns + ------- + z: float, int, symbol + Position of the beam waist after the optical system + zr: float, int, symbol + Rayleigh range of the beam after the optical system + ''' + + A = mat[0][0] + B = mat[0][1] + C = mat[1][0] + D = mat[1][1] + zr = Zr(w0, lam) + real = (A*C*(z**2 + zr**2) + z*(A*D + B*C) + B*D) / (C**2*(z**2 + zr**2) + 2*C*D*z + D**2) + imag = (zr * (A*D - B*C)) / (C**2*(z**2 + zr**2) + 2*C*D*z + D**2) + z = real + zr = imag + return z, zr + +def q1_inv_func(z, w0, lam, mat): + ''' + Parameters + ---------- + z : float, int, symbol + Position of the beam waist in meters. + w0 : float, int, symbol + Radial waist size in meters (of the embedded Gaussian, i.e. W0/M). + lam : float, int, symbol + Wavelength of light in meters. + mat : float, int, symbol + The ABCD 2x2 matrix describing the optical system. + + Returns + ------- + R : float, int, symbol + Radius of curvature of the wavefront in meters. + w : float, int, symbol + Radius of the beam in meters. + + ''' + A = mat[0][0] + B = mat[0][1] + C = mat[1,0] + D = mat[1][1] + zr = Zr(w0, lam) + real = (A*C*(z**2 + zr**2) + z*(A*D + B*C) + B*D) / (A**2*(z**2 + zr**2) + 2*A*B*z + B**2) + imag = -zr * (A*D-B*C) / (A**2 *(z**2 + zr**2) + 2*A*B*z + B**2) + R = 1/real + w = (-lam / imag / np.pi)**.5 + return R, w + +def plot(func, var, rang = np.arange(0,3,.01)): + ''' + Parameters + ---------- + func : Sympy function of one variable + Sympy function defining the beam width after the last optical element. + var : sympy variable + Variable in func that will be plotted. + rang : numpy array + Array of the values along the optical axis to be plotted + + Returns + ------- + plot : matplotlib graph + Graph of the beam width of var + + + ''' + func = sym.lambdify(var, func) + plt.figure() + plt.plot(rang, func(rang), color = 'b') + plt.plot(rang, -func(rang), color = 'b') + plt.grid() + plt.xlabel('Optic Axis (m)') + plt.ylabel('Beam size (m)') + plt.show() \ No newline at end of file diff --git a/GaussianBeamABCD/DMD_Setup.py b/GaussianBeamABCD/DMD_Setup.py new file mode 100644 index 0000000..b752938 --- /dev/null +++ b/GaussianBeamABCD/DMD_Setup.py @@ -0,0 +1,70 @@ +import BeamPropagation as bp # This is the script that handles the propagation +import sympy as sym # For Symbolic examples +import numpy as np # Handling of lists and for plotting +import matplotlib.pyplot as plt # Plotting + + +"""A Gaussian beam can be defined by it's (radial) waist wo, it's Rayleigh range zR, and the location of its waist zO""" +w0 = 5.2E-3 # 1mm beam waist +lam = 532E-9 # wavelength of 355 nm (UV) +zR = bp.Zr(w0, lam) # Rayleigh range in m +z0 = 0 # location of waist in m + +"""Define first 4-f optical system using matrices""" +d1, d2, d3, f1, f2 = sym.symbols('d1 d2 d3 f1 f2') +M = bp.mult(bp.prop(d3),bp.lens(f2),bp.prop(d2), bp.lens(f1), bp.prop(d1)) + +"""Use script to do all the ABCD and q-parameter math, and return the waist and radius of curvature functions""" +R, w = bp.q1_inv_func(0, w0, lam, M) + +"""Substitute and extract the required separation between lenses of first 4-f system""" +distance_between_dmd_first_lens = 250E-3 +first_focal_length = 250.9E-3 +second_focal_length = 50E-3 +demag = 1/5 +target_w0 = demag*w0 +w = w.subs(f1, first_focal_length).subs(f2, second_focal_length).subs(d1, distance_between_dmd_first_lens).subs(d3,0) +eq = sym.solve(w - target_w0, d2)[0] +distance_between_lens_of_first_4f = list(eq.atoms())[0] +print('Distance between lenses of first 4-f system = {} mm'.format(distance_between_lens_of_first_4f * 1E3)) + +# Sanity check +# expansion_factor = w.subs(d2,distance_between_lens_of_first_4f).subs(d3,0)/ w0 +# print('beam is w = {:.2f} x w0'.format(expansion_factor)) + +# """Plot beam propagation up to 3 m after the first 4-f system""" +# M = bp.mult(bp.prop(d3),bp.lens(second_focal_length),bp.prop(distance_between_lens_of_first_4f), bp.lens(first_focal_length), bp.prop(distance_between_dmd_first_lens)) +# R, w = bp.q1_inv_func(0, w0, lam, M) +# bp.plot(w,d3, rang = np.arange(0,0.050,.0005)) + + +"""Define the full optical system of two 4-f setups using matrices""" +d1, d2, d3, d4, f1, f2, f3 = sym.symbols('d1 d2 d3 d4 f1 f2 f3') +M = bp.mult(bp.prop(d4),bp.lens(f3), bp.prop(d3),bp.lens(f2),bp.prop(d2), bp.lens(f1), bp.prop(d1)) + +"""Use script to do all the ABCD and q-parameter math, and return the waist and radius of curvature functions""" +R, w = bp.q1_inv_func(0, w0, lam, M) + +# """Find the focal length of lens required after the first 4-f system to have a collimated beam, given a certain separation between the first 4-f system and this lens""" +distance_between_4fs = 550E-3 +R_coll = R.subs(d1,distance_between_dmd_first_lens).subs(d2,distance_between_lens_of_first_4f).subs(d3,distance_between_4fs).subs(d4,0).subs(f1,first_focal_length).subs(f2,second_focal_length) +f3_coll = sym.solve(1/R_coll,f3)[0] +third_focal_length = list(f3_coll.atoms())[0] +print('For a fixed separation between first 4-f and third lens of {:.3f} mm, f3 = {:.3f} mm for a collimated beam'.format(distance_between_4fs* 1E3, third_focal_length * 1E3)) + +# # """Plot beam propagation up to 3 m after the first 4-f system""" +# M = bp.mult(bp.prop(d4),bp.lens(third_focal_length),bp.prop(distance_between_4fs), bp.lens(second_focal_length), bp.prop(distance_between_lens_of_first_4f), bp.lens(first_focal_length), bp.prop(distance_between_dmd_first_lens)) +# R, w = bp.q1_inv_func(0, w0, lam, M) +# bp.plot(w,d4, rang = np.arange(0,0.050,.0005)) + +third_focal_length = 501.8E-3 +R_coll = R.subs(d1,distance_between_dmd_first_lens).subs(d2,distance_between_lens_of_first_4f).subs(d4,0).subs(f1,first_focal_length).subs(f2,second_focal_length).subs(f3,third_focal_length) +d3_coll = sym.solve(1/R_coll,d3)[1] +distance_between_4fs = list(d3_coll.atoms())[0] +print('For a fixed third focal length of {:.3f} mm, d3 = {:.3f} mm, for a collimated beam'.format(third_focal_length* 1E3, distance_between_4fs * 1E3)) + +# """Plot beam propagation up to 3 m after the first 4-f system""" +# M = bp.mult(bp.prop(d4),bp.lens(third_focal_length),bp.prop(distance_between_4fs), bp.lens(second_focal_length), bp.prop(distance_between_lens_of_first_4f), bp.lens(first_focal_length), bp.prop(distance_between_dmd_first_lens)) +# R, w = bp.q1_inv_func(0, w0, lam, M) +# bp.plot(w,d4, rang = np.arange(0,0.050,.0005)) + diff --git a/GaussianBeamABCD/Example.ipynb b/GaussianBeamABCD/Example.ipynb new file mode 100644 index 0000000..6ea246f --- /dev/null +++ b/GaussianBeamABCD/Example.ipynb @@ -0,0 +1,589 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Gaussian Beam Propagation" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Import files" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import BeamPropagation as bs # This is the script that handles the propagation\n", + "import sympy as sym # For Symbolic examples\n", + "import numpy as np # Handling of lists and for plotting\n", + "import matplotlib.pyplot as plt # Plotting" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Let's show what BeamProp_Script has" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Help on module BeamProp_Script:\n", + "\n", + "NAME\n", + " BeamProp_Script - Created on Wed Feb 19 15:51:54 2020\n", + "\n", + "DESCRIPTION\n", + " @author: wrighta\n", + "\n", + "FUNCTIONS\n", + " W0(zr, lam)\n", + " Parameters\n", + " ----------\n", + " zr : float, integer, symbol\n", + " Rayleigh range in meters\n", + " lam : float, integer, symbol\n", + " Wavelength of light in meters\n", + " \n", + " Returns\n", + " -------\n", + " w0 : float, integer, symbol\n", + " Beam waist radius in meters\n", + " \n", + " Zr(wo, lam)\n", + " Parameters\n", + " ----------\n", + " wo : float, integer, or symbol\n", + " Beam waist radius in meters.\n", + " lam : float, integer, or symbol\n", + " Wavelength of light in meters.\n", + " \n", + " Returns\n", + " -------\n", + " zr : float, int, symbols\n", + " Rayleigh range for given beam waist and wavelength.\n", + " \n", + " lens(f)\n", + " Parameters\n", + " ----------\n", + " f : float or integer or sympy symbol in meters\n", + " Thin lens focal length in meters\n", + " \n", + " Returns\n", + " -------\n", + " mat : 2x2 matrix\n", + " [\n", + " [ 1, 0],\n", + " [-1/f, 1]\n", + " ]\n", + " \n", + " mult(mat1, *argv)\n", + " Parameters\n", + " ----------\n", + " mat1 : 2x2 ABCD matrix\n", + " Last matrix light interacts with.\n", + " *argv : 2x2 ABCD matrices \n", + " From left to right, the matrices should be entered such that the leftmost matrix interacts\n", + " with light temporally after the rightmost matrix.\n", + " \n", + " Returns\n", + " -------\n", + " Mat : 2x2 matrix\n", + " The ABCd matrix describing the whole optical system.\n", + " \n", + " plot(func, var, rang=array([0. , 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 ,\n", + " 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2 , 0.21,\n", + " 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3 , 0.31, 0.32,\n", + " 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4 , 0.41, 0.42, 0.43,\n", + " 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5 , 0.51, 0.52, 0.53, 0.54,\n", + " 0.55, 0.56, 0.57, 0.58, 0.59, 0.6 , 0.61, 0.62, 0.63, 0.64, 0.65,\n", + " 0.66, 0.67, 0.68, 0.69, 0.7 , 0.71, 0.72, 0.73, 0.74, 0.75, 0.76,\n", + " 0.77, 0.78, 0.79, 0.8 , 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87,\n", + " 0.88, 0.89, 0.9 , 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98,\n", + " 0.99, 1. , 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09,\n", + " 1.1 , 1.11, 1.12, 1.13, 1.14, 1.15, 1.16, 1.17, 1.18, 1.19, 1.2 ,\n", + " 1.21, 1.22, 1.23, 1.24, 1.25, 1.26, 1.27, 1.28, 1.29, 1.3 , 1.31,\n", + " 1.32, 1.33, 1.34, 1.35, 1.36, 1.37, 1.38, 1.39, 1.4 , 1.41, 1.42,\n", + " 1.43, 1.44, 1.45, 1.46, 1.47, 1.48, 1.49, 1.5 , 1.51, 1.52, 1.53,\n", + " 1.54, 1.55, 1.56, 1.57, 1.58, 1.59, 1.6 , 1.61, 1.62, 1.63, 1.64,\n", + " 1.65, 1.66, 1.67, 1.68, 1.69, 1.7 , 1.71, 1.72, 1.73, 1.74, 1.75,\n", + " 1.76, 1.77, 1.78, 1.79, 1.8 , 1.81, 1.82, 1.83, 1.84, 1.85, 1.86,\n", + " 1.87, 1.88, 1.89, 1.9 , 1.91, 1.92, 1.93, 1.94, 1.95, 1.96, 1.97,\n", + " 1.98, 1.99, 2. , 2.01, 2.02, 2.03, 2.04, 2.05, 2.06, 2.07, 2.08,\n", + " 2.09, 2.1 , 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19,\n", + " 2.2 , 2.21, 2.22, 2.23, 2.24, 2.25, 2.26, 2.27, 2.28, 2.29, 2.3 ,\n", + " 2.31, 2.32, 2.33, 2.34, 2.35, 2.36, 2.37, 2.38, 2.39, 2.4 , 2.41,\n", + " 2.42, 2.43, 2.44, 2.45, 2.46, 2.47, 2.48, 2.49, 2.5 , 2.51, 2.52,\n", + " 2.53, 2.54, 2.55, 2.56, 2.57, 2.58, 2.59, 2.6 , 2.61, 2.62, 2.63,\n", + " 2.64, 2.65, 2.66, 2.67, 2.68, 2.69, 2.7 , 2.71, 2.72, 2.73, 2.74,\n", + " 2.75, 2.76, 2.77, 2.78, 2.79, 2.8 , 2.81, 2.82, 2.83, 2.84, 2.85,\n", + " 2.86, 2.87, 2.88, 2.89, 2.9 , 2.91, 2.92, 2.93, 2.94, 2.95, 2.96,\n", + " 2.97, 2.98, 2.99]))\n", + " Parameters\n", + " ----------\n", + " func : Sympy function of one variable\n", + " Sympy function defining the beam width after the last optical element.\n", + " var : sympy variable\n", + " Variable in func that will be plotted.\n", + " rang : numpy array\n", + " Array of the values along the optical axis to be plotted\n", + " \n", + " Returns\n", + " -------\n", + " plot : matplotlib graph\n", + " Graph of the beam width of var\n", + " \n", + " prop(d)\n", + " Parameters\n", + " ----------\n", + " d : float or integer or sympy symbol\n", + " Distance light is propagating along the z-axis.\n", + " \n", + " Returns\n", + " -------\n", + " mat: 2x2 matrix\n", + " [\n", + " [1, d],\n", + " [0, 1]\n", + " ]\n", + " \n", + " q1_func(z, w0, lam, mat)\n", + " Parameters\n", + " ----------\n", + " z : float, int, symbol\n", + " Position of the beam waist in meters.\n", + " w0 : float, int, symbol\n", + " Radial waist size in meters (of the embedded Gaussian, i.e. W0/M).\n", + " lam : float, int, symbol\n", + " Wavelength of light in meters.\n", + " mat : float, int, symbol\n", + " The ABCD 2x2 matrix describing the optical system.\n", + " \n", + " Returns\n", + " -------\n", + " z: float, int, symbol\n", + " Position of the beam waist after the optical system\n", + " zr: float, int, symbol\n", + " Rayleigh range of the beam after the optical system\n", + " \n", + " q1_inv_func(z, w0, lam, mat)\n", + " Parameters\n", + " ----------\n", + " z : float, int, symbol\n", + " Position of the beam waist in meters.\n", + " w0 : float, int, symbol\n", + " Radial waist size in meters (of the embedded Gaussian, i.e. W0/M).\n", + " lam : float, int, symbol\n", + " Wavelength of light in meters.\n", + " mat : float, int, symbol\n", + " The ABCD 2x2 matrix describing the optical system.\n", + " \n", + " Returns\n", + " -------\n", + " R : float, int, symbol\n", + " Radius of curvature of the wavefront in meters.\n", + " w : float, int, symbol\n", + " Radius of the beam in meters.\n", + " \n", + " ray(y, theta)\n", + " Parameters\n", + " ----------\n", + " y : float or integer or sympy symbol in meters\n", + " The vertical height of a ray.\n", + " theta : float or integer in radians\n", + " The angle of divergence of the ray.\n", + " \n", + " Returns\n", + " -------\n", + " mat : 2x1 matrix\n", + " [\n", + " [y],\n", + " [teta]\n", + " ]\n", + "\n", + "DATA\n", + " oo = oo\n", + "\n", + "FILE\n", + " c:\\users\\wrighta\\documents\\beamprop\\beamprop_script.py\n", + "\n", + "\n" + ] + } + ], + "source": [ + "help(bs)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Let's first see how we define a beam and how we can visualize it propagating." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### A Gaussian beam can be defined by it's (radial) waist, $w_0$, it's Rayleigh range, $z_R = \\frac{\\pi * w_0^2}{\\lambda}$, and the location of its waist, $z_0$." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "w0 = 1E-3 # 1mm beam waist\n", + "lam = 355E-9 # wavelength of 355 nm (UV)\n", + "zR = bs.Zr(w0, lam) # Rayleigh range in m\n", + "z0 = 0 # location of waist in m" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### We now want to define our \"optical system\" using matrices. For this first example, we will just use a free space propagation matrix, and let the beam propagate a distance $d$ which we will define using a symbol." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "d = sym.symbols('d')\n", + "M = bs.prop(d)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### We now use the bs script to do all the ABCD and q-parameter math, and return the waist and radius of curvature functions" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "R, w = bs.q1_inv_func(0, w0, lam, M)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "w = 0.001*(0.0127690021685256*d**2 + 1)**0.5\n" + ] + } + ], + "source": [ + "print('w = {}'.format(w))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### And as simple as that, we have a function for our waist. Let's plot it and see what it looks like" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZ0AAAEGCAYAAAC+fkgiAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de5xdZX3v8c83M+QKJOQ2hknIhDBJCbSKTLkoB0ZBiNWXiBUNPSo9haYotp7WngrHHvCFpcW23nq8NSqCl4oUraSKQET3QS23gCgkISSBkAwJJCGBZMiNzPzOH2tt9mX2ntlz2XsnO9/367Vee+1nP2utZz2EfLPWetZaigjMzMxqYVS9G2BmZocPh46ZmdWMQ8fMzGrGoWNmZjXj0DEzs5pprncDDmZTp06Ntra2IS//8ssvM2HChJFr0CHMfVHI/ZHjvijUCP3x8MMPb4uIaaV+c+j0o62tjeXLlw95+UwmQ2dn58g16BDmvijk/shxXxRqhP6Q9Ey53+p6ek3SQkmrJa2VdFWJ38dI+l76+wOS2vJ+uzotXy3pgrzyGyVtkfR40bo+IelZSY+m0x9Uc9/MzKyvuoWOpCbgi8BbgQXAJZIWFFW7DNgREScAnwU+lS67AFgEnAQsBL6Urg/gprSslM9GxOvS6Y6R3B8zMxtYPY90TgPWRsRTEbEfuAW4sKjOhcDN6fxtwLmSlJbfEhH7IuJpYG26PiLiXmB7LXbAzMwGp57XdFqBjXnfu4DTy9WJiAOSXgKmpOX3Fy3bWsE2PyzpA8By4KMRsaO4gqTFwGKAlpYWMplMRTtTSnd397CWbyTui0Lujxz3RaFG7496ho5KlBU/CK5cnUqWLfZl4JNpvU8Cnwb+pM9KIpYASwA6OjpiOBf0GuGC4EhxXxRyf+S4Lwo1en/U8/RaFzAr7/tMYFO5OpKagYkkp84qWbZARDwfET0R0Qt8lfR0nJmZ1U49Q+choF3SHEmjSQYGLC2qsxS4NJ1/N/CzSB6LvRRYlI5umwO0Aw/2tzFJM/K+XgQ8Xq6umZlVR91Or6XXaD4M3AU0ATdGxApJ1wHLI2Ip8HXgW5LWkhzhLEqXXSHpVmAlcAC4MiJ6ACR9F+gEpkrqAq6NiK8D/yjpdSSn19YDf1a7vTUzO7j19MD69bBqVTLNng3vec/Ib6euN4emw5bvKCq7Jm9+L3BxmWWvB64vUX5JmfrvH1ZjzcwawL59sGZNLlxWrYKVK+HJJ2Hv3ly9RYsaMHTMzKw6du6EJ54oDJdVq+Cpp5Kjmqy2NjjxRDjvvOQzO02eXJ12OXTMzA5REbB1a3KkUhwuzz6bq3fEEdDeDr/3e/De9+aCZf58GD++tm126JiZHeR6e2HDhr7BsmoVbM+7FX7ChCRM3vzmwqOW449Pgudg4NAxMztI7N8P69eP5/vfLwyW1ath9+5cvalTYcECuPjiwnCZORNU6i7Gg4hDx8yshiKSU19PPplMq1fn5p9+Gnp6crcQHndcEibnnFMYLlOn1nEHhsmhY2ZWBS++WDpYnnyy8Khl/HiYNw9e//pkxFhv7yre9a4TmT8fjjyyfu2vFoeOmdkQ7dsH69aVDpctW3L1mppgzpwkXDo7kwv48+YlU2tr4SmxTOZ5Tj31xJrvS604dMzM+tHbC11dpYNl/frk96yWliRQ3vGOJFCy4XL88TB6dN124aDi0DEzIxkFln8KLBsua9bAnj25ekcemQTJaafB+96XC5b2dpg4sX7tP1Q4dMzssNDbC5s3J6fD1q5NPvOnHXkvOmlqgrlzkzA577zCo5YZMw7+EWIHM4eOmTWMZMhx30BZty65Ez//MS9NTcnzxebOTW6YPOGEXLjMmXPw3NfSaBw6ZnZI2bmzdKisWwcbNxZeYxk/PnfE8ta3JvPZ6bjjHCz14NAxs4NKBDz/fC5Iik+FbdtWWH/q1CREzjqrMFTmzk0u7PtU2MHFoWNmNffyy/DMM8l0993H8qMfFZ4Ge/nlXN1Ro2DWrCRELrqob7AcfXT99sMGz6FjZiPuxReTayvZYMmff+aZ4qOVeYwdmwwrnjsXzj23MFTa2jzcuJE4dMxsULJPNi4OkvzvO3cWLjNuXHLRfvZs6OjIzc+eDZs23ccf/uGZjKrne4ytZhw6ZlagpycZWlwcJNn5DRsK71uB5BRXW1synXNO8pkNlba25LpLuWsrmcw+B85hxKFjdpjp7k4eOPnss4VHKtlg2bgRDhwoXGbq1CQ8Tj4Z3va2wlCZPRsmTarDjtghyaFj1iB6epJRX9lAyZ82bcrNF5/6kpIbHmfPhjPOSO5ZyR6hzJ6dDC2eMKEuu2QNyKFjdgjYubN8iGSn554rvEcFkhsgZ8xIHiqZfSVxaysce2zyOXt28g6WMWPqs192+HHomNXRK68kYVEuSLJl3d19l500KQmO1lY46aTcfP40bVoSPGYHC4eO2Qh75ZVkdNeWLbnP7JT9vnr1qezcmZwOiyhcvrk5dyTyu78LCxfmQiRbfuyxPuVlhyaHjtkAenqSJxCXC5DisvwHR+Zrbk6OPKZNg0mT9nPWWaWPTqZOxaO5rGE5dOywE5FcI6kkQLZsSW5kLL5WAskF+ClTYPr0ZHrta3Pz06cn4ZL/fdKk3LDhTOYxOjs7a7rfZgcDh44dknp7Ydeu5M73HTuSz0qmbduSMNm/v/R6J07MhcQJJ8Ab3lA+RKZM8fUSs8Fy6FhdRORCo9zUX5i89FLfayHFjj46ObrITm1tcMopyUMgS4XI1KkexWVWbXUNHUkLgc8DTcDXIuKGot/HAN8ETgVeAN4bEevT364GLgN6gL+IiLvS8huBtwNbIuLkvHVNBr4HtAHrgfdERJmz7wbJX+p798Lu3cm0Z09ufqCpuO7Gja9FygXJSy+VPmWV78gj4ZhjcqExa1ZyYT0/SLJTfr1Jk5LA8VGI2cGnbqEjqQn4IvAWoAt4SNLSiFiZV+0yYEdEnCBpEfAp4L2SFgCLgJOAY4GfSpoXET3ATcAXSMIq31XAPRFxg6Sr0u8fq94e5vT2Jnd49/QkU/588feRnn/llfJhMVCI7Nkz8NFEKWPHJu8xGT8+eebW+PFw4MAo2tqSe0XKBUX+NHFicuHdzBpLPf+3Pg1YGxFPAUi6BbgQyA+dC4FPpPO3AV+QpLT8lojYBzwtaW26vvsi4l5JbSW2dyHQmc7fDGSoUugsX5682+OVV84Z8F/ztTR6dC4MiqdJkwpDYqCpXL1x40qPvMpkfu0L52ZW19BpBTbmfe8CTi9XJyIOSHoJmJKW31+0bOsA22uJiM3pujZLml6qkqTFwGKAlpYWMplMRTuTb+vWMVx0USs9PfsYO/YImpqCpqZg1CgYNSo7H6/ONzVVt3zcuF5Gj+4Z0dNNPT3JNZlduyqr393dPaS+bFTujxz3RaFG7496hk6pZ84Wn8wpV6eSZYckIpYASwA6OjpiqP86v/hiyGQy/td9yn1RyP2R474o1Oj9Uc9b0LqAWXnfZwKbytWR1AxMBLZXuGyx5yXNSNc1A9gy5JabmdmQ1DN0HgLaJc2RNJpkYMDSojpLgUvT+XcDP4uISMsXSRojaQ7QDjw4wPby13UpcPsI7IOZmQ1C3UInIg4AHwbuAlYBt0bECknXSXpHWu3rwJR0oMBfkYw4IyJWALeSDDq4E7gyHbmGpO8C9wHzJXVJuixd1w3AWyStIRkxVzA828zMqq+ug1Ij4g7gjqKya/Lm9wIXl1n2euD6EuWXlKn/AnDucNprZmbD48cKmplZzTh0zMysZhw6ZmZWMw4dMzOrGYeOmZnVjEPHzMxqxqFjZmY149AxM7OaceiYmVnNOHTMzKxmHDpmZlYzDh0zM6sZh46ZmdWMQ8fMzGrGoWNmZjXj0DEzs5px6JiZWc04dMzMrGYcOmZmVjMOHTMzqxmHjpmZ1YxDx8zMasahY2ZmNePQMTOzmnHomJlZzdQ1dCQtlLRa0lpJV5X4fYyk76W/PyCpLe+3q9Py1ZIuGGidkm6S9LSkR9PpddXePzMzK9Rcrw1LagK+CLwF6AIekrQ0IlbmVbsM2BERJ0haBHwKeK+kBcAi4CTgWOCnkualy/S3zv8VEbdVfefMzKykeh7pnAasjYinImI/cAtwYVGdC4Gb0/nbgHMlKS2/JSL2RcTTwNp0fZWs08zM6qRuRzpAK7Ax73sXcHq5OhFxQNJLwJS0/P6iZVvT+f7Web2ka4B7gKsiYl9xoyQtBhYDtLS0kMlkBrdXebq7u4e1fCNxXxRyf+S4Lwo1en/UM3RUoiwqrFOuvNSRW3adVwPPAaOBJcDHgOv6VI5Ykv5OR0dHdHZ2llhlZTKZDMNZvpG4Lwq5P3LcF4UavT8GPL0m6UxJX5T0W0lbJW2QdIekKyVNHMa2u4BZed9nApvK1ZHUDEwEtvezbNl1RsTmSOwDvkFyKs7MzGqo39CR9BPgcuAuYCEwA1gA/C0wFrhd0juGuO2HgHZJcySNJhkYsLSozlLg0nT+3cDPIiLS8kXp6LY5QDvwYH/rlDQj/RTwTuDxIbbbzMyGaKDTa++PiG1FZd3AI+n0aUlTh7Lh9BrNh0kCrQm4MSJWSLoOWB4RS4GvA9+StJbkCGdRuuwKSbcCK4EDwJUR0QNQap3pJr8jaRrJqblHgSuG0m4zMxu6fkOnOHAkHZ2/TERsLxFKFYuIO4A7isquyZvfC1xcZtnrgesrWWda/uahttPMzEZGRQMJJP0ZyUX3PeQuzAdwfJXaZWZmDajS0Wt/DZw0nKMaMzOzSm8OXQfsrmZDzMys8VV6pHM18F+SHgBevaEyIv6iKq0yM7OGVGno/CvwM+AxoLd6zTEzs0ZWaegciIi/qmpLzMys4VV6TefnkhZLmiFpcnaqasvMzKzhVHqk80fp59V5ZR4ybWZmg1JR6ETEnGo3xMzMGt9Az147a4Dfj5Z08sg2yczMGtVARzp/KOkfgTuBh4GtJA/6PAF4EzAb+GhVW2hmZg1joGev/aWkY0ie8HwxyVOm9wCrgH+NiF9Wv4lmZtYoBrymExE7gK+mk5mZ2ZBVOmTazMxs2Bw6ZmZWMw4dMzOrmYpCR9J4Sf9H0lfT7+2S3l7dppmZWaOp9EjnGyRPlz4z/d4F/F1VWmRmZg2r0tCZGxH/CLwCEBF7AFWtVWZm1pAqDZ39ksaRvqpa0lzy3qtjZmZWiUof+PkJkqcSzJL0HeCNwB9XqU1mZtagKn3g592SHgbOIDmt9pGI2FbVlpmZWcOpdPTaPcDpEfHjiPhRRGyTtKTKbTMzswZT6TWdOcDHJF2bV9ZRhfaYmVkDqzR0XgTOBVok/aekiVVsk5mZNahKQ0cRcSAiPgR8H/glML16zTIzs0ZUaeh8JTsTETeRjFy7e7gbl7RQ0mpJayVdVeL3MZK+l/7+gKS2vN+uTstXS7pgoHVKmpOuY026ztHDbb+ZmQ3OQG8OPTqd/XdJk7MT8DTw18PZsKQm4IvAW4EFwCWSFhRVuwzYEREnAJ8FPpUuuwBYBJwELAS+JKlpgHV+CvhsRLQDO9J1m5lZDQ10pPNv6efDwPL08+G878NxGrA2Ip6KiP3ALcCFRXUuBG5O528DzpWktPyWiNgXEU8Da9P1lVxnusyb03WQrvOdw2y/mZkN0kBvDn17+jmnCttuBTbmfe8CTi9XJyIOSHoJmJKW31+0bGs6X2qdU4AXI+JAifoFJC0GFgO0tLSQyWQGtVP5uru7h7V8I3FfFHJ/5LgvCjV6f1R0c6ikNwKPRsTLkt4HvB74XERsGMa2Sz27LSqsU6681JFbf/X7FkYsAZYAdHR0RGdnZ6lqFclkMgxn+Ubivijk/shxXxRq9P6odCDBl4Hdkl4L/A3wDPCtYW67C5iV930msKlcHUnNwERgez/LlivfBkxK11FuW2ZmVmWVhs6BiAiSaymfj4jPA0cNc9sPAe3pqLLRJAMDlhbVWQpcms6/G/hZ2o6lwKJ0dNscoB14sNw602V+nq6DdJ23D7P9ZmY2SJU+8HOXpKuB9wFnp6PEjhjOhtNrNB8G7gKagBsjYoWk64DlEbEU+DrwLUlrSY5wFqXLrpB0K7ASOABcGRE9AKXWmW7yY8Atkv4O+HW6bjMzq6FKQ+e9wB8Bl0XEc5KOA/5puBuPiDuAO4rKrsmb3wtcXGbZ64HrK1lnWv4Uyeg2MzOrk0qfMv0c8Jm87xuAb1arUWZm1pgqvaZjZmY2bA4dMzOrGYeOmZnVTKUvcXu7pF9L2i5pp6RdknZWu3FmZtZYKh299jngXcBj6T0vZmZmg1bp6bWNwOMOHDMzG45Kj3T+BrhD0v8D9mULI+Iz5RcxMzMrVGnoXA90A2MBv/zMzMyGpNLQmRwR51e1JWZm1vAqvabzU0kOHTMzG5ZKQ+dK4E5Jezxk2szMhqrSZ68N9zUGZmZmFV/TQdIxJO+tGZsti4h7q9EoMzNrTJW+rvpy4CMkb9x8FDgDuA94c/WaZmZmjabSazofAX4feCYi3gScAmytWqvMzKwhVRo6e9MXqiFpTEQ8AcyvXrPMzKwRVXpNp0vSJOCHwDJJO4BN1WuWmZk1okpHr12Uzn5C0s+BicCdVWuVmZk1pMGMXjsLaI+Ib0iaBrQCT1etZWZm1nAqfZ/OtcDHgKvToiOAb1erUWZm1pgqHUhwEfAO4GWAiNgE+IZRMzMblEpDZ3/6Lp0AkDShek0yM7NGVWno3CrpX4FJkv4U+Cnw1eo1y8zMGlGlo9f+WdJbgJ0k9+dcExHLqtoyMzNrOBWPXktDZpmkqcAL1WuSmZk1qn5Pr0k6Q1JG0g8knSLpceBx4HlJC4e6UUmTJS2TtCb9PKZMvUvTOmskXZpXfqqkxyStlfQvktTfeiV1SnpJ0qPpdM1Q225mZkM30DWdLwB/D3wX+BlweUS8Bjgb+IdhbPcq4J6IaAfuSb8XkDQZuBY4HTgNuDYvnL4MLCZ56nU7kA3A/tb7i4h4XTpdN4y2m5nZEA0UOs0RcXdE/DvwXETcD5A+e204LgRuTudvBt5Zos4FwLKI2B4RO4BlwEJJM4CjI+K+dETdN/OWr2S9ZmZWJwNd0+nNm99T9FsMY7stEbEZICI2S5peok4rsDHve1da1prOF5cPtN4zJf2G5Jlxfx0RK0o1TNJikqMoWlpayGQyg923V3V3dw9r+Ubivijk/shxXxRq9P4YKHRem76WWsC4vFdUi7yXuZUi6afAa0r89PEK26YSZdFPeX8eAWZHRLekPyB5cGl7qYoRsQRYAtDR0RGdnZ0VNrevTCbDcJZvJO6LQu6PHPdFoUbvj35DJyKahrriiDiv3G+Snpc0Iz0amQFsKVGtC+jM+z4TyKTlM4vKs0+8LrneiMiGJRFxh6QvSZoaEduGsGtmZjZEld4cOtKWAtnRaJcCt5eocxdwvqRj0gEE5wN3pafPdqUj6wR8IG/5kuuV9Jq8EW6nkey3h32bmdVYxffpjLAbSJ5ycBmwAbgYQFIHcEVEXB4R2yV9EngoXea6iNiezn8QuAkYB/wkncquF3g38EFJB0iuTS1KByGYmVkN1SV0IuIF4NwS5cuBy/O+3wjcWKbeyYNY7xdIhn+bmVkd1ev0mpmZHYYcOmZmVjMOHTMzqxmHjpmZ1YxDx8zMasahY2ZmNePQMTOzmnHomJlZzTh0zMysZhw6ZmZWMw4dMzOrGYeOmZnVjEPHzMxqxqFjZmY149AxM7OaceiYmVnNOHTMzKxmHDpmZlYzDh0zM6sZh46ZmdWMQ8fMzGrGoWNmZjXj0DEzs5px6JiZWc04dMzMrGbqEjqSJktaJmlN+nlMmXqXpnXWSLo0r/xUSY9JWivpXyQpLb9Y0gpJvZI6itZ1dVp/taQLqruHZmZWSr2OdK4C7omIduCe9HsBSZOBa4HTgdOAa/PC6cvAYqA9nRam5Y8D7wLuLVrXAmARcFJa90uSmkZ4n8zMbADNddruhUBnOn8zkAE+VlTnAmBZRGwHkLQMWCgpAxwdEfel5d8E3gn8JCJWpWWltndLROwDnpa0liTI7hvRvUpt2wb/+Z+wZk0LmzZBUxM0Nyef1ZwfNQr67rqZ2cGjXqHTEhGbASJis6TpJeq0AhvzvnelZa3pfHF5f1qB+ytZRtJikqMoWlpayGQyA6y6r1WrjuJDHzoVOHHQyw7XqFFBU1MwalQyNTcHY8b0MmZMD2PG9DJ2bP+f2bpjx/b/mb/OURUcL3d3dw+pLxuV+yPHfVGo0fujaqEj6afAa0r89PFKV1GiLPopH8q6+hZGLAGWAHR0dERnZ+cAq+7rzDPhrW+FX/3qATo6TqenBw4cgJ4e+sz399vQ5kVPj14tf+UV2LMHdu/uO+3Y0bdsKMaOhfHjS0/jxiWfu3Zt5sQTZzBpEn2mY47JzY8ff3gcrWUyGYbyZ6sRuS8KNXp/VC10IuK8cr9Jel7SjPQoZwawpUS1LnKn4ABmkpyG60rn88s3DdCcLmDWIJcZsjFjoK0N1q/fw/z51drKyIuAvXtLB9Tu3eXDq7+627Ylny+8MJlMZuBga27uG0r9hVTxNG7c4RFaZoeqep1eWwpcCtyQft5eos5dwN/nDR44H7g6IrZL2iXpDOAB4APA/61ge/8m6TPAsSSDDx4c/m40Fin5S3vcOJgyZWTXncncR2dnJ/v3w4svDm569tnc/J49/W/niCP6D6vJk2H69GSaNi03P378yO6vmZVWr9C5AbhV0mXABuBigHSY8xURcXkaLp8EHkqXuS47qAD4IHATMA74SToh6SKSAJoG/FjSoxFxQUSskHQrsBI4AFwZET212FErNHp07i/6odi3b/ChtXFj8rljR7J8KRMm9A2iUuE0fTpMnZrsh5kNXl1CJyJeAM4tUb4cuDzv+43AjWXqnVyi/D+A/yizzeuB64feajsYjBkDLS3JNBQvvwxbtsDWrcln/pQt6+qCRx5J5g8cKL2eSZP6D6b875MnJyMMzax+RzpmdTFhAsyZk0wDiYCXXiofTtnpiSfgF79Irl9FieEpo0YlR0f5QdTTM5eHHoLW1sJp3LiR32ezg4lDx6wMKXc9aN68gev39MALL5QPp2zZww9DV9ex3HZb33Uccwwce2zfMGptzZVPn05Fw9TNDkYOHbMR0tRU+fWqn//8F7z+9Z08+yyvTps2UfD9scfg+eeht7dw2eZmmDGjdCDlTxMmVGc/zYbDoWNWBxJMnJhMCxaUr3fgQBI8+WGUH1ArVsDdd8OuXX2XnThx4KOm17zGR01WWw4ds4NYc3MuKPqza1fpo6Xs9MQTsHlzcgow3+jRMGsWzJ6dTG1thfOtrckwdLOR4tAxawBHHQW/8zvJVE5PT3JdKRtEXV2wYQM880wy3XlnEkz5Ro1Kgqc4kLLfjzsueSKFWaUcOmaHiaam5FrQjBnQ0VG6zt69yX1NzzwD69fnAumZZ+Dee5OwKj5aamkpHUjZ+aOOqvKO2SHFoWNmrxo7Ftrbk6mUAweS4CkVSo88Aj/8IezfX7jM5MnlA2n27NLDzK1xOXTMrGLNzbmwOPvsvr/39iYDH4oDaf16ePJJWLYsuUE337hxZ9HeDiecAHPnFk6zZiXbtMbh/5xmNmJGjcqdwjvzzL6/R8D27YWh9MtfPse+fTNZuRJ+9KPCI6Xm5uTIqDiM5s6F44/3M/MORQ4dM6sZKXmY7JQpcOqpSdkpp6ylszN5cHxvb3L6bt26wmntWrj//uQJEflmzCgMovyjpcmT/cTxg5FDx8wOGqNGJafUZs2C4lfKZI+SigNp3brktN3NNxfWnzix9BHS3Lkwc6bvT6oXh46ZHRLyj5JOO63v77t3w9NP9w2kRx9NBji88kqu7ujRyfP3io+S5s1Lyn0dqXrctWbWEMaPh5NOSqZiPT3JUPDsqbr8ULr3XujuztVtbk5CaN48mD8/+czOt7T4lN1wOXTMrOE1NSUDEtra4Nyil6pEJA9iXbs2GWGXnVavTh4xlP8OpqOOKh1G7e2+H6lSDh0zO6xJuQe1vuENhb/19iZHSKtXF4bRf/0XfPe7hfcYzZhROpDmzPGjhPI5dMzMyhg1Kndf0vnnF/62d29yeq44kH7wg+TdSllNTcnw7uIwmjcvCarD7XSdQ8fMbAjGji1/DWn79r6n6p58Eu65B/bsydU78shcEGWn7u6j6OhIfmtEDh0zsxE2eTKccUYy5cveh1R8dPTgg3Drrdl3J53KFVckw8ZPPLHvNG1aPfZo5Dh0zMxqJP8+pPPOK/xt377kdN1ttz1OU9PJrFoFq1bBV7+aDAfPmjIleQdTcRjNmnVonKpz6JiZHQTGjEnC5OyztxXcGJsdzJANoez0/e8nr0fPmjAhebVFcRjNnXtwDWRw6JiZHcTyBzMsXFj429atsHJlYRhlMvDtb+fqNDcnQ7qLw2j+/Pq80tyhY2Z2iJo2Dc45J5ny7dqVvC02P4wefxxuv73wfUizZ5e+bjRlSvXa7NAxM2swRx0Fv//7yZRv377kJtj8MFq5Mjk62rs3V2/aNHj/++HTnx75tjl0zMwOE2PGlB7m3dOTvGYiP4xmzapOGxw6ZmaHuewNrMcfD297W3W3VZeHe0uaLGmZpDXp5zFl6l2a1lkj6dK88lMlPSZpraR/kZKBgpIulrRCUq+kjrz6bZL2SHo0nb5S/b00M7Ni9XqjxFXAPRHRDtyTfi8gaTJwLXA6cBpwbV44fRlYDLSnU3ZMx+PAu4B7S2xzXUS8Lp2uGMmdMTOzytQrdC4Esq9cuhl4Z4k6FwDLImJ7ROwAlgELJc0Ajo6I+yIigG9ml4+IVRGxuvrNNzOzoajXNZ2WiNgMEBGbJU0vUacV2Jj3vSsta03ni8sHMkfSr4GdwN9GxC9KVZK0mOQoipaWFjKZTAWrLq27u3tYyzcS90Uh90eO+6JQo/dH1UJH0k+B15T46eOVrqJEWfRT3p/NwHER8YKkU4EfSjopInb2WVHEEmAJQEdHR3QWvzN3EDKZDMNZvpG4Lwq5P3LcF4UavT+qFjoRcV653yQ9L2lGepQzA9hSoloX0Jn3fSaQSctnFpVvGqAt+4B96fzDktYB88iWQi0AAAblSURBVIDlA++JmZmNlHpd01kKZEejXQrcXqLOXcD5ko5JBxCcD9yVnpbbJemMdNTaB8os/ypJ0yQ1pfPHkww+eGpkdsXMzCpVr9C5AXiLpDXAW9LvSOqQ9DWAiNgOfBJ4KJ2uS8sAPgh8DVgLrAN+ki5/kaQu4Ezgx5LuSuufDfxW0m+A24Ar8tZlZmY1ooiBLoccviRtBZ4ZxiqmAtsGrHV4cF8Ucn/kuC8KNUJ/zI6Ikm/+cehUkaTlEdExcM3G574o5P7IcV8UavT+qNfpNTMzOww5dMzMrGYcOtW1pN4NOIi4Lwq5P3LcF4Uauj98TcfMzGrGRzpmZlYzDh0zM6sZh04VSFooaXX6vp8+r204nEiaJennklal7zr6SL3bVG+SmiT9WtKP6t2WepM0SdJtkp5I/4ycWe821ZOkv0z/P3lc0nclja13m0aaQ2eEpY/b+SLwVmABcImkBfVtVV0dAD4aEScCZwBXHub9AfARYFW9G3GQ+DxwZ0T8DvBaDuN+kdQK/AXQEREnA03Aovq2auQ5dEbeacDaiHgqIvYDt5C8P+iwFBGbI+KRdH4XyV8qlbyKoiFJmgm8jeQxToc1SUeTPKLq6wARsT8iXqxvq+quGRgnqRkYzwAPMz4UOXRGXrn3AB32JLUBpwAP1LcldfU54G+A3no35CBwPLAV+EZ6uvFrkibUu1H1EhHPAv8MbCB5HctLEXF3fVs18hw6I28o7/tpeJKOBL4P/M9S7zE6HEh6O7AlIh6ud1sOEs3A64EvR8QpwMuUeHX94SJ9mv6FwBzgWGCCpPfVt1Ujz6Ez8rqAWXnfB3zfT6OTdARJ4HwnIn5Q7/bU0RuBd0haT3La9c2Svl3fJtVVF9AVEdkj39tIQuhwdR7wdERsjYhXgB8Ab6hzm0acQ2fkPQS0S5ojaTTJhcCldW5T3aTvPPo6sCoiPlPv9tRTRFwdETMjoo3kz8XPIqLh/iVbqYh4DtgoaX5adC6wso5NqrcNwBmSxqf/35xLAw6sqNqbQw9XEXFA0odJXkLXBNwYESvq3Kx6eiPwfuAxSY+mZf87Iu6oY5vs4PHnwHfSf6A9BfyPOrenbiLiAUm3AY+QjPr8NQ34SBw/BsfMzGrGp9fMzKxmHDpmZlYzDh0zM6sZh46ZmdWMQ8fMzGrGoWM2CJJmSrpd0hpJ6yR9Ph3u298ykyR9KO/7senQ2MFst1nSNkn/UGH9OyRNGsT6Pyfp7EHUnybpzkrrm2U5dMwqlN6w9wPghxHRDswDjgSuH2DRScCroRMRmyLi3YPc/PnAauA9aTv6FRF/UOnDMyVNBs6IiHsrbUxEbAU2S3pjpcuYgUPHbDDeDOyNiG8AREQP8JfAn6R3kf9xehR0Z/o+pWvT5W4A5kp6VNI/SWqT9Di8+m6df5b0mKTfSvrzMtu+hOQ1ABtIXhGBpInpduan378r6U/T+fWSpkqaIOnHkn6TvqPlvSXW/W7g1aOWdNm/l3SfpOWSXi/prvTI7oq85X4I/Pch9aQdtvxEArPKnQQUPKwzInZK2gCckBadBpwM7AYekvRjkodYnhwRr4NXn7adtZjkAY+npE+zmFy8UUnjSB6J8mckR02XAPdFxEvp0y9ukvR54JiI+GrR4guBTRHxtnRdE0vs1xtJnnuWb2NEnCnps8BNaZ2xwArgK2md5cDflVifWVk+0jGrnCj9xPD88mUR8UJE7CE5FXfWAOs8D/hKRBwAiIjtJeq8Hfh5ROwmeXDqRenLAomIZcBjJC8OvLzEso8B50n6lKT/FhEvlagzg+QVA/myzwt8DHggInalp9T25l0r2kLyNGSzijl0zCq3AujIL0hfRDYLWJcWFYfSQM+ZKhdk+S4hCY71JEdaU4A3pdsfBZwI7AH6HCVFxJPAqSTh8Q+Srimx/j0kRzH59qWfvXnz2e/ZMyRj02XNKubQMavcPcB4SR+AV19N/mngpvQoBOAtkianp8TeCfwK2AUcVWaddwNXpG+KpPj0WhpqZwHHRURb+oTqK0mCCJJrSqvS7zemr5HIX/5YYHdEfJvkBWGlXh2witzpwcGYBzw+hOXsMObQMatQJE/HvQi4WNIa4ElgL/C/86r9EvgW8Cjw/YhYHhEvAL9KL+T/U9Fqv0YyOOC3kn4D/FHR7+8ieQVC/tHG7STv5ZlPckrtoxHxC+Be4G+Llv9d4MH0Cd8fp/Q1mB8DnQN2QF9vSpc1q5ifMm02QiT9MdARER+ud1sGS9IvgbdXOsw6XeZe4MKI2FG9llmj8ZGOmQF8FDiu0sqSpgGfceDYYPlIx8zMasZHOmZmVjMOHTMzqxmHjpmZ1YxDx8zMasahY2ZmNfP/AbRYoKP3tc6bAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "bs.plot(w, d, rang = np.arange(0,10))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Let's show what happens when a beam travels through a lens. We use the \"mult\" function to multiply multiple ABCD matrices together." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaMAAAEGCAYAAADIRPqpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO2deXwV1fXAv4ewiguLGi2ooAbZFdmtWFBBXAoqWqCiWEGsQuuGilZBsPzccQMXBFtXEJcCrSgiEAVZBAQUiAiCCgVFAZFNMHB+f5xJecaX5CV5L5OXd76fz3wyc9+9d86ZmTsnM3PuOaKqOI7jOE6YlAtbAMdxHMdxY+Q4juOEjhsjx3EcJ3TcGDmO4zih48bIcRzHCZ3yYQuQrBx++OFap06dIrXduXMnVatWja9ApZxU1BlSU+9U1BlSU+/C6rxo0aLvVfWIaL+5MSoiderUYeHChUVqm5mZSfv27eMrUCknFXWG1NQ7FXWG1NS7sDqLyFd5/eav6RzHcZzQcWPkOI7jhI4bI8dxHCd03Bg5juM4oePGyHEcxwkdN0aO4zhO6IRqjESks4isFJHVIjIoyu+VROTV4Pf5IlIn4rfbg/KVInJORPlzIrJJRJbl6quGiEwTkVXB3+pBuYjI40Ffn4jIqYnT2HEcx4lGaMZIRNKAUcC5QEOgp4g0zFWtD7BVVU8EHgHuD9o2BHoAjYDOwJNBfwD/DMpyMwiYrqoZwPRgm2D/GcHSD3gqHvrlxT33QFbWIYncheM4TtIR5pNRK2C1qq5R1b3AeKBrrjpdgeeD9deBs0REgvLxqrpHVdcCq4P+UNUPgC1R9hfZ1/PAhRHlL6gxD6gmIkfHRcNcbN0KzzwDAwacyo03wo4didiL4zhO8hFmBIZawLqI7fVA67zqqGq2iGwDagbl83K1rVXA/tJVdWPQ10YROTIfOWoBG3N3ICL9sKcn0tPTyczMLGCXv+bpp9N48sljePTROowb9xM33fQ5rVpFs51lix07dhTpeCU7qah3KuoMqaP37t1pVKmyD4ivzmEaI4lSljvtbF51YmkbTzmsUHU0MBqgRYsWWtTQHwcfnMkdd9Th6qsrc9ttTbnsMnjkETgiasSmskEqhkqB1NQ7FXWGsq/3d9/BjTfCp5/CwoVQoUJ8dQ7zNd164JiI7drAhrzqiEh54DDsFVwsbXPzbc7rt+DvpkLIEXdOPx2WLIEhQ2DCBGjQAF54ATwLvOM4pQlVePFFu0dNmAAXXpiY+1SYxmgBkCEidUWkIuaQMDlXnclA72D9EmCGqmpQ3iPwtquLOR98VMD+IvvqDUyKKL8i8KprA2zLeZ2XaCpVgrvvhsWLoV496N0bzjkH1q4tib07juPkz9q10LkzXHGF3aMWL4ahQ6FixfjvKzRjpKrZwABgKpAFTFDV5SIyTES6BNXGAjVFZDVwE4EHnKouByYAK4B3gP6qug9ARMYBc4GTRGS9iPQJ+roP6Cgiq4COwTbAFGAN5gTxLHBdAtWOSqNGMHs2jBwJc+dC48bw8MOQnV3SkjiO49i9Z8QIuxfNmQNPPGH3qEaNErfPUFNIqOoUzBhElg2OWP8JuDSPtsOB4VHKe+ZRfzNwVpRyBfoXSvAEUK4c9O8PXbrAddfBwIEwbhyMGQOnnBK2dI7jpApLl0LfvvZd6IIL4Mkn4ZhjCm5XXDwCQynjmGNg8mR49VVYtw5atIBBg2D37rAlcxynLLN7N9x+OzRvDl9/bfegyZNLxhCBG6NSiQj84Q+QlWXfke6/H5o0gRkzwpbMcZyyyIwZ0LQp3Hef3XOysuweJNF8jROEG6NSTI0aMHYsTJ9u22edBVddBVvK/rQkx3FKgC1b7J5yVvABY8YMu+fUqFHysrgxSgLOPNN8+2+7zdy/c1ws3Q3ccZyioPrLKSWDBsEnn0CHDuHJ5MYoSahSxR6hFy60d7jdu5uzw7p1Bbd1HMfJYd06u3d07w7HHmv3lHvvtXtMmLgxSjJOOQXmzTPX7xkzoGFDcwnfty9syRzHKc3s3w+jRtk9Y8YMu4fMnVt6vHXdGCUh5cvDTTfBsmVw2mnwl79Au3awfHnYkjmOUxpZvtyivgwYYPeMZcvsHlI+1Mk9v8SNURJTty68846F6vj8c2jWDAYPhj17wpbMcZzSwJ49FnKsWTO7R7z4ot0z6tYNW7Jf48YoyRGBXr3MFbN7d8uXdMopMGtW2JI5jhMms2fbvWDYMLs3ZGXZvaIk3bULgxujMsIRR9h/PW+/bZPXzjgDrr0Wtm0LWzLHcUqSbdts7LdrZ/eCnLcnpT0rgBujMkbnzvY++MYbYfRo+1g5cWLYUjmOUxJMnGhjfvRouwcsW2bBl5MBN0ZlkIMPtiCH8+bZf0MXXQTdusGGhCfGcBwnDDZssDF+0UU25ufNs3vAwQeHLVnsuDEqw7RsCQsW2ByCKVMO/Me0f3/YkjmOEw/27z/wBmTKFBvrCxbY2E823BiVcSpUODC7ulkzuOYaaN8eVq4MWzLHcYrDZ5/ZWL7mGjj1VBvjgwbZmE9G3BilCBkZNtFtzBgLLdS0Kfz977B3b9iSOY5TGPbutbF78sk2lseMsfiVGRlhS1Y8QjVGItJZRFaKyGoRGRTl90oi8mrw+3wRqRPx2+1B+UoROaegPkVklogsCZYNIjIxKG8vItsifhtMGUUE+vQxF88LL4S77rJw8fPmhS2Z4zixMG+ePQXddZeN4awsG9Ol1V27MIRmjEQkDRgFnAs0BHqKSMNc1foAW1X1ROAR4P6gbUMsTXkjoDPwpIik5denqrZT1VNU9RQsE+ybEfuZlfObqg5LkMqlhqOOOpCr5IcfbEb2X/8K27eHLZnjONHYvh2uv97G6rZtB3KeHXVU2JLFjzCfjFoBq1V1jaruBcYDXXPV6Qo8H6y/DpwlIhKUj1fVPaq6FksZ3iqWPkXkEOBMIOUdnn//ewsT0r+/xbdr1AjeeitsqRzHieStt2xsPvGEjdUVK2zsljXCjExUC4iMOb0eaJ1XHVXNFpFtQM2gfF6utrWC9YL6vAiYrqo/RpS1FZGlwAZgoKpGjfImIv2AfgDp6elkZmbmp1+e7Nixo8htE0G3blC//qE8+OBJXHBBVTp02MSAAauoUePnuO2jtOlcUqSi3qmoM8Rf7y1bKjBq1InMmJFOnTo7eeKJlTRq9COLFsVtF8UmrjqraigLcCkwJmL7cuCJXHWWA7Ujtr/AjNEooFdE+VigW4x9vg10i9g+FDg4WD8PWBWL/M2bN9eiMnPmzCK3TSR79qgOHapasaJq9eqqzz2nun9/fPourTonmlTUOxV1Vo2f3vv329irXt3G4rBhNjZLI4XVGVioedxTw3xNtx6IzK5eG3syiVpHRMoDhwFb8mmbb58iUhN7lfe/l1Gq+qOq7gjWpwAVROTw4iiWrFSsaIFWlyyx1wJXXQVnnw2rV4ctmeOkBqtX25i76iqbO7RkiTkrVKwYtmSJJ0xjtADIEJG6IlIRc0iYnKvOZKB3sH4JMCOwrpOBHoG3XV0gA/gohj4vBf6jqj/lFIjIUcF3KESkFXZMNsdZ16SiQQN4/3146ilLvNWkCdx/P/wcv7d2juNE8PPPNsaaNLEx99RT8MEHNhZThdCMkapmAwOAqUAWMEFVl4vIMBHpElQbC9QUkdXATcCgoO1yYAKwAngH6K+q+/LqM2K3PYBxuUS5BFgWfDN6HOgRGLyUplw5+POf7WPpuefaZLqWLW2gOI4TPxYutLE1aJCNtRUrbOyVS7FZoKGmVgpei03JVTY4Yv0n7GkmWtvhwPBY+oz4rX2UspHAyMLInUrUqgVvvmnLgAHQujXccIOFpa9aNWzpHCd52bnTXos/+iikp8Mbb8DFF4ctVXikmO11isrFF9t/bFdfbQEYGzeGqVPDlspxkpOpU20MjRhhY2rFitQ2RODGyCkE1arB00/bu+xKlSxdRa9e8N13YUvmOMnBd9/ZmOnc2cbQBx/YmKpWLWzJwseNkVNo2rU74OUzYYJ9ZH3xRfAvbY4THVUbIw0a2Ji56y4bQ+3ahS1Z6cGNkVMkKle270aLF0O9enDFFfbf3tq1YUvmOKWLtWttbFxxhQUz/fhjGzuVK4ctWenCjZFTLBo1gtmzLZzQnDn2HvzhhyE7O2zJHCdcsrNtLDRubGPjiSdsrDRuHLZkpRM3Rk6xKVfuQMyss86CgQOhTRt7anKcVGTxYhsDAwfamFixwrxR09LClqz04sbIiRvHHAOTJtk78fXrbe7EbbfBrl1hS+Y4JcOuXXDrrXbtr19vY2HSJBsbTv64MXLiighceqnlWbnqKnjgAZtVvmhR9bBFc5yEsmhRdZo0gQcfhCuvtDFw6aVlI9dQSeDGyEkI1avD6NGQmWmvJgYOPJnevWFzSgdacsoimzeb8Rk48GTS0mDmTMu+Wt3//yoUboychPK738Enn0CvXl/xyitQvz68/LK7gTvJjyq88oq5a7/8Mlx22Vd88gm0bx+2ZMmJGyMn4VSuDH36rOXjj+GEE2zS33nnwZdfhi2Z4xSNL7+0a/iyy+D4481du2/fte6uXQzcGDklRpMm8OGH8PjjMGuWuYU/8gjs2xe2ZI4TG9nZFsKnUSO7hh97zK7pJk3Cliz5cWPklChpafCXv5ira4cOcNNN5gK7dGnYkjlO/ixZAm3bws0327W7YgX89a/urh0v3Bg5oXDssfDvf8P48fD119C8uYXQ3707bMkc55fs2mVTFFq0sGt1/Hi7do89NmzJyhZujJzQEIHu3c0FtnfvA8nFpk8PWzLHMaZPh6ZNbYpC7952rXbv7u7aicCNkRM6NWrA2LEwY4YN8rPPNldZdwN3wiLHXfvss+2anDHDrtEaNcKWrOwSqjESkc4islJEVovIoCi/VxKRV4Pf54tInYjfbg/KV4rIOQX1KSL/FJG1IrIkWE4JykVEHg/qfyIipyZWaycvOnQwN/A77jBX2QYNzHXW3cCdkiK3u/Ydd9g12aFD2JKVfUIzRiKSBowCzgUaAj1FpGGuan2Arap6IvAIcH/QtiGWQrwR0Bl4UkTSYujzFlU9JViWBGXnAhnB0g94Kv7aOrFSpQoMHw6LFkHduuY6627gTkkQ6a5dt65dg8OH2zXpJJ4wn4xaAatVdY2q7gXGA11z1ekKPB+svw6cJSISlI9X1T2quhZYHfQXS5+56Qq8oMY8oJqIHB0PBZ2i07SpRTp+7LFfuoF7NHAn3kRz154zx65Bp+QoH+K+awHrIrbXA63zqqOq2SKyDagZlM/L1bZWsJ5fn8NFZDAwHRikqnvykKMWsDG3wCLSD3t6Ij09nczMzAKVjMaOHTuK3DZZKarOTZvC2LGVePTRetx0U02efno7t9yykhNP3BF/IROAn+vSzerVB/Pggyfx+eeH0KbNZm644XPS0/cwa1bh+0omveNFXHVW1VAW4FJgTMT25cATueosB2pHbH+BGaNRQK+I8rFAt/z6BI4GBKiEPW0NDsrfAk6PaDMdaF6Q/M2bN9eiMnPmzCK3TVaKq/P+/arjx6seeaRqWprqrbeq7twZH9kSiZ/r0snOnXYNpaWppqervvqqXWPFIRn0jjeF1RlYqHncU8N8TbceiAysXhvYkFcdESkPHAZsyadtnn2q6sbgeOwB/oG90otVDidkIt3Ar7zyQDTw994LWzIn2XjvPbt2HnjgQHTtP/zB3bXDJkxjtADIEJG6IlIRc0iYnKvOZKB3sH4JMCOwrpOBHoG3XV3M+eCj/PrM+Q4UfHO6EFgWsY8rAq+6NsA2Vf3VKzqndFCjhkVEnjnTZr537GjzP77/PmzJnNLO99/btdKxIx5duxQSmjFS1WxgADAVyAImqOpyERkmIl2CamOBmiKyGrgJGBS0XQ5MAFYA7wD9VXVfXn0Gfb0sIp8CnwKHA38PyqcAazAniGeB6xKothMn2re3EEJ33HHAFfell9wN3Pk1qnZt5EwV+Nvf8OjapZAwHRhQ1SmYMYgsGxyx/hP2HSha2+HA8Fj6DMrPzKMfBfoXSnCnVJDjBt6jB1x9NVx+Obz4Ijz1lEVSdpw1a+Daa+Hdd6F1a3j2WQ9qWlrxCAxO0pMTDfyJJ8wlt3Fjy7bpbuCpS3a2XQONG9s18cQTHl27tOPGyCkTpKXBgAEWSbljR7j1VmjVyiYuOqnFwoV27m+91a6FrCy7Njy6dunGjZFTpjjmGJg4EV5/Hb75xm5KN98MO5JjWpJTDHbssJQkrVvbuX/9dbsWatcOWzInFtwYOWUOEejWzZ6S+vWz2fWNG8OUX31JdMoKU6YciNLRr5+d+27d3F07mXBj5JRZqlUzZ4bZs+Ggg+D886FnT/j227Alc+LFt9/aOT3/fKha1cL5PPWUnXsnuXBj5JR5fvtbWLwYhg6FN9+E+vUtHYC7gScv+/fbHKH69e2cDhtm5/j008OWzCkqboyclKBSJRg82OYmNW0KffvaPJPPPgtbMqewfPaZpXS4+mo7l0uXwl132Tl2khc3Rk5KUb++zbx/9lmb+HjyyfZf9Z49YUvmFMSePXauTj7Zzl1OJI769cOWzIkHboyclKNcOXsyysqCiy+GIUOgWTOKFKnZKRlmz7ZzNGSInbPPPoM+fexcOmUDP5VOynLUUTBuHLz1FuzaBWecAddcAz/8ELZkTg4//GDnpF07O0dTptg5S08PWzIn3hRojESkrYiMClJyfyciX4vIFBHpLyKHlYSQjpNIzjsPli+3+Ug5H8UnTHAHhzBRtXPQoIGdk5tvtnN07rlhS+YkinyNkYi8DfTFAo92xnICNQTuBCoDkyKCmjpO0lK1Kjz0ECxYYJMku3eH3/8evvoqbMlSj6++ggsusHNQq5adk4cesnPklF0KejK6XFX7qOpkVd2gqtmqukNVP1bVh1W1PTCnBOR0nBLh1FNh3jybKJuZCQ0bwsMPe5y7kiAn/XfDhvD++7Y+b56dE6fsk68xUtVfZIkRkUNFpEbOEq2O4yQ75cvDjTfaa6Ezz4SBAy2s0MKFYUtWdsmJJ3fzzXbMV6ywc1A+1LwCTkkSkwODiFwjIt8CnwCLgsWHplOmOe44mDwZXnvNYp21bg3XXw/bt4ctWdlh+3a44YZfxpObPBmOPTZsyZySJlZvuoFAI1Wto6p1g6XYGWNEpLOIrBSR1SIyKMrvlUTk1eD3+SJSJ+K324PylSJyTkF9isjLQfkyEXlORCoE5e1FZJuILAmWwThOgAhccom5gf/5z5aKoGFDmDQpbMmSn0mT7Fg+/rgd26wsjyeXysRqjL4AdsVzxyKSBowCzsWcInqKSMNc1foAW1X1ROAR4P6gbUMspXgjzLHiSRFJK6DPl4H6QBOgCuaYkcMsVT0lWIbFU0+nbHDYYTBqlOXGqV4dLrwQLroI1q0LW7LkY/16O3YXXmhp5OfMsWN7mPvmpjSxGqPbgTki8oyIPJ6zFHPfrYDVqrpGVfcC44Guuep0BZ4P1l8HzhIRCcrHq+oeVV2LpQxvlV+fqjpFA4CPAA8s7xSaNm0sR9J998HUqfaf/WOPwb59YUtW+tm3z45VgwZ27B54wL4VtWkTtmROaSBWY/QMMAOYx4FvRsVNW1YLiPy/cn1QFrWOqmYD24Ca+bQtsM/g9dzlwDsRxW1FZKmIvC0ijYqqkJMaVKgAt91mDg7t2tk3D3dwyJ9Fi+y70A032DFbvhxuucWOpeMAxOqrkq2qN8V539HeDOeeZphXnbzKoxnX3H0+CXygqjnBXz4GjlPVHSJyHjARyIgqsEg/oB9Aeno6mZmZ0aoVyI4dO4rcNlkpqzrfcgu0bHkEI0eeSOvWFena9b/06bOWqlXtUams6p0fkTrv3JnG2LF1mTSpFtWq7WXw4NW0b/8dX31V9uZwpfq5LjaqWuACDMduwkcDNXKWWNrm02dbYGrE9u3A7bnqTAXaBuvlge8xQ/SLujn1CuoTGIIZm3L5yPUlcHhB8jdv3lyLysyZM4vcNlkp6zr/8INq//6qIqq/+Y3qa6+p7t9f9vWOxsyZM3X/fjsGv/mNHZP+/e0YlWVS9VwXBmCh5nFPjfU13R+DG/sc4ufavQDIEJG6IlIRc0iYnKvOZKB3sH4JMCNQaDLQI/C2q4s9yXyUX58i0hc4B+ipqvtzdiAiRwXfoRCRVtjT1eZi6uakGIcdBiNH2iTNI4+ESy+1KAIbN1YOW7QSZ8OGypx/vh2DI4+0YzJypDsoOPkT02s6Va0b7x2raraIDMCeatKA51R1uYgMw6znZGAs8KKIrAa2YMaFoN4EYAWQDfRX1X0A0foMdvk08BUwN7A9b6p5zl0CXCsi2cBuoEdg8Byn0LRqZeFrRo2CO++E6dNbsnatTZytWDFs6RLL3r0Wtmfo0JZUrGgpwAcM8ImrTmzke5mIyOmqOjuf3w8FjlXVZUXZuapOAabkKhscsf4TcGkebYdjrw8L7DMoj6qrqo4ERhZKcMfJh/LlbXJst27Qq9dm/va3I3nxRXjySUsKVxaZMQP697fUDmecsYWXXz6C2u6v6hSCgl7TdROROSIyWETOF5FWInKGiFwlIi8C/8Hm7DiOk4vateHuu1cwZYo9NZx5JvTqZZEGygobN8Jll8FZZ5mOU6bA0KHL3RA5haag2HQ3AucDG7EnlHuAm7BvNM+o6hmquiDhUjpOEnPuubBsmaU9f+01OOkkizqQzMFXs7NtzlD9+hbC5667TEdP8eAUlQIdGFR1q6o+q6pXquo5qnqhqt6e3+s7x3F+SZUqMHSo3bBzYtw1bw4ffhi2ZIVn9mxo0cLmDLVtazoNG2Y6Ok5R8UyvjlOCZGRY9IHXX4etW+H006F37+R4dffNN3DFFTZpdcsWe8p7+23TyXGKixsjxylhRMy5ISsLbr/d0mjXq2d5k37+OWzpfs3evSZbvXrw6qtwxx0m+yWXeFBTJ364MXKckKhaFf7v/w6EFRo4EJo0MSeA0sLbb0PTpibbGWfAp5/C8OGeddWJP7HmMzpIRO4SkWeD7QwRuSCxojlOapCRAW+9Bf/+N+zfD+efb44AK1aEJ9Py5dC5M5x3nsn0n//YUq9eeDI5ZZtYn4z+AezBwu2ABSD9e0IkcpwU5YILzBlgxAiYO9eeSP7855L9nvTNN3DttXDyyTB/vsmybJkZSMdJJLEaoxNU9QHgZwBV3U30YKWO4xSDihUt3faqVXDddTB2LJx4IgwZAj/8kLj9bttmESNOOAHGjDGDtGqVyVLWI0c4pYNYjdFeEalCEAFbRE7AnpQcx0kARxxhc5GysuxV2bBhULcu3HMP/Phj/Pbzww/W5/HH27egLl1sn088AYcfHr/9OE5BxGqM7sby/xwjIi8D04FbEyWU4zjGiSfChAnw8cfmQDB4MBx3HNx6K3z9ddH7XbfOvOKOO876/O1vLR/TuHG2T8cpaWIyRqr6LnAxcCUwDmihqpmJE8txnEiaNYNJkywIa8eO5mp9/PEWGfuNN2DnzoL72L3bnBC6dIE6dSxbbceOsHgxTJ5sk3AdJyxiiqcrItOBh1X1rYiy0araL2GSOY7zK1q0sCelr76yyOD/+IdNoK1SBc4+21zDMzLsiWfHDti8Gf77X8jMhFmzYM8eS+swaBBcfbUZJccpDcQa3L0ucJuItFTVoUFZiwTJ5DhOARx3HDzwgM1TmjUL3nzTIjtMmQL79v26fuPG5hDRqZMFbHWnBKe0Easx+gE4C3hcRP4N9EqcSI7jxEr58paWIic1xc8/w5df2jehQw6BmjXNEeHQQ0MV03EKJFZjJKqaDVwnIlcCs4HqCZPKcZwiUaGCvabzeHFOshGrN93TOSuq+k/MkeHd4u5cRDqLyEoRWS0ig6L8XklEXg1+ny8idSJ+uz0oXyki5xTUZ5CKfL6IrAr6rFjQPhzHcZySIV9jFGRyBXhNRGrkLMBaYGBxdiwiacAo4FygIdBTRBrmqtYH2KqqJwKPAPcHbRtiKcgbAZ2BJ0UkrYA+7wceUdUMYGvQd577cBzHcUqOgp6MXgn+LgIWBn8XRWwXh1bAalVdo6p7gfFA11x1ugLPB+uvA2eJiATl41V1j6quBVYH/UXtM2hzZtAHQZ8XFrAPx3Ecp4TI95uRql4Q/K2bgH3XAtZFbK8HWudVR1WzRWQbUDMon5erba1gPVqfNYEfgu9euevntY/vcwssIv2AfgDp6elkZmbGqOov2bFjR5HbJiupqDOkpt6pqDOkpt7x1DnWeUa/BZao6k4R6QWcCjyqqsWYAx41tp3GWCev8mhPevnVj1UOK1QdDYwGaNGihbZv3z5atQLJzMykqG2TlVTUGVJT71TUGVJT73jqHKsDw1PALhE5GQsD9BXwYjH3vR44JmK7NrAhrzoiUh44DNiST9u8yr8HqgV95N5XXvtwHMdxSohYjVG2qir2feUxVX0MOKSY+14AZARebhUxh4TJuepMBnoH65cAMwI5JgM9Ak+4ukAG8FFefQZtZgZ9EPQ5qYB9OI7jOCVErPOMtovI7dhk1zMCr7UKxdlx8H1mADAVSAOeU9XlIjIMWKiqk4GxwIsishp7WukRtF0uIhOAFUA20F9V9wFE6zPY5W3AeBH5O7A46Ju89uE4ycq+fbBpExx8sC3ujuMkA7Eao+7AH4E+qvqNiBwLPFjcnavqFGBKrrLBEes/AZfm0XY4MDyWPoPyNZi3Xe7yPPfhOMnAf/8LEyfCu+/CypWwZo1FYgCbBHvkkdCmjYUC6tTJ49E5pZOYjJGqfgOMiNj+GnghUUI5jpM/P/0Er7xiifDmzrWyjAwLlHrhhXDssRbJOzJQ6htvWL22bS2D7KWXWoBVxykNxPpk5DhOKWDTJhg5Ep5+Gr77zgKg/v3vcPHF0KBB3u1U4bPPLIXEmDHQu7dlcb32Wvtbs2bJ6eA40YjVgcFxnBD5/ntL+1C3rhmfNm1gxgz45BP429/yN0Rg340aNIBbbjGjNGMGtG9vUb9zkvVt2lQiqjhOVNwYOU4pZvt2GDLEjNADD9gruBUrLBlehw5Fc04QsbZvvAHLlkHXrpas74QTYOhQ26fjlDQxGSMRuUBEFngNSOUAACAASURBVIvIFhH5UUS2i8iPiRbOcVKVn3+Gp56yFODDhsG555rhePllqF8/fvtp2ND6XLECzjkH7r7bjNKoUZCdXWBzx4kbsT4ZPYrNxampqoeq6iGq6hlSHCcBTJlijgjXXWeGZ/58y+7aMHcY4Thy0kmWMXb+fGjUCAYMgKZN4e23E7dPx4kkVmO0Dljmk0EdJ3FkZdkT0Pnnw/79MGmSecG1+tWEhMTRqpV9T5o40Z7OzjvPZFq5suRkcFKTWI3RrcCUIIfQTTlLIgVznFThxx/h5pvtSWTuXBgxwl7JdekSzoRVEfuOtHy5yTJ3rnntDRwI27aVvDxOahCrMRoO7AIqY2GAchbHcYqIKrzwAtSrB488AldeCatWmat1xYphS2cy3HgjfP65yTZihL3Oe+EFk91x4kms84xqqGqnhEriOCnE0qXQvz98+CG0bg3//je0bBm2VNE58kh49lm45hqTuXdvGD3anBxOPjls6ZyyQqxPRu+JiBsjxykm27bB9dfDqafad5ixY2HOnNJriCJp0cJe2Y0ZY7KfeirccIO9ZnSc4hKrMeoPvCMiu92123EKj6qF76lfH554wp4yVq6Eq66Cckk0269cOejTx17dXXMNPP64vbobN85f3TnFI6ZhELhyl1PVKu7a7TiFY+VKOPtsuOwyqF0bPvoInnwSatQIW7KiU7266TB/vun0xz9Cx47udecUnZj/JxOR6iLSSkTOyFkSKZjjJDu7d8Nzz9WhaVP4+GO7ec+bZ6+7ygotW5pOTz4JCxfa/KixY+uye3fYkjnJRqwRGPoCH2B5goYGf+9OnFiOk9y88465Q7/4Yh26d7d4cNdeC2lpYUsWf9LSTLeVK6FHD3jppeNo3NiOgePESqxPRtcDLYGvVLUD0Az4rqg7FZEaIjJNRFYFf6vnUa93UGeViPSOKG8uIp+KyGoReVzEZmPk1a+IXCYinwTLnCB9ek5fXwZ9LRGRhUXVyXEANmyA7t1tomiFCjBixBJeeAHS08OWLPGkp5vb94gRS6hQwY7BH/5gx8RxCiJWY/RTkIQOEamkqp8BJxVjv4OA6aqaAUwPtn+BiNQAhgCtsaR4QyKM1lNAPyzdeAbQuYB+1wK/U9WmwD3A6Fy766Cqp6hqGXqB4pQk+/ZZaocGDSxywj33mPt2s2Y/hC1aidOs2Q8sXWox9SZPNqeNkSPtGDlOXsRqjNaLSDVgIjBNRCYBxfl/pyvwfLD+PHBhlDrnANNUdYuqbgWmAZ1F5GjgUFWdG4QneiGifdR+VXVO0AfAPKB2MWR3nF+weLGldPjLX2zO0LJlcOedUKlS2JKFR6VKcNdddixyjk2bNvbtzHGiEas33UWq+oOq3g3cBYwlugGJlXRV3Rj0vRE4MkqdWlhMvBzWB2W1gvXc5bH22weIDP+owLsiskhE+hVBFydF2bEDbrrJHBLWrTPX7alTLdK2Y5x4oh2TcePsGLVsaaGPduwIWzKntBFzplcROR3IUNV/iMgRmAFYm0/994Cjovz0t1h3GaVM8ykvuEORDpgxOj2i+LequkFEjsSe+j5T1Q/yaN8Pez1Ieno6mZmZsez2V+zYsaPIbZOVsqbzhx/W5PHHM9i0qTJduvyXvn3Xcsgh2bz//i/rlTW9YyGazkcdBWPGlOfZZ+syYkQtXnrpJ66/fhWnnbY5HCETgJ/rYqKqBS7Yt5t/A58H278BPoylbR79rQSODtaPBlZGqdMTeCZi+5mg7Gjgs2j18usXaAp8AdTLR667gYGx6NC8eXMtKjNnzixy22SlrOi8fr3qRRepgmrjxqpz5uRfv6zoXRgK0nnOHDt2oHrxxXZMywJ+rgsGWKh53FNj/WZ0EdAF2BkYsA0UL1DqZCw/EsHfSVHqTAU6BfObqgOdgKlqr9+2i0ibwIvuioj2UfsVkWOBN4HLVfXznB2ISFUROSRnPdjHsmLo5ZRR9u2zyAkNGpjL8r332vePtm3Dliz5aNvWjt1991m+pAYN7Ni6g0NqE6sx2htYNYX/3biLw31ARxFZBXQMthGRFiIyBkBVt2CebwuCZVhQBnAtMAZYjT3tvJ1fv8BgoCbwZC4X7nRgtogsBT4C3lJVnx3h/IIlS+wG+te/2t9ly2DQIHPddopGhQpw2212LHOO7Wmn2bF2UpNYvxlNEJFngGoicjVwFfBsUXeqqpuBs6KULwT6Rmw/BzyXR73Ghei3b2S/EeVrAI877ERl505Lw/3II1CzpqXn7tkznBxDZZXjj7cnzfHjLehqixaWtuLuu6Fqcf/ldZKKWL3pHgJeB97A5hcNVtUnEimY44TJ229b+u2HHoI//cmysP7xj26IEoGIGfmsLDvWDz1k0Ss85XlqEXNsOlWdpqq3YK++3kucSI4THt9+azfG886DKlXg/fctl08yBzVNFmrUsGP9wQdQubKdg5497Zw4ZZ98jVHgJJApIm+KSDMRWYZ94P9WRDrn19Zxkon9+y1PT/368OabMHSofb84w8MBlzjt2tmxHzrUzkX9+nZu9u8PWzInkRT0ZDQS+D9gHDAD6KuqRwFnAPcmWDbHKRE++ww6dICrr4amTeGTT2Dw4NSOoBA2lSrZOfjkE8sme/XVdo4++yxsyZxEUZAxKq+q76rqa8A3qjoPQC02neMkNXv22H/fJ59sN70xY2DmTEsW55QOTjrJzsmYMfDpp3auhg61c+eULQoyRpEPxrkzlHheRydpmTULTjnFvLa6dbP/uPv0Sa6sq6mCiJ2brCw7V3ffbedu1qywJXPiSUFD7+ScNONA02A9Z7tJCcjnOHFl61bo18++Be3eDVOmWEy5VEjxkOykp9u5evtt+OknO4fXXGPn1El+8jVGqpqmB9KMlw/Wc7Z9yp+TNKjCa6/ZbP+xY2HgQFi+3HLuOMlF5842WXbgQHt916ABTJhg59hJXvylhFPm+fpr6NLFEr3VqgULFsCDD/qkymSmalU7hwsW2Dnt3h1+/3s7105y4sbIKbPs2wePPQYNG8KMGTBiBMyfD6eeGrZkTrw49VQ7pw8/bI4ODRvaOfc4d8mHGyOnTLJ0qcU8u+EG+7awfLmFmSkfc9IUJ1koX97ySi1fbnOUbrjBzv3SpWFL5hQGN0ZOmWLXLgti2rw5fPWVJXV76y2oUydsyZxEU6eOOaSMG2fnvnlzuxZ27QpbMicW3Bg5ZYZp06BJE7j/fujd21yBe/TweHKphIid86wsuwbuv9+uifc8gFmpx42Rk/R8/73deDp1grQ0+3YwdqzHk0tlatSwa2DGDLsmOna0a+T778OWzMkLN0ZO0qIKL71krr2vvAJ33GHfCdq3D1syp7TQoYNdE3fcYddIgwZ2zbgbeOnDjZGTlKxZY/NNLr8cTjjBMocOH26Rth0nkipV7Nr4+GM48US7Zs49F9auDVsyJ5JQjJGI1BCRaSKyKvhbPY96vYM6q0Skd0R5cxH5VERWi8jjQfrxPPsVkfYisi3I8rpERAZH9NVZRFYGfQ1KtO5O8cjOPpDvZu5cS1f94Yf2XcBx8qNJE5g9+8A1k5OvKjs7bMkcCO/JaBAwXVUzgOnB9i8QkRrAEKA10AoYEmG0ngL6ARnBkpPOIr9+Z6nqKcEyLNhHGjAKOBdoCPQUkYZx1dSJGx9/DK1awS232DeAFStgwAD7JuA4sZCWZtfMihV2Dd1yC7RubdeWEy5hGaOuwPPB+vPAhVHqnANMU9UtqroVmAZ0FpGjgUNVda6qKvBCRPtY+o2kFbBaVdeo6l5gfNCHU4rYudNCv7RsCRs3WlifiROhdu2wJXOSlWOOsWvotddgw4YD/+S4G3h4hDUFMF1VNwKo6kYROTJKnVrAuojt9UFZrWA9d3lB/bYVkaXABmCgqi7PYx+t8xJaRPphT2Skp6eTmZlZkJ5R2bFjR5HbJitF1XnBguo88kg9Nm6swgUXbOCaa9Zw8MHZvP9+/GVMBH6uSzeHHw6jR5fnmWeO56GHfsPLL+/mxhs/p2XLwkdfTSa940VcdVbVhCxYavJlUZauwA+56m6N0v4W4M6I7buAm4GWwHsR5e2AfwfrUfsFDgUODtbPA1YF65cCYyLqXw48EYt+zZs316Iyc+bMIrdNVgqr86ZNqr16qYLqSSepvv9+YuRKNH6uk4fMTNV69eya69XLrsHCkKx6F4fC6gws1DzuqQl7TaeqZ6tq4yjLJCxt+dEAwd9NUbpYDxwTsV0be6pZH6znLievflX1R1XdEaxPASqIyOH57MMJCVV44QVzwX31Vcv26em/nZLgd78zN/C77rJrr0EDePFFdwMvKcL6ZjQZyPGO6w1MilJnKtBJRKoHjgudgKlqr+G2i0ibwIvuioj2UfsVkaMiPO5aYXpvBhYAGSJSV0QqAj2CPpwQWLMGzjnHJifWqweLF1tWz8qVw5bMSRUqV4Zhw+zaq1cPrrjCrsk1a8KWrOwTljG6D+goIquAjsE2ItJCRMYAqOoW4B7MYCwAhgVlANcCY4DVwBfA2/n1C1wCLAu+GT0O9AieGrOBAZjhywImqH1LckqQ7GxLB9C4McybB6NGmQtuo0ZhS+akKo0a2TU4apRdk40buxt4ognFgUFVNwNnRSlfCPSN2H4OeC6Peo0L0e9IYGQeskwBphRCfCeOLFoEV19t/4l27QojR7qXnFM6KFcOrrvOcmH172/eduPGwbPPehqSROARGJxQyHHXbtXK3LVffx3+9S83RE7po3ZtcwN//XVzA2/Z0q7dnTvDlqxs4cbIKXHefddmwz/8MPTtaxGWu3Xz6NpO6UXErtGsLLtmH37YruF33w1bsrKDGyOnxPj++wMfhCtWhPffh2eegWrVwpbMcWKjWjW7Zt9/367hc86xWHceDbz4uDFyEo4qvPtuOvXr2zv3O+90d20nuTnjDLuG77wTxo+H+vXtGnc38KLjxshJKGvXWnTte+9tQEaGOSrcc4+7azvJT+XKdi0vXgwZGXaNd+7s0cCLihsjJyFkZ8OIEeYSO2cO/PWvq5g927YdpyzRuLG5gf/1r6uYM8fcwh9+2N3AC4sbIyfuLF4MbdrAzTfDWWdZhOSLLvqvR9d2yixpaXaNr1gBZ59t3nZt2thYcGLDjZETN3btgltvNdfX9ethwgSYNMkiJDtOKnDMMXbNT5hgY6BlSxsTHg28YNwYOXHhvffM1fXBB+FPfzIX2EsvdXdtJ/UQsWs/K8vGwoMP2th4772wJSvduDFyisXmzXDllZaoLC0NZs60GerVo+budZzUoXp1GwszZ9rY6NjR4i5u3hy2ZKUTN0ZOkVCFV16xyMYvvwx33GERj9u3D1syxyldtG9vY+OOOw6MmVde8WjguXFj5BSar76C88+Hyy6DOnUsvtzw4VClStiSOU7ppEoVGyOLFkHdujZ2zjvPxpJjuDFyYmbfPnj0UXNd/eADW587F5o2DVsyx0kOmja1qQ6PPgqzZtlYevRRG1upjhsjJyY++QTatoUbb7TZ58uXw/XX4+7ajlNI0tJs7Cxfbgn9brzRxtbSpWFLFi5ujJx82b3b3nU3bw5ffmnvut96C447LmzJHCe5Oe44+M9/bEx9+SW0aGFjbffusCULBzdGTp5kZtprhXvvhV69zFW1Z09313aceCFiYyory8bYvffamJs5M2zJSp5QjJGI1BCRaSKyKvgb1RFYRHoHdVaJSO+I8uYi8qmIrBaRxyNSikftV0RuEZElwbJMRPaJSI3gty+DvpaIyMKS0L+0s3Wrhcnv0AH274dp0+Af/4CaNcOWzHHKJjVr2hibNs3G3Jln2hjcujVsyUqOsJ6MBgHTVTUDmB5s/4LAWAwBWgOtgCERRuspoB+QESyd8+tXVR9U1VNU9RTgduD9iBTmAB2C31vEWc+kQtVmjjdoAP/8p80c//RTC2/iOE7iOftsG3O33mpjsEEDeO211HADD8sYdQWeD9afBy6MUuccYJqqblHVrcA0oLOIHA0cqqpzVVWBFyLax9JvT2BcfNQoO6xbZ2m/u3eHWrVgwQK4/3446KCwJXOc1OKgg2zsLVhgY/EPf7CxuX592JIlFtEQTK6I/KCq1SK2t6pq9Vx1BgKVVfXvwfZdwG4gE7hPVc8OytsBt6nqBQX1KyIHAeuBE3OejERkLbAVUOAZVR2dj9z9sCcy0tPTm48fP75I+u/YsYODDz64SG3jzb59MHlyLZ59ti779wtXXbWWbt3+S1pafK+L0qRzSZKKeqeizpAYvfftE954oxbPPVeXtDSlb981dO26gXKl5Gt/YXXu0KHDojzfQKlqQhbgPWBZlKUr8EOuulujtL8FuDNi+y7gZqAl8F5EeTvg38F6vv0C3XPqRpT9Jvh7JLAUOCMW/Zo3b65FZebMmUVuG0+WLVNt21YVVDt2VP3ii8Ttq7ToXNKkot6pqLNqYvX+4gvVTp1srJ52mury5QnbVaEorM7AQs3jnpow+6qqZ6tq4yjLJODb4HUbwd9NUbpYD0TGe64NbAjKa0cpJ4Z+e5DrFZ2qbgj+bgL+hX2fKtPs2QNDhkCzZvD55/DCCzB1Khx/fNiSOY4TjeOPh3fesbH62Wdwyik2hvfsCVuy+BHWw95kIMc7rjcwKUqdqUAnEakeOC50Aqaq6kZgu4i0Cbzorohon2e/InIY8LtcZVVF5JCc9WAfy+KjYulk9my7kIcNs3fRWVlw+eXuru04pR0RG6uffWZRwYcNs7E8e3bYksWHsIzRfUBHEVkFdAy2EZEWIjIGQO2bzj3AgmAZpgc84K4FxgCrgS+At/PrN+Ai4F1V3RlRlg7MFpGlwEfAW6r6TryVLQ1s2wbXXgvt2tmkunfegZdegiOOCFsyx3EKwxFHWHDiKVNsLLdrZ2N727awJSse5cPYqapuBs6KUr4Q6Bux/RzwXB71fpXAOq9+g9/+CfwzV9ka4ORCCZ+ETJwI/fvDN99Y6JFhwyAFvy87Tpni3HNh2TK46y54/HGYPBlGjYILo/kQJwGlxCfDSQQbN8Ill8BFF8Hhh8O8eTBihBsixykrHHwwPPKIje3DD7exfsklNvaTDTdGZZD9+2H0aJsw95//WIiRhQstBbLjOGWPli1tjP/f/9mYb9DA7gH794ctWey4MSpjrFxpYXyuuca85T79FAYNggoVwpbMcZxEUqEC3H67jflmzewe0KGD3ROSATdGZYS9ey1518knW7qHMWNgxgzIyAhbMsdxSpKMDBv7Y8bYveDkk+3esHdv2JLljxujMsBHH1n4+TvvhC5dzF27Tx9313acVEXE7gFZWRZK6M477R4xf37YkuWNG6MkZvt2S9LVpg1s2QKTJlmg06OOClsyx3FKA0cdBa++ap52W7daEr/rr7d7R2nDjVGSMmUKNG4MTzwB110HK1bYU5HjOE5ufv97yyzbv7/dMxo3tntIacKNUZKxaRP88Y9w/vlQtarNvh45Eg49NGzJHMcpzRx6qBmi2bPNJfz88+1esilaMLYQcGOUJKjC88+by+brr8Pdd8PixXDaaWFL5jhOMnHaafDxxzB0qN1LGjSwe0vYOZPcGCUBa9ZAp05w5ZVQvz4sWWJBEitVClsyx3GSkUqVYPBgWLrUjNGVV9o9Zs2a8GRyY1SKyc6Ghx6y97vz58OTT8KsWdCwYdiSOY5TFmjQAD74AJ56yu4xjRvbPSc7u+RlcWNUSvn4Y2jdGm65BTp2NAeFa6+l1CTVchynbFCuHPz5z+YG3qmT3XNat7Z7UInKUbK7cwpi1y67GFq1gg0b7J3uxIlQu3bBbR3HcYpKrVrwr3/ZPWfDBrsH3Xqr3ZNKAjdGpYj33oMmTewx+U9/sqehbt188qrjOCWDiN1zsrLgqqvgwQftnvTee4nftxujUsDmzfYBsWNHSEuDmTPh2WehevWwJXMcJxWpVs0CrWZm2j2pY0f7B3nz5sTtMxRjJCI1RGSaiKwK/ka97YpI76DOKhHpHVHeXEQ+FZHVIvJ4kPEVEblURJaLyH4RaZGrr9uD+itF5JyI8s5B2WoRGZQonaOhCuPH20fEl1+2IIdLl0L79iUpheM4TnR+9zu7J91xhyXjbNDA7lmJcAMP68loEDBdVTOA6cH2LxCRGsAQoDXQChgSYbSeAvoBGcHSOShfBlwMfJCrr4ZAD6BRUPdJEUkTkTRgFHAu0BDoGdRNOF9/bbOie/aEOnVg0SIL/16lSkns3XEcJzaqVLFAq4sW2b3qllsS8x0pLGPUFXg+WH8eiJab8BxgmqpuUdWtwDSgs4gcDRyqqnNVVYEXctqrapaqRguY3hUYr6p7VHUtlq68VbCsVtU1qroXGB/UTRj79sEbb9SiYUN7HTdiBMydC02bJnKvjuM4xaNpU7tXZWZa9Jd4E0racSBdVTcCqOpGETkySp1awLqI7fVBWa1gPXd5ftQC5uXRJvc+WufViYj0w57ISE9PJzMzs4Dd/pLt28tz221NycrKoFWrzdx44yqOOuonZs0qVDdJyY4dOwp9vMoCqah3KuoMqaX3uuCuGU+dE2aMROQ9IFr86L/F2kWUMs2nvCh9RXsyzLMvVR0NjAZo0aKFti/kx52cb0QXX7yCe+5piEjNQrVPZjIzMyns8SoLpKLeqagzpKbe8dQ5YcZIVc/O6zcR+VZEjg6eio4GooXqWw+0j9iuDWQG5bVzlW8oQJz1wDF5tMmrPO6ImKNCZuYmSujTlOM4TlIQ1jejyUCOd1xvYFKUOlOBTiJSPXBc6ARMDV7vbReRNoEX3RV5tM+9vx4iUklE6mJODx8BC4AMEakrIhUxJ4fJxVXOcRzHKRxhGaP7gI4isgroGGwjIi1EZAyAqm4B7sEMxgJgWFAGcC0wBnNE+AJ4O2h/kYisB9oCb4nI1KCv5cAEYAXwDtBfVfepajYwADN8WcCEoK7jOI5TgoTiwKCqm4GzopQvBPpGbD8HPJdHvcZRyv8F/CuPfQ4HhkcpnwKUsjRTjuM4qYVHYHAcx3FCx42R4ziOEzpujBzHcZzQcWPkOI7jhI4bI8dxHCd0RBMRfjUFEJHvgK+K2Pxw4Ps4ipMMpKLOkJp6p6LOkJp6F1bn41T1iGg/uDEKARFZqKotCq5ZdkhFnSE19U5FnSE19Y6nzv6aznEcxwkdN0aO4zhO6LgxCofRYQsQAqmoM6Sm3qmoM6Sm3nHT2b8ZOY7jOKHjT0aO4zhO6LgxchzHcULHjVECEZHOIrJSRFaLyKAov1cSkVeD3+eLSJ2SlzK+xKDzTSKyQkQ+EZHpInJcGHLGm4L0jqh3iYioiCS9C3AsOovIH4LzvVxEXilpGeNNDNf3sSIyU0QWB9f4eWHIGU9E5DkR2SQiy/L4XUTk8eCYfCIipxZpR6rqSwIWIA3LtXQ8UBFYCjTMVec64OlgvQfwathyl4DOHYCDgvVrk13nWPUO6h0CfADMA1qELXcJnOsMYDFQPdg+Mmy5S0Dn0cC1wXpD4Muw5Y6D3mcApwLL8vj9PCynnABtgPlF2Y8/GSWOVsBqVV2jqnuB8UDXXHW6As8H668DZwXZa5OVAnVW1ZmquivYnMcvU8gnK7Gca7BkkQ8AP5WkcAkiFp2vBkap6lYAVd1UwjLGm1h0VuDQYP0wYEMJypcQVPUDYEs+VboCL6gxD6gmIkcXdj9ujBJHLWBdxPb6oCxqHbWss9uAmiUiXWKIRedI+hBk6U1yCtRbRJoBx6jqf0pSsAQSy7muB9QTkQ9FZJ6IdC4x6RJDLDrfDfQKMk5PAf5SMqKFSmHHfVRCyfSaIkR7wsntRx9LnWQiZn1EpBfQAvhdQiUqGfLVW0TKAY8AV5aUQCVALOe6PPaqrj32BDxLRBqr6g8Jli1RxKJzT+CfqvqwiLQFXgx03p948UIjLvcxfzJKHOuBYyK2a/PrR/b/1RGR8thjfX6Pw6WdWHRGRM4G/gZ0UdU9JSRbIilI70OAxkCmiHyJvVefnORODLFe35NU9WdVXQusxIxTshKLzn2ACQCqOheojAUTLcvENO4Lwo1R4lgAZIhIXRGpiDkoTM5VZzLQO1i/BJihwRfBJKVAnYPXVc9ghijZvyHkkK/eqrpNVQ9X1TqqWgf7VtZFVReGI25ciOX6nog5rCAih2Ov7daUqJTxJRadvwbOAhCRBpgx+q5EpSx5JgNXBF51bYBtqrqxsJ34a7oEoarZIjIAmIp54TynqstFZBiwUFUnA2Oxx/jV2BNRj/AkLj4x6vwgcDDwWuCr8bWqdglN6DgQo95lihh1ngp0EpEVwD7gFlXdHJ7UxSNGnW8GnhWRG7FXVVcm+T+YiMg47FXr4cG3sCFABQBVfRr7NnYesBrYBfypSPtJ8uPkOI7jlAH8NZ3jOI4TOm6MHMdxnNBxY+Q4juOEjhsjx3EcJ3TcGDmO4zih48bIceKEiNQWkUkiskpEvhCRx4L5KPm1qSYi10Vs/0ZEXi/kfsuLyPcicm+M9aeISLVC9P+oiJxRiPpHiMg7sdZ3HHBj5DhxIQhw+yYwUVUzsAmeBwPDC2haDYveDoCqblDVSwq5+05YdIM/xBJoV1XPizUkj4jUANoEwTJjQlW/AzaKyG9jbeM4bowcJz6cCfykqv8AUNV9wI3AVSJykIhcGTw1vRPkwxkStLsPOEFElojIgyJSJydvjIikichDIvJpkCcmr6CbPYHHsNn/bYK2hwX7OSnYHiciVwfrX4rI4SJSVUTeEpGlIrJMRLpH6fsS4H9POUHb/xORuSKyUEROFZGpwZPgnyPaTQQuK9KRdFISj8DgOPGhEbAoskBVfxSRr4ETg6JWWIy6XcACEXkLGAQ0VtVTAOSXCRb7AXWBZsHs/xq5dyoiVbDwM9dgT1k9gbmqui2IFvBPEXkMyyn0bK7mnYENqnp+0NdhUfT6LZbeJJJ1qtpWRB4B/hnUqQwsB54O6iwE/h6lStnsMQAAAfZJREFUP8eJij8ZOU58EKJHKo4sn6aqm1V1N/ZK7/QC+jwbS76YDaCq0YLoXgDk5Ih6A7hIRNKC+tOAT4FRQN8obT8FzhaR+0Wknapui1LnaH4dWy0nvNGnWCK17cGruZ8ivkVtAn5TgH6O8z/cGDlOfFiOpcT4HyJyKBbN+IugKLexKigWV14GLpKemEH5Ensyq8mB4KTlgAbAbuBXT1Wq+jnQHDMq94rI4Cj978aeeiLJibS+P2I9ZzvnbUvloK3jxIQbI8eJD9OBg0TkCrDvPcDDWG6bnMy2HUWkRvBq7ULgQ2A7lmIiGu8Cfw7Si5D7NV1g7E4Hjo2ICN4fM1Bg36yygu3nRKRCrva/AXap6kvAQ1hq6dxkceA1Y2GoBywrQjsnRXFj5DhxIIjMfBFwqYisAj7H0ovfEVFtNvAisAR4Q1UXBlGsPwwcCB7M1e0YzCnhExFZCvwx1+8XY2lHIp9OJgFdAseFvsDNqjoL+AC4M1f7JsBHIrIEyy8V7RvPW1jE5sLSIWjrODHhUbsdpwQQkSuBFqo6IGxZCouIzAYuKEyGVhH5AOiqqlsTJ5lTlvAnI8dxCuJm4NhYK4vIEcAIN0ROYfAnI8dxHCd0/MnIcRzHCR03Ro7jOE7ouDFyHMdxQseNkeM4jhM6bowcx3Gc0Pl/FsMIz+3QQqoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "w0 = 1E-3 # 1mm beam waist\n", + "lam = 355E-9 # wavelength of 355 nm (UV)\n", + "zR = bs.Zr(w0, lam) # Rayleigh range in m\n", + "z0 = 0 # location of waist in m\n", + "\n", + "d = sym.symbols('d')\n", + "M = bs.mult(bs.prop(d), bs.lens(.5), bs.prop(1))\n", + " \n", + "R, w = bs.q1_inv_func(0, w0, lam, M)\n", + "\n", + "bs.plot(w, d, rang = np.arange(0,1,.01))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Lets look at how to expand and collimate a beam with a two lens system" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [], + "source": [ + "w0 = 1E-3 # 1mm beam waist\n", + "lam = 355E-9 # wavelength of 355 nm (UV)\n", + "zR = bs.Zr(w0, lam) # Rayleigh range in m\n", + "z0 = 0 # location of waist in m\n", + "\n", + "d1, d2, d3, f1, f2 = sym.symbols('d1 d2 d3 f1 f2')\n", + "\n", + "M = bs.mult(bs.prop(d3),bs.lens(f2),bs.prop(d2), bs.lens(f1), bs.prop(d1))\n", + "\n", + "R, w = bs.q1_inv_func(0, w0, lam, M)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### For example, lets say the beam travels 1 m before hitting the first lens, and we want the beam to be 5x w0 after coming out of the second lens. We substitute d1 for 1 meter, since the beam propagates 1 meter, and we substitute d3 for 0, since we only care about the beam size right at the second lens. This gives us a relation between f1 and d2 (the separation between the lenses)." + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "f = 1.0084642216545e+15*d2*(1.12051580183833e+27*d2 - 4.41556446152598e+29*sqrt(1 - 0.000504320418227052*d2**2) + 8.88733242867719e+28)/(1.13000009595246e+42*d2**2 + 2.26000019190491e+42*d2 - 2.12276362486616e+45)\n" + ] + } + ], + "source": [ + "w = w.subs(d1,1).subs(d3,0)\n", + "f1_eq = sym.solve(w - 5*w0, f1)[0]\n", + "print('f = {}'.format(f1_eq))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### Suppose we wanted the distance between the lenses to be 1 meter, we could find what f1 we need." + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "f1 = 0.17 m, for a lens separation of 1 meter\n" + ] + } + ], + "source": [ + "print('f1 = {:.2f} m, for a lens separation of 1 meter'.format(f1_eq.subs(d2, 1)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Now we need to collimate the beam. Lets still assume the beam propagates 1 m, and f1 = .17 m." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "There are a couple different ways to think about collimation. One is that the beam size doesn't change over a long distance. The other is that the radius of curvature is infinite (i.e. a plane wave). Lets us the latter interpretation. Thus, we want to find the focal length f2 that makes R infinite, or that makes 1/R =0." + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "f2 = 0.83, for a collimated beam, 5x the original waist, after propagating 1m to the first lens of f1 = .17m, and propagating another 1m to the second lens\n" + ] + } + ], + "source": [ + "R_coll = R.subs(d1,1).subs(d2,1).subs(f1,.17).subs(d3,0)\n", + "f2_coll = sym.solve(1/R_coll,f2)[0]\n", + "print('f2 = {:.2f}, for a collimated beam, 5x the original waist, after propagating 1m to the first lens of f1 = .17m, and propagating another 1m to the second lens'.format(f2_coll))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Lets plot the beam profile after the second lens, and see if it is collimated." + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAEGCAYAAABGnrPVAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAavUlEQVR4nO3de7hdVXnv8e/PhPslIQQ3uWGiRNtAa4GcEAzwbIpAtDwEWzgNHjG00rQKp7RHHwXtgZ60tFotiFUuAaOIVqDokVQCGC7rgAiBoGiIIbC5CDHcg0C4dsN7/phj42Jlrb1m9h5rr7XC7/M868mcY44x5ztYYb2ZtzEUEZiZmeXytnYHYGZmWxYnFjMzy8qJxczMsnJiMTOzrJxYzMwsq9HtDqATjB8/PqZOnTqkti+88AI77LBD3oDaxH3pTO5LZ3Jf4M4773wqInarLXdiAaZOncrKlSuH1LZSqdDb25s3oDZxXzqT+9KZ3BeQ9Kt65b4UZmZmWTmxmJlZVk4sZmaWlROLmZll5cRiZmZZObGYmVlWTixmZpaV32MZhttug2uu2Z2HHmpcp9msBGVmLRipOvfcM4F77+2MWIa7j3vvncjq1Z0Ry3CP09c3mZ/9rDNiGW6dBx6YwooVnRHLUOpUb3/wwXdw882dEctw6hx/fPM6m8uJZRguuQTOPfd32h1GRu9pdwAZvbvdAWS0Z7sDyOhd7Q4go2ntDqAUafDt73sfbLtt3mM6sQzDokVw0EG3MXv27EHrNftim20fqTo/+clPmDPnfR0Ry3D3ccsttzBnzpyOiGW4x7n55ps56KCDOiKW4da56aabOPjggzsilqHWGdg+2NvqIxlvDpVK3v05sQzDrrvC7ru/zBCHGes4u+32KhMntjuKPMaO/S9222QEo+60446vMWZMu6PIY5ttXme77dodRR6jRhUf25Rv3puZWVZOLGZmlpUTi5mZZeXEYmZmWTmxmJlZVk4sZmaWlROLmZll5cRiZmZZObGYmVlWTixmZpaVE4uZmWXlxGJmZlm1NbFImitpraQ+SafW2b6NpMvS9hWSplZtOy2Vr5V0RE27UZJ+JumHre+FmZlVa1tikTQK+BrwAWAGcJykGTXVPgY8ExF7AmcDX0htZwDzgb2AucC5aX8DTgHWtLYHZmZWTzvPWGYBfRHxQES8ClwKzKupMw+4OC1fARwqSan80oh4JSIeBPrS/pA0Gfgj4KIR6IOZmdVoZ2KZBDxStb4uldWtExH9wLPArk3afhn4NPB6/pDNzKyZdk70VW9utNoZmhvVqVsu6UjgiYi4U1LvoAeXFgILAXp6eqgMcQq1jRs3Drltp3FfOpP70pncl8bamVjWAVOq1icD6xvUWSdpNDAG2DBI26OAoyR9ENgW2FnStyPiI7UHj4jFwGKAmTNnRqMpRpsZbHrSbuO+dCb3pTO5L42181LYHcB0SdMkbU1xM35pTZ2lwIK0fAxwQ0REKp+fnhqbBkwHbo+I0yJickRMTfu7oV5SMTOz1mnbGUtE9Es6GbgWGAUsiYjVkhYBKyNiKfB14BJJfRRnKvNT29WSLgd+CfQDJ0XEa23piJmZvUk7L4UREcuAZTVlp1ctvwwc26DtmcCZg+y7AlRyxGlmZuX5zXszM8vKicXMzLJyYjEzs6ycWMzMLCsnFjMzy8qJxczMsnJiMTOzrJxYzMwsKycWMzPLyonFzMyycmIxM7OsnFjMzCwrJxYzM8vKicXMzLJyYjEzs6ycWMzMLCsnFjMzy8qJxczMsnJiMTOzrJxYzMwsKycWMzPLyonFzMyycmIxM7OsnFjMzCwrJxYzM8vKicXMzLJyYjEzs6ycWMzMLCsnFjMzy8qJxczMsnJiMTOzrJxYzMwsq7YmFklzJa2V1Cfp1Drbt5F0Wdq+QtLUqm2npfK1ko5IZVMk3ShpjaTVkk4Zud6YmRm0MbFIGgV8DfgAMAM4TtKMmmofA56JiD2Bs4EvpLYzgPnAXsBc4Ny0v37gkxHxu8Bs4KQ6+zQzsxZq5xnLLKAvIh6IiFeBS4F5NXXmARen5SuAQyUplV8aEa9ExINAHzArIh6NiJ8CRMTzwBpg0gj0xczMktFtPPYk4JGq9XXA/o3qRES/pGeBXVP5bTVt35RA0mWzfYAV9Q4uaSGwEKCnp4dKpTKkTmzcuHHIbTuN+9KZ3JfO5L401s7EojplUbLOoG0l7Qh8D/ibiHiu3sEjYjGwGGDmzJnR29tbIuRNVSoVhtq207gvncl96UzuS2PtvBS2DphStT4ZWN+ojqTRwBhgw2BtJW1FkVS+ExHfb0nkZmbWUDsTyx3AdEnTJG1NcTN+aU2dpcCCtHwMcENERCqfn54amwZMB25P91++DqyJiLNGpBdmZvYmbbsUlu6ZnAxcC4wClkTEakmLgJURsZQiSVwiqY/iTGV+arta0uXALymeBDspIl6TdCBwPLBK0l3pUJ+NiGUj2zszs7eudt5jIf3gL6spO71q+WXg2AZtzwTOrCn7MfXvv5iZ2Qjxm/dmZpZV0zMWSQcAHwEOAiYALwF3A1cB346IZ1saoZmZdZVBz1gkXQ2cSHEfZC5FYpkB/B2wLXClpKNaHaSZmXWPZmcsx0fEUzVlG4Gfps+/ShrfksjMzKwrDZpYapOKpJ2r20TEhjqJx8zM3sJKPRUm6S+BRRT3VwbecA/gnS2Ky8zMulTZx40/BezlsxMzM2um7OPG9wMvtjIQMzPbMpQ9YzkN+ImkFcArA4UR8dcticrMzLpW2cRyAXADsAp4vXXhmJlZtyubWPoj4n+1NBIzM9silL3HcqOkhZImSBo38GlpZGZm1pXKnrF8OP15WlWZHzc2M7NNlEosETGt1YGYmdmWodlYYQc22b6zpL3zhmRmZt2s2RnLn0j6F+Aa4E7gSYrBJ/cEDgHeAXyypRGamVlXaTZW2N9K2oViWuBj+e2w+WuAC9LEWmZmZm9oeo8lIp4BLkwfMzOzQXkGSTMzy8qJxczMsnJiMTOzrEolFknbS/rfki5M69MlHdna0MzMrBuVPWP5BsWoxgek9XXAP7YkIjMz62plE8u7IuJfgP8CiIiXALUsKjMz61plE8urkrYjTUss6V1UzctiZmY2oOwglH9P8fb9FEnfAeYAJ7QoJjMz62JlB6H8kaQ7gdkUl8BOiYinWhqZmZl1pbJPhV0P7B8RV0XEDyPiKUmLWxybmZl1obL3WKYBn5F0RlXZzBbEY2ZmXa5sYvkNcCjQI+k/JY1pYUxmZtbFyiYWRUR/RHwC+B7wY+DtrQvLzMy6VdnEcv7AQkR8k+KJsB8N9+CS5kpaK6lP0ql1tm8j6bK0fYWkqVXbTkvlayUdUXafZmbWWs1mkNw5Lf6HpHEDH+BB4FPDObCkUcDXgA8AM4DjJM2oqfYx4JmI2BM4G/hCajsDmA/sBcwFzpU0quQ+zcyshZo9bvzvwJEUs0cGb37bPoB3DuPYs4C+iHgAQNKlwDzgl1V15lG8QwNwBfBVSUrll0bEK8CDkvrS/iixTzMza6FmM0gemf6c1oJjTwIeqVpfB+zfqE5E9Et6Ftg1ld9W03ZSWm62TwAkLQQWAvT09FCpVIbUiY0bNw65badxXzqT+9KZ3JfGSr0gKWkOcFdEvCDpI8C+wJcj4uFhHLveWGNRsk6j8nqX9mr3WRRGLAYWA8ycOTN6e3sbBjqYSqXCUNt2GvelM7kvncl9aazszfvzgBclvRf4NPAr4JJhHnsdMKVqfTKwvlEdSaOBMcCGQdqW2aeZmbVQ2cTSHxFBcb/inIg4B9hpmMe+A5guaZqkrSluxi+tqbMUWJCWjwFuSHEsBeanp8amAdOB20vu08zMWqjsIJTPSzoN+AhwcHr6aqvhHDjdMzkZuBYYBSyJiNWSFgErI2Ip8HXgknRzfgNFoiDVu5zipnw/cFJEvAZQb5/DidPMzDZP2cTyp8CHgY9FxGOS9gC+ONyDR8QyYFlN2elVyy8DxzZoeyZwZpl9mpnZyCk7uvFjwFlV6w8D32pVUGZm1r3K3mMxMzMrxYnFzMyycmIxM7Osyk70daSkn0naIOk5Sc9Leq7VwZmZWfcp+1TYl4E/Blal90jMzMzqKnsp7BHgbicVMzNrpuwZy6eBZZL+H/DKQGFEnNW4iZmZvRWVTSxnAhuBbYGtWxeOmZl1u7KJZVxEHN7SSMzMbItQ9h7LdZKcWMzMrKmyieUk4BpJL/lxYzMzG0zZscKGO0S+mZm9RZS9x4KkXSjmPdl2oCwibmpFUGZm1r3KTk18InAKxYyMdwGzgVuBP2xdaGZm1o3K3mM5BfhvwK8i4hBgH+DJlkVlZmZdq2xieTlNuoWkbSLiHuA9rQvLzMy6Vdl7LOskjQV+ACyX9AywvnVhmZlZtyr7VNiH0uLfS7oRGANc07KozMysa23OU2EHAtMj4huSdgMmAQ+2LDIzM+tKZedjOQP4DHBaKtoK+HargjIzs+5V9ub9h4CjgBcAImI94JcmzcxsE2UTy6tpLpYAkLRD60IyM7NuVjaxXC7pAmCspL8ArgMubF1YZmbWrco+FfYlSYcBz1G8v3J6RCxvaWRmZtaVSj8VlhLJcknjgadbF5KZmXWzQS+FSZotqSLp+5L2kXQ3cDfwuKS5IxOimZl1k2ZnLF8FPkvxQuQNwAci4jZJvwN8F78kaWZmNZrdvB8dET+KiP8AHouI2wDSWGFmZmabaJZYXq9afqlmW2SOxczMtgDNLoW9N01BLGC7qumIRdWEX2ZmZgMGPWOJiFERsXNE7BQRo9PywPpWQz2opHGSlku6L/25S4N6C1Kd+yQtqCrfT9IqSX2SviJJqfyLku6R9AtJ/zeNyGxmZiOo7AuSuZ0KXB8R04Hr0/qbSBoHnAHsD8wCzqhKQOcBCymmSp4ODDyhthzYOyJ+H7iX345tZmZmI6RdiWUecHFavhg4uk6dI4DlEbEhIp6hSBpzJU0Ado6IW9MwM98aaJ8eNOhP7W+jmErZzMxGUOkXJDPriYhHASLiUUlvr1NnEvBI1fq6VDYpLdeW1/pz4LJGAUhaSHHWQ09PD5VKZXPif8PGjRuH3LbTuC+dyX3pTO5LYy1LLJKuA3avs+lzZXdRpywGKa8+9ueAfuA7jXYeEYuBxQAzZ86M3t7ekmG9WaVSYahtO4370pncl87kvjTWssQSEe9vtE3S45ImpLOVCcATdaqtA3qr1icDlVQ+uab8jWmS003+I4FD06UyMzMbQe26x7IUGHjKawFwZZ061wKHS9ol3bQ/HLg2XUJ7Pg03I+CjA+3TMDOfAY6KiBdb3QkzM9tUuxLL54HDJN0HHJbWkTRT0kUAEbEB+AfgjvRZlMoAPg5cBPQB9wNXp/KvUkxAtlzSXZLOH6H+mJlZ0pab9xHxNHBonfKVwIlV60uAJQ3q7V2nfM+8kZqZ2eZq1xmLmZltoZxYzMwsKycWMzPLyonFzMyycmIxM7OsnFjMzCwrJxYzM8vKicXMzLJyYjEzs6ycWMzMLCsnFjMzy8qJxczMsnJiMTOzrJxYzMwsKycWMzPLyonFzMyycmIxM7OsnFjMzCwrJxYzM8vKicXMzLJyYjEzs6ycWMzMLCsnFjMzy8qJxczMsnJiMTOzrJxYzMwsKycWMzPLyonFzMyycmIxM7OsnFjMzCwrJxYzM8uqLYlF0jhJyyXdl/7cpUG9BanOfZIWVJXvJ2mVpD5JX5GkmnafkhSSxre6L2Zm9mbtOmM5Fbg+IqYD16f1N5E0DjgD2B+YBZxRlYDOAxYC09NnblW7KcBhwMOt7ICZmdXXrsQyD7g4LV8MHF2nzhHA8ojYEBHPAMuBuZImADtHxK0REcC3atqfDXwaiJZFb2ZmDbUrsfRExKMA6c+316kzCXikan1dKpuUlmvLkXQU8OuI+HkrgjYzs+ZGt2rHkq4Ddq+z6XNld1GnLBqVS9o+7fvwkvEtpLicRk9PD5VKpWRYb7Zx48Yht+007ktncl86k/syiIgY8Q+wFpiQlicAa+vUOQ64oGr9glQ2Abinth7we8ATwEPp009xn2X3ZvHst99+MVQ33njjkNt2GvelM7kvncl9iQBWRp3f1HZdClsKDDzltQC4sk6da4HDJe2SbtofDlwbxaWz5yXNTk+DfRS4MiJWRcTbI2JqREyluES2b0Q81vLemJnZG9qVWD4PHCbpPoonuD4PIGmmpIsAImID8A/AHemzKJUBfBy4COgD7geuHtnwzcyskZbdYxlMRDwNHFqnfCVwYtX6EmBJg3p7NznG1GEHamZmm81v3puZWVZOLGZmlpUTi5mZZeXEYmZmWTmxmJlZVk4sZmaWlROLmZll5cRiZmZZObGYmVlWTixmZpaVE4uZmWXlxGJmZlm1ZRDKLcUpp8B55x3M25qkZ9Wbmmwzto9UnddeO5DRJf5GjFS8w9lHf/+cN/rS7liGe5xXXz2ArbfujFiGW+eVV2azzTadEctQ6wxsf+mlWWy3XWfEMpw6F1zQfB+by4llGA45BJ58ch177LFHwzrFXGSNNds+knUefvhRpkyZ0hGxDHcfv/7140yaNLkjYhnucdavf5qJEyd2RCzDrfPYY8+w++4TOiKWodSp3v7448/T07N9R8QynDo77QS/+U3zepvDiWUYjj4axo59gN7exomlm1Qq99PbO3hi6RaVSh+9vZPbHUYWlcq99PZObHcYWVQqa+ntndC8YheoVNbQ29vT7jCyyD3Dsu+xmJlZVk4sZmaWlROLmZll5cRiZmZZObGYmVlWTixmZpaVE4uZmWXlxGJmZlkpyryauYWT9CTwqyE2Hw88lTGcdnJfOpP70pncF3hHROxWW+jEMkySVkbEzHbHkYP70pncl87kvjTmS2FmZpaVE4uZmWXlxDJ8i9sdQEbuS2dyXzqT+9KA77GYmVlWPmMxM7OsnFjMzCwrJ5aSJM2VtFZSn6RT62zfRtJlafsKSVNHPspySvTlBElPSrorfU5sR5zNSFoi6QlJdzfYLklfSf38haR9RzrGskr0pVfSs1XfyekjHWNZkqZIulHSGkmrJZ1Sp07Hfzcl+9EV34ukbSXdLunnqS//p06dfL9hEeFPkw8wCrgfeCewNfBzYEZNnU8A56fl+cBl7Y57GH05Afhqu2Mt0ZeDgX2Buxts/yBwNSBgNrCi3TEPoy+9wA/bHWfJvkwA9k3LOwH31vk71vHfTcl+dMX3kv4775iWtwJWALNr6mT7DfMZSzmzgL6IeCAiXgUuBebV1JkHXJyWrwAOlaQRjLGsMn3pChFxE7BhkCrzgG9F4TZgrKSOnBe3RF+6RkQ8GhE/TcvPA2uASTXVOv67KdmPrpD+O29Mq1ulT+2TW9l+w5xYypkEPFK1vo5N/4K9USci+oFngV1HJLrNU6YvAH+SLlFcIWnKyISWXdm+dosD0qWMqyXt1e5gykiXU/ah+Bdyta76bgbpB3TJ9yJplKS7gCeA5RHR8DsZ7m+YE0s59bJ2bbYvU6cTlInzP4GpEfH7wHX89l8x3aZbvpMyfkoxLtN7gX8DftDmeJqStCPwPeBvIuK52s11mnTkd9OkH13zvUTEaxHxB8BkYJakvWuqZPtOnFjKWQdU/6t9MrC+UR1Jo4ExdOaljaZ9iYinI+KVtHohsN8IxZZbme+tK0TEcwOXMiJiGbCVpPFtDqshSVtR/Bh/JyK+X6dKV3w3zfrRbd8LQET8BqgAc2s2ZfsNc2Ip5w5guqRpkramuLG1tKbOUmBBWj4GuCHSXbAO07QvNde6j6K4ttyNlgIfTU8gzQaejYhH2x3UUEjafeB6t6RZFP/vPt3eqOpLcX4dWBMRZzWo1vHfTZl+dMv3Imk3SWPT8nbA+4F7aqpl+w0bPdRA30oiol/SycC1FE9VLYmI1ZIWASsjYinFX8BLJPVRZPn57Yu4sZJ9+WtJRwH9FH05oW0BD0LSdymeyhkvaR1wBsVNSSLifGAZxdNHfcCLwJ+1J9LmSvTlGODjkvqBl4D5HfoPF4A5wPHAqnRNH+CzwB7QVd9NmX50y/cyAbhY0iiK5Hd5RPywVb9hHtLFzMyy8qUwMzPLyonFzMyycmIxM7OsnFjMzCwrJxYzM8vKicWsDkmTJV0p6T5J90s6J733M1ibsZI+UbU+UdIVm3nc0ZKekvTPJesvG3g/oWT9L0s6eDPq7ybpmrL1zcCJxWwT6YW37wM/iIjpwLuBHYEzmzQdSzFCLAARsT4ijtnMwx8OrAX+e5kBACPig+lN6qYkjaMY0famssFExJPAo5LmlG1j5sRitqk/BF6OiG9AMcYS8LfAn0vaXsV8NVdKukbFvDZnpHafB96V5uX4oqSpSvOrpAEAvyRpVRrc8382OPZxwDnAwxTDySNpTDrOe9L6dyX9RVp+SNJ4STtIuioNhni3pD+ts+9jgDfOPlLbf5J0q6SVkvaVdG06Q/urqnY/AP7HkP5L2luS37w329RewJ3VBRHxnKSHgT1T0Sxgb4q3xu+QdBVwKrB3GuhvYETcAQuBacA+afSDcbUHTUNtHAr8JcXZz3HArRHxbBot4ZuSzgF2iYgLa5rPBdZHxB+lfY2p0685FMOhV3skIg6QdDbwzVRnW2A1cH6qsxL4xzr7M6vLZyxmmxL1R3WtLl+eBut8ieKy2YFN9vl+ikmU+gEiot7gfkcCN0bEixQDH34oDcFBRCwHVgFfA+rN6LkKeL+kL0g6KCKerVNnAvBkTdnAOHGrKCbbej5d/nq56t7NE8DEJv0ze4MTi9mmVgMzqwsk7Uwx8uv9qag28TQbG6lRsqp2HEVyeIjijGlX4JB0/LcBv0sxHtUmZzsRcS/FKNSrgH9W/SlyX6I4G6k2MIr161XLA+sDVzS2TW3NSnFiMdvU9cD2kj4Kxf0R4F+Bb6azCYDDJI1Ll6+OBm4BnqeYwraeHwF/pWI4cmovhaXEdSCwR0RMjYipwEkUyQaKezxr0voSFcO5V7efCLwYEd8GvkQxzXGtNfz2Ut7meDdw9xDa2VuUE4tZjTQ67YeAYyXdRzHX+csUI9sO+DFwCXAX8L2IWBkRTwO3pJvnX6zZ7UUUN+R/IennwIdrtv8xxTDl1WcNVwJHpZv2JwKfjIibgZuAv6tp/3vA7WkU3s9R/57IVRQjKG+uQ1Jbs1I8urHZZpJ0AjAzIk5udyybS9KPgSPLPqKc2twEzIuIZ1oXmW1JfMZi9tbySdJ8ImVI2g04y0nFNofPWMzMLCufsZiZWVZOLGZmlpUTi5mZZeXEYmZmWTmxmJlZVv8fTvxhMlcc9sUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "M = bs.mult(bs.prop(d3),bs.lens(.83),bs.prop(1), bs.lens(.17), bs.prop(1))\n", + "\n", + "R, w = bs.q1_inv_func(0, w0, lam, M)\n", + "\n", + "bs.plot(w,d3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Looks very collimated. Lets check the beam size (to make sure its 5* w0) and check the collimation" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "beam is w = 4.90 x w0\n" + ] + } + ], + "source": [ + "expansion_factor = w.subs(d3,0)/ w0\n", + "print('beam is w = {:.2f} x w0'.format(expansion_factor))" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Over 10 m after second lens, beam changes by 1%\n" + ] + } + ], + "source": [ + "beam_size_change = (w.subs(d3,10) - w.subs(d3,0)) / w.subs(d3,0) * 100\n", + "print('Over 10 m after second lens, beam changes by {:.0f}%'.format(beam_size_change))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.3" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/GaussianBeamABCD/README.md b/GaussianBeamABCD/README.md new file mode 100644 index 0000000..a76085a --- /dev/null +++ b/GaussianBeamABCD/README.md @@ -0,0 +1,359 @@ +# Gaussian Beam Propagation + +## Import files + + +```python +import BeamProp_Script as bs # This is the script that handles the propagation +import sympy as sym # For Symbolic examples +import numpy as np # Handling of lists and for plotting +import matplotlib.pyplot as plt # Plotting +``` + +### Let's show what BeamProp_Script has + + +```python +help(bs) +``` + + Help on module BeamProp_Script: + + NAME + BeamProp_Script - Created on Wed Feb 19 15:51:54 2020 + + DESCRIPTION + @author: wrighta + + FUNCTIONS + W0(zr, lam) + Parameters + ---------- + zr : float, integer, symbol + Rayleigh range in meters + lam : float, integer, symbol + Wavelength of light in meters + + Returns + ------- + w0 : float, integer, symbol + Beam waist radius in meters + + Zr(wo, lam) + Parameters + ---------- + wo : float, integer, or symbol + Beam waist radius in meters. + lam : float, integer, or symbol + Wavelength of light in meters. + + Returns + ------- + zr : float, int, symbols + Rayleigh range for given beam waist and wavelength. + + lens(f) + Parameters + ---------- + f : float or integer or sympy symbol in meters + Thin lens focal length in meters + + Returns + ------- + mat : 2x2 matrix + [ + [ 1, 0], + [-1/f, 1] + ] + + mult(mat1, *argv) + Parameters + ---------- + mat1 : 2x2 ABCD matrix + Last matrix light interacts with. + *argv : 2x2 ABCD matrices + From left to right, the matrices should be entered such that the leftmost matrix interacts + with light temporally after the rightmost matrix. + + Returns + ------- + Mat : 2x2 matrix + The ABCd matrix describing the whole optical system. + + plot(func, var, rang=array([0. , 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 , + 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2 , 0.21, + 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3 , 0.31, 0.32, + 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4 , 0.41, 0.42, 0.43, + 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5 , 0.51, 0.52, 0.53, 0.54, + 0.55, 0.56, 0.57, 0.58, 0.59, 0.6 , 0.61, 0.62, 0.63, 0.64, 0.65, + 0.66, 0.67, 0.68, 0.69, 0.7 , 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, + 0.77, 0.78, 0.79, 0.8 , 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, + 0.88, 0.89, 0.9 , 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, + 0.99, 1. , 1.01, 1.02, 1.03, 1.04, 1.05, 1.06, 1.07, 1.08, 1.09, + 1.1 , 1.11, 1.12, 1.13, 1.14, 1.15, 1.16, 1.17, 1.18, 1.19, 1.2 , + 1.21, 1.22, 1.23, 1.24, 1.25, 1.26, 1.27, 1.28, 1.29, 1.3 , 1.31, + 1.32, 1.33, 1.34, 1.35, 1.36, 1.37, 1.38, 1.39, 1.4 , 1.41, 1.42, + 1.43, 1.44, 1.45, 1.46, 1.47, 1.48, 1.49, 1.5 , 1.51, 1.52, 1.53, + 1.54, 1.55, 1.56, 1.57, 1.58, 1.59, 1.6 , 1.61, 1.62, 1.63, 1.64, + 1.65, 1.66, 1.67, 1.68, 1.69, 1.7 , 1.71, 1.72, 1.73, 1.74, 1.75, + 1.76, 1.77, 1.78, 1.79, 1.8 , 1.81, 1.82, 1.83, 1.84, 1.85, 1.86, + 1.87, 1.88, 1.89, 1.9 , 1.91, 1.92, 1.93, 1.94, 1.95, 1.96, 1.97, + 1.98, 1.99, 2. , 2.01, 2.02, 2.03, 2.04, 2.05, 2.06, 2.07, 2.08, + 2.09, 2.1 , 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, + 2.2 , 2.21, 2.22, 2.23, 2.24, 2.25, 2.26, 2.27, 2.28, 2.29, 2.3 , + 2.31, 2.32, 2.33, 2.34, 2.35, 2.36, 2.37, 2.38, 2.39, 2.4 , 2.41, + 2.42, 2.43, 2.44, 2.45, 2.46, 2.47, 2.48, 2.49, 2.5 , 2.51, 2.52, + 2.53, 2.54, 2.55, 2.56, 2.57, 2.58, 2.59, 2.6 , 2.61, 2.62, 2.63, + 2.64, 2.65, 2.66, 2.67, 2.68, 2.69, 2.7 , 2.71, 2.72, 2.73, 2.74, + 2.75, 2.76, 2.77, 2.78, 2.79, 2.8 , 2.81, 2.82, 2.83, 2.84, 2.85, + 2.86, 2.87, 2.88, 2.89, 2.9 , 2.91, 2.92, 2.93, 2.94, 2.95, 2.96, + 2.97, 2.98, 2.99])) + Parameters + ---------- + func : Sympy function of one variable + Sympy function defining the beam width after the last optical element. + var : sympy variable + Variable in func that will be plotted. + rang : numpy array + Array of the values along the optical axis to be plotted + + Returns + ------- + plot : matplotlib graph + Graph of the beam width of var + + prop(d) + Parameters + ---------- + d : float or integer or sympy symbol + Distance light is propagating along the z-axis. + + Returns + ------- + mat: 2x2 matrix + [ + [1, d], + [0, 1] + ] + + q1_func(z, w0, lam, mat) + Parameters + ---------- + z : float, int, symbol + Position of the beam waist in meters. + w0 : float, int, symbol + Radial waist size in meters (of the embedded Gaussian, i.e. W0/M). + lam : float, int, symbol + Wavelength of light in meters. + mat : float, int, symbol + The ABCD 2x2 matrix describing the optical system. + + Returns + ------- + z: float, int, symbol + Position of the beam waist after the optical system + zr: float, int, symbol + Rayleigh range of the beam after the optical system + + q1_inv_func(z, w0, lam, mat) + Parameters + ---------- + z : float, int, symbol + Position of the beam waist in meters. + w0 : float, int, symbol + Radial waist size in meters (of the embedded Gaussian, i.e. W0/M). + lam : float, int, symbol + Wavelength of light in meters. + mat : float, int, symbol + The ABCD 2x2 matrix describing the optical system. + + Returns + ------- + R : float, int, symbol + Radius of curvature of the wavefront in meters. + w : float, int, symbol + Radius of the beam in meters. + + ray(y, theta) + Parameters + ---------- + y : float or integer or sympy symbol in meters + The vertical height of a ray. + theta : float or integer in radians + The angle of divergence of the ray. + + Returns + ------- + mat : 2x1 matrix + [ + [y], + [teta] + ] + + DATA + oo = oo + + FILE + c:\users\wrighta\documents\beamprop\beamprop_script.py + + + + +## Let's first see how we define a beam and how we can visualize it propagating. + +### A Gaussian beam can be defined by it's (radial) waist, $w_0$, it's Rayleigh range, $z_R = \frac{\pi * w_0^2}{\lambda}$, and the location of its waist, $z_0$. + + +```python +w0 = 1E-3 # 1mm beam waist +lam = 355E-9 # wavelength of 355 nm (UV) +zR = bs.Zr(w0, lam) # Rayleigh range in m +z0 = 0 # location of waist in m +``` + +### We now want to define our "optical system" using matrices. For this first example, we will just use a free space propagation matrix, and let the beam propagate a distance $d$ which we will define using a symbol. + + +```python +d = sym.symbols('d') +M = bs.prop(d) +``` + +### We now use the bs script to do all the ABCD and q-parameter math, and return the waist and radius of curvature functions + + +```python +R, w = bs.q1_inv_func(0, w0, lam, M) +``` + + +```python +print('w = {}'.format(w)) +``` + + w = 0.001*(0.0127690021685256*d**2 + 1)**0.5 + + +### And as simple as that, we have a function for our waist. Let's plot it and see what it looks like + + +```python +bs.plot(w, d, rang = np.arange(0,10)) +``` + + +![png](output_14_0.png) + + +### Let's show what happens when a beam travels through a lens. We use the "mult" function to multiply multiple ABCD matrices together. + + +```python +w0 = 1E-3 # 1mm beam waist +lam = 355E-9 # wavelength of 355 nm (UV) +zR = bs.Zr(w0, lam) # Rayleigh range in m +z0 = 0 # location of waist in m + +d = sym.symbols('d') +M = bs.mult(bs.prop(d), bs.lens(.5), bs.prop(1)) + +R, w = bs.q1_inv_func(0, w0, lam, M) + +bs.plot(w, d, rang = np.arange(0,1,.01)) +``` + + +![png](output_16_0.png) + + +### Lets look at how to expand and collimate a beam with a two lens system + + +```python +w0 = 1E-3 # 1mm beam waist +lam = 355E-9 # wavelength of 355 nm (UV) +zR = bs.Zr(w0, lam) # Rayleigh range in m +z0 = 0 # location of waist in m + +d1, d2, d3, f1, f2 = sym.symbols('d1 d2 d3 f1 f2') + +M = bs.mult(bs.prop(d3),bs.lens(f2),bs.prop(d2), bs.lens(f1), bs.prop(d1)) + +R, w = bs.q1_inv_func(0, w0, lam, M) +``` + +### For example, lets say the beam travels 1 m before hitting the first lens, and we want the beam to be 5x w0 after coming out of the second lens. We substitute d1 for 1 meter, since the beam propagates 1 meter, and we substitute d3 for 0, since we only care about the beam size right at the second lens. This gives us a relation between f1 and d2 (the separation between the lenses). + + +```python +w = w.subs(d1,1).subs(d3,0) +f1_eq = sym.solve(w - 5*w0, f1)[0] +print('f = {}'.format(f1_eq)) +``` + + f = 1.0084642216545e+15*d2*(1.12051580183833e+27*d2 - 4.41556446152598e+29*sqrt(1 - 0.000504320418227052*d2**2) + 8.88733242867719e+28)/(1.13000009595246e+42*d2**2 + 2.26000019190491e+42*d2 - 2.12276362486616e+45) + + +#### Suppose we wanted the distance between the lenses to be 1 meter, we could find what f1 we need. + + +```python +print('f1 = {:.2f} m, for a lens separation of 1 meter'.format(f1_eq.subs(d2, 1))) +``` + + f1 = 0.17 m, for a lens separation of 1 meter + + +### Now we need to collimate the beam. Lets still assume the beam propagates 1 m, and f1 = .17 m. + +There are a couple different ways to think about collimation. One is that the beam size doesn't change over a long distance. The other is that the radius of curvature is infinite (i.e. a plane wave). Lets us the latter interpretation. Thus, we want to find the focal length f2 that makes R infinite, or that makes 1/R =0. + + +```python +R_coll = R.subs(d1,1).subs(d2,1).subs(f1,.17).subs(d3,0) +f2_coll = sym.solve(1/R_coll,f2)[0] +print('f2 = {:.2f}, for a collimated beam, 5x the original waist, after propagating 1m to the first lens of f1 = .17m, and propagating another 1m to the second lens'.format(f2_coll)) +``` + + f2 = 0.83, for a collimated beam, 5x the original waist, after propagating 1m to the first lens of f1 = .17m, and propagating another 1m to the second lens + + +### Lets plot the beam profile after the second lens, and see if it is collimated. + + +```python +M = bs.mult(bs.prop(d3),bs.lens(.83),bs.prop(1), bs.lens(.17), bs.prop(1)) + +R, w = bs.q1_inv_func(0, w0, lam, M) + +bs.plot(w,d3) +``` + + +![png](output_27_0.png) + + +### Looks very collimated. Lets check the beam size (to make sure its 5* w0) and check the collimation + + +```python +expansion_factor = w.subs(d3,0)/ w0 +print('beam is w = {:.2f} x w0'.format(expansion_factor)) +``` + + beam is w = 4.90 x w0 + + + +```python +beam_size_change = (w.subs(d3,10) - w.subs(d3,0)) / w.subs(d3,0) * 100 +print('Over 10 m after second lens, beam changes by {:.0f}%'.format(beam_size_change)) +``` + + Over 10 m after second lens, beam changes by 1% + + + +```python + +``` diff --git a/ODTCalculations.ipynb b/ODT Calculator/ODTCalculations.ipynb similarity index 100% rename from ODTCalculations.ipynb rename to ODT Calculator/ODTCalculations.ipynb diff --git a/calculateDipoleTrapPotential.py b/ODT Calculator/calculateDipoleTrapPotential.py similarity index 100% rename from calculateDipoleTrapPotential.py rename to ODT Calculator/calculateDipoleTrapPotential.py diff --git a/TimeSeriesAnalyzer/TimeSeriesAnalysis.ipynb b/TimeSeriesAnalyzer/TimeSeriesAnalysis.ipynb new file mode 100644 index 0000000..778db43 --- /dev/null +++ b/TimeSeriesAnalyzer/TimeSeriesAnalysis.ipynb @@ -0,0 +1,552 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "6c616b70", + "metadata": {}, + "outputs": [], + "source": [ + "from TimeSeriesAnalyzer import *\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import os\n", + "from scipy import signal" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "96bd598e", + "metadata": {}, + "outputs": [], + "source": [ + "\"\"\"Synthetic data to validate analysis\"\"\"\n", + "# # Generate time series data with values against time in seconds\n", + "# num_seconds = 10 # Total number of seconds\n", + "# time = np.arange(0, num_seconds, 1/30) # Create timestamp index\n", + "# voltage = np.sin(2*np.pi*4*time) + np.sin(2*np.pi*7*time) + np.random.randn(len(time))*0.2 # Generate 4 Hz and 7 Hz sine wave\n", + "# data = np.column_stack((time, voltage))\n", + "\n", + "\"\"\"Real data\"\"\" \n", + "dir = str(globals()['_dh'][0]).replace('\\\\','/') + \"/Time Series Data/\"\n", + "filename_bkg = \"Arm 1/PID_Active_SP_7V_Mod_1.0_20khz\"\n", + "filepath_bkg = dir + filename_bkg + \".csv\"\n", + "\n", + "background_data = extract_data(filepath_bkg)\n", + "\n", + "dir = str(globals()['_dh'][0]).replace('\\\\','/') + \"/Time Series Data/\"\n", + "filename_data = \"Arm 1/PID_Inactive_SP_7V_Mod_1.0_20khz\"\n", + "filepath_data = dir + filename_data + \".csv\"\n", + "\n", + "data = extract_data(filepath_data)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "354ff9ed", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Calculating power spectrum...\n" + ] + } + ], + "source": [ + "# Extract the first and second columns from data_array\n", + "time_bkg = background_data[:, 0]\n", + "voltage_bkg = background_data[:, 1]\n", + " \n", + "processed_data_bkg, Sxx_bkg = compute_psd(background_data, new_sampling_rate = 1000000)" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "bad46fa8", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Calculating power spectrum...\n" + ] + } + ], + "source": [ + "# Extract the first and second columns from data_array\n", + "time = data[:, 0]\n", + "voltages = data[:, 1]\n", + "\n", + "processed_data, Sxx = compute_psd(data, new_sampling_rate = 1000000)" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "e11977b3", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAMWCAYAAAAgRDUeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hU1dbG35n0UBJqCl2RolQVAVHBi4CoIFICcqV8WC54lWYvl6JioypeuIpKEalSFFRAREAUROko0pSWTHrPJDMp+/tjzJAxmeTs03P2+j1PnsictdZZs+d9c+7se/Y+NsYYA0EQBEEQBEEQBEEQBEHoiN3oBgiCIAiCIAiCIAiCIAjxoEkpgiAIgiAIgiAIgiAIQndoUoogCIIgCIIgCIIgCILQHZqUIgiCIAiCIAiCIAiCIHSHJqUIgiAIgiAIgiAIgiAI3aFJKYIgCIIgCIIgCIIgCEJ3aFKKIAiCIAiCIAiCIAiC0B2alCIIgiAIgiAIgiAIgiB0J9DoBqoDJSUlSEhIQK1atWCz2YxuhyAIgiAIgiAIgiAIwrQwxpCTk4PY2FjY7f7vh6JJKQkkJCSgSZMmRrdBEARBEARBEARBEARRbbh8+TIaN27s9zhNSkmgVq1aADyDWbt27Qpj2rRpA4fDgZiYGPz+++96tkcQpoA8QIgM6Z8QHfIAITKkf0JkSP+EP7Kzs9GkSRPvfIpfGFElWVlZDAA7e/as35iYmBgGgMXExOjYmf4kJiayt99+myUmJlq6DzXrK6klJ5cnR2qslDjygHV6IP3zx5H+rdUHeYA/TgQPkP71rUX6Nx/kAX1rVRcPkP6t1Yea9UvnUbKysiqNo43OOQgPD/d7rHSvKavvOVWjRg1069YNNWrUsHQfatZXUktOLk+O1FgpceQB6/RA+uePI/1bqw/yAH+cCB4g/etbi/RvPsgD+taqLh4g/VurDyPep40xxnQ7WzUlOzsbERERyMrK8rt8r3HjxoiPj0ejRo1w5coVnTskCOMhDxAiQ/onRIc8QIgM6Z8QGdI/4Q8p8ygAQHdKceB2u41uwXDcbjcuXbpk+Fho3Yea9ZXUkpPLkyM11iyfuxkww1iQ/tXJIf3zY5axIA+ok0Me4MMs40D6VyeH9M+PWcaCPKBODnmAD7OMQ3XSv1RoUoqD9PR0v8dKSkp8fluVtLQ0LF26FGlpaZbuQ836SmrJyeXJkRorJY48YJ0eSP/8caR/a/VBHuCPE8EDpH99a5H+zQd5QN9a1cUDpH9r9WHE+6TlexIove0sLS0NdevWrTBGlNsWi4qKkJmZicjISAQGGvfwRq37ULO+klpycnlypMZKiSMPWKcH0j9/HOnfWn2QB/jjRPAA6V/fWqR/80Ee0LdWdfEA6d9afahZX+ryPZqUkgDtKUUQVUMeIESG9E+IDnmAEBnSPyEypH/CH7SnlAZkZ2f7PVY6t2f1Ob7s7Gxs37690rGwQh9q1ldSS04uT47UWClx5AHr9ED6548j/VurD/IAf5wIHiD961uL9G8+yAP61qouHiD9W6sPI94nTUpxUNlmX6KY0eVy4fz583C5XJbuQ836SmrJyeXJkRorJY48YJ0eSP/8caR/a/VBHuCPE8EDpH99a5H+zQd5QN9a1cUDpH9r9WHE+6TlexKg5XsEUTXkAUJkSP+E6JAHCJEh/RMiQ/on/EHL9wiCIAiCIAiCIAiCIAjTQpNSHKSkpPg9JsqjMJOTk7FgwQIkJydbug816yupJSeXJ0dqrJQ48oB1eiD988eR/q3VB3mAP04ED5D+9a1F+jcf5AF9a1UXD5D+rdWHEe+TJqU4CA0N9XvMZrP5/LYqYWFh6NChA8LCwizdh5r1ldSSk8uTIzVWShx5wDo9kP7540j/1uqDPMAfJ4IHSP/61iL9mw/ygL61qosHSP/W6sOI90l7SkmA9pQiiKohDxAiQ/onRIc8QIgM6Z8QGdI/4Q/aU0oDCgsLjW7BcAoLC+FwOAwfC637ULO+klpycnlypMaa5XM3A2YYC9K/Ojmkf37MMhbkAXVyyAN8mGUcSP/q5JD++THLWJAH1MkhD/BhlnGoTvqXCk1KcZCWlub3mChraVNTU/HBBx8gNTXV0n2oWV9JLTm5PDlSY6XEkQes0wPpnz+O9G+tPsgD/HEieID0r28t0r/5IA/oW6u6eID0b60+jHiftHxPAqW3naWmpqJevXoVxohy22JhYSFSU1NRv359BAUFWbYPNesrqSUnlydHaqyUOPKAdXog/fPHkf6t1Qd5gD9OBA+Q/vWtRfo3H+QBfWtVFw+Q/q3Vh5r1pS7fo0kpCdCeUgRRNeQBQmRI/4TokAcIkSH9EyJD+if8QXtKaUBOTo7fY6Vze1af48vJycGuXbsqHQsr9KFmfSW15OTy5EiNlRJHHrBOD6R//jjSv7X6IA/wx4ngAdK/vrVI/+aDPKBvreriAdK/tfow4n3SpBQHBQUFfo+JYsb8/HwcP34c+fn5lu5DzfpKasnJ5cmRGisljjxgnR5I//xxpH9r9UEe4I8TwQOkf31rkf7NB3lA31rVxQOkf2v1YcT7pOV7EqDlewRRNeQBQmRI/4TokAcIkSH9EyJD+if8IcTyvYEDB6Jp06YIDQ1FTEwMRo0ahYSEBJ+YS5cuYcCAAahRowbq16+PiRMnwu12G9QxQRAEQRAEQRBG8sYbb6BLly6oVasWGjZsiEGDBuH06dM+MYwxzJgxA7GxsQgLC0OvXr3w66+/+sS4XC48+eSTcDgcADxP6v77l/KMjAyMGjUKERERiIiIwKhRo5CZmekTI+f7Sum569evjxo1amDgwIFVTgiMHTsWgwYNKvf67t27YbPZyvVFEAShB9V6UurOO+/EunXrcPr0aWzYsAHnz5/H0KFDvceLi4tx7733Ii8vD/v27cOaNWuwYcMGPPXUU7LOR4+CBVJSUrBo0SKkpKRYug816yupJSeXJ0dqrJQ48oB1eiD988eR/q3VB3mAP04ED5D+9a2lpf737NmD0aNHY9KkSVi7di2KiorQt29f5OXleWPefvttzJs3D7NmzcJTTz2FOnXqoE+fPj77rEyePBmbNm1CZGQkAI/+77vvPhQXF3tjRo4ciaNHj2Lbtm3Ytm0bjh49ilGjRnmPy/2+UnruNWvWYN++fcjNzS13brUhD+hbq7pcA0T4+w+Q/rWkWk9KTZkyBd26dUOzZs1w66234vnnn8eBAwdQWFgIANixYwd+++03rFy5Ep07d8Zdd92FuXPnYsmSJcjOzuY+X3BwsN9jNpvN57dVCQkJwbXXXouQkBBL96FmfSW15OTy5EiNlRJHHrBOD6R//jjSv7X6IA/wx4ngAdK/vrW01P+2bdswZswY3H777bjpppuwdOlSXLp0CYcOHQLguUtqwYIFeOmllzBkyBDcfvvt+OCDD+B0OrFq1SoAQFZWFj766CPMnTsXoaGhAIA6dergxIkT2LlzJwDg1KlT2LZtGz788EN0794d3bt3x5IlS7B161bvnVlyvq+UPfddd92Fzp07Y+XKlT7nVkKvXr1gs9nK/SQmJpIHdKxVXa4BIvz9B+gaoCnMIqSlpbG4uDjWo0cP72v/+c9/WIcOHXzi0tPTGQC2a9cuybWzsrIYAJaVleU3plGjRgwAa9SoEX/zBGEByAOEyJD+CdEhDxDVmbNnzzIA7MSJE4wxxs6fP88AsMOHD/vEDRw4kI0ePZoxxti3337LALD09HQf/Xfo0IFNmzaNMcbYRx99xCIiIsqdLyIign388ceMMXnfV8qeuyxlz10RY8aMYffff3+517/77jsGgGVkZDDGPN+rHA6H92fw4MGsdevWzOl0+q1NiAv9/Sf8IWUehTHGqvWdUgDw3HPPoUaNGqhXrx4uXbqEzz//3HssMTERUVFRPvF16tRBcHAwEhMT/dZ0uVzIzs72+QGAoqIibd5ENaKoqAipqamGj4XWfahZX0ktObk8OVJjzfK5mwEzjAXpX50c0j8/ZhkL8oA6OeQBPswyDqR/dXJKYwsLCzF16lTcdtttaNeuHQB4vydERUX51IyKivIeS0xMRHBwMOrUqeNT9+8xDRs2LHfuhg0b+sTwfl+Rcm5/bN26FTVr1vT56d+/v09M3bp1ER0djejoaKxevRq7du3CF198gaCgIPKAjrXoGmAuzDIO1Un/UgnU7UwSmTFjBmbOnFlpzM8//4ybb74ZAPDMM8/g4YcfxsWLFzFz5kyMHj0aW7durfQ2QsZYpbcXvvHGGxX2sGbNmnJ//EtxOp3e36tXr660/+pMQUEBLl265N1g3qp9qFlfSS05uTw5UmOlxJEHrNMD6Z8/jvRvrT7IA/xxIniA9K9vLb30v2fPHpw4cQLTp0/3avfMmTMAgM2bNyMsLMxb89y5c0hLS8Pq1avx448/oqSkBKtXr/bRv8Ph8L5+7Ngx5ObmlvNEdnY2jh8/jtWrV+PcuXNITU0tF1NcXIwff/yxwt5//PFHFBUVoWnTpt49bxs1aoTCwkLvuQHPMr/Vq1fj+PHjcDqdqFGjBq655hpMmDDBW6v03H/++SdiYmLQsWNHjB07FhERETh69CjmzZuHhx56CEOGDMEf588DjKFr584Y9cgjCA0L89Y5efIk1q9fj8uXLyM0NBS333474uLiEBAQ4PczSEpKwqefforTp0+jqKgIHTp08J4b8Oxts2nTJvz666/IzMxEnTp1cNttt+Huu+9GQkKC38/51VdfRbNmzTB69Gif1/fs2YNPPvkEH374od+eAPE8oPQaIMLff4CuAXIo1UaV6HPjlnRSUlLYqVOnKv3Jz8+vMPfy5csMAPvxxx8ZY/KX7xUUFLCsrCzvT2ndlJQUvzmi3LbocrnYxYsXmcvlsnQfatZXUktOLk+O1FgpceQB6/RA+uePI/1bqw/yAH+cCB4g/etbSw/9jxkzhjVu3Jj98ccfPsfKLt8rW9Nsy/fWrl3LTp8+zU6fPs1efPFFZrPZ2Pjx4xljjJWUlLBu3bqx22+/nR08eJD9/vvvrFWrViwsLIzl5uYyxhjLzc1l11xzDbv99tsZALZv3z52//33sy5durATJ06w2rVrs+nPPcfqhIez8RER7HeAHQTYrQAbUrMmYwsWMJaRwY4dO8aCg4PZzJkz2dmzZ9nu3btZmzZt2FNPPeV3/EvP/cADD7Djx4+z48ePe89dXFzMGGPs66+/ZmPHjmXbt29n58+fZ59//jlr2LAhmzx5cqWfc8+ePdmkSZPKvb506dIKP4+/I5IH1LgGiPD3nzG6BshB6vI9001KKeHSpUsMAPvuu+8YY4x99dVXzG63s4SEBG/MmjVrWEhISJUDUxbaU4ogqoY8QIgM6Z8QHfIAUZ0oKSlh//73v1lsbCw7c+ZMhcejo6PZW2+95X3N5XKxiIgI9r///Y8xxlhmZiYLCgpia9eu9eo/Ojqa2e12tm3bNsYYY7/99hsDwH766SdvnQMHDjAA7Pfff2eMyfu+UvbcpSQkJDAAbPLkyYwxxk6fPs0AsJMnT3pjRo0axYKCgtiSJUsYY4xt376d2e12tnXrVu+eUqUTYtHR0Wxsnz7s/dBQ1hBgxXFxjK1bx9g337Ajb7/NALCzAQGM1a7NXhg+nN18880+PW7atImFhoay7OzsCt9D6bnLvsfSc3/zzTcV5jDG2Ntvv81atGjh9zhj0ielmjVrxgCU+yH4oL//hD8sv6fUwYMH8d577+Ho0aO4ePEivvvuO4wcORLXXnstunfvDgDo27cvrr/+eowaNQpHjhzBt99+i6effhqPPvooateuzX3O3Nxcv8cYYz6/rUpubi6+//77SsfCCn2oWV9JLTm5PDlSY6XEkQes0wPpnz+O9G+tPsgD/HEieID0r28tLfX/73//GytXrsTzzz8Pu92OxMREJCYmIj8/H4Bn+4/Jkyfj9ddfx6pVq7B8+XI89NBDCA8Px8iRIwEAERERePjhh/HUU0+hoKAAAJCeno727dvjrrvuAgC0bdsWd999Nx599FEcOHAABw4cwKOPPor77rsPrVu3BiDt+0p8fDzatGmDgwcPljv3t99+i19++QV9+vSBzWbDuHHjAHj2yAXgs/zGbrfDbrdj37593hibzYagoCBvTGl8cX4+ZuzahZSmTREYFYXkd95BVt+++D4kBCW9ewMA9s2dC9x+O1zr1iH0r7ErJSwsDAUFBd4nGv6d0nOXfcJXaGioT38VkZWVhcjISFU0+vPPP8PhcMDhcODKlSvo1q0bbr/9diE8wBNbVZwIf/8BugZoSbWdlAoLC8PGjRvRu3dvtG7dGuPGjUO7du2wZ88e7x+3gIAAfPnllwgNDUWPHj0QFxeHQYMGYc6cObLOWdmaSFHMmJeXhwMHDiAvL8/SfahZX0ktObk8OVJjpcSRB6zTA+mfP470b60+yAP8cSJ4gPSvby0t9b948WJkZWVh4sSJaNmyJWJiYhATE4O1a9d6Y5599llMnjwZU6ZMwSOPPILLly9jx44dqFWrljdm/vz5GDRoENLT0wF4JrO2bNnis4/Sp59+ivbt26Nv377o27cvOnTogE8++cR7XMr3lcLCQpw+fdrnu8j8+fNx22234a677kKXLl1w+vRpLF26FO3btwcAtGnTBs2aNcMLL7yAjIwMuN1unDhxAi6XCw6HAwDQrVs31KhRAx988IF3/J555hkAQEpWFpoXF+PlM2eQkJSEmJgYnN85A+d/+B+mTZsGAHA4ncDmzejXpQt+/PVXrP7wQxQXFyM+Ph6vvfaaJ+avc/2d0nM/99xzcDqd3nOXlJT4zTl//jwWLlyIhx56qMrPedGiReU2dB8/frxPTIMGDbwbur/99ttwOBzYsGGDEB7gia0qToS//wBdAzRFg7u0LAct3yOIqiEPECJD+idEhzxAiIxR+ne5XOzs2bPs559/Zs8//zyrX78++/XXX73Hf/nlF9axY0cGgAUEBLB+/fqx/v37s/79+3tjtm/fzq655hpms9lYQEAAe+ihh9iNjRuzCTYbYw4HY4yxTz/9lEVFRbEAO1hwUAB7+umnWVRU1NXljQkJbK7dzmqHhrKAgAAWHh7O3njjDe++V/6o8Nw33sgmTJhQLjY+Pp61bNmSPfzww1WOS8+ePdnYsWPZ2bNnfX7eeuutCveUev/991mNGjXY0aNHGSspYSwlhbE///T8Limp8nyiQ3//CX9IXb5nuqfvEQRBEARBEARBEJUTHByMli1bAgBuvvlm/Pzzz3jnnXfw/vvvAwBuuukmHD16FFlZWXC73WjQoAG6du3qfYo54Fk+eP78eaSmpiIwMBCRERGIDgpCiw4dgOhoAMDIkSMxcuRIHF92Heo0uQN1u83AvHnz0KJFC0+RmBhMHToUU44ehWPXLtSpWxcXLlzACy+8cDWmAsqdOzIS0dHR5XISEhJw5513onv37t67uqoiIiLCOzalNGzYsFzc7t278eSTT2L1hx+i4+7dwPDhwOnTVwNatwYmTADGjAEiIyWdmyAIPqrt8j0jSEtL83uspKTE57dVSU1NxZIlS7yPn7VqH2rWV1JLTi5PjtRYKXHkAev0QPrnjyP9W6sP8gB/nAgeIP3rW4v0zw9jzLuXVFkiIiLQoEEDnD17Fr/88gvuv//+cjH169dHZGQkdm3ejOTiYgz8v//zOX408ShuungOrX5YhnmL5iE0NBR9+vS5GjBkCGxnziA2NBRhYWFYvXo1mjRpghtvvLHKvr3n3rULycnJGDhwoPdYfHw8evXqhRtvvBFLly6F3W5XTaPnzp3DkCFD8GJcHAY/8QTw9NNAp07I/vBDfDl5MrI//BDo1MnzerNmwPbt3OcQwQNm0b/W0DVAO+hOKQ4CA/0Pl81m8/ltVYKCghAdHe2zIaIV+1CzvpJacnJ5cqTGSokjD1inB9I/fxzp31p9kAf440TwAOlf31qk/8p58cUX0b9/fzRp0gQ5OTlYs2YNdu/ejW3btnlj1q9fjwYNGqBp06Y4ceIEJk2ahEGDBqFv377emKVLl6Jt27Zo0KAB9u/fj0lPPokpAFrfcIM35r333sPcK3NRlAcU/VGCmTtnYt7seYgsc+fQ7G++wd0A7IcOYeNPP+HNN9/EunXrvPtrxcfHo3fv3lixYgVuueWWis89aRKmTJni3QQ+ISEBvXr1QtOmTTFnzhykpKQAALKzsxVrND8/HwMGDECnpk3x2OrVSOzVC5g3D2jYEGFhYShp2BDsjjuAhx8GEhOBRx4B7rsP2LoV6NdP8nlE8IAIf/8BugZoij6rCas3tKcUQVQNeYAQGdI/ITrkAUJkjND/uHHjWLNmzVhwcDBr0KAB6927N9uxY4dPzDvvvMMaN27MgoKCWNOmTdnLL7/MXC6XT8xzzz3HoqKiWFBQELvuuuvY3FdeYSUAY+vWeWNGjRrFbOE2hgAwRIF1fbJruX7uvOEGFgGw0NBQ1rVrV/bVV1/5HP/zzz8ZAPbdd9/5P/fcuaykzB5OS5cuZQAq/KmMnj17skmTJpV7fenSpd49pUr7kVy7sJCxe+9lrHZtxjIyKj2/aNDff8IfUveUsjFm8W3yVSA7OxsRERFIT09HnTp1Koxp3Lgx4uPj0ahRI1y5ckXnDvWjuLgYeXl5qFGjhs+TRazWh5r1ldSSk8uTIzVWShx5wDo9kP7540j/1uqDPMAfJ4IHSP/61iL9GwRjQNu2nmVra9Z4X46ZG4PE3EQAwPDrh2PNsDW+ecOHA8eOAadOARrfMaOaRt95x7M07/Jl7/5ZldZ3OICmTYG5c4GJEzXvtbp4wFL6rwS6BvBTOo+SlZWF2rVr+42jPaU4KL1ltCJEWUubnJyM+fPnIzk52dJ9qFlfSS05uTw5UmOlxJEHrNMD6Z8/jvRvrT7IA/xxIniA9K9vLdK/Qdhsno29N2zwLFurgAJXge8LDgewcSPw+OOaT0gBKmmUMWDxYmDIEJ8JqcyCTDy88WEMnj+4fP2YGGDwYGDRIk++xr1WFw9YSv+VQNcADdHlvq1qTultZ8nJyX5jRLltsaCggJ09e5YVFBRYug816yupJSeXJ0dqrJQ48oB1eiD988eR/q3VB3mAP04ED5D+9a1F+jeQjAzPMrV77/UsW2OMRc+JZpgBhhlgw9YOuxprwLI2VTSaksLY35YpMsbYw58/7H2fW37bUj5v7VpPXmqq5r1WFw9YTv9+oGsAP7R8T0Wk3HYmym2LBOEP8gAhMqR/QnTIA4TIWFL/27d7Nvbu1w9YsgQxq270Lt8b0W4EVg9Z7blD6tFHPbFffgmU2UDd9Fy4ALRoAXzzDXDXXd6XbTOv3un17K3P4q0+b/nmffON533++SfQvLk+vZocS+qfUAVavqcBeXl5fo+Vzu1ZfY4vLy8PP/30U6VjYYU+1KyvpJacXJ4cqbFS4sgD1umB9M8fR/q3Vh/kAf44ETxA+te3FunfYPr18zxp7vvvgaZN8b9PMjHsJHDXeaDL93969pBq2tRzXOcJKVU0WrOm53dGht+QwsLC8i+WxteqJek0InjAkvqvALoGaAdNSnGQm5vr95goZszJycG3336LnJwcS/ehZn0lteTk8uRIjZUSRx6wTg+kf/440r+1+iAP8MeJ4AHSv761SP8moF8/4OJFYO5c3JBQiHWfAd98Akx95yfPpuZz5wKXLul+h5QqGq1XD2jd2rN3lh/cbnf5Fzds8OTVrSvpNCJ4wLL6/xt0DdAOWr4nAVq+RxBVQx4gRIb0T4gOeYAQGRH0HzMnGu6UJNRyAX06PYAlYzbosqm5plTw9L1Kl+/JePqeCIigf0IetHyPIAiCIAiCIAiCUI7NhvRw4GIdILdWSPWfkAKAMWOA8HDgkUeAoqLKY4uKPPtnhYcDo0fr0x9BCAJNSnGQnp7u95goj8JMS0vDsmXLkJaWZuk+1KyvpJacXJ4cqbFS4sgD1umB9M8fR/q3Vh/kAf44ETxA+te3FunfvLhcLkPPr5pGIyOBdes8G7UPGuS5E6oM+QX5nv9wODzHt28H1q/35OnQa3XxgCj6p2uAdgTqdiYLYLPC/yOgELvdjtq1a8NuN3Y+U+s+1KyvpJacXJ4cqbFm+dzNgBnGgvSvTg7pnx+zjAV5QJ0c8gAfZhkH0r86OaR/+Rj9nUjVz6R0Q/e4OKBpU6xpDWxoC2SEAZ2dZ4GVw4GNGz13SMnY0J08YB3MMg7V6RogFdpTSgK0pxRBVA15gBAZ0j8hOuQBQmRE0H/M3Bgk5iYCAEa0G4HVQ1Yb3JHKZGYCK1bg91cmoU3ZG0RatwYef9yz1C8iwqjuTI0I+ifkQXtKaYDVb0mUQklJCfLz8w0fC637ULO+klpycnlypMaa5XM3A2YYC9K/Ojmkf37MMhbkAXVyyAN8mGUcSP/q5JD+5WP0PQ2afCaRkcDEiWj7BFDvWaD5JGDG+ieAU6c8m5rLnJAiD1gHs4xDdboGSIUmpThITk72e0yUtbRJSUl4++23kZSUZOk+1KyvpJacXJ4cqbFS4sgD1umB9M8fR/q3Vh/kAf44ETxA+te3FunfvBQUFBh6fk09YIN3Q/eUwBLFG7qL4AFR9E/XAO2g5XsSKL3tLDExEVFRURXGNGrUCAkJCYiNjUV8fLzOHepHfn4+Lly4gObNmyMsLMyyfahZX0ktObk8OVJjpcSRB6zTA+mfP470b60+yAP8cSJ4gPSvby3Sv7kou3xvWJthWDd8nWG9aOkB28yrk1BTb5mKuf3nKqonggdE0D9A1wA5SF2+R5NSEqA9pQiiasgDhMiQ/gnRIQ8QIiOC/i2/p9RflJ2UevbWZ/FWn7cM7KZ6IIL+CXnQnlIa4HQ6/R4rnduz+hyf0+nE4cOHKx0LK/ShZn0lteTk8uRIjZUSRx6wTg+kf/440r+1+iAP8MeJ4AHSv761SP/mpaioyNDz6+XFwqJCxTVE8IAo+qdrgHbQpBQH2dnZfo+JYsasrCxs2bIFWVlZlu5DzfpKasnJ5cmRGisljjxgnR5I//xxpH9r9UEe4I8TwQOkf31rkf7NS2Gh8skaJejlRZfLpbiGCB4QRf90DdAOWr4nAVq+RxBVQx4gRIb0T4gOeYAQGRH0T8v3CH+IoH9CHrR8jyAIgiAIgiAIgiAIgjAtNCnFQXp6ut9jojwKMz09HatWrap0LKzQh5r1ldSSk8uTIzVWShx5wDo9kP7540j/1uqDPMAfJ4IHSP/61iL9mxe3y23o+fXyYn5BvuIaInhAFP3TNUA7aFKKA5vNVnWQxbHZbAgICDB8LLTuQ836SmrJyeXJkRprls/dDJhhLEj/6uSQ/vkxy1iQB9TJIQ/wYZZxIP2rk0P6V4DBQ6HXZ0IekN+HFTHLOFSna4Dkc9KeUlVDe0oRRNWQBwiRIf0TokMeIERGBP3TnlKEP0TQPyEP2lNKA2j+zjMGRUVFho+F1n2oWV9JLTm5PDlSY83yuZsBM4wF6V+dHNI/P2YZC/KAOjnkAT7MMg6kf3VySP8KMHgo9PpMmApvlDxgHcwyDtXpGiAVmpTiICkpye8xUdbSJiYmYtasWUhMTLR0H2rWV1JLTi5PjtRYKXHkAev0QPrnjyP9W6sP8gB/nAgeIP3rW4v0b17U2GtJCXp5MS8vT3ENETwgiv7pGqAdNCnFQUREhN9jpWsujV5jqjWRkZF44IEHEBkZaek+1KyvpJacXJ4cqbFS4sgD1umB9M8fR/q3Vh/kAf44ETxA+te3FunfvAQHBRt6fr28GBoSqriGCB4QRf90DdAO2lNKArSnFEFUDXmAEBnSPyE65AFCZETQP+0pRfhDBP0T8qA9pTQgP9//raqlc3tWn+PLz8/HiRMnKh0LK/ShZn0lteTk8uRIjZUSRx6wTg+kf/440r+1+iAP8MeJ4AHSv761SP/mpbio2NDz6+XFoqIixTVE8IAo+qdrgHbQpBQHWVlZfo+JYsbMzExs3LgRmZmZlu5DzfpKasnJ5cmRGisljjxgnR5I//xxpH9r9UEe4I8TwQOkf31rkf7Ni7vQbej59fKiGntnieABUfRP1wDtoOV7Eii97SwjI8Pv2kpRblssKSlBUVERAgMDYbcbN6epdR9q1ldSS04uT47UWClx5AHr9ED6548j/VurD/IAf5wIHiD961uL9G8uyi7fG37DcKwZusawXrT0QNnle093fxqz+85WVE8ED4igf4CuAXKQunwvUNFZBMNI8ZkFu92O4GBjNzfUow816yupJSeXJ0dqrFk+dzNghrEg/auTQ/rnxyxjQR5QJ4c8wIdZxoH0r04O6V8+Rm9orddnosb7JA9YB7OMQ3W6Bkg+p65nq+ZkZGT4PSbKozAzMjKwfv36SsfCCn2oWV9JLTm5PDlSY6XEkQes0wPpnz+O9G+tPsgD/HEieID0r28t0r95cbuNXb6nlxcLCgoU1xDBA6Lon64B2kGTUhzQSkfPHxuXy2X4Hx2t+1CzvpJacnJ5cqTGmuVzNwNmGAvSvzo5pH9+zDIW5AF1csgDfJhlHEj/6uSQ/uVTwqztgVLU+O5HHrAOZhmH6nQNkArtKSUBKWshRVlLSxD+IA8QIkP6J0SHPECIjAj6j50bC0euA4Dxe0ppSdk9pZ659Rm83edtA7upHoigf0IeUveUojulCIIgCIIgCIIgCIIgCN2hSSkOEhMT/R4TZS2tw+HAK6+8AofDYek+1KyvpJacXJ4cqbFS4sgD1umB9M8fR/q3Vh/kAf44ETxA+te3FunfvOTn5xt6fr28mJubq7iGCB4QRf90DdAOmpTioFatWn6PlT6dweinUWhN7dq1cc8991R6+50V+lCzvpJacnJ5cqTGSokjD1inB9I/fxzp31p9kAf440TwAOlf31qkf/MSFBRk6Pn18mJISIjiGiJ4QBT90zVAO2hPKQnQnlIEUTXkAUJkSP+E6JAHCJERQf+0pxThDxH0T8iD9pTSgMoeC1o6t2f1Ob6CggKcPn1alUekmrkPNesrqSUnlydHaqyUOPKAdXog/fPHkf6t1Qd5gD9OBA+Q/vWtRfo3L8XFxYaeXy8vFhUVKa4hggdE0T9dA7SDJqU4yMzM9HtMFDNmZGRgzZo1yMjIsHQfatZXUktOLk+O1FgpceQB6/RA+uePI/1bqw/yAH+cCB4g/etbi/RvXtxut6Hn18uLanwpF8EDouifrgHaQcv3JFB621l6ejrq1KlTYYwoty0WFxejoKAAoaGhCAgIsGwfatZXUktOLk+O1FgpceQB6/RA+uePI/1bqw/yAH+cCB4g/etbi/RvLsou34u7Pg5rh601rBctPVB2+d5T3Z/CnL5zFNUTwQMi6B+ga4AcpC7fC1R0FsEwUnxmISAgADVq1DC6Dc37ULO+klpycnlypMaa5XM3A2YYC9K/Ojmkf37MMhbkAXVyyAN8mGUcSP/q5JD+5WP0htZ6fSZ2m/JFReQB62CWcahO1wCp0PI9Dmj5nmcMNm/eXOlYWKEPNesrqSUnlydHaqyUOPKAdXog/fPHkf6t1Qd5gD9OBA+Q/vWtRfo3L+5CY5fv6eXFApfy5XsieEAU/dM1QDtoUoqDyjb1E8WMRUVFSE9PV2XjPzP3oWZ9JbXk5PLkSI2VEkcesE4PpH/+ONK/tfogD/DHieAB0r++tUj/5oWVGPs+9fKiGu9TBA+Ion+6BmgH7SklASlrIUVZS0sQ/iAPECJD+idEhzxAiIwI+i+7p9TwG4ZjzdA1BnekDWX3lHrm1mfwdp+3DeymeiCC/gl5SN1Tiu6UIgiCIAiCIAiCIAiCIHSHJqU4SEpK8nuspKTE57dVSUxMxBtvvIHExERL96FmfSW15OTy5EiNlRJHHrBOD6R//jjSv7X6IA/wx4ngAdK/vrVI/+aloED5XktK0MuLeXl5imuI4AFR9E/XAO2gSSkOKtuFvvQpFEY/jUJratasiV69eqFmzZqW7kPN+kpqycnlyZEaKyWOPGCdHkj//HGkf2v1QR7gjxPBA6R/fWuR/s0Fw9UdXwIDjX2Au15eDAoKUlxDBA+IoH+ArgFaQntKSYD2lCKIqiEPECJD+idEhzxAiIwI+o+ZG4PEXM+dEyPajcDqIasN7kgbaE8pfkTQPyEP2lNKA1wul9EtGI7L5cIff/xh+Fho3Yea9ZXUkpPLkyM11iyfuxkww1iQ/tXJIf3zY5axIA+ok0Me4MMs40D6VyeH9C+fyp5Irgd6fSZqvE/ygHUwyzhUp2uAVGhSioOMjAy/x0RZS5ueno5PPvkE6enplu5DzfpKasnJ5cmRGisljjxgnR5I//xxpH9r9UEe4I8TwQOkf31rkf7Ni9vtNvT8enkxPz9fcQ0RPCCK/ukaoB20fE8CpbedpaWloW7duhXGiHLbYlFREXJzc1GzZk1D15Nr3Yea9ZXUkpPLkyM1VkocecA6PZD++eNI/9bqgzzAHyeCB0j/+tYi/ZuLssv3hl8/HGuGrTGsFy09UHb53lPdnsKcfnMU1RPBAyLoH6BrgBykLt8zdpe6aobRm/qZgcDAQERGRhrdhuZ9qFlfSS05uTw5UmPN8rmbATOMBelfnRzSPz9mGQvygDo55AE+zDIOpH91ckj/8rHZjd3QWq/PxG5XvqiIPGAdzDIO1ekaIBVavsdBVlaW32OlN5xZ/cazrKwsfPnll5WOhRX6ULO+klpycnlypMZKiSMPWKcH0j9/HOnfWn2QB/jjRPAA6V/fWqR/81LoLjT0/Hp5scBVoLiGCB4QRf90DdAOmpTioLDQ/x9gUczodrtx5coVw9eSa92HmvWV1JKTy5MjNVZKHHnAOj2Q/vnjSP/W6oM8wB8nggdI//rWIv2bF6P3DtLLi2psdC6CB0TRP10DtIP2lJKAlLWQoqylJQh/kAcIkSH9E6JDHiBERgT9l91TakS7EVg9ZLXBHWlD2T2lnu7+NGb3nW1gN9UDEfRPyEPqnlJ0pxRBEARBEARBEARBEAShOzQpxUFycrLfY6I8CjMpKQlz585FUlKSpftQs76SWnJyeXKkxkqJIw9YpwfSP38c6d9afZAH+ONE8ADpX99apH/zUlCgfK8lJejlxTxnnuIaInhAFP3TNUA7aFKKg7CwML/HbDabz2+rEh4eji5duiA8PNzSfahZX0ktObk8OVJjpcSRB6zTA+mfP470b60+yAP8cSJ4gPSvby3Sv3kJCAgw9Px6eTEoMEhxDRE8IIr+6RqgHbSnlARoTymCqBryACEypH9CdMgDhMiIoH/aU4rwhwj6J+RBe0ppgNE77ZsBt9uNy5cvGz4WWvehZn0lteTk8uRIjTXL524GzDAWpH91ckj//JhlLMgD6uSQB/gwyziQ/tXJIf3Lp6TY+Kfv6fGZFJeo8/Q98oA1MMs4VKdrgFRoUoqD9PR0v8dEWUublpaGjz/+GGlpaZbuQ836SmrJyeXJkRorJY48YJ0eSP/8caR/a/VBHuCPE8EDpH99a5H+zYvL7TL0/Hp5MT8/X3ENETwgiv7pGqAdtHxPAqW3naWmpqJevXoVxohy22JhYSEyMjJQp04dBAUpX2dt1j7UrK+klpxcnhypsVLiyAPW6YH0zx9H+rdWH+QB/jgRPED617cW6d9clF2+F3d9HNYOW2tYL1p6oOzyvaldp2Lu3XMV1RPBAyLoH6BrgBykLt8LVHQWwTBSfGYhKCgIDRs2NLoNzftQs76SWnJyeXKkxprlczcDZhgL0r86OaR/fswyFuQBdXLIA3yYZRxI/+rkkP7lY7cbu9hGr89EjfdJHrAOZhmH6nQNkAot3+MgOzvb77HSG86sfuNZdnY2duzYUelYWKEPNesrqSUnlydHaqyUOPKAdXog/fPHkf6t1Qd5gD9OBA+Q/vWtRfo3L4WFhYaeXy8vqrFMUQQPiKJ/ugZoB01KceBy+f/DJIoZCwoKcObMGRQUFFi6DzXrK6klJ5cnR2qslDjygHV6IP3zx5H+rdUHeYA/TgQPkP71rUX6Ny9FxUWGnl8vLxYXKd/oXAQPiKJ/ugZoB+0pJQEpayFFWUtLEP4gDxAiQ/onRIc8QIiMCPqPnRsLR64DADD8huFYM3SNwR1pQ9k9pZ7u/jRm951tYDfVAxH0T8hD6p5SdKcUQRAEQRAEQRAEQRAEoTs0KcVBSkqK32OiPAozOTkZ7777LpKTky3dh5r1ldSSk8uTIzVWShx5wDo9kP7540j/1uqDPMAfJ4IHSP/61iL9m5cCl7HLl/TyotPpVFxDBA+Ion+6BmgHTUpxEBIS4veYzWbz+W1VQkNDcf311yM0NNTSfahZX0ktObk8OVJjpcSRB6zTA+mfP470b60+yAP8cSJ4gPSvby3Sv3kJsAcYen69vBgQqPx9iuABUfRP1wDtoD2lJEB7ShFE1ZAHCJEh/ROiQx4gREYE/dOeUgZw5BmgzVNAWLRxPUhABP0T8qA9pTTA6MefmoHCwkIkJSUZPhZa96FmfSW15OTy5EiNNcvnbgbMMBakf3VySP/8mGUsyAPq5JAH+DDLOJD+1ckh/cvH6GVaen0marxPRb2emoP0Sz+TB0yCWcahOl0DpEKTUhykpaX5PSbKWtrU1FT873//Q2pqqqX7ULO+klpycnlypMZKiSMPWKcH0j9/HOnfWn2QB/jjRPAA6V/fWqR/8+JyuQw9v15edOYr31NKaa+bN282vQdE0T9dA7SDlu9JoPS2s5SUFNSvX7/CGFFuW3S73UhJSUGDBg0QHBxs2T7UrK+klpxcnhypsVLiyAPW6YH0zx9H+rdWH+QB/jgRPED617cW6d9clF2+N6ztMKyLW2dYL1p6oOzyvSldp2De3fMU1VPU6yobUjptQkTLe0ztARH0D9A1QA5Sl+/RpJQEaE8pgqga8gAhMqR/QnTIA4TIiKB/2lPKAFbZgD77gAY9jOtBAiLon5AH7SmlATk5OX6Plc7tWX2OLycnB7t37650LKzQh5r1ldSSk8uTIzVWShx5wDo9kP7540j/1uqDPMAfJ4IHSP/61iL9m5fCImP31NHLi263W3ENpb0ePnzY9B4QRf90DdAOmpTiID8/3+8xUczodDpx+PBhOJ3K11ibuQ816yupJSeXJ0dqrJQ48oB1eiD988eR/q3VB3mAP04ED5D+9a1F+jcvxUXFhp5fLy+qMfmmtNczZ86Y3gOi6J+uAdpBy/ckQMv3CKJqyAOEyJD+CdEhDxAiI4L+afmeAdDyPaKaQ8v3CIIgCIIgCIIgCEIGDHTvBkHoAU1KcUCPggVSUlKwePFipKSkWLoPNesrqSUnlydHaqyUOPKAdXog/fPHkf6t1Qd5gD9OBA+Q/vWtRfo3Ly6Xy9Dz6+VFNZYvKe1106ZNpveAKPqna4B20KQUB0FBQX6P2Ww2n99WJTg4GM2bNzf0MZh69KFmfSW15OTy5EiNlRJHHrBOD6R//jjSv7X6IA/wx4ngAdK/vrVI/+bFbvf9ChkfH4+HHnoI9erVQ3h4ODp16oRDhw55jzPGMGPGDMTGxiIsLAy9evXCr7/+6lPD5XLhySefRP369VGjRg0MHDiw3FKwjIwMjBo1Ci1btsTTTz+NJ554ApmZmT4xly5dwoABA1CjRg3Ur18fEydOrHLD8rLnxiwAqwBkAQEBAd6YWbNm4dZbb0V4eDgiIyMljVOvXr0wbdq0cvpZtmyZ5BrRMdGm94Ao+qdrgHbQnlISoD2lCKJqyAOEyJD+CdEhDxAiI4L+/e0plZGRgc6dO+POO+/EhAkT0LBhQ5w/fx7NmzfHtddeCwB46623MGvWLCxbtgytWrXCa6+9hr179+L06dOoVasWAGDChAnYsmULli1bhnr16uGpp55Ceno6Dh065J0c6t+/P65cuYIPPvgAAPDYY4+hefPm2LJlCwCguLgYnTp1QoMGDTB37lykpaVhzJgxGDx4MBYuXOj3vZU9d5/P+gDbAeQDU5ZOwbz+8wAA06dPR2RkJK5cuYKPPvqo3GRYRfTq1QudOnXCggULfF5ftmwZJk+eXHUN2lOKqObQnlIaUFRUZHQLhlNUVIT09HTDx0LrPtSsr6SWnFyeHKmxZvnczYAZxoL0r04O6Z8fs4wFeUCdHPIAH2YZB9K/Ojmkf/mUvafhrbfeQpMmTbB06VLccsstaN68OXr37u2dkGKMYcGCBXjppZcwePBgtGvXDsuXL4fT6cSqVasAAFlZWfjoo48wd+5c3HXXXejcuTNWrlyJEydOYOfOnQCAU6dOYdu2bfjwww/RpUsXtG7dGosXL8bWrVtx+vRpAMCOHTvw22+/YeXKlejcuTPuuusuzJ07F0uWLEF2dnaF7+Xv50YMgMEAkoELhy9442bOnIkpU6agffv2XGNVUlJSpX6aN28Om81W7gfwfKknD5gDs4xDdboGSIUmpTigPaU8a0wXLlxoirW0WvahZn0lteTk8uRIjZUSRx6wTg+kf/440r+1+iAP8MeJ4AHSv761SP/mpaCgwPvfX3zxBW6++WYMGzYMDRs2ROfOnbFkyRLv8T///BOJiYno27ev97WQkBD07NkTP/74IwDg0KFDKCws9ImJjY1Fu3btvDH79+9HREQEunbt6v1Mrr32WkRERPjEtGvXDrGxsd46/fr1g8vl8llOWJaKzo3aABoCF49flD9If5Gfn1+lfn7++Wc4HA44HA5cuXIF3bp1w+233w4A+Oyzz0zvAVH0T9cADWFElWRlZTEALDk52W9Mo0aNGADWqFEjHTvTn4KCAvbnn3+ygoICS/ehZn0lteTk8uRIjZUSRx6wTg+kf/440r+1+iAP8MeJ4AHSv761SP/mImZODMMMMMwAG7Z2mPf1kJAQFhISwl544QV2+PBh9r///Y+Fhoay5cuXM8YY++GHHxgAFh8f71Pv0UcfZX379mWMMfbpp5+y4ODgcufs06cPe+yxxxhjjM2aNYtdd911jDHfz+S6665jr7/+urdmnz59ytUJDg5mq1atqvB9/f3cpe8R14C169+uXPzSpUtZRESE33EqS8+ePVlQUBALDw9nNWrU8P6EhIT4rTFx4kTWrFkzz/fOT8ESjq03vQdE0D9jdA2QQ+k8SlZWVqVxgfpNf1V/QkJCjG7BcEJCQtC8eXOj29C8DzXrK6klJ5cnR2qsWT53M2CGsSD9q5ND+ufHLGNBHlAnhzzAh1nGgfSvTg7pXz5lNzovKSnBzTffjNdffx0A0LlzZ/z6669YvHgxRo8e7Y37+ybYjLEqN8b+e0zpf5f9TPzF8J6rIuw25YuK/vnPf+Kll17yeW3jxo3e8SrLBx98gI8++gg//PADGtSvD+QAMYUAcnKA4GBAwnsgD2iHWcahOl0DpELL9zjIzc31e4z9tbaaWXzf+NzcXPzwww+VjoUV+lCzvpJacnJ5cqTGSokjD1inB9I/fxzp31p9kAf440TwAOlf31qkf/NSdq+ZmJgYXH/99T7H27Zti0uXLgEAoqOjAQCJiYk+McnJyYiKivLGuN1uZGRkVBqTlJQEwPczSUlJ8Yn5+3kyMjJQWFjojfk7/s6NPCCktvIbEsLDw5GUlITo6Gi0bNkSLVu2RMOGDcvF7d69G08++SRWLF6Mjrt3A23bAuMB3DwMaNDA8+933gGq2BzdCA+Ion+6BmgHTUpxkJeX5/eYSGbct2+fKcyoZR9q1ldSS04uT47UWClx5AHr9ED6548j/VurD/IAf5wIHiD961uL9G9eyk5K9ejRw7vReClnzpxBs2bNAAAtWrRAdHQ0vvnmG+9xt9uNPXv24NZbbwUA3HTTTQgKCvKJcTgcOHnypDeme/fuyMrKwsGDB72fyd69e5GVleUTc/LkSTgcDm+dHTt2ICQkBDfddFOF76WicyMHQDLQ8Lryk0e8uN3uKvVz7tw5DBkyBC/GxWHwE08ATz8NdOoETAR2jr8PGR984Pn3008DzZoB27f7rWWEB0TRP10DNETxQkEBkLIWUpS1tAThD/IAITKkf0J0yAOEyIig/7J7Sg1fP9z7+sGDB1lgYCCbNWsWO3v2LPv0009ZeHg4W7lypTfmzTffZBEREWzjxo3sxIkT7MEHH2QxMTEsOzvbGzN+/HjWuHFjtnPnTnb48GH2j3/8g3Xs2JEVFRV5Y+6++27WoUMHtn//frZ//37Wvn17dt9993mPFxUVsXbt2rHevXuzw4cPs507d7LGjRuzJ554whtz5coV1rp1a/bTTz9VeG78CwwtwBAFNuWrKd6YixcvsiNHjrCZM2eymjVrsiNHjrAjR46wnJwcv2PWs2dPNmnSpHKvl92Xyul0sjZt2rB/dOrEEgICmKN3b+Y4dow5HA7GPgVjyfuuJjocjN17L2OBgYxt2+b3vHojgv4JedCeUgRBEARBEARBEIRmdOnSBZs2bcILL7yAV155BS1atMCCBQvwz3/+0xvz7LPPIj8/H48//jgyMjLQtWtX7NixA7Vq1fLGzJ8/H4GBgYiLi0N+fj569+6NZcuWISAgwBvz6aefYuLEid4n5Q0cOBDvvfee93hAQAC+/PJLPP744+jRowfCwsIwcuRIzJkzxxtTWFiI06dPw+l0VnhuZAO4BsBIwB5wdVHRtGnTsHz5cu+/O3fuDAD47rvv0KtXL9njl5SUhN9//x2/A4gFgG+/BTp2BACwT/8WHB0NbN4MDBoExMUBFy8CkZGyz00QZoGW73GQlpbm95goj8JMTU3FRx99hNTUVEv3oWZ9JbXk5PLkSI2VEkcesE4PpH/+ONK/tfogD/DHieAB0r++tUj/5sXlcvn8+7777sOJEydQUFCAU6dO4dFHH/U5brPZMGPGDDgcDhQUFGDPnj1o166dT0xoaCgWLlyItLQ0OJ1ObNmyBU2aNPGJqVu3LlauXIk//vgD8+fPx4IFCxD5t0mZpk2bYuvWrXA6nUhLS8PChQt9HlbVvHlzMMZ8JpLKnhsvAxgJIALIz8/3xixbtgyMsXI/lU1I7d69Gy+//HI5/YwdOxaZf+0N1bx5c7AFC8ACA8EcDp/aALBl6xZf7QUGAkuWAE4nsGJFuXMa4QFR9E/XAO2gSSkOys7U/53SJzrIebJDdSIwMBANGjRAYKCxN9lp3Yea9ZXUkpPLkyM1VkocecA6PZD++eNI/9bqgzzAHyeCB0j/+tYi/ZsXm93Y96mXF8s+ZVAuVfbKGLB4MTBkiOdOqL9RJ7JO+dyYGGDwYGDRIk8+z/lkxFYVJ4r+6RqgHTbGLL4jmQpkZ2cjIiICWVlZqF27doUxjRs3Rnx8PBo1aoQrV67o3CFBGA95gBAZ0j8hOuQBQmRE0H/s3Fg4cj0biA+/YTjWDF1jcEfaYJt5dWLlqe5PYU7fOZVEq0BqqufpeuvWAcOGeV/+JeEXjFjWBT2uuRvLR3xdPm/dOmD4cE9+vXra9lgFIuifkIeUeRSA7pTiori42OgWDKe4uBg5OTmGj4XWfahZX0ktObk8OVJjzfK5mwEzjAXpX50c0j8/ZhkL8oA6OeQBPswyDqR/dXJI//Ix+p4GvT6TEqZ8OVqVvZY+4axOHZ+Xey7rifOFwIrT27Dv4r7yeaXxOTl855MRSx7wYJZxqE7XAKnQpBQHKSkpfo+JspY2OTkZ8+bNQ3JysqX7ULO+klpycnlypMZKiSMPWKcH0j9/HOnfWn2QB/jjRPAA6V/fWqR/81JQUGDo+fXyYtnN0OVSZa81a3p+Z2T4nrvw6rnPJJwpn1caX2azeEnnkxFbVZwo+qdrgHbQ8j0JlN52lpSUhIYNG1YY06hRIyQkJCA2Nhbx8fE6d6gfBQUFuHTpEpo2bYrQ0FDL9qFmfSW15OTy5EiNlRJHHrBOD6R//jjSv7X6IA/wx4ngAdK/vrVI/+YiZm4MEnMTAQBD2wzF+uHrDetFSw+UXb43qcskLLhngaJ6VfbKGNC2LdCpE7Dm6pLIsn2sfWAt4jrE+eYNHw4cOwacOgWU2cvJCA+IoH+ArgFykLp8jyalJEB7ShFE1ZAHCJEh/ROiQx4gREYE/ZedlBrRbgRWD1ltcEfaoPueUgDwzjvA008Dly97Nzsv28em4ZswqM2gq/EOB9C0KTB3LjBxovb9VYEI+ifkQXtKaUBeXp7fY6Vze1af48vLy8PBgwcrHQsr9KFmfSW15OTy5EiNlRJHHrBOD6R//jjSv7X6IA/wx4ngAdK/vrVI/+alqKjI0PPr5cXCwkLFNST1OmYMEB4OPPIIUMHY+iyXLCoCHn3UEz96tLzzccZWFSeK/ukaoB00KcVBzt82kiuLKGbMzs7Gjh07kJ2dbek+1KyvpJacXJ4cqbFS4sgD1umB9M8fR/q3Vh/kAf44ETxA+te3FunfvLjdbkPPr5cXXW6X4hqSeo2M9DxNb/t2YNAgz51QZXDm/7W/lMPhOb59O7B+vSdPzvk4Y6uKE0X/dA3QDkss33O5XOjatSuOHTuGI0eOoFOnTt5jly5dwr///W/s2rULYWFhGDlyJObMmYPg4GDJ9Wn5HkFUDXmAEBnSPyE65AFCZETQf+zcWDhyPZMlw28YjjVD11SRUT0xZPleKdu3A3FxgNOJta2LsKEtkBEGzOr8NG45cAnYuNFzh9T69UDfvvr1VQUi6J+Qh9Tle4E69qQZzz77LGJjY3Hs2DGf14uLi3HvvfeiQYMG2LdvH9LS0jBmzBgwxrBw4UKDuiUIgiAIgiAIgiCIMvTrB1y8CKxYgY6vTMLwX/96/ZM5QOvWnj2kxowBIiIMbZMg1KbaL9/7+uuvsWPHDsyZU34We8eOHfjtt9+wcuVKdO7cGXfddRfmzp2LJUuWyLodLT093e8xUR6FmZaWhhUrViAtLc3SfahZX0ktObk8OVJjpcSRB6zTA+mfP470b60+yAP8cSJ4gPSvby3Sv3lRY1mbEvTyYn5+vuIa3L1GRgITJ6LtE0C9Z4Hmk4C1O/7recrexIlVTkgZ4QFR9E/XAO2o1pNSSUlJePTRR/HJJ58gPDy83PH9+/ejXbt2iI2N9b7Wr18/uFwuHDp0yG9dl8uF7Oxsnx8AsJV53Kao2O121KhRA3a7sdLRug816yupJSeXJ0dqrFk+dzNghrEg/auTQ/rnxyxjQR5QJ4c8wIdZxoH0r04O6V8+Nhj7nUi3z0SFtym7VxuQHg5crAMU1qkNSPweSh7QDrOMQ3W6Bkil2u4pxRjDPffcgx49euDll1/GhQsX0KJFC589pR577DFcuHABO3bs8MkNCQnBsmXL8OCDD1ZYe8aMGZg5c2a51z/88MMKJ78A4IknnkB6ejrq1q2L9957T9mbI4hqCHmAEBnSPyE65AFCZETQ/+PnH0dmcSYAoFutbpgYM9HYhjRi5JmR3v++p849eKjBQ4b3MSV2CrrU7GJIH1IQQf+EPJxOJx555JEq95Qy3aSUvwmhsvz888/48ccfsXbtWuzduxcBAQF+J6UuXryI7du3++QHBwdjxYoVGDFiRIX1XS4XXK6rt6VmZ2ejSZMmyMjIQGQFTzkAxNngraSkBIWFhQgKCjJ0lljrPtSsr6SWnFyeHKmxUuLIA9bpgfTPH0f6t1Yf5AH+OBE8QPrXtxbp31yU3eg87vo4rB221rBetPRA2Y3Op3Sbgnn95imqJ7fXsn1sGLYBg68frPr51PKACPoH6BogB6kbnZvuHrwnnngCp06dqvSnXbt22LVrFw4cOICQkBAEBgaiZcuWAICbb74ZY8aMAQBER0cjMTHRp35GRgYKCwsRFRXlt4eQkBDUrl3b5wcAkpOT/eaIspY2KSkJb775JpKSkizdh5r1ldSSk8uTIzVWShx5wDo9kP7540j/1uqDPMAfJ4IHSP/61iL9m5eCggJDz6+XF515TsU11Og1MytTk/Op5QFR9E/XAA1h1ZSLFy+yEydOeH+2b9/OALDPPvuMXb58mTHG2FdffcXsdjtLSEjw5q1Zs4aFhISwrKwsyefKyspiAFhiYqLfmNjYWAaAxcbGyn9T1QCn08lOnjzJnE6npftQs76SWnJyeXKkxkqJIw9YpwfSP38c6d9afZAH+ONE8ADpX99apH9zETMnhmEGGGaADV0zVLfzNmvWjAEo9zNixAjvZ5KYmMjGjBnDYmJiWFhYGOvXrx87c+aMT51z586xQYMGsfr167NatWqxYcOGlftud+jQIYZrwBAChjCwG/rdwHJycnxidu7cybp3785q1qzJoqOj2bPPPssKCwv99u90Otnu3bvZgw8+yKKiolh4eDjr3LkzW79+vU/cgAEDWJMmTVhISAiLjo5m6ACGqZ7xXnNsTYW1e/bsySZNmlTufK+99hqLiIiobFi9sWp4QAT9M0bXADmUzqNUNfdiuuV7cqlo+V5xcTE6deqEqKgozJ49G+np6Rg7diwGDRqEhQsXSq4t5bYzUW5bJAh/kAcIkSH9E6JDHiBERgT9l12+N/yG4VgzdI0u501JSUFxcbH33ydPnkSfPn3w3XffoVevXmCM4dZbb0VQUBDmzp2L2rVrY968edi2bRt+++031KhRA3l5eejQoQM6duzo3SbmP//5DxISEnDgwAHY7XYkJCSgXbt2yLg2A+gGwAXE/hCL7m2747PPPgMAHD9+HF26dMFLL72EkSNHIj4+HuPHj8e9995b4ZPgS+nTpw+ysrLw3nvvoX79+li1ahWmT5+OX375BZ07dwYAzJ8/H927d0dMTAzi4+PRY3gPT/IjwKbhmzCozaBydXv16oVOnTphwYIFPq8vW7YMkydPRmZmpuxx50EE/RPyqLbL99QkICAAX375JUJDQ9GjRw/ExcVh0KBBlf7RqAyn0/8tnKVzexaZ4/OL0+nE0aNHKx0LK/ShZn0lteTk8uRIjZUSRx6wTg+kf/440r+1+iAP8MeJ4AHSv761SP/mpewkkdY0aNAA0dHR3p+tW7fimmuuQUREBJxOJ86ePYsDBw5g8eLF6NKlC1q3bo1FixYhNzcXq1evBgD88MMPuHDhApYtW4b27dujffv2WLp0KX7++Wfs2rULALB161YEBQUB9wCoD6ARcMf4O7BhwwacO3cOALBmzRp06NAB06ZNQ8uWLdGzZ0+88cYb+O9//4ucnJwK+3c6nfjhhx/w2GOP4ZZbbsE111yDl19+GZGRkTh8+LA3bsqUKejWrRuaNWuGW2+9FbgNwBUAxfDZ67gqnE4nLl265PNa8+bNYbPZyv2o5QFR9E/XAO2wzKRU8+bNwRjz3iVVStOmTbF161Y4nU6kpaVh4cKFCAkJkXWO7Oxsv8dEMWNWVhY+//xzZGVlWboPNesrqSUnlydHaqyUOPKAdXog/fPHkf6t1Qd5gD9OBA+Q/vWtRfo3L26327Dzrly5EnFxcfjiiy+QlZXlnbAJDQ31xgUEBCA4OBj79u0D4JnUsdlsPt8BQ0NDYbfbfWKCg4N9vh0zeD7PsjFlzwMAYWFhKCgowKFDhyrsOSsrC7GxsVi7di3S09NRUlKCNWvWwOVyoVevXhXmpKenAycANAEQAOQ58ySPUVZWFg4fPuyjxZ9//hkOhwMOhwNXrlxBt27dcPvtt6vmAVH0T9cADVG8UFAAStdCZmZm+o1p1KgRA8AaNWqkY2f6U1JSwoqLi1lJSYml+1CzvpJacnJ5cqTGSokjD1inB9I/fxzp31p9kAf440TwAOlf31qkf3NRdk+p4euHG9LD2rVrWUBAALty5Yr3M3G73axZs2Zs2LBhLD09nblcLvbGG28wAKxv376MMcaSk5NZ7dq12aRJk1heXh7Lzc1l//73vxkA9thjjzHGGDt58iQLDAxk6AOGl8HwHFjLHi0ZAPb6668zxhjbvn07s9vtbNWqVayoqIhduXKF3XbbbQwAW7VqVYU9l5SUsPT0dNavXz8GgAUGBrLatWuzHTt2lIt99tlnWXh4uGffrMZgeNYz3ht/21hh7Z49e7KgoCBWo0YNn5+QkBC/e0pNnDiRNWvWjCUnJ6vmARH0zxhdA+QgdU8py9wppQc2m63qIItjs9lgt9sNHwut+1CzvpJacnJ5cqTGmuVzNwNmGAvSvzo5pH9+zDIW5AF1csgDfJhlHEj/6uSQ/qsfH330Efr3749GjRp5P5OgoCBs2LABZ86cQd26dREeHo7du3ejf//+CAgIAOBZArh+/Xps2bIFNWvW9O5xc+ONN3pjbrjhBixfvhz4EcAsAHOAiOgIREVFeWP69u2L2bNnY/z48QgJCUGrVq1w7733AoA35u/YbDZMmzYNGRkZ2LlzJ3755RdMnToVw4YNw4kTJ3xin3nmGRw5cgQ7duwAbAA2AWCVfwf95z//iaNHj/r8vPLKKxXGfvDBB/joo4/w+eefo0H9+rClpcF+6RJsaWlAJXc5kQc8mGUcqtM1QCo0KcVBenq632OiPAozPT0dq1evrnQsrNCHmvWV1JKTy5MjNVZKHHnAOj2Q/vnjSP/W6oM8wB8nggdI//rWIv2bFyOW7128eBE7d+7EI488Uu4zuemmm3D06FFkZmbC4XBg27ZtSEtLQ4sWLbz5ffv2xfnz55GcnIzU1FR88skniI+P94kZOXIk8AyApwA8C9w47EakpKT4xEydOhWZmZm4dOkSUlNTcf/99wOAT0xZDh06hPfeew/z589H79690bFjR0yfPh0333wz/vvf//rE1q9fH61atUKfPn2AoQDOArgC5Obm+h2XiIgItGzZ0vtTt25d/PHHH+WW0u3evRtPPvkkVixejI67dwNt2wINGgAtWnh+t20LvPMOUMHm6FV5QBT90zVAO2hSiiAIgiAIgiAIgjAtS5cuRcOGDb13JlVEREQEGjRogLNnz+KXX37xThiVpX79+oiMjMSuXbuQnJyMgQMHli9UE0AIcG7fOYSGhnomicpgs9kQGxuLsLAwrF69Gk2aNMGNN95YYU/5+fnenLIEBARIm8QpqjqkKs6dO4chQ4bgxbg4DH7iCeDpp4FOnZDz8cfY9cILyPn4Y6BTJ8/rzZoB27crPylB8KB4oaAASFkLKcpaWoLwB3mAEBnSPyE65AFCZETQv5F7ShUXF7OmTZuy5557rsLj69atY9999x07f/4827x5M2vWrBkbPHiwT8zHH3/M9u/fz86dO8c++eQTVrduXTZ16lSfmIULFzI8BoYnwHAPWGBIIHvnnXd8Yt5++212/PhxdvLkSfbKK6+woKAgtmnTJu/xK1eusNatW7OffvqJMcaY2+1mLVu2ZLfffjv76aef2Llz59icOXOYzWZjX375JWOMsZ9++oktXLiQHTlyhF24cIHt2rWLoSkY6nj2t9p8anOF77tnz55s0qRJ5V5funSpd08pp9PJ2rRpw/7RqRNLCAhgjt69mePYMeZwOMoXdDgYu/dexgIDGdu2rcJzVoQI+ifkIXVPqUDjpsOqH8ziTxSQAmMMjDHvo0St2oea9ZXUkpPLkyM11iyfuxkww1iQ/tXJIf3zY5axIA+ok0Me4MMs40D6VyeH9F992LlzJy5duoRx48YBKP+ZOBwOTJ06FUlJSYiJicHo0aPxn//8x6fG6dOn8cILLyA9PR3NmzfHSy+9hClTpvjEHDx4EPgMgBtAfaD3k70xceJEn5ivv/4as2bNgsvlQseOHfH555+jf//+3uOFhYU4ffo0nE4nACAwMBBbt27Fiy++iAEDBiA3NxctW7bE8uXLcc899wDwPMFv48aNmD59OvLy8hATEwM0hGcJX+DVpwBKgTHmcwdWUlISfv/9d/wOIBYAvv0W6NgRgGe5nY+2o6OBzZuBQYOAuDjg4kUgMpI88BdmGYfqdA2QCi3f4yApKcnvMVHW0iYmJuLVV19FYmKipftQs76SWnJyeXKkxkqJIw9YpwfSP38c6d9afZAH+ONE8ADpX99apH/zUrokTS/69u0LxhhatWoFoPxnMnHiRFy+fBlutxsXL17Eq6++iuDgYJ8ab775JhITE+F2u3HmzBlMnTq13BfuFStWAM8B+A+ACUDz7s3L9bJr1y5kZmYiPz8fBw4c8JmQAoDmzZuDMYZevXp5e12zZg3ee+89JCUlIS8vD8eOHcOoUaO8Oe3bt8euXbuQlpaGgoIC/Pnnn8B9AGp7jmdkZFQ4Lrt378aCBQt8XktMTMTly5dx6tSpq/0sWAAWGAjmcHgnHBhjFWs7MBBYsgRwOoEVKyoc778jiv7pGqAdNCnFQe3atf0eK/2jZvXZ44iICNx///2IiIiwdB9q1ldSS04uT47UWClx5AHr9ED6548j/VurD/IAf5wIHiD961uL9G9e/j7hozd6eTE4RPn7VKPXGuE15J+PMWDxYmDIEM+dUH+RX5iPdX+sQ+ytseV7i4kBBg8GFi0CGKvyPYiif7oGaIeN0Zq0KsnOzvY+OtTfxFTjxo0RHx+PRo0a4cqVKzp3SBDGQx4gRIb0T4gOeYAQGRH0Hzs3Fo5cBwBg+A3DsWboGoM70gbbzKsTK1O7TcXcfnMN72Pz8M24v035TdslkZrqebreunXAsGHel1/69iW8vu91AMDFyRfRNKKpb966dcDw4Z78evUqPYUI+ifkIWUeBaA7pbio7FbV0rk9q8/x5efn49dff9X9tl29+1CzvpJacnJ5cqTGSokjD1inB9I/fxzp31p9kAf440TwAOlf31qkf/NSXFxs6Pn18mJRkfJH36nRq8vtkn++3FzP7zp1fOJKJ6QAYPOvm8sXKo3PyanyPYiif7oGaAdNSnGQlZXl95goZszMzMRnn32GzMxMS/ehZn0lteTk8uRIjZUSRx6wTg+kf/440r+1+iAP8MeJ4AHSv761SP/mxe12G3p+vbzockmfDPKHGr3m5eXJP1/Nmp7ffvalAvzceFEaX6tWle9BFP3TNUA7aPmeBEpvO8vIyEBkZGSFMaLctlhSUoLCwkIEBQXBbjduTlPrPtSsr6SWnFyeHKmxUuLIA9bpgfTPH0f6t1Yf5AH+OBE8QPrXtxbp31yUXb4Xd30c1g5ba1gvWnqg7LK5Kd2mYF6/eYrqye21bB8b4zbigbYPyDsfY0DbtkCnTsCaq0suy9b/7z3/xeNdHvctNHw4cOwYcOoUShir9D2IoH+ArgFykLp8L1DRWQTDSPGZBbvdjpCQEKPb0LwPNesrqSUnlydHaqxZPnczYIaxIP2rk0P658csY0EeUCeHPMCHWcaB9K9ODulfPkZvaK3XZ2KD8vepRq92m/TvoOXOZ7MBEyYATz8NJCb6bHbut77DAWzcCMydC9hssNts5AGY529BdboGSD6nrmer5vh7HCcgzqMwMzIysGHDhkrHwgp9qFlfSS05uTw5UmOlxJEHrNMD6Z8/jvRvrT7IA/xxIniA9K9vLdK/eTF6+Z5eXixwFSiuoUavuaX7Qsk935gxQHg48MgjQAX7ZDmdzqv/KCoCHn3UEz96tKT3IIr+6RqgHTQpxQGtdPT8scnLyzP8j47WfahZX0ktObk8OVJjzfK5mwEzjAXpX50c0j8/ZhkL8oA6OeQBPswyDqR/dXJI//JhMPY7kV6fiRrf/dTotYQp9EBkpOdpetu3A4MGee6Eqqi+w+E5vn07sH69J0+l92AFzDIO1ekaIBXaU0oCUtZCirKWliD8QR4gRIb0T4gOeYAQGRH0X3ZPqeE3DMeaoWuqyKielN1raWq3qZjbb67hfWwevhn3t7lfedHt24G4OMDpxNrWRdjQFsgIA55t+wj6HM32LNkLD/dMSPXtK7msCPon5EF7ShEEQRAEQRAEQRAEAfTrB1y8CKxYgY6vTMLwX0sPfAi0bu3ZQ2rMGCAiwsguCQGh5XscJCYm+j0mylpah8OB1157DY6/3fZptT7UrK+klpxcnhypsVLiyAPW6YH0zx9H+rdWH+QB/jgRPED617cW6d+85OfnG3p+vbyYmyd9Lyd/qNFreka6eueLjAQmTkTbJ4B6zwLNJwHvbPgPcOoUMHFihRNSVdUURf90DdAOulOKg1q1avk9VvoUCqOfRqE1tWvXRt++fSu9/c4KfahZX0ktObk8OVJjpcSRB6zTA+mfP470b60+yAP8cSJ4gPSvby3Sv3kJCgoy9Px6eTE4OFhxDTV6DQ8PV/98NiA93PODqHqep/TJrCmK/ukaoB20p5QEaE8pgqga8gAhMqR/QnTIA4TIiKB/EfeUmtJtCub1m2d4H6rtKeWn/uJ7F2P8zeNl1xJB/4Q8pO4pRcv3OCgo8P9Y0NK5PavP8RUUFODMmTOVjoUV+lCzvpJacnJ5cqTGSokjD1inB9I/fxzp31p9kAf440TwAOlf31qkf/NSXFxs6Pn18mJRUZHiGmr0WlhYqOn5qqpfVU1R9E/XAO2gSSkOMjMz/R4TxYwZGRlYvXo1MjIyLN2HmvWV1JKTy5MjNVZKHHnAOj2Q/vnjSP/W6oM8wB8nggdI//rWIv2bF7fbbej59fKiy+VSXEONXnNzpe9tJed8TqdTUU1R9E/XAO2g5XsSKL3tLD09HXXq1KkwRpTbFouLi+F0OhEeHo6AgADL9qFmfSW15OTy5EiNlRJHHrBOD6R//jjSv7X6IA/wx4ngAdK/vrVI/+ai7PK9YdcPw7ph6wzrRUsPlF3WNqnrJCy4e4GienJ7LdvHprhNGNR2kKrnK1v/v/3/i8dveVx2TRH0D9A1QA5Sl+/RRuccGCk+sxAQEFDphu9W6UPN+kpqycnlyZEaa5bP3QyYYSxI/+rkkP75MctYkAfUySEP8GGWcSD9q5ND+uej7CbWRm9orddnYrcpX1SkRq92u/Q+5JyvqvrkAQ9mGYfqdA2QCi3f44CW73nG4Isvvqh0LKzQh5r1ldSSk8uTIzVWShx5wDo9kP7540j/1uqDPMAfJ4IHSP/61iL9m5dCt/Q9jrRALy+qsXxPjV5z86Qv35NzvqqW71VVUxT90zVAO2hSioPKNvUTxYxFRUVISUlRZeM/M/ehZn0lteTk8uRIjZUSRx6wTg+kf/440r+1+iAP8MeJ4AHSv761SP/mpYSVGHp+vbxYUqL8farRa0mx9D7knK+q91lVTVH0T9cA7aA9pSQgZS2kKGtpCcIf5AFCZEj/hOiQBwiREUH/jeY1QkJOAgAg7oY4rB261uCOtKHsXktTuk3BvH7zDO/j8xGfY2DrgZrVX3zvYoy/ebzsWiLon5CH1D2l6E4pgiAIgiAIgiAIgiAIQndoUoqDpKQkv8dKb3tU4zZPM5OYmIi33noLiYmJlu5DzfpKasnJ5cmRGisljjxgnR5I//xxpH9r9UEe4I8TwQOkf31rkf7NS0F+gaHn18uLeXl5imuo0WtmRqam58vKzlJUUxT90zVAO2hSioMaNWr4PVb6FAqjn0ahNTVr1sRtt92GmjVrWroPNesrqSUnlydHaqyUOPKAdXog/fPHkf6t1Qd5gD9OBA+Q/vWtRfo3L4GBxj7AXS8vBgUHKa6hRq+hYaGani80pPL6VdUURf90DdAO2lNKArSnFEFUDXmAEBnSPyE65AFCZETQP+0pZVwfX4z4AgNaD9CsPu0pRWgF7SmlAWo8FrS643K5cOHCBcPHQus+1KyvpJacXJ4cqbFm+dzNgBnGgvSvTg7pnx+zjAV5QJ0c8gAfZhkH0r86OaR/+fA8DU4L9PpMKnvyulTU6LWwsFDT81X1lDXygAezjEN1ugZIhSalOMjIyPB7TJS1tOnp6Vi+fDnS09Mt3Yea9ZXUkpPLkyM1VkocecA6PZD++eNI/9bqgzzAHyeCB0j/+tYi/ZsXl9vYL+V6ebGgQPneWWr0mpObo+n5nHlORTVF0T9dA7SDlu9JoPS2s7S0NNStW7fCGFFuWywqKkJ2djZq165t6HpyrftQs76SWnJyeXKkxkqJIw9YpwfSP38c6d9afZAH+ONE8ADpX99apH9zETs3Fo5cBwBgWNthWBe3zrBetPRA2WVtk26ZhAX9FyiqJ7fXsn1sGrYJg64fpOr5ytZf1H8RJtwyQXZNEfQP0DVADlKX7xm7S101w+hN/cxAYGCg34k5K/WhZn0lteTk8uRIjTXL524GzDAWpH91ckj//JhlLMgD6uSQB/gwyziQ/tXJIf3Lx243drGNXp+JGu9TjV4DAgI0PV9V9ckDHswyDtXpGiAVWr7HQVaW/8dllt5wZvUbz7KysvD1119XOhZW6EPN+kpqycnlyZEaKyWOPGCdHkj//HGkf2v1QR7gjxPBA6R/fWuR/s0Lzx5HWqCXF9XYU0eNXvOceZqeLz8/X1FNUfRP1wDtoEkpDir7AyyKGd1uNy5cuAC3223pPtSsr6SWnFyeHKmxUuLIA9bpgfTPH0f6t1Yf5AH+OBE8QPrXtxbp37wYvXeQXl4sLlG+0bkavVa1EbnS81VVv6qaouifrgHaQXtKSUDKWkhR1tIShD/IA4TIkP4J0SEPECIjgv7L7ik1/IbhWDN0jcEdaUPZvZamdJuCef3mGd7HFyO+wIDWAzSr//597+Oxmx6TXUsE/RPykLqnFN0pRRAEQRAEQRAEQRAmxGazVR1EENUYmpTiIDk52e8xUR6FmZSUhHnz5iEpKcnSfahZX0ktObk8OVJjpcSRB6zTA+mfP470b60+yAP8cSJ4gPSvby3Sv3kpKCgw9Px6edHpdCquoUavGZkZmp4vOztbUU1R9E/XAO2gSSkOwsLC/B4rncG2+kx2eHg4brzxRoSHh1u6DzXrK6klJ5cnR2qslDjygHV6IP3zx5H+rdUHeYA/TgQPkP71rUX6Ny8BgdKfBqcFenlRjSevq9FrSEiIpucLDg5WVFMU/dM1QDtoTykJ0J5SBFE15AFCZEj/hOiQBwiREUH/tKeUcX1seXAL7mt1n2b1aU8pQitoTykNMHqnfTPgdrsRHx9v+Fho3Yea9ZXUkpPLkyM11iyfuxkww1iQ/tXJIf3zY5axIA+ok0Me4MMs40D6VyeH9C8fo5dp6fWZFBVLf+qdP9TotbInwKtxPilP3yMPmGccqtM1QCo0KcVBenq632OirKVNS0vDhx9+iLS0NEv3oWZ9JbXk5PLkSI2VEkcesE4PpH/+ONK/tfogD/DHieAB0r++tUj/5sXlchl6fr28WJCvfO8sNXrNycnR9Hx5eXmKaoqif7oGaAct35NA6W1nqampqFevXoUxoty2WFhYiPT0dNStWxdBQUGW7UPN+kpqycnlyZEaKyWOPGCdHkj//HGkf2v1QR7gjxPBA6R/fWuR/s1F2eV7w9oOw7q4dYb1oqUHyi5rm9hlIt655x1F9eT2WraPTcM2YdD1g1Q9X9n6i/ovwoRbJsiuKYL+AboGyIGW72mAkeIzC0FBQYiKijJ8LLTuQ836SmrJyeXJkRprls/dDJhhLEj/6uSQ/vkxy1iQB9TJIQ/wYZZxIP2rk0P6l4/dbuxXSLU/k4ULFyIqKgoBAQHADADfeF4vfZ+FhYV44IEHUKtWLdhsNthsNtx3331ISEjwqfPbb7/hmmuugd1uh81mQ2xsLE6ePOnT6+7duxETEwObzQa73Y7rrruu3ETOqlWrgDfh6WUG8PSwp8s9CXDOnDmoWbMmbDYbAgMD0bdvXzDGKh2bKVOmoG7dup4NyWcA+AjAn/C877+YNGkSbrrpJoSEhCA4OBg2mw15eXmVjnd8fHyFr/fq1avSB4VVN8zyt6A6XQOkQpNSHFT2uMzSG86sfuNZdnY2du7cWeWjQ6t7H2rWV1JLTi5PjtRYKXHkAev0QPrnjyP9W6sP8gB/nAgeIP3rW4v0b1549jjSArU9kJGRgeuuuw5PPfWUz+ule+o4nU6cPXsW/fv3x6uvvgoAuHTpEgYOHOiNzcvLQ7du3eBwOPD+++9j7dq1KCwsRI8ePfD1118jOzsbCQkJ6NOnD9xuN1avXo0lS5YgISEBXbp08dY5cuQIHnroISAUwAgAfYE/T/+JHj16eGM2bNiAZ555Bm3btsVXX32F5557Djt37sTgwYMrHZvly5cjOjoao0aNAoIBRANYBSRdSfLGMMYwbtw4NGzYEKGhoQCkj7fV9U/XAO2gSSkOKls/LcrFqKCgAL/99hsKCpSvsTZzH2rWV1JLTi5PjtRYKXHkAev0QPrnjyP9W6sP8gB/nAgeIP3rW4v0b16KS4oNPb/aHpg2bRr27duHt99+2+f10o3OIyIicPLkSaxbt84zYQTgueeew6FDh3Dp0iUAwI4dO5CTk4NFixbh0UcfRVxcHPbs2YP8/HwsWrQIBQUFWLJkCYqKirB161aMGDECDz/8MBYvXozExETs2LEDAPDmm296dDQOQBsAtwJ9h/fF0aNHvXckvfnmmwgKCsK+ffvQv39/zJo1C/fccw+++OILOJ3OCscmNTUVGRkZeP/99/GPf/wDsAG4C0AhcOXc1Tu13n33XdjtdgQEBKBhw4YAPN+BpYx3Vfovvcus7E9gYGClOWaCrgEawogqycrKYgBYVlaW35hGjRoxAKxRo0Y6dkYQ5oE8QIgM6Z8QHfIAITIi6D9mTgzDDDDMABu+frjR7WgGAIYenvc5+evJ5Y7/+eefDABbvHgxs9ls3u+Hr776KgPAHA6HN9bpdDIA7I477mCMMfbggw8ym83mU+/3339nANi4ceMYY4x17dqVhYeHe8caM8Cef+d5BoDNmzePMcZY06ZNWePGjX3qvPjiiwwA27t3b4Xvq6SkhLVt25Y98sgj7H//+x9DCBj6gKEG2Pzv5nvjfv31VxYdHc0mT57Mrr32WgaAZWRkVD1mFei/Z8+eLDQ01PvvY8eOeX++/fZbFhQUxK655ppKaxPVGynzKIwxRndKEQRBEARBEARBEIRE3n33XYwcOdK7eXP9+vUBeO5icjqdyMvLwzPPPAMASE5OBgA0aNAAjDHMnj0bbrcbGRkZePHFFwHAu69U3bp1PftHnQBQAiAb+GLFFwCAP/74AwBQo0YNOBwOfPvttygpKcGZM2ewdu1aAMCpU6cq7Ndms+Gbb77BkSNHMH78eMAF4ACAh4DwWuEAPHdEPfjgg5g9ezYiIiK4xyQ+Pt7nLqg9e/b4HO/QoQM6dOiAdu3a4aGHHkJQUBB+/vln7vMQ1oMmpThISUnxe0yUR2EmJyfjvffe8/5xtWofatZXUktOLk+O1FgpceQB6/RA+uePI/1bqw/yAH+cCB4g/etbi/RvXgpcxi5f0suLznxnuddK99NijGHRokXe12vXro2goCBs2bIFNWvW9D5xrGbNmsjMzERycjKioqIQExODuXPnIjw8HNHR0bjmmmsQEBDg3VS9cePGaNWqFbAVwKsAFgLturYDAJ+Ydu3a4b777kNwcDC6deuG+++/H4Bnb6uKxoYxhscffxwNGzb0TIQFA2gNYBVw5YJnQuyFF15A27ZtvUsUS0lJSZE03nXr1sXOnTu9Px06dKgwrkePHkhKSsLu3btRNzISOH0a2LfP89vEHqJrgHZUn0WcJiAkJMTvMZvN5vPbqoSGhqJVq1beje+s2oea9ZXUkpPLkyM1VkocecA6PZD++eNI/9bqgzzAHyeCB0j/+tYi/ZuXAHtA1UEaopcXAwN8vyoXFhbiiSeeAAAsXrzY5xH30dHRKCwsxC+//ILi4mIEBgYiMjISQUFBuO666xAaGoro6Gg4nU5kZmYiKSkJNWrUgM1mw5w5c9CiRQtvndDQUOB5ADkAwoD2rdpj3aJ1aNOmjTcmLCwMhw4dQmJiIho0aIAPPvgAANC5c2e43e5yY7Nr1y5s3boVGRkZ2Lhxo2dPqfsA/AEc+eYIMMQTc+LECXz22WcoKSnx7hHVtm1bjBgxAqNHj650vEJDQ9G7d2/vv+vUqVMuZsKECThw4ACWvPEGurzxBvDll8BfG8oDAIKDgXvvBebPB5o1q/R8ekPXAA3RYSlhtYf2lCKIqiEPECJD+idEhzxAiIwI+hd9Tym3280GDRrEWrVqxQCwI0eO+ORlZmayoKAgtnbtWu9r69atYwDYkiVLGGOM/fbbbwwA++mnn7wxL730EgPADh48yBhj7KuvvmJ2u53hqat7SnXv050BYOnp6YwxxhYtWsQiIyOZy+Xy1uncuTMLCgpiJSUlFb6vL774gtntdpaTk8OWLl3q2VNqBhjqgd3/+P2MMcbOnTvHTpw4wU6cOMEmTJjAmjRpwgCwH3/8kSUlJVU+ZhL2lHr//fcZAPbITTcxBnh+mjRhbMoUxt56y/O7SZOrx157ze85ieoB7SmlAUY//tQMFBYWIjk52fCx0LoPNesrqSUnlydHaqxZPnczYIaxIP2rk0P658csY0EeUCeHPMCHWcaB9K9ODulfPkYvU1T7M0lMTMTatWu9+zIhFcAJIP5Xz9PuioqKMHDgQOzfvx9PPvkkAOCnn37Czp07vU/fi4iIQI8ePfDkk0/ik08+wWuvvYaRI0eifv36uPfee1FYWIi2bdt6l8etW7cOTz/9NF5//XXccMMN6NKlCwCgb9++nqferQHwK4BNwP5v9uOee+7x3nnUr18/lJSUYPDgwfjss89w33334ciRI5gwYQKKioqQnJyMDz/8ECEhIfjll18AAN27d0ft2rVx//334+DBg579qjYBSAeu63wdAODaa69FaGgoioqKfD7j/Px8uN1uReN9/PhxTJgwAdfWrYsnDx3C8Tp1cHz9epzavh2YNw949lnP70uXgGPHgIYNgZdfBmbNkn1OtTHL34LqdA2QCk1KcZCWlub3mChryVNTU7F48WKkpqZaug816yupJSeXJ0dqrJQ48oB1eiD988eR/q3VB3mAP04ED5D+9a1F+jcvLpfL0POr7YE1a9ZgxIgRGDFihOeF0wA2ANtmbwPg2YR827ZtSEpK8k5KjR8/Hn369MG0adO8dW666Sbk5ORg9OjRmDZtGlq1aoWvvvoKH3zwgbfX9u3b4+LFixg+fDjmz5+P7t27Y9++fd4aAQEBnqV8DgDrARwHOt3WybPk7i9q166N5s2b4+uvv8awYcPwzTff4JFHHsGCBQu8YxMfHw+3242CAs/+X/Xr10ePHj2wa9cuLF68GCgEcAwAA3Kyc7y1H3nkEXTu3Bnvv/8+Ll++DADo3bs35syZU+V4V6b/Xbt2oaSkBOfT09ERQMeMDHQcNgzt27cvH9yhA3Dx4tWJqYsXKz2vXtA1QDtsjP21WJTwS3Z2NiIiIpCSkuJ9ssLfady4MeLj49GoUSPv0xOsiNvtRlJSEqKiohAcHGzZPtSsr6SWnFyeHKmxUuLIA9bpgfTPH0f6t1Yf5AH+OBE8QPrXtxbp31zEzo2FI9cBABjadijWx603rBctPWCbeXVfsCe7PIl373lXUT25vZbtY+PQjXjghgdUPV/Z+ov6L8KEWybIrilZ/4MHA5s2ee6E8rMJug9HjwKdO3vyNmyoOl5j6BrAT+k8SlZWls8ebH+HNjrnwEjxmYXg4GA0adLE6DY070PN+kpqycnlyZEaa5bP3QyYYSxI/+rkkP75MctYkAfUySEP8GGWcSD9q5ND+uej7CbupU+BMwq9PhM1NnRXo9fgIOnfQeWcLygwSPWa5Sgp8Wxq3qSJz4TUxcyLeP3719H7mt6IuyHON6dTJ0/81q2efEF0Z3QfRrxPWr7HQU5Ojt9jpTecWf3Gs5ycHOzdu7fSsbBCH2rWV1JLTi5PjtRYKXHkAev0QPrnjyP9W6sP8gB/nAgeIP3rW4v0b16KCosMPb9eXnQXuqsOqgI1enXmOzU9X+kSP7k1Jen/7FnPU/aGDvV5+f419+ODwx9g+GfDkeasYKucIUM8eefPV/4mdICuAdpBk1Ic5Ofn+z0mysXI6XTi559/htMp/Y9jdexDzfpKasnJ5cmRGisljjxgnR5I//xxpH9r9UEe4I8TwQOkf31rkf7NS1GxsZNSenlRjck3NXrl2cNLzvnc7son36qqKUn/KSme39HRPi8fSzrm/e/L2ZfL50VFeX4nJVXaox7QNUA7aE8pCUhZCynCWnKCqAzyACEypH9CdMgDhMiIoP9G8xohIScBABB3QxzWDl1rcEfaUHavpcldJ2P+3fMN72Prg1txb6t7Nau/ZMASPHLjI7JrSdL/6dNAmzbAlCmep+xV0MeRfx1Bp+hOvnlTpgALFgBnzgDXXSe7R8IYpO4pRXdKEQRBEARBEARBEAShDdddBwQHA599xpe3YYMn79prtemLMAU0KcUBPQoWSElJwfvvv4+U0lswLdqHmvWV1JKTy5MjNVZKHHnAOj2Q/vnjSP/W6oM8wB8nggdI//rWIv2bF1eB9OVkWqCXF/ML/G/dIhU1es3KytL0fFXtHVRVTUn6t9uBe+8FLl8Gjh+X1tjRo574++4zfJNzgK4BWiLp0w0ICFD888orr2j9XjQnKMj/kwlKn0hR9skUViQ4OBiNGzc2/EmEWvehZn0lteTk8uRIjZUSRx6wTg+kf/440r+1+iAP8MeJ4AHSv761SP/mxQxP39PDi2o9fU9pr4FBgZqeLzCw8vpV1ZSs//l/LYXs0weoYnN1FBQA/fp5/rvMcj8joWuAdkjaU8put6NZs2Zo3rw59wkYY9i7dy9mzJiBadOmyenRcGhPKYKoGvIAITKkf0J0yAOEyIigfxH3lJrSbQrm9TNmQsRye0qVMmsW8PLLQMOGwPbtsH3e2XvIu6fU0aOeCankZOD114EXXpDdG2EsUveUkjzt+n//93+yJ5WMnk1Xi6IiY580YQaKioqQm5uLmjVrVjmrXp37ULO+klpycnlypMaa5XM3A2YYC9K/Ojmkf37MMhbkAXVyyAN8mGUcSP/q5JD+5cNKjH1Oll6fiRrLMdXotbi4WNPzVVVf1fF+6SXP75dfBjp3xsXawIa2QGJNIDZ+NrDte8+SPcB0E1Jm+VtQna4BUrHGbJFO0J5SnjWm77zzjinW0mrZh5r1ldSSk8uTIzVWShx5wDo9kP7540j/1uqDPMAfJ4IHSP/61iL9m5cCVxVLrzRGLy/m56uzp5TSXrOy+faU4j1fTm7Ve0pVVpNb/y+9BFy4AAwejKhcYMpPwFvfAg2XrAKSkoDBg4GLF001IQXQNUBLJC3fKy4uht1ul71OWmm+0ZTedpacnIwGDRpUGCPCbbsA4HK5vO8zJCTEsn2oWV9JLTm5PDlSY6XEkQes0wPpnz+O9G+tPsgD/HEieID0r28t0r+5KLt8b2iboVg/fL1hvWjpgbLL2iZ2mYh37nlHUT25vZbtY9PQTRh0wyBVz1e2/qL+izDhlgmyayrRv226DddmANG5wAePbMb13QaYYlPziqBrAD+qLt8LCFC2yZvSfLNgpPjMQkhICK655hqj29C8DzXrK6klJ5cnR2qsWT53M2CGsSD9q5ND+ufHLGNBHlAnhzzAh1nGgfSvTg7pXz72AGMnDfT6TNTYgkaNXit72JYa5wsKrLy+puNtB87X8/y4r2lm2gkpwDx/C6rTNUAqsj71vXv34pdffqk05tKlS9i7d6+spsxKbm6u32OlN5xJuPGsWpObm4v9+/dXOhZW6EPN+kpqycnlyZEaKyWOPGCdHkj//HGkf2v1QR7gjxPBA6R/fWuR/s1LUaGx++zq5cXCwkLFNdToNb9A+jJCOecrqOJJeFXVFEX/dA3QDlmTUr169ULXrl0xadIkv2tHly5dijvvvFNRc2YjLy/P7zGRzLh7925TmFHLPtSsr6SWnFyeHKmxUuLIA9bpgfTPH0f6t1Yf5AH+OBE8QPrXtxbp37wY/fAnvbzoLnQrrqFGrwX50vfwknM+l8ulqKYo+qdrgHZI2lPq79jtdtSqVQs5OTno168f1q5dW26N4MyZM/HKK69wPS3ArEhZCynCWnKCqAzyACEypH9CdMgDhMiIoP+ye0rF3RCHtUPXGtyRNpTda2ly18mYf/d8w/vY+uBW3NvqXs3qLxmwBI/c+IjsWor2lCrTx5F/HUGn6E6y+yDMh9Q9pWQv2pwyZQqeeuopbN++Hd27d8eff/4ptxRBEARBEARBEARBEAQhGLInpex2O2bPno0PP/wQ586dQ9euXfH999+r2ZvpSEtL83tMlEfBpqam4uOPP0Zqaqql+1CzvpJacnJ5cqTGSokjD1inB9I/fxzp31p9kAf440TwAOlf31qkf/NS1XIvrdHLizx7OflDjV6zsrM0PV9Obo6imqLon64B2qF4e/tx48bhm2++QUlJCfr06YOPP/5Yjb5MSWVPEbTZbD6/rUpgYCDq1q2LwEBJD26stn2oWV9JLTm5PDlSY6XEkQes0wPpnz+O9G+tPsgD/HEieID0r28t0r95sduMfUKaXl5U432q0WtggDYeKCXA7v87rpSaouifrgHaIXtPqRkzZmDatGne186fP4/77rsPZ86cwdSpUxEeHo7XXnuN9pQiCEEgDxAiQ/onRIc8QIiMCPqnPaWM6+OrkV+h/3X9Natvlj2ljv7rKDpGd5TdB2E+NN9T6u9ce+21+Omnn9C7d2/MnTsX8+cbY2AtscIEm1KKi4uRl5dn+Fho3Yea9ZXUkpPLkyM11iyfuxkww1iQ/tXJIf3zY5axIA+ok0Me4MMs40D6VyeH9C8fo5+yptdnUsKUL0dTo9fiEm08UEpVy+7IAx7MMg7V6RogFVXvvaxduza+/vprTJgwwfBHJWpBSkqK32OirKVNTk7GnDlzkJycbOk+1KyvpJacXJ4cqbFS4sgD1umB9M8fR/q3Vh/kAf44ETxA+te3FunfvBQUFBh6fr28mO9UvqeUGr1mZUrfU0rO+bJzshXVFEX/dA3QDlnL96Tw888/w+l0omfPnlqU15XS286SkpLQsGHDCmMaNWqEhIQExMbGIj4+XucO9aOgoAAXL15Es2bNEBoaatk+1KyvpJacXJ4cqbFS4sgD1umB9M8fR/q3Vh/kAf44ETxA+te3FunfXJRdvjekzRB8Nvwzw3rR0gNll5M9cfMTWHjvQkX15PZato/NQzfj/hvuV/V8ZesvunsRJnSdILumEv1Xp+V7dA3gR+ryPc0mpawE7SlFEFVDHiBEhvRPiA55gBAZEfRPe0oZ14fWe0p9OOBDPHzjw7Jr0Z5ShD9031NKBPLy8vweK53bs/ocX15eHn755ZdKx8IKfahZX0ktObk8OVJjpcSRB6zTA+mfP470b60+yAP8cSJ4gPSvby3Sv3kpKioy9Px6ebGwqFBxDTV65VkuKed8LrdLUU1R9E/XAO2QPCkVEBDA/WP04xLVJicnx+8xUcyYnZ2Nr776CtnZla89ru59qFlfSS05uTw5UmOlxJEHrNMD6Z8/jvRvrT7IA/xxIniA9K9vLdK/eSksVD5ZowS9vOh2uRXXUKNXp9Op6fkK8iuf9Kqqpij6p2uAdkhevtemTRvYbDaf11JTU5GWlobWrVv7zTt16pSyDk0ALd8jiKohDxAiQ/onRIc8QIiMCPqPnRsLR64DAC3f07sPrZfvfTTwI4zrPE52LVq+R/hD6vI9ybcy/f777+VemzFjBl599VVLTDwRBEEQBEEQBEEQlWODreoggiAIiSjaU+rvd05ZnfT0dL/HRHkUZlpaGlauXIm0tDRL96FmfSW15OTy5EiNlRJHHrBOD6R//jjSv7X6IA/wx4ngAdK/vrVI/+alqj2ItEYvL+YX5CuuoUav2TnSl1HJOV9ubq6imqLon64B2kEbnXMg2iRcRdjtdoSEhMBuN1Y6WvehZn0lteTk8uRIjTXL524GzDAWpH91ckj//JhlLMgD6uSQB/gwyziQ/tXJIf3Lx+g7pSr6TPbu3YsBAwYgNjYWNpsNmzdvLpfHGMOMGTMQGxuLsLAw9OrVC7/++qtvUBGArwC8BXw04iMMHDiw3JK0jIwMjBo1ChEREYiIiMCoUaOQmZnpE3Pp0iUMGDAATZs2xeOPP44XX3wRbrfvHlUnTpxAz549ERYWhkaNGuGVV16pcF+mst9BZ82ahVtvvRXh4eGIjIyscGxWrVqF3r17IyQkBJ06dapoCMvVb968ORYsWFDu2IwZM9CrVy/yAMzzt6A6XQOkInlPqYqYOXMmXnnlFRQXF6vZk+mgPaUIomrIA4TIkP4J0SEPECIjgv7L7ik1/IbhWDN0jcEd+fL111/jhx9+wI033oghQ4Zg06ZNGDRokE/MW2+9hVmzZmHZsmVo1aoVXnvtNezduxenT59GrVq1AAC2LjbgNIBBwMhbRsKx0YH09HQcOnQIAQEBAID+/fvjypUr+OCDDwAAjz32GJo3b44tW7YAAIqLi9GpUyc0aNAAc+fORVpaGsaMGYPBgwdj4cKFADzfL1u1aoU777wTL730Es6cOYOxY8di+vTpeOqpp/zuKTV9+nRERkbiypUr+Oijj8pNhgHAxIkT0bp1a/z00084fvw4jh49Wi7m73tKvfLAK5g8eTImT57sEzdjxgxs3ry5whql0J5ShD9U31OKsP4tiVIoKSlBUVERAgMDDZ0l1roPNesrqSUnlydHaqxZPnczYIaxIP2rk0P658csY0EeUCeHPMCHWcaB9K9ODulfPkY/Za2iz6R///7o39//ZuCMMSxYsAAvvfQSBg8eDABYvnw5oqKisGrVKvzrX/9CVlYWcBjAYADXAg1aNsDslbPRpEkT7Ny5E/369cOpU6ewbds2HDhwAF27dgUALFmyBN27d8fp06fRunVr7NixA7/99hsuX76M6OhoFBUVYfbs2Rg3bhxmzZqF2rVr49NPP0VBQQGWLVuGkJAQtGvXDmfOnMG8efMwdepU3/fLrn4HnTlzJgBg2bJlfsdmzpw5CAwMREpKCo4fP171eLKqv+O63W4EBgZ6J+bKUtFrVsQsfwuq0zVAKvSXlYPk5GS/x0RZS5uUlIQ33ngDSUlJlu5DzfpKasnJ5cmRGisljjxgnR5I//xxpH9r9UEe4I8TwQOkf31rkf7NS0FBgaHnl6ONP//8E4mJiejbt6/3tZCQEPTs2RM//vgjAODQoUNACYBrPcedeU7ExsaiXbt23pj9+/cjIiLCOyEFAN26dUNERIRPTLt27RAbG+vttXPnznC5XJ5z/BXTs2dPhISEeOv069cPCQkJuHDhgk/vmRmZkt+nnLHJzqp8z6rCwkJvTYfD4f05d+4cWrZsieDgYADW1z9dA7RD8p1SFU3IlG6KlpKS4nfGvGHDhjJbMx8RERF+j5Wu9bX6vlORkZEYPHhwhWuYrdSHmvWV1JKTy5MjNVZKHHnAOj2Q/vnjSP/W6oM8wB8nggdI//rWIv2bl6CgIEPPL0cbiYmJAICoqCif16OionDx4sWrMQEAwjzHSieMoqKivPmJiYkVfr9t2LChT0zpeUp7bd68OYKDg31imjdvXq6Xsr2WUqNmDcnvU87YhIeHAwCee+45vPzyyz7H3G432rRp460ZFuYZHMYYhgwZgoiICOTl5SE/P9/y+qdrgHZInpSKjo6uUGiMMURHR1eYY7PZUFRUJL87k1FqwooQ5WIUFhaG9u3bG92G5n2oWV9JLTm5PDlSY6XEkQes0wPpnz+O9G+tPsgD/HEieID0r28t0r+5KPveAgKNXa6lRFd//4wYY34/t8DAwApj/H0nriimbK9V1Sm9yePvr4cEh0Aqcsam9E6nZ555BmPHjvU59u6772Lv3r3lar744ovYv38/fj54EN3+umvMxhjAGGBRH9A1QDskL9+74447Kvzp2bOn32O33367lr3rTn6+/8eClv4RMXqNtdbk5+fj+PHjlY6FFfpQs76SWnJyeXKkxkqJIw9YpwfSP38c6d9afZAH+ONE8ADpX99apH/zUlxk7EOu5Gij9CaKv9+FlJyc7L1DKTo6GigG8FfZ0psr/h5T0bKmlJQUn5jS85T2mpCQgMLCwgpjyvYClL+by+V2SX6fcsam9KmA9evXR8uWLX1+6tati5KSEp+aK1euxPz587FpxAg07tMHcHg2wIfDAbRtC7zzDlDBBuxVYfZJXboGaIfkSandu3fju+++4/6xEllZWX6PiXIxyszMxKZNmyp80oOV+lCzvpJacnJ5cqTGSokjD1inB9I/fxzp31p9kAf440TwAOlf31qkf/PiLnQben452mjRogWio6PxzTffeF9zu93Ys2cPbr31VgDATTfd5Pl2fN5zvMBVAIfDgZMnT3pjunfvjqysLBw8eNBb56effkJWVpZPzMmTJ+FwOLy9fvHFFwgJCfGc46+YvXv3eieEAGDHjh2IjY0tt6wvLzdP8vuUMzZOp7PS48XFxd6a+/fvxyPjxuF9mw3d3nsP6NQJJX8t8yqJjAQ6dQKefhpo1gzYvl1yDwBgg7knpegaoCFMIrt27WJFRUVSwy1FVlYWA8AyMzP9xjRq1IgBYI0aNdKxM/0pKSlhhYWFrKSkxNJ9qFlfSS05uTw5UmOlxJEHrNMD6Z8/jvRvrT7IA/xxIniA9K9vLdK/uYidG8swAwwzwOLWxRnaS0WfSU5ODjty5Ag7cuQIA8DmzZvHjhw5wi5evOiNefPNN1lERATbuHEjO3HiBHvwwQdZTEwMy87O9sbgZjDUBsNosBELR7B//OMfrGPHjj7fg++++27WoUMHtn//frZ//37Wvn17dt9993mPFxUVsXbt2rHevXuzQ4cOse3bt7PGjRuzJ554whuTmZnJoqKi2IMPPshOnDjBNm7cyGrXrs3mzJnj6WMGGB4BQz2wFXtXePMuXrzIjhw5wmbOnMlq1qzpfc85OTnesTl16hQ7fPgw+9e//sVatWrljXG5XFff51+fJWaAfXjoQ9asWTM2f/78cmM9ffp01rFjR1ZYWMgSEhJYVJ06bIzNxhy9ezPHsWPM4XCw6OhoX/07HIzdey9jgYGMbdtW6WdZto/jiccrjTUaugbwUzqPkpWVVWmc5D2levfujTp16uDee+/F/fffj379+qFmzZoaTJOZF7PfUqgHNpvNu77ayn2oWV9JLTm5PDlSY83yuZsBM4wF6V+dHNI/P2YZC/KAOjnkAT7MMg6kf3VySP8KMPgrUUWfyS+//II777zT+++pU6cCAMaMGYNly5YBAJ599lnk5+fj8ccfR0ZGBrp27YodO3agVq1aVwv1g+duqfXAZ2s/w9197sayZcsQEHB1H61PP/0UEydO9D7Jb+DAgXjvvfe8xwMCAvDll1/i8ccfx2233YawsDCMHDkSc+bM8cZERETgm2++wb///W/cfPPNqFOnDqZOnertGwBQCCANKCm++lS7adOmYfny5d5/d+7cGQDw3XffoVevXrDZbBg/fjz27NlTLubPP/8sdxdW6XhWRWBgIE4fOoSkjAwsB7D822+Bjh2979eH6Ghg82Zg0CAgLg64eBEweHNwNTDL34LqdA2QiuTle6tWrULfvn2xZcsWDBs2DA0aNMA999yDDz74AAkJCVr2aBoyMjL8HhPlUbAZGRlYu3ZtpWNhhT7UrK+klpxcnhypsVLiyAPW6YH0zx9H+rdWH+QB/jgRPED617cW6d+8lF1yZgQVfSa9evUCY6zcT+mEFOD5sj1jxgw4HA4UFBRgz549aNeunW/xIAD3AHgOeHjtw9iyZQuaNGniE1K3bl2sXLkS2dnZyM7OxsqVK8s9qaxp06bYunUr4uPjsWjRIrzyyivep/mV0r59e+zduxcFBZ5lgtOnT/edIGoBYAYQHhHufWnZsmUVvs9evXp5x2bChAlIT08vF1PRhBQA5OXl4cKFC5g8eXK5YzNmzMB3332HtWvX4pYTJ8ACA8EcDp+6pU8j9NF/YCCwZAngdAIrVlR43uoGXQO0Q/Kk1IgRI7B69WqkpKRg+/btePjhh/Hrr79i/PjxaNKkCbp27Yo33ngDv/76q5b9GgoTZJ14ZTDGUFxcbPhYaN2HmvWV1JKTy5MjNdYsn7sZMMNYkP7VySH982OWsSAPqJNDHuDDLONA+lcnh/SvAIOHQrfPRIXyeutHi/MxxlBcVISQjz8Ghgzx3AlVBnexZ5KysKTQNzEmBhg8GFi0yPNUvmqOWf4WVKdrgFRsTOHZjhw5gs2bN+OLL77AsWPHYLPZ0KJFCwwaNAgDBw7EbbfdBrtd8tyXKcnOzkZERASysrJQu3btCmMaN26M+Ph4NGrUCFeuXNG5Q4IwHvIAITKkf0J0yAOEyIig/0bzGiEhx7M6Ju6GOKwdutbgjrTBNvPqnUqTuk7CgrsXGN7H1//8Gne3vFuz+h8N/AjjOo+rPCE1FWjQAFi3Dhg2zLdWbRuQA6AWwLL/NrWwbh0wfLgnv169Svs4Pv442ke1534vhHmRMo8CcNwp5Y/OnTtj5syZOHLkCC5cuID58+ejefPmePfdd3HnnXciKioKY8eOVXoagiAIgiAIgiAIgiD0JjfX87tOHb680vicHHX7ISyFqrcwNW3aFBMnTsTOnTuRkpKCFStW4M4778TmzZvVPI1hJCYm+j0mylpyh8OBmTNnwuFwWLoPNesrqSUnlydHaqyUOPKAdXog/fPHkf6t1Qd5gD9OBA+Q/vWtRfo3L/n5+YaeXy8v5uXlKa6hRq/p6emani8zM7PKmm8vWuT5B+8+Q6XxZTeTr6bQNUA7NFtXFxERgX/+859Yt24dUlJStDqNrlR2y1nppnRWf0JfREQEBgwYgIiICEv3oWZ9JbXk5PLkSI2VEkcesE4PpH/+ONK/tfogD/DHieAB0r++tUj/5iU4KNjQ8+vlxeAQ5e9TjV7Da4RXHaTgfGHhYVXWvGv4cJS0agVs2CC5LgBPfOvWQN26fHkmhK4B2qF4T6lS9u3bh8OHD6OkpAS33347brrpJjXKmgLvWsgv70btGkHlA4qcaPzPXxCflGXpteQEURki7KdAEP4g/ROiQx4gREYE/dOeUsb1YYo9pQDgnXeAp58GLl/22ezc755SDgfQtCkwdy4wcWKVfdCeUtZDkz2l/ve//6FFixaoWbMmevbsiZMnT8LtdmPAgAHo2bMnpkyZgqeeegq33HIL/vWvfyl+E2Yj/6ZlQM8vyv/84xt4h7LYZWSLmpOfn49Tp04Zftuu1n2oWV9JLTm5PDlSY6XElc5vG/1ECq0xgwdI/+rkkP75MYP+9eiDPMAfJ4IHSP/61iL9m5fiomJDz6+XF4uKihTXUKNXl0v690s55yssLKz0uLdmXBwQHg488ghQ1dgUFQGPPuqJHz1aci9mhq4B2iF5UuqLL77A448/josXLyI0NBTff/89HnjgAbz11lv48ssvcdttt2Hq1KkYO3YsIiIi8OGHH+KTTz7Rsnc0b94cNpvN5+f555/3ibl06RIGDBiAGjVqoH79+pg4cSLcbres82VlZVV8wGZDiT0UAMCK84EfRwHOeFnnMDuZmZlYt25dlWuPq3sfatZXUktOLk+O1FgpcaL8DzIzeID0r04O6Z8fM+hfjz7IA/xxIniA9K9vLdK/eXEXyvsupRZ6eZFnMsgfavTKs7eVnPM5nU5pNQHP0/S2bwcGDfLcCVURDofn+PbtwPr1QGSk5F7MDF0DtEPy8r1+/fph37592LNnD26++WYcOnQIPXv2hN1ux7hx47BgwQJv7KVLl9CuXTvceOON2L17t0ateyalHn74YTz66KPe12rWrImaNWsCAIqLi9GpUyc0aNAAc+fORVpaGsaMGYPBgwdj4cKFks9TettZRkYGIv2Yyue23ZNfA0dfAKJ6Aa0nAfa/lvwxBrhSgJxzQM5Zz39f9zgQKH2dsNGUlJTA5XIhJCQEdrtmW5IZ3oea9ZXUkpPLkyM1VkqcCLeuA+bwAOlfnRzSPz9m0L8efZAH+ONE8ADpX99apH9zUXb53rDrh2HdsHWG9aKlB8ouJ5t4y0S80/8dRfXk9lq2jy8f/BL3tLpH1fPxLN8rV3P7diAuDnA6gcGDEb5lHfLzgbAwwDkgDti40XOH1Pr1QN++kt+n2Zfv0TWAH6nL9wKlFjx8+DAGDhyIm2++GQBw0003YcCAAVi3bh0mTZrkE9u0aVMMGjQIW7duldm+dGrVqoXoMmtay7Jjxw789ttvuHz5MmJjYwEAc+fOxdixYzFr1qxKB6YiJH8oke2BnluAC6uA7/oDIfWBor8eoxnaAKh1necnoCnw/RDg1pVASD2uXozCbrcjLKzyzfCs0Iea9ZXUkpPLkyM11iyfuxkww1iQ/tXJIf3zY5axIA+ok0Me4MMs40D6VyeH9C8fozd01+szUeN9qtErz8SALN/YKq9frma/fsDFi8CKFcCiRaibD8QDqJsP4Ngxzx5SY8YABm8IrjZm+VtQna4Bks8pNTAjIwPXXnutz2vXXHMNAM8k1N9p1qwZsrOzFbZXNW+99Rbq1auHTp06YdasWT5L8/bv34927dp5J6QAzx1fLpcLhw4d8lvT5XIhOzvb5wfwjIE/yj0K1mYDWvzTs+dU1yVAr62en25LgRteBJoOA5rFAZ3eBPbFAXkXlQyDbmRkZGDjxo2VjoUV+lCzvpJacnJ5cqTGSokT5XHIZvAA6V+dHNI/P2bQvx59kAf440TwAOlf31qkf/MidysUtdDLiwWuAsU11Og1JydH0/NVtTywwpqRkZ7Ny0+dQoJnkZLn96lTntctNiEF0DVASyTfKVVSUoLgYN/HYpb+OyAgoHzhwEDN11VPmjQJN954I+rUqYODBw/ihRdewJ9//okPP/wQAJCYmIioqCifnDp16iA4OBiJiYl+677xxhuYOXNmude//vprv49GLCgo8P5evXo11/uowe5H18/vwWGMRqat/ASfmXC73UhKSkJOTk45PVipDzXrK6klJ5cnR2qslDglHqhOmMEDpH91ckj//JhB/3r0QR7gjxPBA6R/fWuR/s1FvvPqpscJ8QmGvk+9vPjH+T8Uv081ej1w4ACKfpe26bqc8x05cgSrL/l/n1XVZLarv1evWSPpnBXx9ddf42TISdn5WkPXAH6q2q+sFMl7StntdsyYMQPTpk3zvjZz5ky88sorKC4u/wSGyo5VxowZMyqcECrLzz//7F1GWJYNGzZg6NChSE1NRb169fDYY4/h4sWL2L59u09ccHAwVqxYgREjRlRY3+Vy+Wxsl52djSZNmlS6FlLxWvKCVGD/Q8D1LwBRPfnzCcJgRNhPgSD8QfonRIc8QIiMCPovu6dU3A1xWDt0rcEdaUPZPY4mdZ2EBXcvMLyPr//5Ne5uebdm9ZfevxRjO42VX6u2DcgBUAtg2Xw3pZTt48SEE2jXsJ3sPgjzofqeUgBw8uRJrFu3zuffALB+/fpyd0WVHuPliSee8DtZVErz5s0rfL1bt24AgHPnzqFevXqIjo7GTz/95BOTkZGBwsLCcndQlSUkJAQhISGS+i1hJcgvVOFxiaH1gds3APtHezZAbzpUeU2CIAiCIAiCIAhCEjbYwCDGUxQJwixwbae+YcMGPPjgg96fDRs2gDGGESNG+LxeekwO9evXR5s2bSr9CQ0NrTD3yJEjAICYmBgAQPfu3XHy5Ek4yjyucseOHQgJCcFNN93E3dvkLZMxatMo9P2kLzr9rxNi58Yi5LUQ1HyjJlKdqQAUriUPrAH0WAMk7QYO/gvI9/OYTQNJTEzE66+/XunyRyv0oWZ9JbXk5PLkSI2VEifKfgpm8ADpX50c0j8/ZtC/Hn2QB/jjRPAA6V/fWqR/81KQr3yvJSXo5cWq9lqSghq98uztI+d8WVlZqte0ImYZh+p0DZCK5Dulpk+frmUf3Ozfvx8HDhzAnXfeiYiICPz888+YMmUKBg4c6N14vW/fvrj++usxatQozJ49G+np6Xj66afx6KOPcj95DwCWnlwKVDwfBleRZ7mf4qc02IOALu8Bab8APz0G1L0RaPs0EFRLWV2VqFWrFnr37o1atYztR+s+1KyvpJacXJ4cqbFS4kq1b/QTWbTGDB4g/auTQ/rnxwz616MP8gB/nAgeIP3rW4v0b14Cg7gW26iOXl5UY78eNXoNDwvX9Hz+bvhQUtOKmGUcqtM1QCqS95QyG4cPH8bjjz+O33//HS6XC82aNcOIESPw7LPPIjz8qnEvXbqExx9/HLt27UJYWBhGjhyJOXPmSF6eB1xdC4nn4Z2UCrIHoWGNhoiqGYUTSSdQOLsQyAEiG0YiI0mlneoZAxK+Bn6f61nOd+0jnkkrgjAhIuynQBD+IP0TokMeIERGBP2LsqeUfabdu3zPLHtKbfvnNvRr2U+z+rSnFKEVUveU4lq+ZyZuvPFGHDhwAJmZmcjPz8fvv/+OGTNm+ExIAUDTpk2xdetWOJ1OpKWlYeHChVwTUmX5PO5z/P7v35HxXAZcL7twZeoVHHrsEN6/731vTGZBJvZc2KPovXmx2YBG9wB37gDsIcDue4ASvo3j1cblcuHcuXM+G8FbsQ816yupJSeXJ0dqrFk+dzNghrEg/auTQ/rnxyxjQR5QJ4c8wIdZxoH0r04O6V8+JcXGLlPU6zPhfWBXRajRa2Fhoabnq6o+ecCDWcahOl0DpFJtJ6WMoE2NNmhdvzUiQyN9bs/9v87/hxpBNTz/YMCQdUPwR8Yf6p3YHgBcOw6I6g0k7lSvrgzS09Px6aefIj093dJ9qFlfSS05uTw5UmOlxImyn4IZPED6VyeH9M+PGfSvRx/kAf44ETxA+te3FunfvLjcxn4p18uLBQXK985So9ecnBxNz1fV3llm+dtnNGYZh+p0DZCKpOV711xzjbziNhvOnz8vK9dMlN52lp6ejjp16lQYU3rbLmoBeApo17Adfhz3I2qFqLgW05kAHHka6LFKvZqcFBcXIy8vDzVq1EBAQIBl+1CzvpJacnJ5cqTGSokT4dZ1wBweIP2rk0P658cM+tejD/IAf5wIHiD961uL9G8uyi7fG3b9MKwbtq6KDO3Q0gNll+9NvGUi3un/jqJ6cnstu6ztywe/xD2t7lH1fGXrfzTgI4y7cZzsmqIs36NrAD9Sl+9J2qWupKSk3MZ9brfb+1S7wMBA1KtXD2lpaSgqKgLgeQKeGpvDmQkpH0pgQCCKUISTySfx0KaHsGn4JthtKt2QFh4LlLiBglQgtL46NTkJCAiQtUl8detDzfpKasnJ5cmRGmuWz90MmGEsSP/q5JD++THLWJAH1MkhD/BhlnEg/auTQ/qXj9Ebuuv1majxPtXoNcAufWJAzvns9sq/q5IHPJhlHKrTNUAqkmZLLly4gD///NP7c+TIEcTExOCOO+7A999/j4KCAjgcDhQUFGDv3r244447EBsbi6NHj2rcvr5U9rjM0hvO6obWRWRoJADgi9Nf4OVdL6vbRPOHgAufqluTg6ysLGzZsqXKR4dW9z7UrK+klpxcnhypsVLiSj1QTZ+dIBkzeID0r04O6Z8fM+hfjz7IA/xxIniA9K9vLdK/eSl0S9/jSAv08mKBS/nyPTV6rWp5ndLzOZ1O1WtaEbOMQ3W6BkhF1i08zz33HAoKCvDtt9+iR48e3tlVu92O2267DTt37oTT6cRzzz2narNGU3oXWEWUXoQCbAFYO3St9+6oN/a9gU+PqziJ1OheIOFLz5P5DKCwsBCJiYlcG+5Vxz7UrK+klpxcnhypsVLiRPkfZGbwAOlfnRzSPz9m0L8efZAH+ONE8ADpX99apH/zUsKM3TtLLy+qsUeYGr3ybLgu53xV1TfL3z6jMcs4VKdrgFQk7Sn1d6KjozF27Fi8+eabfmOee+45rFixwrvErzojZS3k39eSv/vTu5i0bRIAICQgBPvG7cPNsTer09CRZ4Cmw4F6KtUjCBUQYT8FgvAH6Z8QHfIAITIi6L/snlJxN8Rh7dC1BnekDWrvKSWXsnstbX9oO/pe21ez+kvvX4qxncbKryXInlIEP1L3lJJ1p1R2drakW12NvrXNSJ685Uk80vkRAICr2IXBawcjOS9ZneLXjAPOf6ROLYIgCIIgCIIgCIIgCAOQNSl1ww03YM2aNX6frHf27FmsWbMG7dpZa6YzOdn/pNLfHwVrs9nw33v/i1ub3AoAuJx9GcM/G46iEv9LACUT0RbIuwgUVb7+VwuSkpIwe/ZsJCUl6X5uPftQs76SWnJyeXKkxkqJE+VxyGbwAOlfnRzSPz9m0L8efZAH+ONE8ADpX99apH/zUlCgfK8lJejlxar2WpKCGr1mZGRoer6qbiQxy98+ozHLOFSna4BUZE1Kvfzyy8jKykLnzp0xZcoUbNiwAd9//z02bNiAyZMn46abbkJOTg5eflnlTb4NJjw83O+x0qczlH1KQ3BAMNYPW4/omtEAgN0XduPZb55Vp5mmQ4DLG9WpxUGNGjXQrVs31KhRQ/dz69mHmvWV1JKTy5MjNVZKXEUesCJm8ADpX50c0j8/ZtC/Hn2QB/jjRPAA6V/fWqR/8xIYIOkB7pqhlxeDgoIU11Cj19DQUE3PFxISonpNK2KWcahO1wCpyNpTCgBWrFiBJ598Ejk5OT5/gBljqF27Nt59912MHj1atUaNRM6eUmX54dIPuHP5nSgs8WwWtvKBlfhnh38qa6owB/hhJNBri7I6BKESIuynQBD+IP0TokMeIERGBP2X3VNq2PXDsG7YOoM70gbaU0pGLZX2lDo54SRuaHiD7D4I86HpnlIAMHr0aFy5cgXLly/HlClTMG7cOEyZMgXLly/HpUuXLDMhVRa32y0rr0fTHni3/7vefz+65VEccRxR1kxQLSC0IZBT8RJKrXC73bh06ZLssagufahZX0ktObk8OVJjzfK5mwEzjAXpX50c0j8/ZhkL8oA6OeQBPswyDqR/dXJI/3zYcHXywOhlinp9JsUl0p965w81euV5Cpqc81X2hHm5NeVg9jsNzfK3oDpdA6Qie1IKAGrVqoVRo0Zhzpw5WLJkCebMmYNRo0ZVOgtWnUlPT/d7rKq15P+66V94uPPDAID8onwMXjcYac40ZQ1dOw74Y6myGpykpaVh6dKlSEtT2LvJ+1CzvpJacnJ5cqTGSokTZT8FM3iA9K9ODumfHzPoX48+yAP8cSJ4gPSvby3Sv3kx+ku5Xl5UY+8sNXrNzsnW9Hx5eXmq17QiZhmH6nQNkIrs5XsiUXrbWVpaGurWrVthjJTbdguKCtBzWU8cjD8IALjrmrvw9T+/RqBd5rpsxoBdfYA7twP2AHk1OCkqKkJmZiYiIyMRGGjcenKt+1CzvpJacnJ5cqTGSokT4dZ1wBweIP2rk0P658cM+tejD/IAf5wIHiD961uL9G8uGs9rjPiceADA0LZDsT5uvWG9aOmBssv3nujyBBbes1BRPbm9ll3W9tWDX6F/q/6qnq9s/Y8GfIRxN46TXVOt5Xu/Pv4rrm9wPVe+ntA1gB9Vl+998MEHOHz4sOxmlOabBaUfSmhgKDbEbUDDGg0BADv/2Ilnv3kWsucFbTYgpi/g2KaoLx4CAwNRv359Q42oRx9q1ldSS04uT47UWLN87mbADGNB+lcnh/TPj1nGgjygTg55gA+zjAPpX50c0r98jF5mpddnYrcpWlQEQJ1eAwKk33wgyzdVbFxPHvBglnGoTtcAqUhy2vjx47F161bZJ1Gabxays/3fOlk6sVTVBFPj2o2xfth6791R8w/Mx/Td0+U3dc3/AX98LD+fk+zsbGzfvr3SsbBCH2rWV1JLTi5PjtRYKXFSPVDdMYMHSP/q5JD++TGD/vXogzzAHyeCB0j/+tYi/ZsXnj2OtEAvL6qxTFGNXp1Op6bny8/PV72mFTHLOFSna4BUJE//ZmZm4tKlS7J+rEJlf5h4LkZ3NLsD/73nv95/v7r3VczcPVNeU6ENgKDaQO4f8vI5cblcOH/+PFwuly7nM6oPNesrqSUnlydHaqyUOFH+B5kZPED6VyeH9M+PGfSvRx/kAf44ETxA+te3FunfvBi9d5ZeXiwuVr7RuRq98kwCyjlfVfXN8rfPaMwyDtXpGiAVSXtK2e12xbdpTp8+HdOmTVNUwyikrIWUs5b83Z/exaRtk7z/fqXXK/hPz//wN5h6ELi8Hug8mz+XIFRChP0UCMIfpH9CdMgDhMiIoP+ye0oNu34Y1g1bZ3BH2lB2T6mJt0zEO/3fMaSPsnst7XhoB/pc20ez+ssHLcfojqPl1xJkTymCH6l7SklaKDhmzBjFDXXq1ElxDasxsetElLASTNk+BQAwbfc0BNgD8OLtL/IVqn8LcPw/QJETCAzXoFOCIAiCIAiCIESldKKGIAhCbSQt31u6dKnin4EDB2r9XjQnJSXF7zG5j4Kd3G0y5vad6/33S7tewpv73uRvrvmDwMU1/HmcJCcnY8GCBUhOTtb8XEb2oWZ9JbXk5PLkSI2VEifK45DN4AHSvzo5pH9+zKB/PfogD/DHieAB0r++tUj/5sXo5UtaeqDs6iBnvvS9nPyhRq+ZmZmanq+qvYPM8rfPaMwyDtXpGiAV5Y8UEIjQ0FC/x0r/gMlZ5ji1+1S8fdfb3n+/8O0LeH7n84jPjpdepOlw4OJaQOO17GFhYejQoQPCwsI0PY/RfahZX0ktObk8OVJjpcQp8UB1wgweIP2rk0P658cM+tejD/IAf5wIHiD961uL9G9eqnpam9bo5UU1nj6mRq/BIcGani8oOEj1mlbELONQna4BUpG0p5ToaLWn1N95c9+beOHbF7z/tsGG25vdjuE3DMfQ64eiYY2GlRc48hzQ5AGgfjdZ5ycIJYiwnwJB+IP0T4gOeYAQGRH032heIyTkJAAA4m6Iw9qhaw3uSBsCXglACfPc8UZ7SkmsRXtKEX6QuqcU3SnFgdaPP33+tufxRu83YIPHnAwMey/uxb+/+jdi5sagzyd9sP/yfv8FrhsPnF2saY+FhYVwOByGPwpW6z7UrK+klpxcnhypsWb53M2AGcaC9K9ODumfH7OMBXlAnRzyAB9mGQfSvzo5pH/5GL1MUa/PRI33qUavRcVFmp6vqvrkAQ9mGYfqdA2QCk1KcZCWlub3mFpryZ+/7Xn89u/fML3ndLSu1/pqfVaCnX/sxF2f3IVfEn6pOLlmC89m5wXarf9MTU3FBx98gNTUVM3OYYY+1KyvpJacXJ4cqbFS4kTZT8EMHiD9q5ND+ufHDPrXow/yAH+cCB4g/etbi/RvXozeU0ovL+YX5CuuoUavWVlZmp4vNydX9ZpWxCzjUJ2uAZJhRJVkZWUxACw1NdVvTKNGjRgA1qhRI9XOW1JSwo46jrIXdr7AWixowTADDDPAomZHsQsZFypOit/G2MlZqvXwd9xuN0tISGBut1uzc5ihDzXrK6klJ5cnR2qslDgtPGBGzOAB0r86OaR/fsygfz36IA/wx4ngAdK/vrVI/+Yidm6s97vI0LVDDe1FSw/YZ9q97/OJrU8orsfT67vvvssaNmzI7HY7A8DQw9PHV6e/8sYAqPDn7bff9p5v9+7drEWLFsxmszEALCYmhh0+fNjnXBgDhppX81u2bMkuX77sE/Ppp5+yOnXqMADMZrOxzp07s7y8PJ+Y2bNn+/TRp08fVlJSUun7PHjwIGvcuLG3P4SD4UGwX5N/ZYwxlpqaWuF7nDdvXqV1AwIC2KBBg8q93rNnTxYaGlpprhToGsBP6TxKVlZWpXF0pxQHQUGVbwKnNjabDR2jO+L13q/j1L9P4famtwMAkvKScM+qe5BZkFk+KaYPkLgLKPnbbZjFblV6CgoKQkxMjO5joXcfatZXUktOLk+O1FizfO5mwAxjQfpXJ4f0z49ZxoI8oE4OeYAPs4wD6V+dHNK/fOx2Y79C6vWZqPE+eXrNyMjAddddh6eeesrn9bIby48cORLNmzfHhg0bcPDgQYwe7dkLqnS/HrfbjQEDBsDhcOD999/H2rVrUVhYiB49eniXYyUkJACfACgGMAQYN30cEhIS0KVLF+95jhw5goceegiRkZHYvHkzZs+ejRMnTqBHjx7emA0bNuCZZ565uvYqGNi5cycGDx5c6fvs1asXMjMzsXz5cmAoPFNOa4DUJM+dOaXjPm3aNBw8eBDr1q3DtddeiwMHDlQ5hlpilr8F1ekaIBWalOIgJyfH7zH2137xTKN940MCQ7B5xGa0qtcKAPBbym8Ysm4I3H+fbLLZgSaDgV13AXsGArsHeH6+6wP8sUJxHzk5Odi1a1elY6EHWvehZn0lteTk8uRIjZUSp7UHzIIZPED6VyeH9M+PGfSvRx/kAf44ETxA+te3FunfvBQVSt/jSAv08qK7UPn/qc/T67Rp07Bv3z68/fbbPq87853e/z527BjGjRuHwYMHo0uXLsjKykKtWrW8G+xv3rwZOTk5mDdvHh599FHExcVhz549yM/Px5w5cwAAS5YsAUoAPAigPXBL/1uwePFiJCYmYseOHQCAN998E4wx7Nu3D//4xz/QuXNnjB8/HkePHkV8fLw3JigoCAj/q7kQ4J577sEXX3zhdynrjz/+CKfTiTlz5mDUqFFAOwDDADBg3659AIA6deoAADp37owuXbpg2LBhmDhxIn788UcJI141Nput3I+UJy3SNUA7ZE1Kde7cGYsXL0Z2drba/ZiagoICv8f0uBjVDauLr0Z+hfrh9QEAu/7chce2PFb+nK0eB3p/B/T8Aui1xfPzj2+BS2uB7LOKesjPz8fx48eRn698jbWZ+1CzvpJacnJ5cqTGSokT5X+QmcEDpH91ckj//JhB/3r0QR7gjxPBA6R/fWuR/s0Lz8bbWqCXF4uKlL9PNXp1u65Ojt1222344osvEB8fj8TERGzZsgWFhYXo168fAODkyZPeuFJatGgBANi2bRsA4PTp054DTT2/Ct2F6Nq1KwBg7VrPUxUvXryI8PBwxMbGet9Dp06dAADr1q0DACQnJyMqKgq4+gA9dOzYESUlJfjhhx8qfC+nTp2C3W7HL7/8gry8PM/dWg7PsXyn7xg98cQTqF+/Pjp27Ij33nsPd9xxh9Qhq5Rjx455f7799lsEBQWhWbNmVebRNUBD5KwNDAkJYXa7nYWHh7MxY8aw77//Xk6ZaoOUtZB6riX/8dKPLPS1UO9655m7Z0pLzL3I2Ld9GCtyadsgISQi7KdAEP4g/ROiQx4gREYE/ZfdUypufZzR7WhG2T2lJn41UZWae/bsYffddx+LiYlhANimTZvKxYwZM6b8Pko1PX3sOLeDMcbYuXPn2MCBA1lISIhP3EcffeSt88ILLzAALDg4mNWpU4eNHTuWPfbYYwwAa9OmDWOMsQceeMCTGwCGGmB9Huzjfa1v376MMcY6derEALCgoCDWpEkT9tJLL7HbbruNAWBPPOHZa6tt27YsICCAIazifa5Kfw4ePOjtb9asWaxBgwYsLCzsakwQGCLAJr802Rv36quvsrvuuouFhoZ697SaNm2az5hNnz6ddezY0fvvgIAAvz1UtKdUcXExi4mJYeHh4SwtLY3zUyWkoOmeUomJiZg/fz5atmyJFStWoGfPnmjbti3mzZtn+G70ItC9SXesfGAlbH9NS0/fPR0H4w9WnVijKXDdeOD4Sxp3SBAEQRAEQRAEUX1hUOfOt7y8PO/dPpVx9913w+FwwOH469ahG3xr9O3bF3/88cf/s3fe4U1V7wP/JN2DUnahZc+yBAWUDSoiG1kiDpaoqIB7/5CpKIpbcSAgXxEZiogIspEhQ6TsIXt10j3SNrm/P0LT1jbpvclNcpucz/P0aXPv+77nzbnvm9OenvMeIiIi+PjjjwkKCiI0NJQpU6awadMmrl27xscff4xer6dGjRqkpKSwaNEi1q9fT4UKFdDr9Rw+fJg1a9aAPxAAZMHGHzZy+fJlfHx80Ov1/P7778TExFC9enUCAgK4evUqb731lmVbXUHNp6ioKFq2bAlFFtQ8/vjjAMybN49HH32UevXq0a5dO8v9nTt3kpiYSJMmTcyrsoYDdYE0yMoo3Kb4xhtvsGTJEv755x+qVatGaGgob7/9dpl93blzZzZt2lTsq3Xr1lZl4+Li2LZtG5XDw+HUKdi50/zdS07S1Ap2TUqFh4czefJkYmJi2LdvHxMmTOD69eu88MILREVFcf/991v2o3oSWjoKdmjzoczsOdPyeumRpfIUaw+B/Ey4tsGudhMSEvj8889JSEiwS18tnO2HmvYdsWWPrhIdubJy5LzlOGQt5ICIf3V0RPwrRwvx7wo/RA4ol/OGHBDx71pbIv61iyHH4Nb2XZWLamxfSkhI4Pz580yZMqXMAuABAQFEREQQERFhvnCzzFFKagq7du3i/PnznDp1is8++4w2bdqQnZ1NRkYGXbp04b333mPt2rX4+PhgMpnYvHkz8fHx7Nixg0uXLpGVlUWtWrVYtmwZtWvXNm+5ewl4HkZPHc2RI0cwGo3Ur1+fJUuW0KxZMyIiIkhLS+PQoUMMGjTIUtOpWbNmAERERJi3vYXefAOhmCepgDvuuIM1a9Ywbtw4dDrzQork5GT++OMPJElix44djBgxwjzx9pBZ/cLZC8X6IyIigmbNmhEcHMw999xDXl4ehw8fttp/RqORXbt2cffdd1u+xo8fb5lMK8rEiRP566+/+HL2bNq//TYEBUGzZtC1q/l7UBAMGQIXLxZ7lmIMcA4OFzpv164d8+fP5/r163z77bd06NCBFStW0KdPH+rXr8/s2bMLZ3vLOf7+/lbvFSRbwXdX8FSHp/DTm6vi/3zyZ/n72Nu+Byfehew4xW0GBATQsGFDAgICFOuqibP9UNO+I7bs0VWiI1dWjpw7csAdaCEHRPyroyPiXzlaiH9X+CFyQLmcN+SAiH/X2hLxr130Pu49K8tVuejj4+OwDSW+btu2jerVq9OkiflgK8yH5eHn54fBYECn05GXl4der2fBggW0bdsWvV5PfHw8JpMJg8FASEgIvr6+7Nq1i6pVq1K9enXAPGFz//33YzAYqFy5MhiAK0AohFUKw2AwTzSOHTsWg8FAREQER48eJTY2lrp161K7dm2SkpIAGDlyJAAdO3Zkx44dhW9AB99++y1+fn5cvXqVxMRExowZY7m9ceNGy88tW7YkKioKlgMnAQkiIiOs9k3BBImtfvTx8bGsNvv3339p1KhRqXWovvrqK+bPn8+jt93Go6++Cj//DDVqwLPPwjvvmL/XqGG+Xq8ezJ5taVuMAU5CzT2DSUlJ0rx586TIyEhJp9NZvvz9/aWnnnpKyszMVLM5l6G1mlJF6b2kt2Xf84GrB+QrJh+WpO2DJMmY7zTfBN6FN9RTEAisIeJf4O2IHBB4M94Q/95YU2rSukmq28dKTally5ZJ3333nfTuu+9KL7zwgrkWkj8S9yF9uOJDKT4+XgoLC5MiIyOlpk2bSgEBAVKHDh0kQPLx8ZE+//xz6ejRo5Kvr6/UoEEDqVq1atIXX3whNW/eXAKkkJAQKT8/X9qwYYOk1+slKiBRGYl+SJWqVZIAKSoqSpIkSfryyy+loKAgqVKlStLtt98uffTRR1JYWJgESB07drT4fPbsWfN1HwprVIE0efJkqU+fPlKfPn2kb7/9VvL395f2798vvf3225Kvr68ESMHBwdLUqVMlqiGhM+v9tOUnSZIkaerUqdLo0aOln376Sdq2bZsUGhpqqQ0VEhJi+fLz8ytRU2rw4MGSyWSS7rvvPum2226TsrKypO7du1tqSsXExEh6vV5qWLmyFANSTKVKUsyKFdLx48dLPqyYGEmqXl2SQJJmzVIvCLwIp9aU+i+bNm1i5MiRREZG8sILL2AymXjttdc4deoUy5Yts5zW9/TTT6vRnNtQ4wQGtRkSXbgM9OeTP8tXDG8FUffBkTcVtZefn09iYqLb+8LZfqhp3xFb9ugq0ZErq5XnrgW00Bci/tXREfGvHK30hcgBdXREDihDK/0g4l8dHRH/9iOZ3HvKoKueiRrbMeX6ev/995OUlMRLL73Ee++9Z76YC/wM7zz/DtWqVWPFihX4+Phw6tQpDAYDf//9NwEBAdx+++088cQTtGjRgm+//ZZr166RkJDAxIkTOX78OD4+PkyaNAkfHx/uuece5s6dCxnADeA3SE5MBmDGjBkATJgwgUmTJpGSksLevXuZMmUK6enpALz77rsWn8PCwqhXr575BD0AIzz66KO88MILbNiwgfHjx5Oamkpubi45OTmYTCby8/OZM2cOFStWNLeXgHm6qQs0a2neFhgcHMyKFSsYMmQIPXr0ICMjg3r16rF3714OHTpk+XriiSdK7cvXXnuNPXv2sHr1aoICAyEvDyQJEhPZsnkzJpOJszducAtwS3IytwwfTqtWrUoaat3avH2venV44w3yz57VxGdBeRoD5GL3pNS1a9eYNWsWDRs2pHfv3qxYsYLu3buzYsUKLl++zKxZs2jcuDEjRozgr7/+om/fvvzyyy9q+u5ytFRTqoBBTQdZCp7/dOInZcoNRkNuMlxZI1slISGBzz77TBN7aZ3ph5r2HbFlj64SHbmycuS8pZ6CFnJAxL86OiL+laOF+HeFHyIHlMt5Qw6I+HetLRH/2iXHkOPW9l2Vi2rVlJLr6zPPPIMkSeaSLNOAysDd8MHKDwC45557uHjxIgkJCSQnJ5Ofn094eDiDBw+2bB29++67eeWVV4iJiSE9PZ2MjAwkSeLWW2+1tPPcc8/BVOA54HV4ddGrQGE9KJ1OxzvvvENeXh5XrlzhwoULjBo1CqBwayFQtWpVYmJioMLNCxXg66+/ZtGiRVSpUoWBAwda3lOXLl2oWbMmAA8++CDXrl0rfJ8hQJGyTy+//DKZmZmWvqhbty5TpkyhQ4cONGrUyPJVuXLlYv2Xn5/P0KFD+eCDD/j5u++IWrUKoqPZtns32QYDVKvGM19+idSqlXnZVUyMpQ2rEzCBgbDBXIs5b/JkMQY4C3uWYfXv31/y9fWVdDqdFBERIb322mvS+fPnbeq89dZbkl6vt6c5t1Ow7CwhIcGqjDuX7Xb5totlmemJhBPKlPMNkrSltySlnrYtl5MkSTFTJUPyWenixYuSwWCw32EVMBgMTvVDTfuO2LJHV4mOXFk5ct6wdF2SnB97WvBBxL9yORH/nuWHyAHlct6QAyL+XWtLxL+2KLp9b9iPw9zqizNzoOj2vSd/fdJhe//1FSvb9/4LL93cDjcYad3JdaXKbN68WdLpdNLJkyettrdgwQIpODhYSk5OLm7/5ntkGtKARwdItWvXlvLzSy/rYjAYpCFDhkh33HFH6b5WuLl9rwKSyWSS6tevLz3//PMl5E6dOiUB0qZNm4q/Tx0SDyEdjy9lC50kSXXr1pU++OCDEtfffPPNYtv3du/eLQUEBEiLnn9eksLCJMnXV5Luv1+Sli+XpI0bzd+HDzdvx9PpJGn9eovuldQr0uwds6VD1w+V6oNUu7Zk8vOTLp4/L8YABcjdvudrz0TWb7/9Rq9evXjssccYNGgQvr5lmxkwYAC1atWypznNYKvQuTu5r9l97Ly0E4CfT/zMq11fla/s4w+3fwN7xkD3X8A3pKRM3HY4Mg2aPIX/wcep02Qy+NdRxXd78ff3p04d5/mgpn1HbNmjq0RHrqyz+7s8oYW+EPGvjo6If+VopS9EDqijI3JAGVrpBxH/6uiI+Lcfvd69hc5d9UzUKHTu7+9P5cqVOX78uOXa+fPnOXToEJUrV6ZOnTpkZGQwbdo0hg4dSs2aNblw4QIsBYKBaHOhc4CFCxcSHR1NtWrV2LNnD1OmTOHZZ5+ladOmFttfffUVnTp1Iicnh40bN/Liiy8yZ84cwsPDLTJz586FOMwn8J2AdX+uY+WKlZb3m5iYyMqVK+nRowc5OTksXLiQdevWsX37douNffv28cgjj7B58+Zi73fLli2cP3+e8ePHl+iLJk2aMGjQIKZMmcJXX31FWFgYrAaqAvUd6mZiY2O57777GNm1K70//JDYHj1g3jx8atakWrVqhYKtW8OKFeYC5v37w9q10Ls3/X/oz6HYQ7y+5XWkN0vZnjp0KLoPP6ROXh64eU6gPI0BcrHrE+Xs2bNs2LCBoUOHypqQAvNywNGjR9vTnGbIyMiwek+6efKdJPcEPBW5r9l9lp9/OqlwCx9AcBS0fAP+GmeegMq8BCYjmPIg5v/g/GLovgbqDCPjtmVcPbiY3L+eAqP7joPNyMjgzz//tPlMtGLfEVv26CrRkSsrR86dOeBKnB17WvBBxL9yORH/nuWHyAHlct6QAyL+XWtLxL92yc9zb00dV+ViXl6ewzYyMjL49ttvadu2LW3btgXM2+fatm3L1KlTAfPk15EjRxg0aBBNmjQx/81cBXgUCCjcRnjq1CkGDx5MdHQ0M2bM4PXXXy+sP3WT3bt307NnT1q1asVXX33Fl19+yeTJk4vJ/P777/At8BVwGp6c+ySDBw8uJrN48WLatWtH586dOXz4MB9++CHNmze33M/KyuLUqVMl+mjBggV06tSJ6OjoUvvju+++4/bbb6dfv350797dPBvxEODg/N/JkyeJi4tj8aZN1DQaqbl5MzVvuYX27dsXFyzYkjZhAvTuDSNGQEoKh2IP2W6gRg0ADm3YIMYAJ2DXpNTMmTNZs8Z2HaJ169Yxbtw4u5zSKllZWVbvuXMwql+pPm0jzB9yB64d4FLqJeVGavSAJk9B0j44Pgf+HAJb+0DFaLjjW/AzbxbOzMln6anbyQq9HfZPVPFdKCMzM5O//vqLzMxMzdt3xJY9ukp05MrKkfOWX8icHXta8EHEv3I5Ef+e5YfIAeVy3pADIv5da0vEv3bJN7p3UspVuajGpFRmZiYGg4HY2FhL/aKCr0WLFgEQFBTEhg0biI+PJzc3l4sXL8J9QEWzjZwccw2vOXPmEBsbS25uLqdPn+a5556z1JIq4IMPPuCNN97g0qVLxMTE8PDDD5fwacuWLfAq8AYwAZre1rTY/apVq7Jnzx4yMjLIzMxk2bJlpKWlFevvHj16IEmSudB5EZYuXcquXbus9kdYWBgLFiwgOTmZpKQkGFn4Pq1x4cIFnnnmmRLXp02bxqFDhwr9+fBDJF9fpOvXLX184cKF4koFq6YSEuDrryErC777zrYDAHFxAOy/dEmMAU5AJ9nx6anX65k2bZpldrc03nnnHV577TWMRqNVmfJCWloaFStWJDU11bzMsBSioqK4evUqkZGRXLlyxcUewsztM5m6zfw8Prr3IybfPrkMDRXY2te8gkpv1y5QgYfh7hwQCNyJiH+BtyNyQODNeEP8R86L5Fr6NQBGtBjBj8N+dLNHzsFnhg8myVywflKHSXzc52O3+KGbXjjZtPHhjdzd4G6n2V9y3xIeav2Q/bbCdJAOVAApTdnUQlE/jj95nOhqpa+wKhNJguhoaNMGli2zXE4zpLHwn4XcVus2utTpAiYTBAWZVz5dugT33w8xMehGnuLm2WGlb9+rU8c8MZWdDW7evlqekDOPAg6cvlcWOTk5srf2CRxnSPQQy88/n/zZNY1W7QiJe1zTlkAgEAgEAoFAIBAIBP8lKQlOnYKhQ4tdfuGPF3hmwzN0XdiVxKxE84RSv35w+TIcPmyWP3WKyrYOWjx0yCzfv7+YkHISdvfqf5cKFiBJEpcvX2bdunXlvrD5f0lKSrJ6z91HwTav1pzGlRsDsOPiDhIynXOEY2JiIl9//TWJiYkQ2ReurSsplJ8F8X86pf1S/dC4fUds2aOrREeurBw5d+eAq3B27GnBBxH/yuVE/HuWHyIHlMt5Qw6I+HetLRH/2sVgcF9dWXBdLhbUcnIENXxNTU11anvp6emq27QHa/MLsiiof1SpUrHLXx/82vLzgWsHzD988IH5e69eEGI+5KuCtZDOyTHXngJuvPGGGAOchOxJKb1ej4+Pj6Uq/7Rp0yyvi375+vpSr1499u/fz8iRI53muDuwtfKrIIkcSiYH0Ol0ltVSJsnEmlO2a37Zi5+fHxEREeZTICq1hRsHSwpdXAYHn3NK+6X6oXH7jtiyR1eJjlxZOXLuzgFX4ezY04IPIv6Vy4n49yw/RA4ol/OGHBDx71pbIv61i17n3tUirspFvY/j71MNX5XsPrKnvbJOGdTKZ59NQkPN35OTy5atWxdmzYL4eBg1CoD0gFLkDh0yy8bHw1tv4dOggSb6oTyNAXKRXVOqR48elg/aHTt2UKdOnRKFzcAc1JUrV+bOO+9kwoQJqhyl6W7KQ00pgL1X9nLHgjsA6Ne4H2tHrXV+o3+Nh1bTIKR24bWtfcE3CNp9DkE1nO+DQBNoIQcEAnch4l/g7YgcEHgz3hD/RWtKDW8+nOXDl7vZI+fgO8MXo2SuiWyrptQnn3zCrFmzSExMxGQy8corr/D2228Xk+nRowd79uwhNzcXnU5HeHg4c+fOZfz48RaZLVu28NBDD1kKoUdFRfH777/TalUri8wrYa/w1ayvuHHjBjqdjqZNm7J161YiIiIsMnPnzmXGjBlkZGSg1+tp164d27dvJzAw0CLz7LPPMn/+fHPhdB3QCHjQdk2pO++8kz179pCTk4NOp6Nq1ap89tlnDB8+3CKj89fBzZrwfn5+5OXlkZycTHh4uPV+9vVlwIABrG6z2nLtxFMneGLYE+zdu1f5KjUrNaWK1qz6/cHfubfRvYU6s2fDG28AcCkMVkVDbCi80+oZWLXKvGUP4K234NVXlfkjAJxQU2rbtm1s3bqVrVu3IkkSY8eOtbwu+rVp0yaWL1/OE0884RETUkXRetH29pHtiawQCcDGcxtJM6Sp3obRaCQtLa2wL2r9Zwtf6gkIrQdRQ+D6etXbt+qHhu07YsseXSU6cmWd3d/lCS30hYh/dXRE/CtHK30hckAdHZEDytBKP4j4V0dHxL8ydBT+ce/uUwZd9Uxsvc/k5GQaN27M888/b1WmRYsWTJs2jbVr17Jy5UqqVavGo48+yokTJwCIj4+n982tYStWrGDlypXk5+dzxx13QMFbuwZznp9DREQE69atY+HChVy9epV27dpZ2lm5ciUvvfQS7du3Z8OGDbz11lscOnSILl26WGRmzJjBhx9+yH333cfWrVuhG/AvsNz2ttMjR47Qtm1bVq5cyf/+9z/0ej0jR44kNja2pLCOYpNgSikaY8qVdTBxonkyqTTfSmPcOHONqNatqZEBz+6FdzYDH35oLmo+ZAhcvGiZkNLKZ0F5GgPkYteaRJPJZPPkPU8lIcF6nSYt7CXX6/Tc1+w+AHKNuXy27zPV24iPj+eDDz4gPj7efKFmL4jdWChwdgE0HA81ezt1UqqEHxq274gte3SV6MiVlSOnhRxwBc6OPS34IOJfuZyIf8/yQ+SAcjlvyAER/661JeJfu7i7ppSrcjErK8vqvalTp7Jz507effddqzKfffYZY8aM4cCBA3Ts2JHNmzcDsHateTfLggULyM/PZ9++fQwdOpShQ4eye/duMjMzoeAsqT3myZqYmBj69OnD6NGj+frrr7l69arF3rx58wgODmbLli20atWKnJwcJkyYwN9//821a+bVbd9++y2RkZEsXbqUHj16QE+gCXACUlJSSvU/MTGRxMREXnrpJY4ePUrPnj358MMPMZlMxMTEFAoWmYeqVq2arS5VjE6nK/FldTvj6NEQHAyPPgr5+bYN5+fDhAnmbX/btxP4BjSaBF3GAqdPm0/ZW7XKfOreTcQY4DxE+XgFVPpP4bSi6G9W4te7uSL/I7c8Ypll/r+t/8efF9UtOF65cmUefPBBKleubL7gFwamXDDmgDEXUo5ApVshsCrkpoKpjA8EtfzQsH1HbNmjq0RHrqwcOa3kgLNxduxpwQcR/8rlRPx7lh8iB5TLeUMOiPh3rS0R/9rF39/fre27KhcdWfVTQIGv/v7+PPHEEwAMHDgQKJz0KrqtqWLFiuYfzty8kE+JiZgC+R9++AGA3Nxcy/2C9qpXrw7A8uXmbZZ5eXkln5s/IMH1f6+X6nuVKlWIjo5mzZo13HfffeTn5/P222/j5+fH7bffXihYsKDGV/26ajExMZavzZs34+fnR926dUsXDg+H5cthwwYYPBiul/6+uH7dfH/DBlixwqynh7NVYFddoHHjUk/ZE2OA85BVNW3cuHHodDreeustatSowbhx42QZ1+l0LFiwwCEHtURAQGkV0LRF+8j2vN71dWb9OQujZGTkqpH88/g/VA+pror9gIAAGjVqVPxi9e4Qtx2MmRDZ37x8EqBaJ0jcA9W7qtJ2mX4oJScB/CqCT8mBVRX7KtiyR1eJjlxZNfujvKOFvnC2DyL+HffDU9FKX4gcUEdH5IAytNIPIv7V0RHxbz/unnxz1TNRoxTN7NmzmTlzJmDut0WLFtG0aVMARo0axaxZs+jevTsbN27EZDJx9913mxUzbxq4BUwnTPTr148ff/yRhIQEHn30UQAu36x5NHToUF577TUmTZrE+++/T0pKCu+//z4AZ8+eBaBnz558//33zJ07l2effdY86XXc3ETcpbhSfdfpdGzcuJHbbruNhQsXAuaaUX/88YelXpTBYICcAgVlfbN69WpYXfi62bRmQPHJwNatWwPmVYhRUVH4+fmxf/9+60Z794a1a2HECKhTh2VNzbWikoMgYt0O2LUQfvrJvKLqt9/gnntk+6uVz4LyNAbIRdYnyqJFi1i0aJHlOMqC13K+PInMzEyr9wr2HLt7jzXAtB7T6FmvJwDX0q/x4E8PYjSpsyc0MzOTvXv3Fu+LWv3MdaXO/w/qPVjkel+49rsq7crywxaSBAm74dwiOPQqbLnHfELgrvth892QX7yYnmL7avrqoK4SHbmycuS0lAPORM3Y0KoPIv6Vy4n49yw/RA4ol/OGHBDx71pbIv61S35ZW6OcjKtyMS8vz2EbY8eO5eOPP+bTTz+lYcOGPProoxw7dgyA6Oho3nrrLY4ePUq1atWoUaMGGRkZBAUFFU7wNIO+I/uyfv16KlSoQIMGDahVqxZ6vd4yafbqq68ycOBAPv30UwICAmjfvj0dOnQACk/u++677+jQoQMvvfSS+VS174Gb51RJlB63kiTx5JNPEh0dzYwZM/jggw+oUqUKffr0sWwLfPXVV+3ee9W5c2d4GMvXtyu/tUxClSYbFxfHtm3bqBweDqdOwc6d5u//3Tbbu7e5FtT773NLLCxfCRuXQJspb0NMDLz/Ply6pGhCCsQY4ExkhdD58+c5d+4cDRo0sLyW83Xu3DmnOu9qMjIyrN7T0mDko/dh6dClRISaT2TYdG4Ts3bMUsV2eno6mzdvJj09vfBiWFO4cQB8QyCgyDK/Sm0g+R95hq/9Due+g6trIeVYyfumPPPEki0/CpAkuPobnF8CeemQkwi7HoArq8E3FOqMgJ7rodMS6PYz1B0BV34p+33aiSO27NFVoiNXVo6clnLAmagZG1r1QcS/cjkR/57lh8gB5XLekAMi/l1rS8S/dnH3pJSrclGNSamgoCDS09MZOnQop0+fRqfT8dxzz1nuv/rqq+Tl5XHy5EkuXLjAuXPnzKuPwgttjH5+NEajkSNHjnD9+nV+++03TCYTzZo1s8j88ssvGI1GNmzYwOuvv87DDz8MQJs2bQDzKq29e/diMBjMK41eBeqZdWs1rFWq71u2bGHt2rV89dVX+Pj4MHLkSPbv309OTo5l9deWLVugIBxyC1dmVa1alTfffNNm31SrVg0aYvnq1L1TqeVyJk6cyF9//cWXs2fT/u23ISgImjWDrl3N34OCCouSFxAeDpMnE/00VHkJ6k2Bzft+hBMnYPJkKNgmqQAxBjgRSVAmqampEiClpqZalYmMjJQAKTIy0oWe2Wbr+a2SfrpeYhqSbppO2nh2o/Ma++dlSYrdVvL6nrGSlHnFtu757yVpzzhJurhckk7Pl6Q/h0vS2UWF93MSJWljN0mKmVq2H/E7JWlLb0k6MstsY/sgSdp0lyQl/W1dx5AsSdsHl21bYBMt5oBA4CpE/Au8HZEDAm/GG+I/8v1IiWlITEMavny4u91xGj7TfSzvc9K6SbJ0AOmVV16RJevr6yt1797d6v333ntPAiQexOLHprObismMGTNGAqQLFy5YtdO1a1fJx8dHMhgMpfs8DYlwJPyRlsQsKVVmzZo1kl6vl9LT0y3XLl26JAHS+PHjJUmSpH///VciGLPPvki1a9eWAGn37t1SXFycVf98fHykwYMHW94j05BOJpyUunfvLgUGBlrkvvzySwmQHr3tNkkyLz2QpNq1JenZZyXpnXfM32vXLrw3a1bJ93nz6/czv1v1p6icQD3kzKNIkiTJqimlBIPBgI+Pj/Wq+AKX0aNeD2b1nMVrW15DQuKBVQ+wbfQ2WlRvoX5jbeaUfr1gC1+jR0u/f30jXFkDnb4H/c19240mwL4nQMqHWv1h94Nw2ydw5nPzCqjIfqXbykuHw29C11Xgf3P2u8Hosn33Dzev8sq6CsGRZcsLBAKBQCAQCAQCryU2Npbt27dbXp84cYIff/yROnXq0LFjR+Lj4xk8eDDjxo0jOjqaCxcuMGPGDPLz8801nW4ybtw4OnXqRIMGDVixYgVffvklt912G383/tsiM+PpGcQ+GEvVqlVZsGABK1asYMiQIcUKfvfr149x48bh6+vLxx9/zJ9//skrr7xiKW5+6tQppk+fzkMPPWReAfMFkAIMLHxPCxcu5IknnmDXrl20a9eOgIAAgoKCGDRoEC+88AIJCQm89tprADz++OMANGzYsHCroa5wtWB+fr6l7pS9HD58mIkTJ9KwcmUm/f03hytVgq++wq9FC6KjowsF582Dw4ehVy944w3ztddfd6htgWuxawfozp07mTFjRrHjI5OSkujTpw+hoaGEhYXxugcGwo0bN6ze0+pRsC93eZk+jfoAkJiVyJ3f3cmx+FK2x8kkKSmJRYsWkZSUJE8hope53tR/a1pJEiTsglMfQsdFhRNSADo9dJgPN/6G7QOg3adQqTXc9iGc+ggyzpXux/E5EP1i4YSUEuo9DBf+Z//7tIEjtuzRVaIjV1aOnFZzQG3UjA2t+iDiX7mciH/P8kPkgHI5b8gBEf+utSXiX7vk5ua6tX1X5WJOTo7Ve8uWLWPkyJGMHDkSMG+fGzlypGXbnL+/PxcuXODxxx+nS5cuPPLII6SlpbFo0SIGDRpksXP8+HEef/xx7rrrLhYsWMCAAQPYt29fsbZOHT7Fww8/zL333suvv/7K448/zqpVq4rJ7N69m2HDhjF48GB27drFyy+/zNtvv11M5tdff6Vfv35mn1MxT0jdCukZ5m1aqamp5ObmWt53zZo1adasGTt27KBv376MGTOG/Px8vvvuO9q3b1+ko25+z4MrV64A0K1bN0vdKXvZsmULJpOJszducAtwS3IytwwfTqtWrUoKt25t3r5Xvbp5YqroVj6VEGOA87BrUur9999n8eLFxWY/n3/+eTZs2ECDBg0IDw9nzpw5rFy5Ui0/NYHaR1y6Ar1Oz9KhS2lXqx0A8ZnxDk1M6fV6wsLC5J+64V/RfPrejkGwfZC5yPiuB2BbP7j4o3mFlE8px63q9NDuM7hzI1S8uV/aJxBu/xr2TsDHmFbcj8xLkHocavW2630RcTdc3wBGg33v0waO2LJHV4mOXFk1+6O8o4W+cLYPIv4d98NT0UpfiBxQR0fkgDK00g8i/tXREfFffnHVM7H1t98zzzyDJEklvv79918AwsPDuXbtGomJiaxatYrExESuX7/O6NHFd3H89ddfGI1GJEkiNzeXX375pcT7+nLdl5hMJiRJIjs7m/nz55fwJzk5GUmSuHHjBkuXLuXll18udr9p06akp6db/OQV4FbzPb1OX+w9denSBYBWrVpx4MAB4uPjWbVqFUlJScTGxlom3iwE3/xegWJ9Ua9ePav9l5+fz88//1zi+rZt28jOzi705777zHsDY2Isdq3WNAsMhA0bzD8XqdulFlr5LChPY4BcdJKkvCJf/fr16d69u+V0vaysLKpWrUq3bt1Yv3496enptG7dmvr165uLn5Vz0tLSqFixIqmpqYSFhZUqExUVxdWrV4mMjLTMEGuJlJwUei3pxYFrBwCoHlKdLY9ssWzlM0km0gxphPiF4Ofj5xwnjLmQdhxC6oJ/ySJ2srnxNxx6DbquAL8w86qrPaOh+UsQ3tJ+u1d+hWtrof18KIcTkO5G6zkgEDgTEf8Cb0fkgMCb8Yb4j5oXxdX0qwAMbz6c5cOXu9kj5+A7wxejZN7h8XT7p/mk7ydu8UM3vfBvkc2PbObO+nc6zf6S+5bwUOuH7LcVpoN0zJNSacqmFor6cfKpkzSt2rTwpslkLmJeo4b5tLwinE8+T93wupYJtWLUqQNxcZCdjW5m4W6c3x/8nXsb3VumH9Kb3nFggSuQM48Cdq6Uio+PJzKysPbOnj17yMnJYezYsQBUqFCB/v37c/LkSXvMa5byvCQ3PDCcjQ9vLLZiquvCrrSZ34Za79ciYFYAld6phP8sf8LnhNPo40Z0WtCJhf8sLGbHZDKRnZ1tX1/4+JtP5HNkQgqg8m2YWk7FuGM4phPzYOs9UKW9YxNSAFEDIKQenPoQk9Fo//v8D470mT26SnTkyjr03D0MLfSFs31Q076If89CK30hckAdHZEDytBKP4j4V0dHxL/92LGmQVVc9UwkHH+favjqrByQa99tOXDmDOTmwrBhxS5P3zadBh83YOjyoaXrDR1q1rt5EqBaaOWzoDyNAXKxa1IqMDCw2BGB27dvR6fT0b17d8u10NBQkpOTHfdQQ8THx1u9Vx72kv93Yio5J5mYuBiuZ1wn31S4DDLVkMrZ5LPsubKHcWvG8fHejy334uLiePfdd4mLi3O5/0WJMzZgwf66pORXhh6/Q9NJ6hhu/grkpZO78W5WfPKEKu/TkT6zR1eJjlxZOXLlIQfUQAs54Gwf1LQv4t+z0EL8u8IPkQPK5bwhB0T8u9aWiH/tYjAY3Nq+q3IxKyvLYRtq+Krkb2p72ktLS1PdpiokJJi/R0QUuzxt+zQAVp9cXbpejRrm7yr7K8YA52HXEXmNGjVi/fr1GAwG9Ho9P/74I82bNyeiSMBcunSJ6tWrq+aoFqhY0XoB7YI9x1qvO1UwMTXwh4H8eelP/PR+VA+pTo3QGlQOqkxmbiaJWYkkZiWSnGP+AHxm/TNEhEYwosUIwsPDGTFihMOnKTj8PsLD6TroWYLq1QO9iic96nTQaipS3ScYkj8MHxXepyN9Zo+uEh25snLkyksOOIoWcsDZPqhpX8S/Z6GF+HeFHyIHlMt5Qw6I+HetLRH/2sXPz0mlPmTiqlwMCAhw2IYavoaGhjq1veDgYJv3XdXfJfKnWjXz99hYZYYKJlMKJqcK7ONYfooxwHnY9df8hAkTeOyxx2jcuDH+/v6cP3+ed999t5jM3r17ad68uSpOaoWgoCCr98rTYBQeGM72MdvJyM0g1D/Uqs9vbHmD2X/ORkLi4Z8fplpwNXrW71n8CE43ERQU5FQ/gsKqQ2hF8z5mR2054Ks9ukp05MrKkStPOeAIzo49Lfigpn0R/56FFuLfFX6IHFAu5w05IOLftbZE/GsXHx+fsoWciKty0dfH8X98q+Grkskxe9oL8Ldt322ffY0bg78/rFwJ8+bJ11u1yqzXsKGq7ogxwHnYtX1v/PjxvPjii2RlZZGSksLjjz/OM888Y7m/detWzp07x1133aWWn5rA1hLOgr3V7t5jLRedTkeFgAo2B8+ZPWcyrs04AHKNuQxaNojpW6YzZfkUZm6dyVd/f0VOvvWjUp1JVlYWBw8eVGVZrTX7yek5ZKUlqGLLXl/t0VWiI1dWjlx5ywF7cXbsacEHNe2L+PcstBD/rvBD5IByOW/IARH/rrUl4l+7GI1Gt7bvqly0esqbAtTwNSdH/t9b9rRnyLW9HdNtn316PfTrB5cvw+HD8nQOHTLL9+9v1lcRMQY4D7uelE6n45133iExMZHExEQ+//zzYjPmnTt3Jjk5udhElSdga7+tJw5GOp2OLwd8Sf8m/QFIz01n2p/T+PjEx0zdMZXH1z7OmNVj3OJbamoqv/76K6mpqU6zf/xiFpnxx1WxZa+v9ugq0ZErK0fOE3OgNJwde1rwQU37Iv49Cy3Evyv8EDmgXM4bckDEv2ttifjXLnl5eW5t31W5WNZkjRzU8DUzM9Op7WVnZatuUzU++MD8vVcvKGtyLicHevc2/6xkZZVMxBjgPHSSt3x6OoCcoww9+SjYrLwsei3pxe7Lu0u9v2L4CoY1H1bqvXLNmS8guC5E9nW3J+UCT84BgaAsRPwLvB2RAwJvxhviP2peFFfTrwIwvPlwlg9f7maPnIPvDF+Mknkl2NPtn+aTvp+4xQ/d9MLdLJsf2cyd9e90mv3vh3zPqFaj7LcVpoN0oAJIacqmFor6cerpUzSp0qSk0OzZ8MYbUL06bNiA7pe2llvSmzfbO3TIPCEVHw9vvQWvvlrC/voH19O7Ue8y/bDYFDiMnHkUsLOmVAH5+fmcOnWKlJQUq8s4u3Xr5kgTAg0Q7BfMpoc3sencJgxGA3qdnhMJJ3hj6xsAPPnbk3Sv251qIdXc7KnKhNSDjPPu9kIgEAgEAoFAIBAIvJPXXzd/f+MNaNuWi2GwKhpiQ4FnnzXXkLp82SxTZEJKUH6wa/ueJEn83//9H1WrVqV169Z069aNnj17lvrlSdy4ccPqPU8/CjbIL4gBTQdwZ8Sd5PyTwxMtnuC+ZvcBkJCVwFPrnnKpPzdu3GDp0qU2n4mj9tduO0p20klVbNnrqz26SnTkysqR8/QcKMDZsacFH9S0L+Lfs9BC/LvCD5EDyuW8IQdE/LvWloh/7ZKbm+vW9l2VizkGx2vnquGrrRIyarSXkZGhuk3Vef11uHABhgyhRgY8uxfe2Qx8+KH5tL0hQ+DiRadOSGmiH1zghzvep10rpWbOnMns2bMJDw/nkUceISoqCl9fx08n0DrecqKGLXQ6HT4+Puj1er7o9wU7Lu4gKTuJFcdXsOLYCoa3GO5SP5z1THQ6HTn6Gvhk71LFlr2+2qOrREeurLP7uzyhhb5wRfyrZV/Ev2ehlb4QOaCOjsgBZWilH0T8q6Mj4r/84qpnosO9OVDUhjPbKzc5ULcurFpF4Js6GiZDRAbsfPW0+ZQ9lYual4ZW+qE8jQGykeygbt26Ur169aTExER71MsdqampEiClpqZalYmMjJQAKTIy0oWeuZ8fjvwgMQ2JaUgBMwOkgT8MlBYcXCDFZcS52zV12NrP3R6UG7w1BwQCSRLxLxCIHBB4M94Q/5HvR1p+5x++fLi73XEaPtN9LO/z6d+edpsfBT4wDWnzuc2W6xMmTJAqVqwo6XQ6CZA6dOggnTx5spju9evXpVtuuUXS6/USIFWqVEn67bffitt/EolwJDB/1axZUzp48GAxma1bt0oRERESIOl0OqlRo0bS5cuXi8l8//33FhuAdOutt0qZmZnFZObOnSuFhIRIgOTj4yP16tVLMplMJd7nqcRTlnaL2iz6tW/fPrP8S0g0RAoPD7f0RVBQkDRhwgSr/bj+zHrJx8dHGjx4cMn+rouEr1lOoB5y5lEkSZLsmlKMi4tj8ODBVKlSxe7JsPKIJGrCI0kS+fn5lr64v8X9DIkeAoDBaGDNqTWMXzOeyHmRTFo3iRvZzln2918/nGZfTVt2+GqPrhIdubLO7u/yhBb6wmXxr4J9Ef+ehVb6QuSAOjoiB5ShlX4Q8a+Ojoh/ZUiq/FasDq56Jmq8ZzV8Lap78OBBunbtyrybp8sZjUbuueceywl9JpOJDh06cPToUd5++23WrFlDpUqVGDhwILGxscDN0/y+ATKAATDp3Unk5eXRuXNny8mK165do1evXuTm5rJ06VLmz5/PtWvXaN++vcWXf/75h4ceegjLgjJ/OHz4MJ07d7bIrFq1ihdffJHo6GjWrVvHyy+/zKZNmxgyZIjV99upUyd69uxJs2bN+PXXX/n111+pVKkSQUFBtGvXziykM7fn6+vLBx98wHfffUdERASnTp2yu5/LQiufBeVpDJCLXZNS9evXV7S31VOIi4uzes9b9pLHxsYye/Zsy4eaTqdj0aBFTO4wmRohNSxy+aZ8Pt3/KU0+acIX+7/AaCq9EL5afqhNgf2cfB/Is73PWq4te3y1R1eJjlxZOXLemgOe6IOa9kX8exZaiH9X+CFyQLmcN+SAiH/X2hLxr11ychyvteQIzsyBoluWsrKyHLanhq9Fa/scOHCAX3/9lWeeeQaASZMmcenSJf7++28Adu3axeXLlxk/fjwvvfQSAwYM4MiRI5hMJl588UUA/vjjD8gF+gG3QdM7mrJ9+3ays7N57733APj666/Jz89n7dq19OjRg+vXr/P2228TGxtr1gfmzJljnrgIvulcAEyePJlDhw5x9epVi4yfnx87d+6kT58+zJ49m759+7JmzRqr+XL27Fm2bt3KokWL6N+/P717m0/My87O5vTp04WCZ2DZsmVMmTKFhx9+mGeeeYZz587Z3c9F0el0Jb78/PzEGOAk7JqUevrpp1m7di3x8fFq+6NpKlasaPVewQeYu/eYOpvw8HDuu+8+wsPDLdcqBFTgoz4fce35a+wet5sXOr5AsJ/50ykpO4kn1z3JsBXDVJ1tLc0PNSmw71uxMWReUMWWPb7ao6tER66sHDlvzgFP80FN+yL+PQstxL8r/BA5oFzOG3JAxL9rbYn41y7+fv5ubd9VuRgQEOCwDTV8DQ0NtXqvYOKscuXKACQlJQHQq1cvi0xwcDD+/v7s2bMHgGPHjplvNDJ/CwkOoX79+gCsX78egFOnTqHT6ejYsaPlPXTv3h2AH3/8EYCLFy8SHBxcbEahY8eOACxfvhyA+Ph4atSoUawvb7nlFkwmE7t2lV67d8+ePVSsWJHbb78dgDVr1pCamkpYWBi7d+82C50FJLh69SrR0dHUrFmTWbNmFVvJ5QgxMTGWr82bN+Pn50ft2rXFGOAk7KpO3r9/f7Zt20anTp2YOnUqbdu2tTphU6dOHYcc1BJBQUFW73nLYBQUFETr1q1LvafX6elYuyMda3dkyh1TeHnTyyw9shSA1SdX89n+z3i6w9NO90NV+2camSelwls6bstFukp05MrKkRM54Dk+qGlfxL9noYX4d4UfIgeUy3lDDoj4d60tEf/axcfXx63tuyoXfX0cP8hLDV8DAwKt3lu4cCFdunShZUvz3yoFk1OLFy/mrrvuIiQkhHnz5mEwGEhJSQGgatWqZuWdwF1gyi9cRVWw6KRatWpIksTcuXOZMmUKtWvX5tFHHwXgypUrlraysrKgwD0TfPTRRwCWFUshISGcPn2azZs307NnT/7991/LpNaJEydKfU+xsbFUr17d8nrBggX07t2bf//9t3D1TjIgmRfL5ObmYjAYqFq1KkePHiU3Nxd/f+sTp6tXry49V4s87oJnZjKZiIqKws/Pj7///tvSv+6kPI0BcrFrpVS9evVYtWoV586dY+zYsbRp04b69euX+GrQoIHa/rqV7Oxsq/cKVgG5e4+ps8nOzubIkSM2+wIgKiyK74d8z8/3/2y59uLGFzmRUPqHj7P8cNS+wa8mZFxQxZY9vtqjq0RHrqwcOZEDnuODmvZF/HsWWoh/V/ghckC5nDfkgIh/19oS8a9djPnqluVQiqtyMd+Y77ANNXw1GAxW7124cIEffvjB8tpoND+bf//9l8qVKxMcHMy2bduIioqyTMSEhYWZZwFOA2/BhM4TSE1NpUKFCuhvnmJXo0YNatasyfvvv09wcDA1atSgTp06llPYAaKiomjSpAkU7ObMhH79+gEUk2nZsiX9+/fH39+fO+64g0GDBgHg42N9crPA1ytXrrBhwwbGjx+PJEmFk0kSYIKvvvqKQ4cOsXr1aqpUqcKZM2fYunWrTZudO3dm06ZNxb6oUaoKnTt3Ji4ujm1bthB0+TJnFy8mOyYG3LhVtzyNAXKxa1LqkUce4ZFHHmH06NGWn0v7evjhh9X2162kpqZavectg1FKSgo//fSTZaa9LAY3G8zT7c2ro3Lyc3jwpwfJNea63A977aeaqkPSXlVs2eOrPbpKdOTKypETOeA5PqhpX8S/Z6GF+HeFHyIHlMt5Qw6I+HetLRH/2iU3z/Hf5R3BVbloazJILmr4mpFZsr7tpEmTAJg5cyZRUVGW6wU7ez766CNSUlK4fv0669evJyMjw3JIWUREBJiAx4AXYc6aOSxZsoTs7Gxq1aplkcnKyiI2NpaDBw/ywgsv8PTTT2M0Gi1b/SIiIggMDISC3YWh0KNHDwCaNWtmkalbty4ZGRlcvHiR2NhYi7611TgRERGWWs4LFy6kSpUqDBw4kISEBGrUuDl7VMH8rUuXLjRr1oxBgwbxzTffAOZi67aoVq0ad911V7EvSlmMNnHiRP766y++vOUW2nfrRlCbNjQcM4agNm0gKAiGDIGLF2225QzK0xggG5tn8wkkSSo8yjA5OdmqjDccBStJkmQ0GiWDwSAZjUbZOpm5mVL0p9GW4zhf2fiKW/yw2/7BFyXp/NLCm4YUSTo8zT5bjvjhBB25snLkRA54jg9q2hfx71loIf5d4YfIAeVy3pADIv5da0vEv7ao9X4ty+/yw5cPd6svzswB3xm+lvf51G9POWzPXl8LfGAa0qazmyzXTSaT9NRTT0m1atWSAOnnn38uppefny9FRERIc+bMsVw7evSoBEiTJ0+WJEmSUlJSJPRIDDPbX3JoibR8+XIJkL7++mtJkiTp+PHjEiDt3bvX8h5effVVCZD27dsnSZIkrVu3TtLr9RIhSIBEBaQhQ4ZIgHTjxg1JkiTp888/l8LDwyWDwWDxp23btpKfn59kMpmKvc9TiaeKtf3XX39J9evXl55//nnpr7/+kgDp5MmTZvmnzW1u2lTYN2vXrpUAafHixaX244Z/N0g+Pj7S4MGDS/Z3XSR8zXKSJElffvmlBEiPgiSBJNWuLRmfeUbKmz1bMj7zjCTVrm2+DpI0a5aiZ+so5WkMKJhHSU1NtSnn+EZZL6JgGaI3o9frbe7RLY1gv2D+N+R/3PHNHeSZ8nhn1zv0bdyXrnW7utQPu+3f8hbsuA/0/lCjJ+x5GLKvQfSL4Bts25CDvtqjq0RHrqyz+7s8oYW+cGn8u9GWiH/toZW+EDmgjo7IAWVopR9E/KujI+LfftxdO8tVz0SH4+9TDV/1usK/QR977DGWLVvGBx98wIQJE4iJiSE0NJQ6derQpEkTfHx8uPPOO5k5cyZhYWHk5eXx6quvEhgYyKxZs4Cbh3fVAX4HjPBL4i+snr+aatWqMXbsWACio6OJjo7moYceYtasWezbt4958+bRokULSzHxe+65h+rVqxMbf7POUzb89NNP9O3bl0qVKgHQu3dvXnnlFYYMGcKYMWNYtGgR//zzD5MnTy6Mo4PAWjja5ShN7mpCdHQ09957L6NGjeL8+fO0a9eOCRMm0L9/f5o2bWrWuQFEwOOPP84777xDXFwcr7zyCkFBQTzwwAOl9qPc53n48GEmPvEEDYFJlSpx+KuvoEkT/Pz8iI6ONgt98AEcPgy9esEbb5ivvf66LPuOUp7GANltOqIcGxvL559/zuTJkxk/frzlekJCAvv27XP7nnu1SU5OtnrPW46CTU5OZsWKFTb7ojRurXkrM3rOAEBC4uGfHyY1x/p2SGf5YZd9vS90WgLZV2H3QxD9AkQNgeQYp/tqj64SHbmycuREDniOD2raF/HvWWgh/l3hh8gB5XLekAMi/l1rS8S/dsnNde/2PVflohrb99TwNT093fLzN998Q0ZGBhMmTABg2rRp9OrVi3Hjxlna8/PzQ6fT8eSTTzJlyhSqVq3K7t27qVChQqHRmoAB+BlWfraSJk2acODAgWJ1nlq1asXFixe5//77mTdvHu3bt2fnzp2W+z4+PuateAVhnw8DBgzgp59+ssiEhYVRr149fv/9d4YPH87GjRt59NFH+fDDDwt9MQAmMOQU9vf333+P0WjEx8eHxx57jNatW7NkyZJCHT/ABy5fvsywYcOYNGkSERER7Nu3Dz8/Pzt72syWlSsxSRJngVuSk7ll+HBuueUWWrVqVfxZtm5t3r5Xvbp5YspFW/nK0xggF7tXSn3++ec8//zzlmTV6XQsWLAAMFft79ixI/Pnz7ckjCcgeck+cVuYTCYMBoNdg+6LnV5k3Zl1/HnpTy6mXmTy+sksHrzY5X7YZd8/HJpONn8BGHPgxgGo1tGpvtqjq0RHrqyz+7s8oYW+cHn8u8mWiH/toZW+EDmgjo7IAWVopR9E/KujI+Lfftz9N5Grnoka71MNX01SoW5ZPplMJu6++27ef/99Sw2pUul98wuY32s+j3d6vIRIwSl5SUlJ/P777/Tp04fw8PBiMrt370YXpoN0oAKsWbOm2P2qVasSE1PGP/I7mr/a3dHOcqly5cpcuHDBuk59YAIY3lQ2cZifb6V4/djCH585epRnAGJizBNPNynoh2LPMjAQNmyAtm3huedg1SpF/thDeRoD5KKT7Mi2X3/9lUGDBtGuXTumTp3K77//zvz58y3V/gHatm1LrVq1+O2331R12B2kpaVRsWJFUlNTzacVlEJUVBRXr14lMjLSckymoCQXUi7Q+ovWpOeaZ/x/HPYjI1qMcLNXdpATD/+8CB3tm1TzREQOCLwZEf8Cb0fkgMCb8Yb4j5wXybX0awAMbz6c5cOXu9kj5+A30498k3ni4un2T/NJ30/c4odueuFWsy2PbKFn/Z5Os//9kO8Z1WqU/baKTEpJacqmFor6cfrp0zSu0liRjvSm7faKyv7x0B/0atjLtpwJpDn+UKMGXLpUTCYpK4mdl3ZyT8N7CPILKm6gTh2Ii4PsbBAlfyzImUcBO7fvzZ07lzp16rB161b69+9P9erVS8i0atWK48eP22Ne4MHUC6/HZ30/s7x+fO3jnEs+50aP7CSwOhgS3e2FQCAQCAQCgUDgdNSoryQQ2MLdtcoAGicBubkwbFiJe3d9dxeDfxzMk+ueLKk4dKhZ7+xZ5zvpgdg1KXXo0CH69etHSEiIVZnIyEjLUY6eQmxsrNV73rKX/Pr168yYMYPr16/bbeOh1g9ZVkel5KRw34/3kZWX5XI/HLbvGwJ5JY9otcuWirpKdOTKypETOeA5PqhpX8S/Z6GF+HeFHyIHlMt5Qw6I+HetLRH/2iUnJ8et7bsqFzOzMh22oYavSTeSnNpecort2kFa+exzBdUL/iSNiChxLybOvA1x0aFFJRVr1DB/d8H8R3kaA+Ri16SUyWQqs4BYQkICAQEBdjmlVYoVh/sPBTO7WpjhdSZhYWH07dvX5vK7stDpdHzV/yuaVGkCwOG4w0z4dYKifdtq+OGw/UptIfmQOrZU1FWiI1dWjpzIAc/xQU37Iv49Cy3Evyv8EDmgXM4bckDEv2ttifjXLr6+7j3A3VW56GjBbFDH1+Dgsk/7dqS94CDb9rXy2ecK4gu6wsZilFIpmIwqmJxyIuVpDJCLXTWlbrvtNnQ6HQcOHABg+vTpzJgxw1JTKj8/n+joaGrWrMmOHTvU9dgNiJpSzuFEwgk6fNOBjFzzaqMPen/AM3c8416nlHD9D0jcA63edLcnmkDkgMCbEfEv8HZEDgi8GW+I/6h5UVxNvwp4T02pp9o/xad9P3WLH95YU+rMpDM0qtxIkY4ra0rZbFfUlCoVp9aUevDBBzl48CCzZs0qcc9oNPLCCy9w7tw5HnnkEXvMaxZbS1UL5vbcfRqFs8nJyeHUqVOqLNuNrhZd7PS9lza+xNkb8vbhqumH3fardwdjNmzrD2lnHLOloq4SHbmycuREDniOD2raF/HvWWgh/l3hh8gB5XLekAMi/l1rS8S/dil6uJU7cFUu5hutnNSmADV8zc3NdWp7eXl5qtsst+iBfv3g8mU4fFiezqFDZvn+/V0yIVWexgC52NVrkyZNonv37rz55ps0bdqUVTePPhwxYgSNGzfm448/plevXowfP15VZ91NSkqK1XveMhglJyezbNkykpNt7z2Wy5DoITx3x3MA5JnyeGXzK27xwy77PgHQZg50+Ar2PwFpp1T31R5dJTpyZeXIiRzwHB/UtC/i37PQQvy7wg+RA8rlvCEHRPy71paIf+1S1iSGs3FVLhpyDA7bUMPX9Ix0p7aXmWm7dpZWPvtcxgcfmL/36gVlTczk5EDv3uaf581zrl83KU9jgFzs2r4H5hnb6dOnM3/+/GIOh4WFMXHiRKZPn46/v79qjrqTgmVnN27coFKlSqXKeMOyXTD/ZyQnJ4fAwEB8fHxUsZluSKfRJ42Iz4wHYOfYnXSu09nlfjhkPzsWdj8Id26C/9QTcMRXe3SV6MiVlSMncsBzfFDTvoh/z0IL8e8KP0QOKJfzhhwQ8e9aWyL+tUXR7XvDooexYsQKt/nizBwoun3vyXZP8lm/z8rQsI29vhbdKrbxoY3c3fBuVdsrav9/g//Hg7c8aLdNj9q+V2Bz9mx44w2oXh02bIA2bUrKHDpknpCKj4e33oJXXy3TdzUoT2OA3O17dlep8/f3Z/bs2cyaNYtTp05x48YNwsLCiI6OdutA7Uw89X0pwcfHx+api/ZQIaACM3rM4InfngDg+T+eZ8/4PTaLRTrDD4fsB0VAlQ6QtB+qdnDMloO6SnTkyjq7v8sTWugLzcW/k2yJ+NceWukLkQPq6IgcUIZW+kHEvzo6Iv7tx90F3V31TNR4n2r46qOX/zeoPe3py9hy5pU58Prr5u9vvAFt20Lt2syrBbGhEJEBLKhj3rIHLp2QgvI1BsjF4U2POp2OZs2a0alTJ1q2bOnREzdi+565D1avXm2zL+xh/K3jaVGtBQB7r+7lx2M/usUPh+zXfQAu/qCOLQd0lejIlZUjJ3LAc3xQ076If89CC/HvCj9EDiiX84YcEPHvWlsi/rWLu7fvuSoXDQbHt++p4WtGRoZT28vKylLdpkfw+utw4QIMGQJxcTy7F97ZDM/uxVzUfMgQuHjRpRNSUL7GALnYvVLq2LFj7N+/n8TERACqVatG+/btad68uWrOaQ1bRf28ZTDKz8/nxo0b5Oc7XvivKL56X9675z36fN8HgJk7ZjKy5UiX++GQ/fBWkHoMTEYo8h8NR3y1R1eJjlxZOXIiBzzHBzXti/j3LLQQ/67wQ+SAcjlvyAER/661JeJfu5hMJre276pcNEmOv081fFVSWN6e9sp6nlr57HMLdevCqlVgMtHoGR8iMsyrpf790H2n7JWnMUAuimtKbdq0ieeee45jx46Ver9169bMmzePnj3VPbbSncjZC+kNe8ldQccFHfnryl8AnH76NI2rNHazRwo5OstcX0rKg3afgt7P3R65DJEDAm9GxL/A2xE5IPBmvCH+i9aUGt58OMuHL3ezR86haE2pp9o/xad9P3WLH0XrF20dvZUe9Xo4zf4PQ3+wuRigTFueWFPKwXYFZpxSU2rlypWMGjWK/Px86tWrR9euXalVqxaSJHH9+nV27NhBTEwMvXv3Zvny5QwePNjR9yHwMgY3HWyZlFp7ei3PdnzWzR4ppOkUSP4HEnbCtd8haqC7PRIIBAKBQCAQCAQCr8bdtdAE1pG95iw5OZnHH38cPz8/Fi9ezNmzZ1m8eDFvv/02c+bMYfHixZw7d46FCxfi5+fHY489RmpqqjN9dzlxcXFW7xUse3T3clZnExsby9tvv01sbKxT7A9oOsDy89oza93mh932/SpA9W7Q8FG48L1jtuzUVaIjV1aOnMgBz/FBTfsi/j0LLcS/K/wQOaBczhtyQMS/a22J+NcuOTk5bm3fVblYVq0lOajh640bN5zaXlm1g1zV3zrEpJEcytMYIBfZk1Lff/89ycnJfPrppzz88MOlzjTqdDpGjx7NJ598QmJiIkuXLlXVWXdjqwp9QX94+gxsaGgoPXr0IDQ01Cn2o6tG06BSAwB2XNxBak7pE5vO9sNh+4HVQTJBToJDtuzRVaIjV1aOnMgBz/FBTfsi/j0LLcS/K/wQOaBczhtyQMS/a22J+Ncuvr52lyVWBWfmQNGJET8/x8twqOFrUFCQU9sLDAxU3abAeZSnMUAusmtKDR48mL///ptLly6V+YFrMpmoW7cut912G6tXr1bDT7ciakq5lim/T+HjfR8D8OOwHxnRYoSbPbKTK79Awm5oMwe84JcUkQMCb0bEv8DbETkg8Ga8If69paaU/0x/8kzm0wVFTSmZtlSqKfXvpH9pWLmhIh0lNaU2PryRuxvcbbdNUVNKOXJrSsleKXX48GG6du0q6z8Aer2ebt26ceTIEbnmywVqHAta3jEYDJw7d86pfVF0C9+vp391ix+q2I8cCAFVMO4ew/l/T9hlyx4/lOjIlXXFcy8vaKEvykX8q2BLxL/20EpfiBxQR0fkgDK00g8i/tXREfFvP+7epuiqZ6Lk1DtrqOFrbm6uU9vLy8tT3abAeZSnMUAusielkpKSiIqKkm04KiqKxMREu5zSKsnJyVbvecte8hs3brBkyRJFe5uV0q1uNyr4VwBg3Zl1GE0lBwRn+6GKfZ0Omr9EasXeGLcOIOX6cZf4oURHrqwcOZEDnuODmvYdsSXiX3toIf5d4YfIAeVy3pADIv5da0vEv3ZRMkniDFyVi2rUzlLD1/T0dKe2l5GRobpNgfMoT2OAXGRv3/Px8eHNN99k6tSpsgxPnz6dmTNnkp+f75CDWqBg2VlSUhKVK1cuVcYblu0C5Ofnk5GRQWhoqFP3kw9fMZyVx1cC8OfYP+lSp4tL/VDTfn5+PlnX9hB6bTH6O75xuh9KdOTKypETOeA5Pqgd//baEvGvPbQQ/67wQ+SAcjlvyAER/661JeJfWxTdvjcsehgrRqxwmy/OzIGi2/cm3jaRz/t/7pA9e30tulVs80ObubPhnaq2V9T+/wb/jwdvedBum2L7nmspT2OA6tv3ZM5dOayjZdxd1E8L+Pr6Eh4e7vS+6N+4v+XnFcdKDnrO9kNN+76+voTV6Yo+6zIozAl7/FCiI1fWVc+9PKCFvihv8W+vLRH/2kMrfSFyQB0dkQPK0Eo/iPhXR0fEv/24u6C7q56JXi/7T2WrqOGrj4+PU9sry77IAW1RnsYAuSjKtJ07d/Luu+/K+tq5c6ezfHYbqamlnwQHhRNwnjYR919SU1P57bffbPaFGvRr0o9AX/NJEF8d/Irr6ddd6oea9gtsGYKaQOpRp/uhREeurBw5kQOe44Mz4t8eWyL+tYcW4t8VfogcUC7nDTkg4t+1tkT8a5eyahA5G1flohrbFNXwNSPT9vY6R9vLyspS3abAeZSnMUAuiqa/Nm3axKZNm2TLu3sWXW1sfQB7y2CUm5vLlStXnL6XvGpwVZ5s9yTz/ppHTn4Ob/35Fp/0/cRlfqhpv8BWdqOeBFxbB+GtzCumZOSHPX4o0ZErK0dO5IDn+OCM+LfHloh/7aGF+HeFHyIHlMt5Qw6I+HetLRH/2sXdtbNclYtqFDpXw9f8PPnlcOxpr6xyO1r57BOYKU9jgFxk15RavHixXQ2MHj3aLj0tIWcvpDfsJXc18ZnxNPioAZl5mfjp/Tgz6Qx1w+u62y37MebC5p6g84F6D0Ljx93tkaqIHBB4MyL+Bd6OyAGBN+MN8V+0ptTw5sNZPny5mz1yDkVrSj3V/ik+7fupW/woWr9o2+htdK/X3Wn2fxj6AyNbjrTflqgpJbCC3JpSsldKecLkkqB8UT2kOlNun8JbO98iz5THrB2z+Hrg1+52y358/KHZM1CxJRydpWxSSjKB0QC+QU5zTyAQCAQCgUAgEAg8ER2etYvLk3C8epsXER8fb/WetxwFGxcXx/vvv09cXJxL2nuh0wtUDKgIwMJDC4mJjXGJH2raL2arznCoGA25yYp0U2M+g+NzlLenkqwcOZEDnuOD0+LfBboi/p2LFuLfFX6IHFAu5w05IOLftbZE/GuXnJwct7bvqlwsq9aSHNTw9UbyDae2V1btIK189gnMlKcxQC5iUkoBQUHWV6kU1M/ytDpa/yU4OJj27dsTHBzskvYqBVXixU4vAmCUjIxcNZLM3EyMvkbOR5xn1v5ZfHPwG3Ze2smRuCOcSz6H0eT4/m8132eptoKjIPOyfN0bmyDtpP3tOSgrR07kgOf44PT4d6KuiH/nooX4d4UfIgeUy3lDDoj4d60tEf/axd2nsLkqF9V4n2r4GhgQ6NT2/P39VbcpcB7laQyQi+yaUlrlt99+Y8aMGRw+fJiQkBC6devGTz/9ZLl/6dIlnnrqKbZs2UJQUBCjRo3ivffeKzP5iiJqSrkXQ76Bjgs68k/sPwAMiR7CsfhjnEo6Vap8VFgUz93xHGPbjqViQEVt/oJwbjHoA6CejP3buSmw91Ew5kCPtU53zV5EDgi8GRH/Am9H5IDAm/GG+Bc1pVyLqCklT0dJTalND2/irgZ32W1T1JRSjtyaUuV6pdSqVat4+OGHGTt2LDExMezatYtRo0ZZ7huNRvr160dmZiY7d+5k2bJlrFq1iueff96u9sSJA+Y+uHz5skv7IsA3gGXDlhHiFwLATyd+sjohBXAl7QrP/fEcld6phN9MP+p+WJd3d71LVp78Jbhqvs9SbVXrDFdWw76JkHLUqq7x75fI2TSA/Ii+5gLpplJOx8i4AHsnwPklin2XK+uO565VtNAXzvbB6fHvRF0R/85FK30hckAdHZEDytBKP4j4V0dHxL/9uHuboqueSb5R/ql31lDD17x86yfAq9GenNP3RA5oh/I0Bsil3E5K5efnM2XKFObOncsTTzxBkyZNaNq0KcOGDbPI/PHHHxw/fpz//e9/tG3blrvvvpv333+fr7/+mrS0NMVt3rhhfT+vt+wlT0pK4ttvvyUpKcml7Tap0qTEfyoiiGDhPQv56N6PmHL7FB5t+yi9GvQqJmOUjFxKvcTLm16m4ccNmbtrLsnZZddzUvN9lmortCEEVIba98HB58BUymCTHUdu8ik+O9iBhJDeENoAMs6VlDv/HdQeApdXQcZ5Rb7LlZUjJ3LAc3xwevw7UVfEv3PRQvy7wg+RA8rlvCEHRPy71paIf+3i7skJV+WiGrWz1PA1LVX+3632tJeRkaG6TS2iyd0zdlCexgC5lNvte/v27eP222/n22+/5eOPPyY2NpY2bdrw3nvv0aJFCwCmTp3KL7/8QkxMjEUvOTmZypUrs2XLFnr27CmrrYJlZ4mJiVSpUqVUGW9YtguQl5dHcnIylSpVws/Pz6VtS5LEq5tf5au/v2Jki5G8cusr1KxWs4Qfx+KP8cm+TziZeJI0QxoxcTGYpMJfEoL9gnmk9SNMvn0y0dWiS21LzfdZpq3z30PcFrj1ffAPL7x+8gPyg+pxI6izWffiQgisAVGDIHEvBNWEkDqwtS90XwPpZ+DUR+S1/US273Lfpxw5kQOe44NL419lXSU6Iv6Vo4X4d4UfIgeUy3lDDoj4d60tEf/aouj2vaHNhrLy/pVu88WZOVB0+94Ttz7BFwO+cMievb4W3Sq2+aHN3NnwTlXbK2r/f4P/x4O3PGi3TbW2752dfJYGlRoo0lGyfW/zI5u5s37p/Vietu+VpzFA7vY991apc4Bz58wrRqZNm8a8efOoV68e77//Pt27d+f06dNUrlyZ2NhYatSoUUyvUqVK+Pv7Exsba9W2wWDAYDBYXhesqnLnLyBawc/Pj+rVq7ulbZ1Ox5y75/D2XW/bnOluUb0F8/vPt7w+nnCcqVunsurEKgCy8rKY//d85v89nwm3TuDzfp/jqy+eCmq+zzJt1X8QgmvBn8Og7v1Q8x7z6XxXf8W35waq62/GXVg0JOyCKndAzKvgVxFq9AS/MND7QlhTyL6myHe5su587lpDC33hbB9cGv8q64r4dy5a6QuRA+roiBxQhlb6QcS/Ojoi/u1Hr3fvZhtXPRM13qcaviopuG5Pe74+tu2LHNAW5WkMkIvmJqWmTZvG9OnTbcrs37/fsjz29ddfZ+jQoQAsXLiQqKgoVqxYweOPPw6UvkxPkiSbkxpvv/12qT4sW7aMChUqlKpTcGRoVlYWP/zwg03/yzP5+fmWmVN3nryh1I+hDKVTvU78kfIH21O3kyOZl+N+ffBrjp85zsSIieh1hQOPmu9Tri2dNIb6cTuoxEryCeQK3Yn7fplFN9gnm+4sIDvmJ44zgGQa0PXKe1ymA+dvxlw36QpbliyR7btc3+TIiRzwHB/cEf9q6SrREfGvHC3Evyv8EDmgXM4bckDEv2ttifjXFtnZ2ZafL1686Nb36cwcKLoF89TpU/yQ5tj7VMPXDRs2cLXCVae1t+PPHZiOWN96qsSmI3GxZs0aavjXKFvQzva2bNlCXHCcKjY9Nf7Vtl/w2Vgmkgx69uxp19edd94px3wxEhISpBMnTtj8ys7OlrZs2SIB0p9//llMv0OHDtJrr70mSZIk/d///Z/UunXrYvdv3LghAdKWLVus+pCTkyOlpqZavi5fviwB0r///mtVp2bNmhIg1axZU/F7Lk/ExcVJn3zyiRQXF1du/UjJTpHm7por+c3wk5iGxDSkcavHqWZfTV9L6Kafk6QrawsFjHmSZDIWvt7aX1F7cmXlyIkc8BwfNBv/KuuI+FeOFuLfFX6IHFAu5w05IOLftbZE/GuLyPcjLb83D1wy0K2+ODMHiv59MHbFWIft2etrgQ9MQ1r9z2rV2ytq/6tdXzlkkwpIgEQFWVMLVv04e+OsYh0lspvPbXbIZlkyv576VRr982jpaNzRst+EA5SnMSA1NVUCpNTUVJtysmpK2bt0UafTYTQa7dIti7S0NKpXr85nn33G+PHjAfP+x6ioKGbOnMljjz3G77//Tv/+/bly5Qo1a9YE4Mcff2T06NHEx8fb3Nf437bK2gvpDXvJPY01p9YwbPkwy77xpUOW8kCrB9zslYNsHwjdfgE3FPITOSDwZkT8C7wdkQMCb8Yb4r9oTalhzYexYvgKN3vkHIrWlHqy3ZN81u8zt/hRtH7R9jHb6Va3m9Ps/zjsR0a0GGG/LZVqSp2bfI76leor0tFKTSmjyYjvTPOqoooBFUl5JaWEviHfQIBvgE1/PQ25NaVkzTaZTCa7vpw1IQUQFhbGE088wZtvvskff/zBqVOnmDhxIgDDhw8H4J577qF58+Y8/PDD/PPPP2zevJkXXniBCRMmyJ6QEnguA5sOZOGghZbXT657kitp5fwXCb9wyEtxtxcCgUAgEAgEAg/CU04uEwicgVEqnPdINaSWuP/94e+pOKciY1aPcaFX5Qf3VqlzkLlz5zJy5Egefvhh2rdvz8WLF9myZQuVKlUCwMfHh99++43AwEA6d+7MiBEjGDx4MO+9955d7SUkJFi95y1HwcbHx/Pxxx8THx/vEX482PpBRrUaBUBKTgrjfhmHJEmqvk9HbCnWDaxO0tUTsnXk2pcjJ3LAc3wot/GvUEfEv3K0EP+u8EPkgHI5b8gBEf+utSXiX7sYcgxlCzkRV+Vi0Tpa9qKGr8nJyU5tLzW15CSKozYFxXno54cwGA0sjllMao7t/i6L8jQGyEVzhc6V4Ofnx3vvvWdzkqlOnTqsXbtWlfYCAqwvtyv474Gn/xchMDCQ5s2bExgY6DF+fNrnU7Zf2M7V9KtsPLeRFcdXcG/te1Wz74ivinUDaxBIqmwdufblyIkc8Bwf1LTv0vhXqCPiXzlaHSRjewABAABJREFUiH9X+CFyQLmcN+SAiH/X2hLxr130Pu5d1+CqXPTx9XHYhhq++vv7O7W9sk6Y18pnn6dQdFWVPZSnMUAusmpKWSMnJ4f9+/dz7do1DIbSZ8wfeeQRu53TCqKmlOez5tQaBi0bBECtCrU4+dRJKgSUftKipjm3GHxDoM4wlzctckDgzYj4F3g7IgcE3ow3xH/tD2pbylyImlLOR9SUkqejlZpSucZcAmYFWL1fVDfppSQqB1W26benoGpNqdL47LPPqFWrFj169GDUqFGMHTu22NeYMWMYO3asveY1SV5enrtdcDt5eXnExcW5vS/U9mNAkwH0bdwXgGvp13jqt6e4dO2SKvYd8VWxbmANjJnXiLt+WZaOXPtaee5aQAt94Wwf1LTv0vhXqCPiXzla6QuRA+roiBxQhlb6QcS/Ojoi/pVRdB2Du7cpOvOZFF3tpsb7VMPX/Px8p7ZXln2RA9qiPI0BcrFrUuqnn35i0qRJ1K5dm/feew9Jkhg0aBBvvfUW9957L5IkMXToUL799lu1/XUrSUlJVu95y17yxMRE5s+fT2Jiokf5odPp+PjejwnwMc9wLzmyhA5fd+DAuQMO23bEV8W6gdUxxO4laGMLkq6dKryedqpUcbn25ciJHPAcH9S079L4V6gj4l85Woh/V/ghckC5nDfkgIh/19oS8a9d8nLdOznhzBwoOvmWneN4TSk1fC2r5pOj7aWnp6tuU+A8ytMYIBe7tu9169aN06dPc+7cOYKDg9Hr9UybNo2pU6cCsHTpUkaPHs3GjRvp0aOH2j67nIJlZwkJCVStWrVUGW9YtguQm5tLQkIC1apVU7S/ubz4sfCfhTy+9nHLst1bI27lwGMHHKoR4IivinWzriL9Up+0ei8Smn8Wn07fma//VB3u3gaV2thlX46cyAHP8UFN+y6Nf4U6Iv6Vo4X4d4UfIgeUy3lDDoj4d60tEf/aImpeFFfTrwIwtNlQVt6/0m2+ODMHim7fe+LWJ/hiwBcO2bPX16LbvTY9uIm7Gt2lantF7X8/+HtG3TLKbpti+55rt++VpzHAqdv3Dh8+zMCBAwkODrZcMxoLC3aNGjWKu+66ixkzZthjXrO48xcQreDv709kZKTb+8JZfoxtO5YDjx2gYaWGAByMPciaU2scsumIr4p1A6qhq9SGinfMwqfuMNgxCGI3Qv1H4NhbdtvXynPXAlroC2f7oKZ9l8a/Qh0R/8rRSl+IHFBHR+SAMrTSDyL+1dER8W8/er17C5276pn4+Dhe6FwNX8sqRO5oe76+ts8+EzmgLcrTGCAXuz5R8vLyqFatmuV1UFAQKSkpxWRat27NwYMHHXJOa9ha2liw4MyBuvHlgvT0dLZt21bmMs/y7EfrGq15q1vhBM7UbVMxSfYvx3bEV8W6Pv6kd/qDbdu3k16pN9QbBXsfhSZPgz4Qsq7aZV+OnMgBz/FBTfsujX+FOiL+laOF+HeFHyIHlMt5Qw6I+HetLRH/2kVJjSNn4KpczM3NddiGGr5mZWU5tb3sbNvbFLXy2ScwU57GALnYNSlVq1Ytrl+/bnldt25d/vnnn2IyFy9eLHPWtbxhK2G9ZTDKysri4MGDij4cy6Mf3SK6UVtfG4DDcYf56cRPJWQkSZL1vB3x1R7drGxDoU69h6DZMxDWBOoMh0vFT0qRa1+OnMgBz/FBTfsuj38FOiL+laOF+HeFHyIHlMt5Qw6I+HetLRH/2sXdk1KuykU13qcavubk5Di1PYPBoLpNgfMoT2OAXOyqKTVq1CiOHz/OoUOHAHjuuef46KOPmD17NgMGDGDnzp08/fTT3H333fz+++9q++xy5OyF9Ia95N7G+n/X0+f7PgA0r9acw08cxkdvXsabkpNCv6X9OJ5wnPFtx/NKl1eoGlx6vTHNYDTAHx0htCHc8haENVbVvMgBgTcj4l/g7YgcEHgz3hD/RWtKDW8+nOXDl7vZI+dQtKbUU+2f4tO+n7rFj6I1iLaP2U63ut2cZv/HYT8yosUI+22Vk5pSWx7ZQs/6Pe22aUsmz5iH/yx/q/fVrClVnnBqTanhw4djMBi4cOECAK+++ipRUVG8/vrrtG7dmokTJxIaGsq7775rl/MCgRbo3bA3HaM6AnA84TjLjy0nPjOeNEMa434Zx+7Lu0nJSeH9Pe/T6otWXEy56GaPy8AnALqvgbZzYd9jkH29bB2BQCAQCAQCgUAgcDKOHCxVntDhHe9TCXZNSt13332cOHGCevXqAVCtWjUOHTrEnDlzeOyxx3jrrbc4evQorVq1UtNXtyOOgoWEhAS++OILEhISPNqPhIQE5s+fz/O3Pm+5NvaXsdR4rwYV51Tk55M/F5OPzYjlgVUPYMg3lFi67Yiv9uja1AmOgtB60O4T+PsZ2fblyIkc8Bwf1LSvqfi3U1bEfyFaiH9X+CFyQLmcN+SAiH/X2hLxr13K2u7lbFyVi2XVWpKDGr7+t3az2u2lpaWpblPgPMrTGCAXu4o+Xbp0CX9/fyIiIizXKlWqxIsvvqiaY1rE1skHBTO7nj7D6+/vT7169dx++oKz/Siw37F+R7rV7caOizswGEsOwF8P+Jq3/nyL8ynn2XNlD4GzAwn1D6VV9Vb0b9KfR299lAD/ALt9ted9ytIJbwlBkQRl/CPLvhybpeZA3Dao3t38c/q/qm8ZdAdayAFXxb9aJy9pLv4Vytod/x6IFuLfFX6IHFAu5w05IOLftbZE/GsXLZy+54pcVOv0PUd9VXr6ntL25Jy+p4XPPoGZ8jQGyMWumlI+Pj6MGTOGBQsWOMMnzSFqSnk3e6/spefinmTnZ9OqeisCfAO4kHKBlzq9xIudX2Tf1X10/rYz+aaSxRAr+Fdg0yOb6BDZwQ2el0F2HPw9BbosU8VciRyI2wo7h8OdWyB+G5z6GO7aCiG1wWSEE3OhxSuqtC0QuBsxBgi8HZEDAm/GG+LfW2pK+c30s/xOr5WaUjvG7KBr3a5Os6+VmlLnp5ynXng9RTrlsabUjZduUCmokk2/PQWn1pSqXLkylSt7R3Guorj7pAktkJ+fz40bN9zeF872o6j926Nu5+TTJzn51Elinohh/4T9JLyYwIudzSsDO0R2YOmQpXSv251OtTtRP7ywQF96bjov/PGCYl/jM+NZfXI1B64cYP2x9VxOvmyX76VNlFkIqoEpP1OWb3b19+XV0HIaXN8AV3+FLivgxM06cymH4N8v5dvSEFrIAVfGvztt2aOrREeurBaeuVbQSl+IHFBHR+SAMrTSDyL+1dER8W8/7j5l0FXPRI33qYavRqPRqe2VZV/kgLYoT2OAXOyalOratSt//fWX2r5oHlFTyrzH9JNPPnH7nmJn+/Ff+3Uq1qFp1aZWl2UPbzGcbWO2sWvcLs5NOce5yedoUqUJAH9e+pNXP3lVtq/J2cnc/s3t3PfjfbRf0J4+K/vQcn5LLqVeUuT7S7+/RNDsICasmWB1cirXkCOrH+X0d4kcSD8DDcfBxaVQsw9UbgvpZyE/C2I3QX4m2Jo0K0BjxytrIQdcHf/usmWPrhIdubJ2xb+HooX4d4UfIgeUy3lDDoj4d60tEf/aRQs1pVyRi2rVlHLUV6U1pZS2J6emlBY++wRmytMYIBe7JqXefvttjh49yvTp071qxrRSJevL7Ar2Vrt7j7WzqVy5MqNHj3b7Sjln++Go/fqV6vPsHc9aXic2TJRt6+nfn+ZCyoVi19Jy0/gu5jtZ+pUrV6bfiH58euhT8k35fPPPNzz+6+MAJSan/AJCGf3wyDJ9K7M/Tn2KHrNtvV4PxhzzaX++wdDnH4h+zixXZzgcewtit0DUYMgqY4l76nE4/H9lvmdXooUc0Hr8q2XLHl0lOnJl5ciJMcCz/BA5oFzOG3JAxL9rbYn41y7uri3kqlwMDAh02IYavlYIq+DU9ipUsG1fK599AjPlaQyQi12Fzt955x1atmzJjBkz+Oqrr7jllluoUaNGiVUkOp3Oo+pOBQQEuNsFtxMQEGA5ddGT/VDD/sOtH+a1za+RnJPML+d+YV/svhL7wdMN6QT6BuLnYy5gGBMbw9IjSy33a4fV5nKaeeve8mPLeaPbGyXaOZ98nozcDFrVaGXxfcmFJeSZ8iwy3x76lo3nNpKQlcALHV9g5p0zAfAJjaJe9QAoI7bL7I/LK8wrnwpI2AVVO5aUqzsCNt8JXX+Giz9A5gXzaYD/xWSE/Y9DrX5w44BN31yNFnKgPMS/Grbs0VWiI1dWC89cK2ilL0QOqKMjckAZWukHEf/q6Ij4tx93T7656pnofRx/n2r46u8nfxLQnvb8fG0XUveUHPCUgwjK0xggF7sybdGiRezatQtJkrh+/Trr169n8eLFLFq0qMSXJ5GRkWH1XsGeY3fvsXY2GRkZ7Nq1y2ZfeIIfatgP8Q/hhU4vAGCUjNy/8n7iM+Mt99eeXkv4O+G0+bINOfk5AByOO2y5/9adb3F8wnFaVmwJwJH4I5xIOFGsjTNJZ4j+LJrW81uz+dxmAB5b/Rgf7/u4hD+X0y6Tk5/D3N1zLSumsnTh7Nz9c5nv02Z/ZF2B0IagM3+cSKY8uLYOavUtKesbAr33QnAtCKlnnpQqjZTDcG4xpJ2AtFM2fXM1WsiB8hD/atiyR1eJjlxZOXJiDPAsP0QOKJfzhhwQ8e9aWyL+tYu7d8q4Khfz8vLKFioDNXzNys5yans5OTmq2xRYx9HJsfI0BsjFrkmp8+fPy/o6d+6c2v66lczMTKv3vGUwysjIYOfOnW7/UHK2H2rZf7nzy3Su1RmA6xnXmfT7JABMkokBPwzAJJk4nnCcnZd2AlhWRQE0rdqUjIwM6mXWs1xbdWJVMfvv73kfg9G8r/+J355g9o7ZfB3zteV+n0Z9aFerXTEdg9HAvzf+ZePZjTTa9And9jzH15ufsvk+bPZH4l6o1gWTz82lv3mpkHYSKrawaZPQepBxvvR78TugSntzsfSAqnBtg21bLkQLOVBe4t9RW/boKtGRKytHTowBnuWHyAHlct6QAyL+XWtLxL920cKklCtyUa1JKUd9VVLbyp725ExKaeGzT8u4chVWeRoD5KKTvOXT0wHkHGXoDUfBCuwjNiOWlp+3JCk7CYBfH/gVQ76BYSuGWWQ+6P0Bz9zxDBPXTmT+3/MB2PfoPtpHtudS6iXqflgXgDui7mDP+D0WvY4LOvLXldIPHXiy3ZPMvWcuRpOReXvmMW37NMu9RYMWMXn9ZNIMhYUN76jagMqVmvF538+pG15X/hs8/g5U7UTUrQ/YzIGraVdJNaTSvFpz8wXDDTj4LHRcXNLmgclQoyfsHgX9T8G+J6DnOvk+CQQuRowBAm9H5IDAm/GG+I+aF8XV9KsADG8+nOXDl7vZI+fgN9PPsqPgqfZP8WnfT93ih2564STHjjE7SpQAUdP+iuErGNZ8mA3pMmyF6SAdqABSmrKphaJ+nJ9ynnrh9RTpSG/abq+o7NbRW+lRr4fdNm3JGE1GfGf6Wr1fVDf55WTCA8Nt+u0pyJlHATtXSo0bN441a9bYlFm3bh3jxo2zx7xA4FFEhEYwr/c8y+sBPwwoNiEFhdv2iq6Uql2xNmA++a9ldfMWvr1X9pKQaT4JISkryeqEVMeojnza91OC/YKpEFCBN3u8yU8jfrLc/3jfx8UmpAD+SjzHujPrqPdRPWZunyn/DaafgQqNS711Ouk0X//9NScSTtD4k8a0+LwFM7bPwCSZuG7I4UKqlV/ccuKgZm/oEwMhdUDvBybH/1slEAgEAoFAIBAIBALtYHdNqUOHDtmUOXLkCIsXl7ICohyTlJRk9Z63HAWbmJjIggULSExM9Gg/1LSfmJhI7v5c7qxzp1WZI/FHALiUegkAfx9/qodUt/jRM6onABIS6/9dz9bzW6k6t2qptvo37M9Q49AS8dq6RmvLzwevH7Tp89RtUzlwrbDAuM3+yI6FwBolcsBoMtJrSS8eW/sY7b9uT3a+eenxm9vepNb7taj1QSQN9m5h/9X9JW0as80n94U1Mb8OawYpR2z67Cq0kAPlLf7ttWWPrhIdubJy5MQY4Fl+iBxQLucNOSDi37W2RPxrF4PB4Nb2nZkDRTcRZefI3zZnDTV8TUlNcWp7aWlpNu9r5bNPYKY8jQFycdrRCTk5Ofj62nW4n2bx8fGxeq9gH6mnVPW3hq+vL9WqVXP7s3W2H2ra9/X1pXr16izpv4TpPaZTLbgawX7B3N/ifir4m+swHY0/itFktKyUigqLQq/TW/y4t8G9Fnu/nfmNmTtKX8k0ps0YlvRfQuOIxiV8r1+pPiF+IcWu+en9eKvhGzzZ9kkG1owudm/P5cJtgmX2h05XIgfOJp+1TLJl5hWvxxaXGQeABMzeMb10m0VpNAGOzylbzgVoIQfKW/zba8seXSU6cmXlyIkxwLP8EDmgXM4bckDEv2ttifjXLu4+fc9Vueijt/63n1zU8NXW36BqtFeWfa189gnMlKcxQC521ZTS6/VMnz6d//u//ytxT5Ikrly5wrBhw4iPj+f8eSuFjMsRoqaUQG0kSUKn0zFs+bASxcsButftzrYx2yyv8035VJtbjZSclBKyc3vNpU7FOhxPOM7LnV8myC/Iart9v+/L7//+Xvi6cV9+G/Wb+UXWFfZf+pMOP44C4JFbHmHx4MWQlwF+oSWNGXPgr3HmU/TavFUiB745+A0Tfp1QZl/0qFyTrcP/B+Etwb8y6H1h2wDo8WtxwR1DoNMS8wl+ABkX4OQH0O6jMtsQCJyNGAME3o7IAYE34w3x7y01pXxn+GKUjAA83f5pPun7iVv8EDWl5OkoqSm1bfQ2utfrbrdNUVNKOarXlNLr9fj4+FhmUqdNm2Z5XfTL19eXevXqsX//fkaOHOn4O9EQRqPR3S64HaPRSHp6utv7wtl+qGm/NFsF/0lrVb1VqToF9aQKdHWSjt4Ne5eQm9VzFi90eoERLUYwrcc0gvyCbPo+5fYpxV4/0+GZQtngKFo3GoLfzf8KfRfzHYakQ7DrfmKux3Do0qHiNv9+Buo9CG3eKtHOkbgjViekPr7342KvQ0JqweH/g533w4XvwWgAH/+SitU6mQugn5kP/34D+ydC0l/g4rMatJAD5T3+namrREeurBaeuVbQSl+IHFBHR+SAMrTSDyL+1dER8W8/7j4ny1XPRI33qYavRpNzcqCAsraduqq/dXjHSkNHKU9jgFxkT0p169bN8qXT6ahTp06xawVfPXv2ZOjQoXz++efMmjXLmb67nISEBKv3vGUveXx8PPPmzSM+Pt6j/VDTvi1bRes8FaVOWJ0Suv0a9ysmo0PHw7c8rKi9exrew+2RtwPQo14PWgS3KCYb4BtAq8oNLfJ3LxvK3FM7afNVG25beBt7Tt/c0nd5NQRUgchCn4rmwPdHvi/1fenQ8dhtj9GuVjvLtev5EjR6HHJvmCelMi9BUK2Syo0eg1r3wqWVcGU19PgNKreDzAultuUstJADnhL/ztBVoiNXVo6cGAM8yw+RA8rlvCEHRPy71paIf+3i7ppSrsrFrOwsh22o4WtKcopT20tNTVXdpsB5lKcxQC6yNwpu27bN8rNer2fs2LFMnTrVGT5plvDwcKv3vGUveaVKlXjggQeoVKmSR/uhpn1btnrW70m14GokZBWf8CxYKVVU996we4vJTL59MnUq1lHUnk6n4/cHf2fbhW3c3eBu/CS/ErIDG/fhYOJpAHYmnmPnzesmTBxIPkAXusC5b6HjkhK2C77HxMWU2hc1QmsQ4BvA1tFbqfC2uZ7WwesHORXYhEYtp+OTfgIOvQR1RpRU9guDOsMhaT8k7ASdHsJbQepxCK1fanvOQAs54Cnx7wxdJTpyZeXIiTHAs/wQOaBczhtyQMS/a22J+Ncufn5+bm3fmTmg0+nMRU+BgIAAh+2p4WuFsApObS8kJMTmfa189nkKjq4IK09jgFzsql7lLf8F+C+BgYFW73nLYBQYGEiTJk3c7YbT/VDTvi1b4YHhnJl0hvjMeJp8WihTI6RGCd1AArm/xf38eOxH7qp/F3N7zbXL90pBlbgv+j7L6//K/t+db3Pg9I+sTYotoXsp7SJkXgb/SuBfsdi9ojlwLP5YqW03r9YcgFD/UDpEdmDf1X0ANPu6I/2b9OfX4ctgTUNo95lV/4nsD4abJwuG1IOMs9ZlnYAWcsBT4t8Zukp05MrKkRNjgGf5IXJAuZw35ICIf9faEvGvXZQU3nYGrspFXx/HCz2r4WuAv/zJMXva8/cvpWyGgza9DVfmfnkaA+Ri19EJV65cYc2aNaSkpJR6Pzk5mTVr1nD16lVHfNMcmZmZVu8V7Dl29x5rZ5OZmcm+ffts9oUn+KGm/bJsVQysSOMqjXm588sA6HV6bqt1W6m6iwcv5tDjh/jj4T/w8yn9v1RKfC9NVu8bxGeNWpQqf/r6AfMqpRp3lbhXEPvZedmWUwQ71+7M+gfX07l2Z4Y1H8YX/b6wyBdMUBWw9vRasiQd9D0CwaVs3yugejdo96n555B6Lt++59IcOLsQ8kseR+xJ8a+2rqPxb6+cGAM8yw+RA8rlvCEHRPy71paIf+2Sn5/v1vZdlYt5+XkO21DD1+zskr8LqtleTk6O6jYFzqM8jQFysWtSavbs2YwdO5agoNJP+QoODmbcuHG8/fbbDjmnNdLT063e85bBKC0tjT/++IO0tDSP9kNN+3JtTesxjXfufofV96+2bMv7r26AbwC3RNyCXmc9dZX4bk22TmAQYyNLzpCfTT4LiX9B1Y4l7hXEfqqhcF9674a96d2oNzvH7WTF8BU0qVJo860736JjVHE755PPQ2C1Mv3G9+ZnT0hdyLxYtryKuDQHzi2E5cElirl7YvyrpatG/NsjJ8YAz/JD5IByOW/IARH/rrUl4l+7uHtSylW5mJub67ANNXzNypJf28qe9sqa9NLKZ5/ATHkaA+Sik+z49GzSpAm33XYbP/zwg1WZUaNGcfDgQU6ePOmQg1pAzlGG3nAUrMCL2D4Io39l/hfUg5i4GBYeWkhKTgpBPr6saHYLxyKGM6T5UBpVbmRRKcgBKgDPm7foJb6YSICv7SXHT697ms/2m7fr/TLyFwY2HajM120DoMevSt+h85BM5npXjpKbCivDzT83ehw6zHfcpsBpiDFA4O2IHBB4M94Q/1Hzoriabt4FM7z5cJYPX+5mj5yD30w/8k3mSben2z/NJ30/cYsfuumF28F2jt1J5zqdnWZ/xfAVDGs+zH5bYTpIByqAlKZsaqGoHxefuVhqvVxbOtKbttsrKrtt9Da61+tut01bMibJhM8MH6v3i+qmvJxCxcDiZVA8FTnzKGDnSqmrV69Sr149mzJ169b1uO17AoHXcOv7+Nz+NaPbjGZe73l0qdMFgGxjPv2P/c3Lm1+h5ectORp/1KKSayz+36RHWj9S5oQUYDkNEODsDdfWh3IKv7eBc985bufqGmj8JARGwL9fOm5PIBAIBAKBQAUkPHdFmLesdhMItIRdk1L+/v6ylrp6WrG/GzduWL3nLUfBJiUl8d1335GUlOTRfqhp3xFb9ugq0bEqW6ER6AuLOzYNa1pC12A0sOX8FsvrdEPx7a2tarSS5W/Dyg0tP689s1bzvwzY7N+/xoFPMFz5qcSWO8WknYZGE+CW2ebXOYmwrR9IJvnPOLtksXo5eH382yEnxgDP8kPkgHI5b8gBEf+utSXiX1sU/bsu1+D4tjZHcFUuGgwGh22o4WtqWmrZQg60Z6tEjb02Bc6jPI0BcrFrUqp169b8+uuvVhM1JyeHNWvW0KqVvD9KywueNslmD3q9npCQEPR6FbYnadgPNe07YsseXSU6cmUfaP5Aqdcvp5oLmhtNxhIrpdrVaifL39tq3kbN0JoAbDm/hWMJpZ/cZxWdzrxlzkXY7LNzC8GUB8Yc2DXSsYYMiRBQDRqOgwZj4fx3cG0d5MTLe24mI/xc066mRfw77oenopW+EGOAOjoiB5ShlX4Q8a+Ojoh/B3Dzn0SueiZq/O2nhq9K/LCnvbLsixzQFuVpDJCLXTWlFi9ezNixY+nVqxdffPEFDRo0sNw7e/YsTz75JJs2beKbb75h7NixqjrsDkRNKYEAhi0fxqoTq0pcv/zsZc4ln6N7q+6W/eRPLXuKT/p8InsQnb5tOtO2TwNg2dBl3N/yfvmO7X4E2n0E/pXk6zgDyQTbB0L3X81b+JCg72H77e0cAR2/A59AOPQqnPkCogZDk6egSvuy9XMS4adqMErbK888BTEGCLwdkQMCb8Yb4r/2B7W5kmZ+b8OaD2PF8BVu9sg5+M7wxSgZAZjUYRIf9/nYLX6ImlLydERNKW0jt6aUr9U7Nhg9ejS///47y5cvp1mzZtSvX5/IyEiuXr3K+fPnyc/P5/777/eICamiePKSXLmYTCby8vLw8/Nz62y5s/1Q074jtuzRVaIjV9ZkMvFVn68YFj2MTnU6UffDupZ7g5YN4taIWy2vKwVV4tO+n8rytYCW1Vtafv73xr+KdAmoDIYbzp2UyssAv1DARp/FbYOqd5hXbvmGQuYFx9o05pgnpABavGYunh5QDfLS5T03Q6LdTYv4V+89eBpa6QsxBqijI3JAGVrpBxH/6uiI+Lcfd5dacNUzUeN9quGrScGOAHvzRm2bAuv895/2W85vYf2/65nUYRK1K9YuU788jQFysbuVZcuW8emnn9K4cWPOnDnDtm3bOHPmDE2aNOGzzz6zeTJfeSU+Pt7qPW/YSw4QFxfHnDlziIuL82g/1LTviC17dJXoyJWNi4vjk3mf0L1qd+pUrEOwX7Dl3sHrB/nmn28sr/31/rJ9LaDoKX5vbH0DQ76CPfz+VSDXer03Vdjc0/Kj1T5LPgjVut70KRxMuQ7WlSoyYPlVMNeW0vuBKU/ecys6KWVQtidcxL9yOTEGeJYfIgeUy3lDDoj4d60tEf/axZDjeK0lR3BVLmZlZTlsQw1fbdU1VqO91FTbNau08tnnieTk53DXd3cxd/dcBi6TdwJ5eRoD5OLQ1NeTTz7JsWPHyMjI4MqVK6Snp3P06FEmTpyoln+aomJF68vsCmY8Pb3uVHh4OMOGDSM8PNyj/VDTviO27NFVoiNX9r9yWXnWB2kfvY/Ve9YoWuwcYPkxBccMB1RWPOmiiLw0uHHAvFoKG32WcQ5Cb25lrtwOqneD3aMg+ZD8trJjYU2jmzWySpnQ0vmClC/vuRVMSkkSrKoq3wdE/NsjJ8YAz/JD5IByOW/IARH/rrUl4l+7+Pn7ubV9V+ViQEDZp0iXhRq+Vgit4NT2QkJCVLcpkEdSVuHfMIdiD8nSKU9jgFzs2r73X4KDgwkODi5bsJwTFBRk9Z63DEZBQUG0aNHC3W443Q817Ttiyx5dJTpyZeXIhfiHkEmmXTkQ6h9a7PWh2EOEBYTxyuZXGN92PC90esG6srNXSqX/a16hlH4GKrct3hfGXMg8D2FNIfMiBNUyX2893TyxdG09HJsDXZbJaytpL2SchTwr/7G6uVJK1nMzJJi/X//D/F0ymbcAykDEv3I5MQZ4lh8iB5TLeUMOiPh3rS0R/9rFx0f5PyDVxFW56Ovr+J/KaviqZHLMnvYC/G3b18pnn8BMeRoD5OLQSql//vmHl156iYEDB3L33Xdbrl+8eJHly5crWmpYHrC1hLNgz7G791g7m6ysLA4dOqTKclYt+6GmfUds2aOrREeu7H/lPunzSQmZsABz8Tp7c+DAhAOWn+f9NY/BPw7mZOJJ3tjyhm2bzl4plXIYqnaCHPMS1mJ98WMAbLnb3L5PIBRdJabTQ2RfyM+wbT/jPJz50vxz5iUIizbXyCrtaBu9H0h58p5bcgzUuAsuLDG/NmbLfssi/pXLiTHAs/wQOaBczhtyQMS/a22J+NcuxnyjW9t3VS7m5+c7bEMNX3NycpzansFgezumVj77HEUrk8Y6B4+vLE9jgFzsnpR66aWXaNeuHe+99x5r165l69atlnuSJDFq1CiWLFmiipNaIS0tzeo9bxmMUlNT+eWXX8rce1ze/VDTviO27NFVoiNX9r9yT7Z/kvUPrrfcH9dmnGW3mb050CaiTanXDUYDGbk2JnYCnLxSKvEvqNnb0oalL1JSzPezrsLO+6HGnVYM6MBk45eakx/CqY9u2roEldpYfz8680opWc8t65L59L6bJ8iQdsq67H8Q8a9cTowBnuWHyAHlct6QAyL+XWtLxL92ycvLc2v7zswBqUj5hLIma+Sghq8ZmWX8g9PB9sqafHDVZ589kzVayTlHJ5qUUJ7GALnoJDue5MKFCxk/fjwDBgxg9uzZ/PDDD8yZMwejsXDWvFOnTgQFBbF582ZVHXYHBUcZpqSkWK0r5Q1HwYI58SVJQqfTuXW22dl+qGnfEVv26CrRkStrTe5o/FF2XtrJqFajaN6wucM5UPS41KJcefYKkWGRpStlnIeTH8BtHwGS7C1qssi8CPufhiZPQ/ppaDqpsC/yM9GtDINqnSHlGNx3FXxL2cZ8bA6EtzavmvovRgNsvQf8KkL3NebJrcrtILwlnJkP3X8pLn9pJeRnItV/pOzntq0fdP0J/rijsK7VKHkf9yL+lcuJMcCz/BA5oFzOG3JAxL9rbYn41xa1P6jNlTTzexsWPYwVI1a4zRdn5oDPDB/LaXdPd3i61N0BSrDX16K/E/855k+61O2iantF7a8YvoJhzYfZbVMXpoN0oAJIacqmFor6cemZS7JOnyuqY5pqkv0+t4/ZTre63cqUk94s/T3YkpEkCf0MvdX7RXXTXkmjQoC5TtjVtKtEfRBVZtv/bau8jAEF8yipqamEhYVZlbPrr7fPP/+c6OhoVq1aRcuWLfH3L3naVrNmzThz5ow95jWLVpb8uROdToder3d7XzjbDzXtO2LLHl0lOnJlrcm1rN6SJ9o9Ydm65yjDmw8v9XqawfoqRfwrm1cWbe9fuOLIXnKT4UKRk0PPL4HmLxZbjWXpi7ybq5nqjoIq7UufkAJo/AScW2D++cJS80RXAdfXm7fYFZCfCRVbmCfaSuNmTakyn1vGeQiMAJ8A80ouuWTHwalPRfyr4IenopW+EGOAOjoiB5ShlX4Q8a+Ojoh/B3BzV7jqmaix+kUNX52VAxadMt6nyAFtUZ7GALnYNSl1/PhxevXqZbP4W40aNYiPj7fbMS1iq0aWtxwFe+PGDX744Qe31wtzth9q2nfElj26SnTkysqRUyMHPu7zcanXF/yzgP1X95eu5BdmPiHv2jrwcfDAhb+fgRPvQdppAKTUU8w6up6Jf35AatIhoLAv0i/vhOgXoe79ENnfuk3/cPOKKIADT8Mv9QrvZcdC5VvNp+qZ8gAJKt1ingwrDZ0fSPllP4/4HVDzHvPPhgRoPRMq3Vr2+0/cBX9PEvFvh5wYAzzLD5EDyuW8IQdE/LvWloh/7ZKbm+vW9l2Vi0pqOVlDDV9tlZBRo72MDNvbA7Xy2ScwU57GALnYNSnl6+tb5ofRtWvXCA0NtSkjEAgERYkIjaBZ1WYlrr+/5306fNOB/x3+X0klnQ4kCXxDzSuNirJjCFz7Xb4DhhvQZTnsGISUsIeI7cv5vz/fZn7MUj75dw/8WbiSK/Dcx1Cjp3kVVdPJZRi++Z+GsOjil3PiILCGeZVVweqm4EgIqAqUsnz35kqpMvlrTPG2/MIKTwa0xY2DEGRlm6RAIBAIBAKBQFBOcWXdJ1uIFWclsaumVJcuXUhKSuLYsWPo9XqmT5/OjBkzLDWlsrKyaNy4MS1btmTDhg2qO+1q5OyF9Ia95AKBLdTKge6LurPj4o5S79UPr8+5KedK3tjUA3Lioc4IaD2t8PpSHXRaCvUesNperjGXU4mnaFm9Jbodg8y1nXISWb3mbu47EWORiwoM5XLtjMK6TNsGmGXlDCx/DjP7ceBJSDkKvf8yX9//FDR/GY7OhKj7IGmf2f/tg8wFynusLW4nbivc+Aein7Pd3pZ74M4/zD/nZ5sns/4cYvbXFpvvBr0v9FxvW05QAjEGCLwdkQMCb8Yb4r9YTanmw1gx3H01pZxJ0ZpSkzpMsrqK39kUrUG0c+xOOtfp7DT7q0asYkj0EPttlZOaUjvG7KBr3a5lyjm7plT6q+mE+psX79hTU6o84dSaUuPGjePUqVNMnDixxIqptLQ0xowZQ2xsLBMmTLDHvGbRSnV/dyJJEiaTye194Ww/1LTviC17dJXoyJV15XOPy4izeu98ynkSMhNK3vCvDGFNID+98JrRAL4hYEiyXPr2n2+p+X5N3tv9HgApOSk0+7QZree3Zvq2aYW6gVX5K7ZwQgqgYYXqQJG+AHkTUgB+Fcy+5WeDT1Dh9Zw4CKxuvpbxLwTfXM3kHw55KSXt6PxAyrP9PEx55vddgG+QeaKpLHISISgC9P4i/lXww1PRSl+IMUAdHZEDytBKP4j4V0dHxL8DuLkrXPVMJBXeqBq+OisH5NoXOaAt1p9Zz8sbX+Za2jWn2HfH87Z7UuqBBx7g66+/pmrVqixYYC7i26FDByIjI1m5ciWjR49m2DDrVfzLI3Fx1v9Y9pa95LGxscycOZPY2FiP9kNN+47YskdXiY5cWTlyauWA1VP2bnLg2oGSF0PqQoWm5tpSBWScgyp3YMqJ4+cTP7P9wnbGrxlPbEYsL258EYAfj/7I+RRzUfGVJ1aCTxDJ2cksO7qMd5KLN9GscgOgsC8MBgV1BnxDIS8djNngE1h43Wgwv/YJgvSzhVvs/CsXm0yzcHP7ns3nkZdu3q6nlMQ95pMEEfFvj5wYAzzLD5EDyuW8IQdE/LvWloh/7aJGrSVHcFUuZmVmOWxDDV+V1Paxp72UlBTVbQqcQ5ohjT5L+/Du7ncZ8oP9q9ts4Y7nbffZ6d9//z1ffvkl9evX5+rVq0iSxIEDB6hTpw5ffPEF3377rZp+agJbS84Klg16+h7RihUrMmjQICpWrOjRfqhp3xFb9ugq0ZErK0dOrRx4tcur+NpY2RMTF1PyYkg980qpvCIrpdLPMOeGhM/qWQxZPoQei3sUU8k7/z03sgsH+WMJx1kaH0vldyvzwKpStvuFNoCafcx9MXAgvn4lTx21iu/NlVJSvnliCcx1sCTjzfvBkFFkUkrvD6ZS6vbp/cCUa/t55FublNKB0UYtwPwM8KsINw4Q7hMv4l+hnBgDPMsPMQYol/OGHBDx71pbIv61i5+fn1vbd1UuBgQEOGxDDV+V1Gm2p73gYNsHBWnls08AF1MKT/HeG7vXKW2443nL2NNhnQkTJjBhwgSys7NJTk4mLCzMo4ub20pYbxmMgoODadOmjbvdcLofatp3xJY9ukp05MrKkVMrB+5ucDdXn7vKtgvbuH/l/SXurzi+gle6vFL8YqMJ5hPsrvxiuZSXeoJXj2+x2k7K4dnkVixu/5Gjf1qVNxhzQedj7ouWjWCfgg9qvwrmCTNJAp0eTEayU05gCqxNCNzcvldkUsqUZ56Y+i++IZCfaft55KWVPilVrTPEb4eavUrXM2abV2hlXyfo3Ie0uWOh/PdnAxH/noUYA1xrS+SAthDx71pbIv61i4+vj1vbd1Uu2jppXi5q+BoYGFi2kAPtlTX5ppXPPoFrcMfztnulVFGCgoKoVauWR09IAWRnZ1u9V7Dn0tP32mZnZ3Ps2DGbfeEJfqhp3xFb9ugq0ZErK0dOzRyoHlKdwc0GE101mgCfANY/WFh4++D1g3wX811xBd9g8Lk5iSOZQJLISDlhs40bAbUx5BY/Ytdow3dDvgF0erKzMjl1bD/5Otv/VSruXwXISzW7pw+k9/e9Cf6kFaF/fMX2C9vNk1JpJ831paD4iqr/2snPsP08rE1KVWwB6Wes+2i8We+q/RfkhrQQ8a9QTowBnuWHGAOUy3lDDoj4d60tEf/aouh7Kzjcyl24KhfVeJ9q+GowGJzaniHXtn2tfPYJXIM7nrdDk1KZmZksXbqUl156iccff5yXXnqJpUuXkpmZWbZyOSQ1NdXqPW8YjMC853jlypVl7j0u736oad8RW/boKtGRKytHTu0c8Pfx58jEIyS8mEDvRr2pW7Gu5d7o1aP57fRvJZWu/gpbe8OBSWRm2D79Zr++FrnX5J8yl2vMBZ8gUm/EsmndT+QYFWzfq9EdrptPwztlyOWPc5stt0avHl1Y/Fx38yO59UzoUYpvN1dcGU5+Y/155KWbJ6/+S0BVyE0ueb0AY7a5KHqlthgyEkT8K5QTY4Bn+SHGAOVy3pADIv5da0vEv3bJz8t3a/uuykUlk0HWUMPX9PT0soUcaK+s2lla+ewTuAZ3PG+dZOen5w8//MDTTz9NSkpKsQ9gnU5HeHg4n332GSNHjlTNUXdScJRhcnIy4eHhpcp4w1GwYC7gmJeXh5+fH3q9KgvtNOmHmvYdsWWPrhIdubJy5JydA7+e+pWBywZaXj/U+iGW3LekuFDmRVh3C1Rpz8mcPKL3b7dpc2gorMqwfv/FTi8yd/dcAPo36c+v9asj+VXE6F8dPfnoW70hz3ljLux+AIy5HDSFcdufS4vdlh78GvZNgFFlfBxLJthxH1xdg2HANfxCapR8HheXm+tR1X+o+PWUY3Dhf9Dm7dJtb+sHrWeAzhfp4gpyo/9PxL8COTEGeJYfYgxQLucNOSDi37W2RPxri6h5UVxNvwrAsOhhrBixwm2+ODMHfGb4YJLMBesndZjEx30+dsievb7qphduBf1zzJ90qdtF1faK2l8xbAXDWlg/oKwsm7owHaQDFUBKUza1UNSPS89conbF2op0TFNNNrfNFpXdMWYHXet2LVNOerP092BLRpIk9DP0Vu8X1U1/NZ1Qf/MOs6tpV4n6IKrMtgs4EneE1vNby5a3BzXzq2AeJTU11WZ9brta+fXXX3nooYfIycnhySefZNmyZWzdupVly5YxceJEcnJyeOihh/jtt1JWMpRj3PkLiFbQ6/UEBAS4vS+c7Yea9h2xZY+uEh25slp47gOaDuCTPp9YXl9OvQxAfGY8f1/7mzxjnvkUvt77wK8iGRRuf6tupSDnX0bbp9TVDK1p+Xnt6bVIvhXQnfoA30v/Q++voKaUj7+5ThSQEdq02K2qwVVByit9u95/0ektxdEDsk6W/jysbd/zCzUXMy+NtDPmmlyV2oLOBx1G9eLfEE9A1gkR/x6CVvpCjAHq6IgcUIZW+kHEvzo6Iv7tx921s1z1THQ4/j7V8NVZOSDXvsgBdSkaV+7OpdJwx/O2q6VZs2ZRoUIF/vnnHz755BNGjBhB9+7dGTFiBJ9++il///03ISEhzJw5U21/3UpysvWtL95yFGxycjKrVq2y2Ree4Iea9h2xZY+uEh25snLkXJEDT7V/Cr+bkzcFk1F1P6xLu6/bMfG3iZgkE6fzID8wisyACIveLTXalGovOc/2suy64XWLva69dQlv5kaTn3KMzFw7inzqdKT6VSl2KTErkZjE86CTeZKN0by/e9/21aU/j/x08za//+IbCqc/Ld1m6lGIGmSe9NL5kJOdqVr852/pR+L6kSL+PQQxBrjWlsgBbSHi37W2RPxrl9xcG6f5ugBX5WKOIcdhG2r4mpaeVraQA+1lZNjYNmCnTUH5xR3P265JqSNHjjBy5EiaNGlS6v1mzZoxcuRIDh8+7JBzWsNb9onbwmQykZmZ6fZB19l+qGnfEVv26CrRkSurleeu0+ksE0UnEk+w4vgKcvLNvzAs+GcB9/7vXpp+2pQJJ/aQqA+36HVp1J9H2z6KXlf8Iy8r3/akVK8GxU+qu5p1gxkXT/B6Ehj9qipzPv0MGLNJLaVAeruN73NOF15SpzTyMzEG1UVnSCj9eVhdKWVjZVd+pvlkPzBv3zPlq/e8jdkkGqNE/HsIWukLMQaooyNyQBla6QcR/+roiPgvv7jsmajwp58avkom+Y7Y015Zf+N6Sg5ocVWSFnHH87arplRERARjxoxhzpw5VmVefvllvvvuO65fv+6Qg1pAzl5Ib9hLLhDYwlU50HVhV3Ze2qlIZ94983i247Nk5Gbw84mfeWT1I2XqfDvwW8a2HVtsD3hRpCmHIbyVfCd2PwyXV/JJvXeZvH5yiduf9HqHpzu9VLadn2qYt9lJJrjzj5L3Dz4PjZ6AsMYl720fCN1+gf8Oyme+hOBIiOwPGefg5EfQ7iOZb6wMluqg/mjouEgdexpFjAECb0fkgMCb8Yb4L1pTanjz4SwfvtzNHjmHojWlJneYzEd9VPp9SCFFf//cNW4XnWp3cpr9VSNWMSR6iP22VKopdfnZy0SFRdmQLqmjpKbUn2P/pEud0mtzubKmVMarGYT4m/8ZfC39GpHzIstsuwBX1JRSE6fWlBowYABr1661ekxmfn4+v/32GwMHDiz1vkAgENhLrQq1FOsUFBMM9Q+1DAL/5dzkc0zuMJnZd87GNNXE2LZjbdpM05eyRc4WDR9lr6lqqRNSAJczk+TZyYmHxD2gDyj9vrWVUgA+gWAsZSn6f1ZKFdStcgRJkjgRd5R0E6rYEwgEAoFAIBAIBJ6HXZNSc+fOJTAwkD59+rB3795i9/766y/69OlDUFAQ77zzjipOaoXY2Fir97xlL/n169eZNWuW21fAOdsPNe07YsseXSU6cmXlyLkqB5674znFOgWTUgAhfqVPSlUKqsRHfT7ita6vyVreu+fCKWVO1OjO0OvW/5txKe2SbFOxt+/l9Jkzhc8jN9W8cgogz0pNKTBPVmVdhv8ukM3PAJ+CSSkfMjPTHY7/xTGLaT6/Fc0vB3Dw8CER/x6CGANca0vkgLYQ8e9aWyL+tUtOjuO1lhzBmTlQdBNRZlamw/bU8DUxMdGp7ZVVO0grn30C1+CO5+1rj9Ktt95Kbm4u//zzD5s3b8bPz48qVaqQlJREXp75hKmaNWty6623FtPT6XScPXvWca/dRIUK1ldGFPwR6+l7VcPCwrjnnntsLr/zBD/UtO+ILXt0lejIlZUj56ocuD3qdppUacLppNOydYqujrK2Usrfx1+RH8PWDqPb0W483/F57qx/Z5nykiRZlr2XxrKjy8jIzaBFtRbMudv61mgeMFIhK5uAatXxD775Eb46Cm7/BoJqwqUfofMPpev6VYS1TeHeA1D5tsLr/1kp5e+ndzj+x/5iXml2JdfA5Qr+NBXx7xGIMcC1tkQOaAsR/661JeJfu/j62vUnpGq4KhcD/K2sSleAGr6GhJT+u6ta7QUFBalu01VISKqckigoxB3P265PFJPJhJ+fH3Xq1Cl2vWbNmsVe/7dcVXkvFG7rA8FbBqOQkBA6dOjgbjec7oea9h2xZY+uEh25snLkXJkDXWp3kT0pVTGgYrH949ZWSgX4lP6Lx+w7Z/P6ltdLXM/Iy2DdmXWsO7NO1n7uzLyy/9u29vRa1p5eS7/G/ehat2vpQjo9ISEhhFSuCr9Vh1GSeaWTKRfO/++mjJVnoLv5kX/iveITV/mZ4HdzNZnOBz8fXdlxkZ8NvrZ/iSnAPyRI0S9UBYj41x5iDHCtLZED2kLEv2ttifjXLu6elHJVLvr5yTwZ2QZq+FrWpJGj7QUGBqpuU1B+ccfztmv73oULFzh//rxdX+UZW0tVCybcyvvEW1nk5ORw+vRpty/bdbYfatp3xJY9ukp05MrKkXNlDky4bYLN+30b9+Wr/l+x9oG1XHr2EpWDKlvulbZSSg/46H1KtfVa19fI+7882tVq55DPKTkpxV5XDbZ+et8/sf/YtJWTk0Na9s0tAlnXAJ15YskQb9sJ083TBi8uK37dmFm4fU/vizHfUHZcLA8uuQ3QCpfTUkT8ewhiDHCtLZED2kLEv2ttifjXLtbqCrsKV+Vifn6+wzbU8NVgsH1atKPtFex0UtOmt+FJE9LueN52TUp5KykpKVbvectglJyczA8//FDm3uPy7oea9h2xZY+uEh25snLkXJkDd0Tdwb+T/uWWGrfQNqJtifuRFSKZcNsE+jXpR1hA8aWnwX7BJeTLqgDhq/dlw0MbWP/gep5p+0yJ+0ZT2b+cHYo9ZPn5odYP8WHvD7mt5m3WFWyQnJzMufMXzC/OLwIkyLZe885Coyfgrq0QOaDwmmSCc4uKbN/zIdeQLS+GTLZ/iSngbGK8iH8PQYwBrrUlckBbiPh3rS0R/9qlrEkMZ+OqXFQyGWQNNXxNT093anuZGbZX82vls89T0PoEljuet05S6dMzPz+fI0eOANCyZUtVljtqhYKjDG/cuEGlSpVKlfGGo2DB/J+RrKwsgoOD8fEpfWWJJ/ihpn1HbNmjq0RHrqwcOXflQEpOCpXeKZ6XI1uO5IehpddVSjekU3FORST+s71Y5pGq68+sp8/SPsWuJb2UVGw1VmkM+XEIP5/8GTBPSi25bwkA38V8x+jVo4vJ/l+3/2NGzxlWbRmNRky7x+B3+X/QYCwk7IQad0L2NUg7CQPK2Nq4fSB0X2P+OScR/hoDPdaaX+dnIa1vR0b3vbbjYqkOhqdaPemv6NG3r0Q1YNaY0yL+PQAxBrjWlsgBbSHi37W2RPxri6h5UZbamMOih7FixAq3+eLMHNBP11t+R5zcYTIf9fnIIXv2+lr096gdo3fQtZ6Vsg52tlfU/sphKxnaYqjdNnVhOkgHKoCUpmxqoagfV569QmRYpCId41Qjep31dTZFZf8c+2exkh7W5Kz9TVCWjK37Re9lvpZp+Sf5tfRrRM6LtKr3X47EHaH1/Nay5e1BzfwqmEdJTU21WaNK9kqp8+fP8+2333L6dMk/dtauXUtkZCTt2rWjXbt21KxZk+XLl9vnuYZx5y8gWsHHx4cKFSq4vS+c7Yea9h2xZY+uEh25slp57qVR9GS9AtIN1v+jVCGgAqPbjLZ6vywqBlYscW38mvFl6gX6Fu7X71K7cEB85JZHSHopiYoBhXZn7php05aPjw9+Ne6ACk0gJx6aPQ+GJPPNsiakSmCCwBqFL3W+6NJOUMEvp+znbZT3H8RUk1HEv4eglb4QY4A6OiIHlKGVfhDxr46OiH8HcPNCD1c9EzVWtKjhq7NyoAC93vaUgMgB78Idz1v2pNTXX3/NhAkTCAgoXgz433//ZcSIESQkJFCnTh2aNWtGcnIyDz74IP/8Y7suSnlDbN8z98GaNWts9oUn+KGmfUds2aOrREeurBw5d+WAr75ksc364fVt6iwctJDGlRtbXt8RdYfs9kyGkpv9Vp9cbfV95xpzMZqMZOdnW64NaDqgmEzloMr8/djfxa5dTr1s1YeUlBTWnKxNRvQ7kBML/pUK60WVQolJuqK+SibQFRl0bv68cf0vZceQjTZDfAqfy/X0dBH/HoIYA1xrS+SAthDx71pbIv61RdEJmrxc927fc1UuqrF9Tw1fMzIynNpeZqbt7Xta+ewTuAZ3PG/Zk1I7d+7klltuoW7dusWuf/TRR+Tk5PDUU09x/vx5jh07xooVKzAajXz66aeqO+xObBX184bBCMzbNBMSElQp/KdlP9S074gte3SV6MiVlSPnzhyICI2w/Fy3Yl2mdp9aps7KESvpXrc7/Zv0Z92odbLbCtCVfkpfem7J1VlX065S78N61PmwTrHTAouuiirgv9v/9l/bb9UHy/MgCLKvg18FiNsKeWklZN/f/T5hc8LQTddxKvGU+aJOVzgxJZmg6LJnnZ7cKj1IvRFbdgwZrRdArOhbuIV7dfoNEf+SBLnlvxaDGANca8ujcsADEPHvWlsi/rWLSSqrGqdzcVUuyqkZWhZq+KqksLw97ZlMtp+nVj77BK7BHc9bdk2p2rVr06NHD5YsWVLseuPGjbl8+TIJCQlUqFDBcr179+5cv3691O1+5Q05eyG9YS+5QGALd+bA0fij/Hj0Rx5s/SCNKze2epKeGsRnxlPjvRolrr/c+WWaVmnK6DajLXvbJ66dyPy/5xeT89X7kvtGbokl4SbJhM+M4n5feuYStSvWtu5M6nFY18pcvHxTd/O1UeaP9DxjHqtOrOKBVQ8Ub2eqCd3O4dDpe/AJgMzLcPxtaP95odDhNyFqEFS+1XrbS3Vwzx6oWvoqs6bvhnI6u/A/bykvpxTf+hi3Hap3M0+QeQBlxn/iXvjjDsvzEQg8DfF7kMCb8Yb4r/1Bba6kmd/bsObDWDHcfTWlnEnR2j9q1JRSw4/d43bTsXZHp9n/+f6fGdxssP22RE2pMu+rVVPqcNxhbpl/i2x5d6N6TanExERq1y7+x1FKSgpnz57l9ttvLzYhBdCmTRuuXr2q0G2BQCBQTsvqLZl550yaVW3m1AkpgBC/kFKvv7PrHcatGceW81ss1+Iy40rIVQ2uWmqNAr1Oz6hWo4pde3Hji7ad8a1gXunke7OuVtdVlluTfp9UYkIK4M9Lf4I+oMjWOxMlhgLfYDBm/1e1JJd/Nk+MGXP+syVQAqn40v7jCccLXxgNsLkHZHnmL+6lcugVd3sgEAgEAoFAAVo/JU0g8BRkT0r5+vqW2FdYUDOqXbt2JeRDQ0sWHy7vxMWV/AOzgIJlj2UtfyzvxMbG8s477xAbK+P4+XLsh5r2HbFlj64SHbmycuS8JQfSktKopqsGUOp/ZlYdL5wYiqxQ8r89HaOs/6fr6fZPF3v947EfSy3aXvA84m5kmS/43pwoiyysVbX78u5S2/j2n2/NK6SMueYL/60pBaRl5vHj9wttx0VoAzjxLhx8HlZUhMQi7WVdwaQrXuvrQuyFwhemmxNWJ+dZt4+HxX/8tjL9KQ+IMcC1tjwqBzwAEf+utSXiX7vk5Fjfvu8KXJWLZdVakoMaviYlJTm1veRk2+UFtPLZ55W44R+47njesielmjRpwubNm4td++OPP9DpdHTq1KmE/LVr16hZs6bjHmqIkJDSV0hA4Uy6p8+oh4aG0qVLF7dPOjrbDzXtO2LLHl0lOnJl5ch5Sw5UqFCBLzp/wVd9vmLP+D0l7hetb1U9pHqJ++1qlZzEL6BBpQYlro1cNbLEtYLnEVLx5jbCgpVS+sI6TqXVuAJYHLMYo863cKXUf2tKAf7B4dxT5yihwaXXzwKgYgvz99TjYMoFU5F951I+RopPSuXri96/OSl16kO4cdBqEyL+tYcYA1xrS+SAthDx71pbIv61i6/v/7N33mFOFG8c/6Zd73fUo0oHQQEFBJWiAgIKiqDgT8HeG/ZGsWEBLIAoqFiQogKCKEjvvUjvcJTjei+5yyXZ3x+bspvsbrYl2Uvm8zz3XLLzvu++2Z3JTN6decd7k5lAEqi2GBERodiGGr5Gx0T79XxRUVGC5Vr57gsVdFK2r/xTII2HnwjG/Rb9jTJ8+HC88847eOKJJ/DMM8/gzJkzmDVrFuLi4jBw4EAv+W3btqFly5aqOhtsSGdEX4NevXoF2w2/+6GmfSW25OhK0RErK0YunNrA8FuGAwCKq4q9ypnHuBKBpsWk8dquF1cPXw78Ei+sesF17J/T/6CgsgCpMan4fMfnOF14GpNvmcy+H0bvgHlptXfScye7S4txgysoZfMKSkXFJCOqahdgzQCQzGuH1ncEmwz0gKbcUo5nVr6M82b2+attxe43dsbSvlVdefMshVT9bzAQyPcOYtY2SB8QWFsh1QZCAFL/A2uL1H/tooWgVCDaoslk8i3kAzV8jY3hnxihxvmio4WDXlr57lOKpGBQGBOM+y16ptRLL72Ejh07Ys6cOejcuTNGjBiB0tJSjB8/3msG0d69e3HmzBncdtttqjscTNTYFrS2U11djYyMjKBfC3/7oaZ9Jbbk6ErRESurlfuuBZjXIiHSO2HfF7u+cO2+U8MMvjioE1NH0P7z3Z/3OpZdno0juUcwbvU4zNo7Cw2mNmDfD2Ms0ORelzxFUYJBKehNHsv32F1BDUUPwizmYkFf0eJRwHyFfu0ISr217i38fGypl+ibGyag3OLY0theAzS4Xdg2Qqz+xzQC4lvL19cIWvkuIH2AOjqkD5CGVq4Dqf/q6JD6Lx+7LbjLFAN1T6TseseHGr5aLBa/nq+mxnu8qtSmHMIlqKt1gvGdJzooFR0djW3btmHSpEkYOHAgRo8ejT///BMvv/yyl+z+/fsxdOhQ3Hnnnao6G2yE1tuGy1rywsJC/PTTTygsLAxpP9S0r8SWHF0pOmJlxciFYxvg2+0jqzwLAGCxeQ8i6sQKB6W4eGPdG9h7Za/rvdlqxuyfZtP3o8PbdJDpxoWucqvdCitzOZ0HEcYodqJzj5xSZZW0bsSmfkDxYX7Hus/xOjR993RO0fyqIkzcOJF+Q1mB+Bb8dh2EVP3nCP7VRkgfEFhbIdUGQgBS/wNri9R/7SIlSOIP/NkGmLNp1MidpYavpaUCDxpVOF9ZOXfKByU2tQgJeokjGPdbR1GUtvcR1ADOrQwLCgqQkpLCKRMOW8ECgNVqRWlpKRISEoI6ddfffqhpX4ktObpSdMTKipEL1zbA3OLVybGnj6FdnXZ4cdWL+HIXeyvhE8+cQJu0NoLn4LJ5T/t78MexP1zv145ci96tenPejwpLBeIm8y833tvnMXTt+CSQ0gUoPgJkzAeu/cj9GUvOwvi3Y/l177+A9CFsAxQFbB4K9F4OVOUDRz8Emj8IpHSG8T0jbBT3k8X6cfWR9XIWUHYGOPU10HUasOlO2g4HIVX/dz4ElJ4E+nMnoK8tkD4gsLZCqg2EAKT+B9YWqf/aovHnjXG5lP5sw9sOxx/3/uFDw3/4sw3oJ+lBgf55/Nz1z+GrQV8psifXV+ZYcMvYLbix6Y2qno9p/497/sDwDsNl29Ql6IAyAPEAVSottMD0I3NcJhrGN5SkYxtv431I7Cm77eFt6NnYOxe2pxw1gfsz+JIRKmeWVb5ViWgTvWTyStkVpE9L59XDfB0rzcXhnMPo9E0nn74qQc325YyjlJSUICHBe4WJk9r/2DaABHv9tBYwGo1ISUkJ+rXwtx9q2ldiS46uFB2xslq571rA81rcdpX3MuWiKnpWZY3Nezq0UE4pJ/2a9/M6xgxIAUBWTRbv/eCaocWkxGaF3bV8j51TqsJSgZ/ObsRB50SqfS+wk5gD7Fk/UWlARBJtB0DjRP6EjNnljl08Ki8BUY4k8ALPRTjrnd0KnJktTUehrCr1n7LTOaUswjvcaB2tfBeQPkAdHdIHSEMr14HUf3V0SP2Xj04f3Bkngboner3yn8pq+Go0+KcNODEYDILlpA2EF8G43yQoJYGSkhLeMueEs1CfeFZSUoKVK1cKXotQ8ENN+0psydGVoiNWVoxcuLaBT2/7FKOuHoWWKe6NHV5e/TKO5x3nDA4lR/tIHA7g2yHfolVKK0GZFbtWsO6HxWbB+A3jMXnLZFRZ3dPNU6NTMf/u+SzdW7bMxTUL76eDZh7Lyj7Y/AEe/etRdL0IlNsBlJ/jCKTYweo+dAbaDoCM4gxen1s484UWHgBSuwl+PoCn3tWUArufkKajUFaV+u9Mep+71adfWob0AYG1RfoAbUHqf2BtkfqvXXzlIPI3/mwDzllSgDr5hNXwtby83K/nq6ioUN0mofYSjPtNglISEPoCDpfOyGKxICMjI+hryf3th5r2ldiSoytFR6ysGLlwbQPX1r8W84fPx3PdnnPJ7Ly8E71+6IWTBSdZuq/2fFVwirGTlikt8ctdvwjKXC68zLofX+36Cu9vfh9vrX8L8w7Ncx3v27wvRnUchXs73MvSP1J4DvMPz4dnTqmPt30MALAB2Nj4XeCqhwCLx5rysz+w81Dp9ADssNm5l+3VM9BLCUspxxMXykrnwQKAinO8s6U4652tklNWUEehrDr133G85IhPv7QM6QMCa4v0AdqC1P/A2iL1X7sEO3dWoNoiZVd+P9XwVUoQUM75rFb+PKRybdZmwqUd8xGM+01ySolAzFrIcFhLTiAIEe5tYOGRhRi1eBRv+ennTrNmU/niXNE5tPhKOBn4sLbDMGvwLNSPq4/mXzZ3zVK6uu7VOJJLBz9GdxyNX+/+FRM3TsSkTZNY+lNum4KX29wMXFkFdHwXGcUZaP5lc1f5J7d+gtdSTUDi1UADxjLF+TqgwUCg70r6/dGPgbo3IcOUztJ3ck1KcxwsPA+TTg/LeBtw9COgbl+gzg20rZHl9A6CYpjvWDIwWltdl8/6v200kHwtkNQJaDgw4P4RCP4m3PsAQngTDvWfmVPqnvb34PcRvwfZI//AzP3zYvcX8fnAz4Pux45HdqBHox5+s7/03qUY1naYfFtBzCllfdcKg55/+aGcnFL28XbOpOhq5ZQyv21GlJHetVqLOaXUhOSUIhAIhADSv0V/wXJn5yOWOjG+d+n788SfGL14NAD2Ux1zjdn1OsIQAQAwOWcmMbBTdlZOqXv/YM+m+v7A90BCW6DsFEPJ8bSu6ID7mGP53p7MPV7nWDxyMaIM9LlrnEvY7DZAz1inTol84lqVx9DRdifsBWUH9BH0LDECgSCNy8uBk9w7exIIBAKBUJtg7vBIoCFBKQnk5ubyloXLVrA5OTmYNm0acnJyQtoPNe0rsSVHV4qOWFkxcuHeBlKiU9C7aW9ePWdwSCxxEfy75zHZkLEBgCPA5OBs0Vn3efURvOenQLFySu3O3M0qP11wGjAlAjWMrYJzN9P/U7q6j+n0QNa/yDrrzl31WadBOPjkQfRM7onCIvdWxhRF0YEZnSMo1fxB3kCN17Xeeg/9P7KOOzjmS0eAwNZ/R1DKM2l8LYP0AYG1RfoAB1dWAud+VN+uREj9D6wtUv+1S1VVlW8hPxKotlhZKZwyQAxq+FpYWOhbSMH5iouLVbdJqL0E437LCkr169cP48ePV9sXzRMdHc1b5pzixzXVL5SIiYlBly5dEBMTE9J+qGlfiS05ulJ0xMqKkSNtAFh5/0pePaNe2g4WUq7jr4d+ZSXmZOIMRsWYvP19fe3rOFmYwc4PxaBnek/AlEAnF3diKQR6/AT0XsFwVg9k/oXKHHcS75bxddCpXifExsYikrHjID07y+o+5/mfgZMzOM/vda3NWfT/6PqAnXudu2brP2Wn82jV8plSpA8IrC3SBzAJ/uxIUv8Da4vUf+0iZTc4fxCotmg0Kf+cavgaGRnp1/P5sq+V7z5CYAjG/ZYVlNq1a5fPhGihSHx8PG9ZuHRG8fHx6NOnj+C1CAU/1LSvxJYcXSk6YmXFyJE2AESborH03qVexyMNkUiJTpF8rg1jNoiS+9/S/7nyPHjiDEqlxqRylrddeD+qeBKUV9mr6KBUVRaw1bG0r7oQiEwBmPdZZwAiklBRle86FGOgBzjx8fFITnLvOGin7HROKWaQLos7mOd1rSMdSxpLjgNbRwI5G33rCBDY+k+FxEwp0gcE1hbpA1zG1bcpA1L/A2uL1H/tokawRgmBaosRJmmz3LlQw9fYWJF5N2WeT2jihVybhNpLMO63rKBUu3btkJGRobIr2idcdhwQwmKxIDMzM+jXwt9+qGlfiS05ulJ0xMpq5b5rAV/XYmBL7yTWux/bzSHpmz7N+qBZUjPWMamJRduktQEApEZzB6UAYGfBJQBAQiQ7AWGFpYIOSpWdAS7+RueCshQCEZ4BNj1gNaOSsWohxpFDy2KxoMbiXmpnozgCYFbu6fHWw5PZ17pOL6DPSgB2OpC1ri9gY2/XrNn6HyI5pbTyXUD6AHV0SB8gDa1cB1L/1dEh9V8+wV6mGKh7wrersBTU8NVaI37sIOd8NVbh3f1IGwgvgnG/ZQWlnnvuOSxfvhzHjh1T2x9NI7SeN1zWkhcUFOC7775DQUFBSPuhpn0ltuToStERKytGjrQBGq6E5mKSlvNx7Gn392zfZn1xVfJVkvQbJTQCAFyffj2vjNkx6Io2sp+UlVWXAcZ4oMCRwNxWQQelIj0CXHoDYC1Dpck9IyrWkROroKAA2dnZruP2LSMctpjBJI46Y6+B8fBb9LXOz6cDYlW5QPI1QHQjhvNZLDXN1n9nUIonF1ZtgfQBgbVF+gBtQep/YG2R+q9dLNXBDU4Eqi1WmZXnzlLD15LSEr+er7ysXHWbBHGolfT8eN5xDP9tOL7b/51iW8G437LmXjZv3hx9+vRBjx498MQTT+D6669HvXr1OKes3nzzzYqd1AqpqfwzDfR6Pet/qJKWloYnn3wSKSnSlyLVJj/UtK/ElhxdKTpiZcXIkTbAT93YurLPF22KBjWBgrnGjGhTNK6UXZGkH+lYRpcUlcQrU+0IStV4BEyqbdV0wMnuCCCZs4ET04CrJ3hY0AOlJ1BR5y4gj16+GGOip5qnpaWhcXpjZGRmAADsmSvoxyE6Rj3h2n3PRu8g+OSTTyK1eAlwbCGdZP36WcCgg8AfjgDYkUlA6+eA5M6ATqfh+k/RSxa5ZorVIkgfEFhbpA/QFqT+B9YWqf/aJSJS+bI2JQSqLfpa1iYGNXxNSkzy6/kSEhIEy7Xy3Ufgp9/P/ZBdno0lx5dgWNthSGPkc5VKMO63rKBUnz59oNPpQFEUpk6dKrh+2mar3QNwJiaT95bq4YbJZEK9evWC7Ybf/VDTvhJbcnSl6IiV1cp91wJirsW9He7FoqOLXO8Neu5E4lKINtEDI6mzriKN7uSVPRv3xPZL271kqin6O7zQzJ4NWlFTQb9o/wZQfAQo3EcHkEweOwM6AkyVlHswHhtJr0M3mUyIjnIP6uwUgDo30TOe3Aa8Hb+wEADoa12qA/K2AvGtAEMUYGAk5Dz3I/13Xw2gMwax/ot5Oq6HFpI1K0Er3wWkD1BHp3b1AcFvO9q4DqT+q6VTu+q/tgh28C1Q98RgUD5+U8NXo1H8T3Y55/OVuD5U2oBas5KCCd/GRtnl7lUJuRW5ioJSwbjfsr5Rxo8fj/Hjx2PChAmYMGGC6z3XXyhRWlrKW0ZRFOt/qFJaWoq1a9cKXotQ8ENN+0psydGVoiNWVowcaQNuZg2e5XotJ8G5ECaDCb3Se3GW1Yuth9d7vc46FskI4My5Yw6euf4ZbLpvMaY2cnc2F81l+HTbp172zFYznZj82slASmfAnMntlJGeFeUKYsE9U6q0tBRFBUWu416hm35rgIaD2MeKDgJlZwEAa9euRaU9jg6GJbanEx7r9IDOCCRfC7R41GG4xnW+YNR/VOUB8FH/dTruWWG1CNIHBNYW6QO0Ban/gbVF6r92qakJ7lL0QLVFNXLqqOFrRUWFbyEF56s0c+f2VGKTUHsJxv2WFZSaOHGiKyDl6y+UqK6u5i0Ll86oqqoKx44dQ1WV8jXWWvZDTftKbMnRlaIjVlaMHGkDbpKjk/Hj0B8xsOVArLp/leo+zLt9Hp6Lew4/DPiBdTz7lWy82vNV1jHmTKn2ddpjxqAZuLnN3bAy8j+9tn8RXl/LDmY5ySx1BKKKDwEHXgWajPAWMsYCkXVQWeMe1MTo6XpQVVWFinL3YMoOuJcDAo78UHZUWauw78o+Ogh28gvgOB0kO3bsGPQXF9Cy+Tvdeg1vBwzRwFnH2nm7xXW+YNR/5656wvVfBy3M9lAC6QMCa4v0AdqC1P/A2iL1X7vYbcF9wBKotqjGbvNq+Fpt4f8Nqsb5fAXfAnW9Q2EmUygQjL5OR4XLt6cCSktLkZiYiJKSEt41t40aNUJmZibS09Nx+TL31uwEQihD2kDgsdqtML1PLyvu26wv1o9ZD3ONGTEfxbhkTjxzwrUDH5NHvm2CH7Iv+TzHxN4TMaHPBGDbKHpJXaf3gavfYQtRFGCrwvVzb8beK3uhB2B98Th0iW0BAHcsuAMrTq0AAORdBaQZAIx2dD1lZ0Gd/Ar6v78CQOffyrnpDuDs90BsU2BoBjCfMUhx6m0aCljLgJwN9PublgCN7xL+MMVH6FlYze/3+bml0ihFh8wi8Nf/jXcArZ4CKi/Q/wmEEMOvfcCeZ4D87cDtB9S1SyCoRDiMgRp/3hiXS+nPdk/7eyTvBlxb0E1yjzle6vESpg2YFnQ/dj6yE90bdfeb/T/v/RND2w6VbytBB5QBiAeoUmmhBaYfV8ZdQYP4BpJ0rO9aBdNkMGW3P7wdNzS+waecfbydMz0RU4aa4P05hcqZZVVvV7keGmeVZaHhtIb8dufr3GNfAIdyDuGab67xkmfaP/r0UbSv097Lv2AgJo4CyJwp5eTAgQN47bXXcOedd+LWW291Hb9w4QJ+++03wd3qCAQCgaAMo96InY/sxMTeEzHv7nkAvHf/Y86UYpJqEpektMxSRr9wLjszeO8uCJ0OMEajwkLPiIrRwRWQAgA9I6m5PbkLW1dvgtnqfhKTW5ELq/Oc8a35HdMZAD3DlxIRu8Fm/QvseMC3nD9wLjskz4EIBHmQtkMgEAh+QSg/NIEQCGQHpV577TVcd911mDJlClasWIENGza4yiiKwujRo/HLL7+o4qRWyMvL4y0Ll61gc3NzMWPGDOTm5oa0H2raV2JLjq4UHbGyYuRIGwiOD90bdceEPhPQMJ5+yuI5sIh15HbyZFyjq3jt39niTu+DzqCUnj+Y5Vy+F8voWXJzc5FxLsP13n61R65Bj6AUAKzIuwhAh2qbATNm0DOoLJTHb1Kdgd7Jrvv3gCkJSOvhOh/v/TElAKCAmnLfsgwE5S4uZr0Vrv8Kc0ptvgs48aV8fRXQQv0PhB+kD5AuFw59AKn/gbVF6r92qa4Sv5zMHwSqLVZUis/lxIcavhYWiZ/oIed8xcXFqtskBA+hZZD/nvkXfX/qiz+O/cErE4z7LSsoNXfuXEyZMgVDhgzBoUOH8Oabb7LKmzVrhm7dumH58uWqOKkVIiO5ZxwA7h+CoR5pjoqKQuvWrREVxTFbIoT8UNO+EltydKXoiJUVI0fagDZ94Nt9o34kv+647uNcr4vMziTljohQQjsAQJW1CpdLL2P2vtnIKc/BzN0zcaHkAgAgxugOXEVFRSE+Pt713pZyHXDneffJdEZUnv2Zdf67Du8ERlmhN8WhXatm2GEGIs8A+jPAshPLHHqOoFSLh4FOk1zBHsFrE5Hk+Ch0gtaoyEi3bMlxIHs95/UQtLn1Hla0TLD+6xTmlCo5yp9sPkBoof4Hwg/SB0iXC4c+gNT/wNoi9V+76A3B3X0vUG3R1650YlDD18gI/t+gapwvIkJ49rxWvvsIyhn460BszNiIEb9z5Ih1EIz7Laulff3112jXrh0WL14Mo9HIWZHbtm2LtWvXKnZQSwitgwyXzighIQH9+/cPtht+90NN+0psydGVoiNWVowcaQPa8WH67dMxeetkTOg9QfB+zBo8C0/9zc5vdHvL29GiXgvX++LqYvrF9d8AV40FVf9WtPqqJc4WnXXJPPX3U3SCcgcxCa1Yvjao3wBwPOSzU3Ygrpn7hHoTtnLkUZx/ZCFG62twS7dmiN1tAGADAAxbNIxeP1+wE4hIpYV1RjpABR/XxuDItbWiHXB3NhL+TkL/EaWAKR7Y/x6Q+Rdwx0kvNZ/33Frmeilc/xUGpSg7vQQwiGih/gfCD9IHSJfzbx+gjX6F1P/A2iL1X7uYTKagnj9QbdFXsEYMavgaG8s9612t88XExAiWa+W7jxAYgnG/ZY1ujx07httuuw1GI39Mq169eiE3xS/Y259qgZqaGuTm5gb9WvjbDzXtK7ElR1eKjlhZrdx3LaCFa+HLh2e7PYvMcZl4vOvjgnbqxdbzOpYUlYRYg3vws+T4Eno3oag0IH0IFhxZwApIAWAFpAB2HquamhpYqi28stCbMDrb27f7l9wPW3J3FOVdQKXd5i2Q1gswO5LJ6o0AZXWdj/faOGRQleM6VHr4W1pWpwdfwIjX5mXHrK0rK7lzbXmi0ytbvkfZEewf51qo/4Hwg/QByv1Qn+DnlNLGdSD1Xy2d2lX/tUWwlykG6p6o8TnV8FXKLoByzufLPmkDwWHflX14JAfYenFrQM8bjPstKyhlNBp9bh155coVxMXFyXJKqxQUFPCWhcta8vz8fMyaNQv5+fkh7Yea9pXYkqMrRUesrBg50gZqnw9xl37zPhYRB3OJmXVs/Xn3srb7l/jeuW5/1n7X6/z8fJw7e8713isopeN/uFFursGMJbO5C5OvBWzVbht2q+t8vNfGMZsKyde6Dm3ZvMEhy5/vidfmkQ/p/9vuc/1c9plTStFMKRu9bDGIaKH+B8IP0gdIlwuHPoDU/8DaIvVfuzAfNgWDQLVFs9nsW8gHavhaXFLs1/OVlpaqblMO4TLTUCzXzbkOP5QCN829KaDnDUZfJyso1bFjR2zYsIH3i7eyshJr165F165dFTmnNVJSUnjL9Ho963+okpqaiocffhipqakh7Yea9pXYkqMrRUesrBg50gZqmw86xF5a6HU01hSLtDR2HqrX1r4myfKwtsNcr1NTU9GqhXs5H9dMKT5i45MxL2I/d6ExFrA6EpA680vBx7XZMhyocxOQ2MF1qGeP62hZgZlSvDar3FO8nMMowfqv0ynbQUwDQSkt1P9A+EH6AOly4dAHkPofWFuk/muXiEjly9qUEKi2GB0drdiGGr4mJiR6Hauxcc9ikXO++IR4wXKtfPcRxKE0uBeM+y3rm/Phhx/GyZMn8dRTT3nNmCotLcXYsWORnZ2Nxx57TBUntYIa64prOxEREWjcuHHQr4W//VDTvhJbcnSl6IiV1cp91wJauBaq+EDZWLvkOSkwF3jZZc58EkPb1Lau1xEREYiLdc+a9QxKWQWWsxkjYnCq7Ap3oSHavRxP516+5/PaRDdwz7ACkBwXgYg/Ih1L67gDRhEREWjcqBEijB4XjGIsKxQ1AOAPfIlCA0EpLdT/QPhB+gDlfqiKRp6eB/06BMgPUv+V+xHqBHtGS6DuicGgvM9Vw1fPHF7zDs1D4seJeHLFk6qcz2QUzhGm5TZAaWBpd6gRjPstOyg1atQozJkzB2lpafj+++8BAN26dUN6ejr++OMPjBkzBvfcc4+qzgabsrIy3jLK8WOGUvIUvBZQVlaGzZs3C16LUPBDTftKbMnRlaIjVlaMHGkDtcwHmxmxHGPKXw79grKyMjSMaijbNDOnVFlZGfJy81zvPYNSFhv/EgBzNUcuKSe2SvdrvXv5ns9r0/17oPigKwB16dwRh2MWANwBsrKyMpxa+Rps//ZkFzQe7n4tVP/tNUB1vmOmlIKlHVXZwOEJ8vVVQAv1PxB+kD5Aupxf+wCN9Cuk/gfWFqn/2kVKjiN/EKi26CtdjRjU8LWisoL1/oGlD8BsNePbfd/CXMNeYijnfL6WKWrlu48QGIJxv2XPMf3111/x7bffonnz5sjMzARFUdi7dy+aNGmCWbNm4YcfflDTT00g1GDDpTOqrKzEnj17UFlZ6Vu4Fvuhpn0ltuToStERKytGjrSB2uYDhUYc6Zwm9ZmEyspKXGO/RrblKKM76XdlZSUK8t35+DyDUtXWavBRbRWoS8xcVJZi4NRXrvNxXptjn9D/jTFA2Wk6UAQgpWQFfdxWxRswqqysxKnz2TAU7WEXnJoOdHwPgHv+E2XnGKhn/Ark74DinFJOlAS2FKKF+h8IP0gfIF3Ov0GpGsBarr5diZD6H1hbpP5rF5tN4KFRAAhUW1Qj+KaGr9VV/GMlG8W+F3LOV13Nb1+uTULtJRj3W0ep8O1pNptRVFSEhISEkEtuDtBLEhMTE1FSUoKEhAROmUaNGiEzMxPp6em4fPlygD0kEIIPaQO1jJITwJH38eR/f+Pb/BLX4ZPPnkTr1NYoripG8ifJAIAbm9yId256BwN/HSjK9OcDPseLPV50vX90+aP4/gA9o/bwU4dxdd2rXWW7M3ej+3fdOe0U3P8zUn990Ot4zbs1MJqvAMuaAqMp4OC7wNEP6Nd8zHdMCxtN0a9bPQ1krgCuGgMceR9o9RRweTlwF0/dzVgAbB/tPgdlBxYYgH5rgPW3odGL0cjMMyO9YT1czvTYTvDcj8DOh4BbtwD524D2r/P7KYTzM9xbDRi0N4WeEN74tQ9gtl8CQYOEwxio8eeNcbmU/mz3tL8Hv4/4Pcge+QfdJPc08pd6vIRpA6YF3Y+dj+xE90bdOcvK3ixDXIT0399MG8vuW4Y729wp01NAl6ADygDEA1SptO9pph9ZL2ehflx9STo179bAqOffNIcpu/3h7bih8Q0+5ezj7ZxLVJky1ATvzylUziyrervKtaoguzwbDaY24NTjsnc45zA6fdPJ6zhT9vgzx9E2zZ1KQ8pnUBsxcRRAwUwpJtHR0WjYsGFIBqQIBAIhJElsC8S3QnsTe9ZNQiTdYcRHuJNeVlurRQekAKBZUjPWe73O3dV4zpQ6mX+S9X5427tcryvt3J1lkbkIiG0CjHQ8wTHyJCLNWMi/7Of013SydGd+KcoGvuV7dLnH01JnkvVUxyDRKjD1XefI1SCQt0oSFNmSmRBm1O0dbA8IBAIhaAQ7h1eooMXr6I/ZlTpo73P6QlZQqkOHDnjuueewePHioG+LG0jIVrBAXl4evv32W+Tl5fkWrsV+qGlfiS05ulJ0xMqKkSNtoBb6YEqA3qODjjHFIC8vD3Nmz3Ed23Nlj6emIMwndnl5eThx/ITrvdfyPUbS8TltroWBMQ29sIydQ8FJTkUO/cIZjGJ06M5rk3/lLLB9FL0szyFyysLu/GuoCOD4p/SbM7PZSwIZ5OXlYeP6teyDxYfo//pI1mG7nWNJgysop4Ng4EssXEsEA4QW6n8g/CB9gHQ5v/YBSdewds0MFqT+B9YWqf/axddyL38TqLZYaVa+fEkNX4uKivx6vpKSEsFyrXz3KaU2BmuCQTDut6ygVEFBAWbOnImRI0eiXr166NSpE1544QX8+eefkhqNEjZu3AidTsf5t2eP+wfUxYsXcccddyA2lt7m/Pnnn5edtM5z5wMmzsirFiOwahIREYFGjRoFffcFf/uhpn0ltuToStERKytGjrSBWuhDq6dguPpt1qFoY7Rr1w3mDCdPpvXnn87O7PQjIiIQH+eedSWU6DxSb4SBMSPpQMkFTvvMPFSVNZUwLhkP3Wnglp9vgc6gQ6NGjZC2saXjBEUAZceTuUCbC8Ajyx9x6RosuWzDxljO80VERCAlxWPK8ZobHUbY94Cz9rt2CdTJnyl1eZn7taWAX87PaKH+B8IP0gdIl/N/HxD8voXU/8DaIvVfu+j1qiy2kU2g2qJBr87ue0p9FfoN6jnTRs75jEb+5W9ybRJqL8G438I1kIfs7GycOHECGzZswPr167F582ZMnz4dM2bMgE6nQ8eOHdG3b1/06dMHd94pf32qED179kRWVhbr2Lvvvou1a9fiuuuuA0An4Rs8eDDq1KmDrVu3oqCgAGPGjAFFUZg+fbrkcyYmJvKWhUtnlJiYiMGDBwfbDb/7oaZ9Jbbk6ErRESsrRo60gVrogzEaehP7e81kMLnsGw8YeXfHe+mGl9C9UXf0+qGXVxkzmJWYmIirml0FOB62eAalfjn0i+t1hMEIg829NO3xbdyBL6ZPDyx9ADaHzfXn1+PtbW/h2ztmA/MdAofeAbp8jtml9Nu5/83FD60cflaz+xDEteQ8X2JiIjpd3R7YA8BmEcznpOMK5JmcAS0Fic4L97tf730B6POXPDsK0UL9D4QfpA+QLhcOfQCp/4G1Req/dhEKkgSCQLXFyMhI30I+UMNXKSly5JwvNpb7oZwSm3IgM5m0QTD6Otlh7rZt2+Kpp57C77//jpycHBw6dAhffvklhg4digsXLuDLL7/E3XffraavLCIiIlC/fn3XX2pqKpYvX46HH37Y1SGsXr0ax44dw7x589C5c2fceuutmDp1KubMmYPS0lLJ5wz29qdawGq1ori4OOjXwt9+qGlfiS05ulJ0xMpq5b5rAS1cCzV94HoK6LRv0Ak/IWTusseEGZSyWq2oqXEHmphBqYziDOy8vNP1PlJvgrH0lOu9xc6dO4m55G/J8SWsstn756C4uNh9oG5vUDz5niiDRy4qnh8TVqsVlRWObXGrsoFdj3LKOax6HzIlAl2mKcspdeQ9xilCo+5p2Q/SByj3Q1U08kM/6NchQH6Q+q/cj1CH4sn5GCgCdU/UyPejhq/+agNOfO2mSNqAdqDU2MXZB8G436rMvbRYLMjPz0deXh5ycnJQUVEBiqICGkVfvnw58vPzMXbsWNexHTt24Oqrr0bDhg1dxwYMGIDq6mrs27eP11Z1dTVKS0tZfwDJKQXQa0y//PLLoK8p9rcfatpXYkuOrhQdsbJi5EgbqJ0+cC3Rc9q3ceVHApAcRe/KF2ngfoLItJmXl4eD/x10vWcGpXZn7mbpRRlMMEQm+/SZOVNqQIsBXuVffvml+429Grszd3Da0dk8glU8g8+8vDxs3rTecfJi4Oz3Doe9d4jhrP+UHXR3q1JOqSCihfofCD9IHyBdzq99gB8SwcqB1P/A2iL1X7toIadUINqiuVJgExORqOEr62GbH84nJqeUFr77COJQOmMzGPdb1vI9q9WKXbt2uZbv7dy5E9XV1TAajejWrRtef/119O3bFz179lTbX16+//57DBgwAI0bN3Ydy87ORr169VhyycnJiIiIQHZ2tqcJF5MnT8akSZO8jm/atIk3mFVVVeX6v2DBAjkfoVZgt9vRqFEjrF+/Pqjryf3th5r2ldiSoytFR6ysGDnSBmqnD3tK2EnMFyxY4LJvucy9dK9HVA8sWLAA2Rbu79ETW07g8vbLLl/j4+KBcrrs39X/4nz0eQDA9tLtLL3WRethEJGWcPX61cjflY9KeyUyszK9yls0SgIAlKIBTu/ehh6nf2aV78VYXIcfAQArql/HkMhPAACZVzKxmaPu2u12tExyLMFbeY3reEVVDZYvWIC+6ADgKACgxmLxqv/1qMNIwBXkoxzpOIQjR6S3j1EAKpCKWBQgMyuH089AoIX6Hwg/SB8gXc6ffUAX6iTqoQQrg9y3kPofWFuk/muLykp30u/c3Nygfs5AtcWLly4q/pxq+Lp3716UHOMOHP3+x++I1rtnfss53+HDh7Egg/9zSrGp5HotXboUiUb+dDlcLFy40OfMfierV6/GuehzPuUWLFjgM7Dj63MKlS9atAgmPT15p8jKHvjy6TmPX6y+6FN+xYoVaBDRQNA/oXOp2b6Y3xtC6CgZ8xLj4+NRWVkJg8GALl26oG/fvujbty9uvPFGxMTESHaWycSJEzkDQkz27NnjyhsFAJcvX0bTpk3x22+/Yfjw4a7jjz/+OC5cuIB///2XpR8REYGff/4Z9913H6f96upq1hOA0tJSNG7cGCUlJUhISODUadSoETIzM5Geno7Lly/7/JwEQqhB2kDt5JeDv+DBPx90vacmuLsE3STvDrlJYhMcffoo4iLicKnkEpp80cRV9kHfD9CzcU/0bd6XpfPq6lcxZccUAMCWh7bgxiY3cp+7FfB0LjBL+IEdfrnrFzyw9AHectvwD6Ev2AW0exXHzi1Bh38/Z5VT//vOvQTvjjPAXy2BHj8ClxYDvZdzGz36MXB6JlDJqNvdvgVaPg7YbWjUOB2ZV3KQ3qAOLl/xSKCetRooPQXU6UknLO/E0cetuxXotRCISqPfz9cBjYYBNy+l3x98F4iuD+x9FujyOdD2Rd7PTyAEA7/2AXtfAHLWA4MPq2uXQFCJcBgDNf68MS6X0p/tnvb34PcRvwfZI//AHPuM6zEOUwdMDbofux7dhW7p3TjLSt8oRXxkPKTCtLH8vuW4o80dMj0FdAk6oAxAPECVSgstMP3Ifjkb9eLqCUh769S8WwOjnn+eDVN25yM70b1Rd59y9vF2zqAUU4Y5XhZTziyrersKkUZ6tUFWWRYaTmvIqcdl71DOIVzzzTVex5myJ589idaprb38E/MZ1Ka0tBSJiYmCcRRA5vI95/K8m266CaNHj8bo0aPRv39/xQEpAHj22Wdx/Phxwb+rr76apTN37lykpqZ6JVWvX7++14yooqIi1NTUeM2gYhIZGYmEhATWHwCUl5fz6jhje2qsPdYy5eXl2LFjh+C1CAU/1LSvxJYcXSk6YmXFyJE2EDo+OO1z8ctdvyAugk64mRDp7lwaxDXA2ze/7RWQKi8vZ21KwVwSWGYp87KfKWL5+qfbPhUsP7TnbdRQRsAQiQd3/upVTjV7ELhpMezRTbDvv0P0wavG8NorLy/HxQvnYNexc2iVNR6FMX+OwbOrXgAF+ikdZ/2n7HQ+KZ0evInOc9YB1R7BrMt/ul/rdIDjqRoM3Lm8AoEW6n8g/CB9gHS5cOgDSP0PrC1S/7VLsHMLBaotWmrk7djORA1fhWabeOYYknM+c5XwMkWtfPcRAkMw7resoNRvv/2Gp59+GtnZ2XjxxRdx7bXXom7duhgxYgRmzZqFEydOyHYoLS0Nbdu2FfyLinIPyCmKwty5c/Hggw965bC64YYbcOTIEdYPotWrVyMyMhJdu3aV7FtFRQVvWbh0RuXl5di4cWPQv5T87Yea9pXYkqMrRUesrBg50gZqpw/MpOGe9uMjvJ+8MfNIJUYl4tnrnwUAPNvtWV5fL190PzVm5pSqtnqce8BuLOf/mnVxOFd4tkTni0ANYgB7DfaV5HqVWwGg8d3I7bED23fs9ir3pLy8HBcyzqK02Sus4x9s/gA/H/wZM/fMRLmFvhcUxZNTSufIKeXMY7XvJfr/mpsZ+XI4poqbsxg2HE8C7cH7MaCF+h8IP0gfIF0uHPoAUv8Da4vUf+2ihaBUINoic6MWuajhq9ksPreVnPNVmatUt0movQTjfstavsckNzcX69evx4YNG7Bp0yacOnUKOp0O9erVQ9++ffHrr95PqdVk3bp1uPXWW3Hs2DG0a9eOVWaz2XDttdeiXr16+Oyzz1BYWIixY8di2LBhmD59uuhziJl2Fg7TdgkEIUgbqJ3M3D0Tz650B5SYU3mnbJ+CV9e8ypI/9ewptEptxTpWY6uBycC/scXb697GR1s/AgCsfWAtbrnqFgDAZ9s+w2trXwMA/DzsZzzQ7g50npaM/zjyp466ehQWSMzFZH6jGNEfJ3kdr3irAjEmx8zeqjxgSV1gNAVsupNeMtfiYW9jB98F6vUB1t8KRKQArZ9Fi43zcK6Izk0Q9VUUqgqrkN4gDZeveCSGzFwBmK8AMU2AjbfT55qvc/+/rwZYaAIGHQaSHDOB1w8AslcDQ04BsY2BI+8DiR2A7feT5XsETeL35Xu5G4BBh9S1SyCoRDiMgcjyveD5IbR8r+SNEtbMdTn2yfK90Fq+xzVWF/sZ1Mavy/eY1K1bF/fddx++/fZbbNq0CVOmTEFaWhqys7OxcOFCpeZ98v3336Nnz55eASkAMBgM+PvvvxEVFYVevXph5MiRGDZsGKZMmeJ3vwgEAqE20Cypmev1fVez8+y90vMVVjlAz47yRCggBbB342POlGIu34uPjAd0BjzJkd9SBx0m9J4geA4uPt4+DZ3jvDvAdefWMZxj+F5TBux6hNsYZQVMDufq3Ah0moQoI3vWLi/O3fdMCU5hdnkJnSQdNsaTSqMjaemK1sDOh2mdpI7Ajb/RvhAIBAKBQCAQCCGAoqBUYWEhlixZgueeew5XX301GjZsiFdffRV5eXmoV68eRo4cqZafvMyfPx/btm3jLW/SpAlWrFiByspKFBQUYPr06YiM5N7G3BcFBQW8ZeGyFWx+fj5++OEH5Ofnh7QfatpXYkuOrhQdsbJi5EgbqJ0+DGo1CI91eQwd63bEuB7jvOw7l6U5qRtbV7Kvhw66Zzc4g1I2uw3vb37fddygMwA6I2I4VrDpdXqkxaRJOi8AnCw8hQsceRI2Zmx0+fbzPMbsq9yNvJ/h8KEDKCq3AunuJ4nMoJTzc1F2ruAURS/fS+zgeOsRVHImT3cGpc79RCdEd1J6HIAjsBWdHtTle1qo/4Hwg/QB0uXCoQ8g9T+wtkj91y7MDaGCQaDaopRlc3yo4WtxcbFfz1dW5p3jU6lNQu0lGPebf66bAOPGjcOGDRtw+PBhUBQFiqJQp04dDB8+HH369EHfvn05Zy7VdgwG/u0mnVP8fG0fWdsxGo1ISUmB0Sir6tQaP9S0r8SWHF0pOmJlxciRNlA7fdDpdJh9x2xe+/mV7g5pSOshsnxNiEkASun3C48uxICWA3C68DRbTm8EdAbeJyXMAJBYrkq6CnVMESi0snNCOKd5G41GJCWnAT7GnEajEdFRETAYI4G8rYClSJpPzpxSznxcp2bS/8sd2xKXHqf/2x1BqSt/s/VryumZUjo9nVdKzkypi4uB458BA3ZK12WghfofCD9IHyBdzr99gN17hmEQIPU/sLZI/dcuzBnQwSBQbVHot59Y1PBVih9yzqfXC99PrXz3EcSh9HsoGPdb1pm++OILpKSkYOjQoa4glOeOeKFIUlISb1m4dEZJSUkYNmxYsN3wux9q2ldiS46uFB2xsmLkSBsIHR+Y9p+9/lnM2DMDAHB/x/tl2ep9fW/M+2seAMDkWC5n9ZjtY9AbAJ0BkRzVR6fTIdoULfncZqsZcXpvg82Tm7t8u3PYPcCJz7gNUPQP4aSkJCRd1RRITHYFpAAgpzzHLerY/UbHcT7X8j19BP1+vyPJ+bkf6f8HXgUM0YDVGR3zsGG3gJ4ppQP0RuDCIuDqd/g/OAAc+RBo/zotD9A5rYr+E9YRgRbqfyD8IH2AdDm/9QEVF4BTM+jlq0GG1P/A2iL1X7uYIoSX7fubQLXFiIgIxTbU8DUhnj8Xj2f6ADnni4uLEyzXyndfKKLF74xg3G9ZQakDBw7gmmuu8S0YYthsNt9CIY7NZkNVVRWioqJUeXqgVT/UtK/ElhxdKTpiZbVy37WAFq5FIOv/e33fQ1JUEq5Pvx53trlTlq0e9Xq43jvzSFVY2Nvs0TOl9GjHM/6T81TWXGOGjWNWkXPXP9fnbP0SWFfRakaNzoj9O15G15oz0N38FwynZsDW8lmW3Nmis24VG32eGhvXLCbHTCnPz1DK2KnWZgaOfgSkdAYsxR7qFvZMqZIjwJnZQMvH+T/8oXeA1s8CEc4kXZT3+WWghfofCD9IH6DeZ1CMlX8r9EBD6n9gbZH6r12CvctgoO6JnWtHXYmo4avNzv8b1PlQTMn5hOzLtRkogl0XtYiOazdnCQTjfssaoYZjQAoA8vLyeMvCZS15bm4upkyZgtxc723WQ8kPNe0rsSVHV4qOWFkxcqQNhI4PTPvJ0cl4v9/7sgJSTls/f/ez631ZNR2U2pe1jyVH55TSoUMk8G3/T1hlzllVvgJTnonazVYz50Cr2lbt8s3rOia0A+xVaDuzLXqsmw7T5pXYdnIbyqxxyK3wPVsr11zsfZByzHLy5CJj56LkzkCzUcCWEfSue0yqst02nDOfdj/B74RrgMZoi3w+SEQL9T8Qfoi27xlAVGJLJd3Q6wO08xSZ1P/A2iL1X7tUVwU3p1Sg2qK5UnlOKTV8LSos8i2k4HwlxSWq2yTUXoJxvxU9Nr1w4QI++ugjjBw5EgMGDMCIESPw0UcfISMjQyX3tAVZvgckJyfjvvvuQ3Jyckj7oaZ9Jbbk6ErRESsrRo60gdDxQe36/8CIB1zvS6vp5FKeT3EMeveTmMc7j0XfZn1d71smtwQARBqEN6lontSc9d5sNcNqr/GS+/3Y7y7fvD6nKREZhadxruic2591j0OXej2SUx1J3nt75HzyoKDSY1OMPU8DBT5yOVF24PJysAJJMY2ZAo68VB6BsZWdvROfOz8z67g6M6W0UP8D4QevfXsNYGXM8vsjGTBny7OlxA+VdEgfII2wr/8BtkXqv3YJ9vK9QLXFyCh5m2MxUcPX+IR4v57P1/I9rXz3KSVc2qdSgnG/ZWevmjFjBl555RXU1NSwps0tXrwYkyZNwqeffooXXnhBFSe1QlQUf1LbcOmMoqKi0KZNm2C74Xc/1LSvxJYcXSk6YmXFyJE2EDo+qF3/O7bviAhDBCw2i2v5Xo1HsIgVpNIZMaX/FHSd3RUAsOTeJQCACEMEzFbup5b/jP4HOy+zAz8VlgrYOGZ1772yFwezD+Ka+td4f05jLCZu/ZR16GThScR1agM4+wBHXqzrGl6HvVf2etk/V3QOqTGp7gM1xYAhhtNvRDcAzFlA8UH6fcp17rImI4AT0+jXlB3Q6YAoxu6HlJ3OE1WdB1RcAlKvp2Uox+wwu4Utq0JQSgv1PxB+8No/PhW4tBgYuMd9jHmdpdhS4odKOrWiD9BQnxL29T/Atkj91y7BXsIVqLZoNChP9KyGr1GR4jd7kXM+X7mztPLdFypo/XsiGPdb1gj1n3/+wfPPP4+kpCR89NFH2LFjB86fP4+dO3fi448/RnJyMsaNG4e//xZ+mlzbqKio4C1zBuZCfV1rRUUF9u7dK3gtQsEPNe0rsSVHV4qOWFkxcqQNhI4P/qj/cRH0UzjnTCmLjf1DnpXIXG9ElwZdsOPBHVhw8wJcFXcVAPZsKib9W/TH7a1uR0IkOxFoobkQfPvUTdkxhftzmuJwLP+0l3xxcZFbzpGw3DNZu5MYkzsA9djyx6A7ZcfzGRe4HYlpSv/v4gg+ma+4y1htiQKgB4yx7kMLHNdj73PA6u5A3haHqDMoVQPsfoqhr3wQpIX6Hwg/eO1by+ggoN0GVFykj1EeS0SLj6jmK+kDtEXY1/8A2yL1X7tYrTJ2gVWRQLXFmhrv2dZSUcNXs5l/GaFnnZNzvqqqKsHyQF1vrQdrwoVg9HWyglJTpkxBamoq9u/fj9dffx3du3dH06ZN0a1bN7z22mvYt28fUlJSMG3aNLX9DSplZWW8ZeHSGZWWluKff/5BaWlpSPuhpn0ltuToStERKytGjrSB0PHBH/U/1hFMySjOAOAdlOpcv7P7jY5+Mtk0qilObTnl04/nuz0PABh77VgkRSa5jheYCzhnSgFAkbnI+3MO3AfEXoWCKu/cDTm5uW45H0Ep56DKTtnx3YHvAADTDy2iC1s/R/9vOJj+H+tYonfVWPo/MyjFHJydms4/YyTzL/q/059yx9JDuwU48w39+sCrdEBFYdJWLdT/QPjBab8qn05GDx2QvRZY5ggoVnss1/ynI2vpJOkDQoewrv9BsEXqv3ax1gQ3KBWotmixCM+EFYMavkoJDsg5X2Wl8IYSWvnuI4hDaXAvGPdbR8n49kxKSsL999+PmTNn8so888wz+PXXX1FcXKzEP01QWlqKxMRElJSUICGBe0vORo0aITMzE+np6bh8+XKAPSQQgg9pAwQhdJPcHaT5bTM+2foJJm6a6DpGTXB0RQujgJFlriVyTOp8Vgf5lflex1fevxIDWw4EABzPO472X7cX5ZNtvA16nR52yo4FhxfAoDfgXst+XL1tCY4VnmXJUn3uAHovB+brgAF7YE7ogJiPGEvypgIoAxAPHDp9CB3rdcTsfbPxxAp3QnJqAgUc/Rg4MQUYfAJYUgcYuB9Y1QUYTdG2mYwoAf5IBZw7CA69SAexPOU6f0YHnW7ZCNTrDZScAP5ux2273atAZ/byRFGUnwei6gNG38neQ5aT04F9zwOxzYAObwO7H6OPp3QFBjKWcc7XAfdZOOtwKOO3PqD0JLCiLZDUERh0SD27BIKKhMMYqPHnjXG5lP5s97S/B7+P+N2HRu2EOV4Z12Mcpg6YGnQ/9jy2B9c1vI6zrPC1QiRHS8/9w7Tx16i/MKT1EJmeAroEnWsMRJVKCy0w/ch5JQd1Y+sKSHvrWN6xwGTg72+Zsrse3YVu6d18ytnH2zkDO0wZ17hVZDmzrPqdakQY6Aec2eXZaDC1Aacel71DOYdwzTfXeB1nyp59/iyuSr4K5hozFh1dhGvqXYPODTqL+gxqIyaOAsjMKWWxWBAbGysoExsbq0p0mUAgEAihxVN/P4Uf//vR9f7jWz52F97HP4Wcb4tb5q587eq048315Mn7m97H1ktbkV2ejSO59JKrxBvu9QpIeTtiwJg/x/AWW+1W5JTnsAJSAP0EXedYRjdu00eoygW+1EeDdyhlSgDuzgYWpznOy/Pky7GbIEyORKU2xzT/ixw/GI5/BlwzGeBZCsnL8quAiBTgngLfsqHKxd8cL3RAHCOpPldOqTCZLREYyHIOAoEQHMhyMkJtZsLGCfhs+2cAgKLXi5AUlRRchwSQtXyvdevW+Ouvv3jXE1utVqxYsQKtW7dW5JzWKCws5C0Ll61gCwoKMG/ePBQUBPeHib/9UNO+EltydKXoiJUVI0faQOj44I/637exezc9ZkAKAHo27inKD5tn7h4HzKBUQUEBSgvFTTeeuGki1p5b6wpIAcAHJ7dxyl6+fNl9PXR61w5+XFjtVqw6s8rrOAU6UPHQ5TJ8vvNzzCoBPtk7R9jJSEbCdL4f5/ZqOoB1aSn93hmUOjaZR17mAyNLIQoKCrBt3pMoOf2XPBtMdoyVHbwJShvI28qQYNwLjh0embsokj4gdNDC938g/CBjIOly4VD/mViqgzvxIFBtUSiXk1jU8FXKyiM55/O1TEsr330EaUuEnQEpANh6cauAJJtg3G9ZQakxY8bg5MmTGDBgAPbt28cq27t3L26//XacPHkSY8bwP0mujZBoOaDX6xEZGQm9XvkuTlr2Q037SmzJ0ZWiI1ZWK/ddC2jhWtTG+n9Ls1t4ZZxTmH35UW2t5pRLj09n6Zh4lk2Nv3m8T3+vVJXz+uK6HjrhScZWu5UzKbudsgOg8GOx+3O8u01C7kW+5WCWYqCmFDj6Ib0Ln61S2E+5QSnQ16GX/ltEXVkg24aL8z/JznGlWh2lOJZN+rJfcZ59L7iCUoxBo16vR1SEgfQBstHO2EsL3/+B8IOMgZT7EfIEuVkG6p6o8dtPDV/91QbE2idtILzYnb0bS0uWIrsyO2DnlLV87/nnn8fWrVuxdOlSdOvWDdHR0ahXrx5ycnJgNptBURSGDh2KF154QW1/g0pyMv96XWcjDfXGmpycjBEjRgTbDb/7oaZ9Jbbk6ErRESsrRo60gdDxwR/1/5eDv/DK8OUC8PSjyupe2tezcU9UWavQr1k/tKvTjqWT3iAdR88e9bJ3f6f78d7m9wT9zags5jzesGE6kJwMNLgdiElHSnQKCs3cs2etpadg0HkH2grNhahrYOdkapvSAmjaXdAnF85AyIDdwIHXgNyN9PtT090yBTuBE58DMU2AiGSg+CAdsGJiqwKQKO6cHjj7wcjEJrL0vaCsAKRvLa5eHeV+4uhlv2APWyAiyf2ac6aU225ycjLusY4GkqXPCiN9gLbQwvd/IPwgYyDpcuFQ/5lERHA/TAoUgWqLUVFRim2o4atQLh7Kox+Tc764uDjBcq189xHEBUr50l2IwWKzYNAfgwAAF1ddxJ7H9vjQUAdZ35wGgwGLFy/GTz/9hD59+iAyMhIXL15EZGQk+vbti59++glLly4NuS/mcJmSK4TdbofFYgn6tfC3H2raV2JLjq4UHbGyWrnvWkAL16I21v+U6BReGb6ZUp5+MJfv9WnaB/se34fP+n/mpVNj497CuWVKS6nuu7DCRPvR9x8gIgmjrx7NL1t4gPMz1ZtSD2j1DOvYbU1vAnr9Ks4Jx65/SL0e6O2xfK7JSPq/rRrI3wFUXqQDUgDguezRXkUnjz7xpbjzMlUd94LSRUrW5YRnSaYYP2TX0XX9GOfn1veyf2ERW4CpRwkHpQSX9dhrABv/zDXSB4A/l1oQ0ML3fyD8IGMg5X6EOsHeZTBQ90SNz6mGr/5qA2LtkzYQPpRUlbhei8nPqhaKokYPPPAA1q1bh4KCAtTU1KCgoABr167FAw88oJZ/miI3N5e3LFzWkufk5GDy5MnIyckJaT/UtK/ElhxdKTpiZcXIkTYQOj74o/7rzfzdDd9yO08/Zg+Z7Sp7pMsjvDotMlpwljFzT0ll29ETrOtRXF3MK5tnLkBCJPdTzTc3TGC9N8OIVWdWYcj8IVjja8dnI2ODEVMc0JyxRN55DZkzeJzYPJY9lhwDsv4F9r/o44TeOK9BiZX/qa0kZC7fU1RHczYwHRC0X/rfV9xyTL/bvkL/t1W7Z00xyp0+unzdNhqwFNGvD7wO7Pgfv6ukD9AUWvj+D4QfZAwkXS4c6j+T6iru5fSBIlBtsaLSV8fsGzV8FcprrMb5fOWsCtT1VjLDR008Z58R/I+kEfrOnTtxyy23ICEhAQkJCbj11luxe/duf/mmORIT+Zc7OKfShXreqaSkJNx9991ISkoKaT/UtK/ElhxdKTpiZcXIkTYQOj74o/73bMGdzBzgnynl6cfYa8fil7t+wZaHtuCq5Kt4dZ6/+3nec31222e8ZUI8W3HZ5YedsmPeoXm8svfumIeIyvOcZR9v+5j1vtJaidt/vR1/n/4b/a84DsY291bkghXMc3TnERwz0s54JFPf/Thw6F1x5/DAeQ1i4pJk6XvBNVOq9BRnnicmqWWr+evofB1gFpkHgecpeIMNDTFqUGcknXiJPuC1RI/xw9MZCNwxBtj3ktOwq9jpo8vXCwuAqjz6taVA0FfSBwBBT17DQAvf/4Hwg4yBpMuFyxjIiSmCd9/YgBCothgVqXz5nhq++lpep/R8sbGxguVa+e4jhC6ic0odPnwY/fr1Q1WVO6fH+vXr0bdvX+zevRsdOnTwi4NaIjo6mrcsXDqj6OhodOzYMdhu+N0PNe0rsSVHV4qOWFkxcqQNhI4Pga7/UUbuQZ+nrslgwv868c8qYeksYR//YsAXAIB+zft5K4ngSGWJqw84muudr8qTwcue8SkDAPMPz2e9z6gzBM2smYDnw9m6fbyVu0wFzn5Hvy50TLHmSmJelQM0GQE0HATsfAiovAxEN/TONeULU6LrGkSYOIYPu58EukwDjDHc+nueAa6fyT7GuXzP93dIxN6x6Dha4ElmyREgur6wkd/igeYP8ha3bmgATjveWD0S4LNmeDn8qM5jHHL75rxmnGMIc5Z7t0QOSB8AQKdDhR0w11iRpq5lyWjh+z8QfpAxkHS5cBkDOQl2ipZAtUWjUVb6ZRZq+Colt5Wc8/kKvmnluy+YBHvJqhS4voe0MguND9HfKB9//DGqqqrw9ttvIzs7Gzk5OXjrrbdgNpvxySef+NNHzSC0LaizotamCisHs9mMQ4cOqbJFqpb9UNO+EltydKXoiJUVI0faQOj44K/636txL06ZtBjun5pK6j+T2UNm44Ue9MYb0Ub+hwu+WHNqDQDgvsX3+ZStsFllnaP59hVAV45cT/3Weh8zJQAGx0DSGQiy1wAtHqEDUE70EQD0gI7xZLvtOGmO1bkRaDTUdS8s1WbAWgHYGUGlM98CNSVsvYPvAHsdM9dOfw3kbGSXcwalxH2HKKqjJ6fTgabTX/OKnD9/jn6xtjdwbi67kBlIcgWomAM+92dw+sj21VGevcYdUOSA9AFAUVUJmpwH0g+ewL4r+3wr+BEtfP8Hwg8yBpIuFw5jIOaPWptNXj5AtQhUW7Ra5fXlTNTwlTkpxBPPOifnfNUW4eWYWvnuU4oWAzNa9CkYiA5KbdmyBTfeeCPef/991K1bF3Xq1MEHH3yAXr16YdOmTf70UTOUlJTwloVDZwTQa46XLl3qc+1xbfdDTftKbMnRlaIjVlaMHGkDoeODv+r/1XWv9irv0agH7+57Suo/kzZpbVyv+WZlcfHzsJ9Z7/sv6I9LJZdwLO+YaBuyqHuT9zG9e4e6KmsVfj/6O84VnQMGO2ZtNbuf/l95md51r5Njl8GENkDyNYDOAOiNKHfGT4wxgE7CE2CdHqDsrntRWVkO/J4IXFwkrFd+FihhzCyrcuRmtDsG+p45pUpPA+d/5i7z4O8/F/LXDQPPbC0n+/iXeDrZuXMH/SJ3s3cha0Yax3cew3enjyxfRX5Pkj4A+HDnTBTaAQtFYcTvwd39SQvf/4Hwg4yBpMuFyxjISU0N94YigSJQbbG6WnnuLDV8LS8v9y2k4HwVFcK5s7Ty3UfwP8Ga7Sl6RJqTk4P77vN+OtyjRw/s2ROYrQKDTb169XjLwmUr2Pr16+Ptt9+GwSB9C+/a5Iea9pXYkqMrRUesrBg50gZCxwd/1X/PXfGevu5pzBg0Q1U/nDoTP5zoOsZMcC4l2Xmd2Dpex77d961ofUU0HAIAKK0uxY+R/XD9pR24ofENAID3Nr2HyVsnIz4iHnmv5iFy8HGg7CStl7cZiEgFjPH0+9KTwLkfgNzNGH76LJZfAH6oBzygMwCUhCfAOgNA2VG/Pr0kLjE+1jHLyfN6eg5mPN4X7AKajnQHdTxnSq1o7X5N2elgGA+vjnsGhlieJXrOGWTb/wf05M//JcTIEfcA2xZwF7J233P8CC0/A+Sscx50FTuvmfO/Z7kQpA8ASixlrtd5lXkCkv5HC9//gfCDjIGky4XLGMiJlOVk/iBQbdFXriUxqOFramqqX8+XnJSsuk0tEi7La2sjor85a2pqOJOsxcXFBT1aHihIRaavgdFoDPq18LcfatpXYkuOrhQdsbJaue9aQAvXorbW/+Ro9qBn+qDpgudQUv+ZMANRXIEmPlKjvQeBWy9uFa0vF3ONGXtbT4DNbsMnWz/BC0fWo+cPPXEy/ySm75qOyVsnAwDKLGU4knsESGxLB40AIKYJO5iT1Amw1yDbCiy5sAtWAA/mANI339UDsLvzpoBnFpNXEImi/5wzo05Mcxy2sf9z4WOmlNFo4q8bdguQvR7I+FXQhhCGKIEfASzfHK8rLjDK3UEn7lwz4oJSfu8DQMFoLyN9gEi0ch1qax8QCF0yBgoPAnVP1FhapYav/moDYu2TNuA/yE5/NOERzleJoqIi3rJw2Qq2qKgIixYtErwWoeCHmvaV2JKjK0VHrKwYOdIGQscHf9X/J7o+4Treu2lvn7OWlNR/JszzxJh8LOtiYNR7TybedMH/y9V7/9gb18+5Hm+sfQMfbf3IdbztzLZ4fhV72VluRS5Wn12NGrsNu6uAx/cvw66iK+7gkM4A2K2o9Bzz6DiedtprgNOzgIMcO/Pp9ABlc92LygrHUgLPASpz6UpNKWAppnNaeQafXO8Fvi/KTgEZ83mLl/25hL9u2C3A4fH8toVwLDFctUFgd2HWTCmuz+C+Dk4f2b6KGNhbSlCcfdqvfUD5yQWw/VGX9AEi0cL3fyD8IGMg6XLhUP+ZWCwcm2oEkEC1xapq/lxOYlHD19JS/o1JPIMacs7na3lgoK43CXqpQ23MUyVpS4F58+Zh586drGNnzpwBAAwaNMhLXqfT4e+//1bgnrYIl3XiQlAUBZvNFvRr4W8/1LSvxJYcXSk6YmW1ct+1gBauRW2t/61SW2HB8AVYdnIZ3rnpHb/44dRhIrdz5gpKyaVubF3kVuSKkt1zhV4SP2XHFJ+yg+bTfe/9Lfrg10sAcBBzLhzEydaPozVAB5Nim8BmOAbvLf0AFB4AUjrTr49+BByeCNS9mS1TccGVU4qiKNQgCpQrqOR5bRk/yFb3onfBS+roHbjZOpL+LzRTKnMFcGQS0Gw0Z7HdXsNfN6rygLxt/La9jFkB5/1eQi/Vv8H+Bb+8OdP9+vgUIL4Vu5zxeTlzzZz8Cug2S9in/15DbP5/sNle8FsfAGslDLCSPkAkWrkOtbUPCIQuGQOFBwG7JyqYV8NXv/UBIu1ruQ2QmUbi0HrAT9KI+8yZM64glCerVq3yOqb1Dy+VlJQU3rJwWUuekpKC0aO5fyCEkh9q2ldiS46uFB2xsmLkSBsIHR/8Wf/vu/o+3He1793r5Prh1Ll/0v2uY1LySDEx6o0YEgusEMj/GWOKQWVNpaCdJxOBAQO/xV2L7pLlhxh+PbuR9X7Q0odxpg7oGVE2M2zNHwTOMoMgjqBJNSNHj9XxQQ0eOTSWNQNSuwMVF5BS+i+AKpiiI+kyoZlSJUfo/8WH4TUjKnuNww2hHZyEZxzcNfROIJanX945lv1+vg7o+StvgAs1JUBNmTsRO4BEXOE/OTPIVpHh/jxuAderlGR62SprDJExz3dQ6sxsmAB2G/j7amDwEUE1Ke0mLjbG2zeZNsOhD9DC938g/CBjIOly4VD/mURERAT1/IFqi2rkzlLD16TEJN4yz0CRnPMlJCQIlmvlu4/gf4I1y0p0UOr8+fP+9INAIBAIBL9QUs2/c6oQBr0BpoS2QMUJXpn3+ryHV9a8ImjHSgFD2wyV5YNczhZfAOoAKNwPUFZ4bSDkDKoYOZK4Gjh+bBTsov9vHw3ENvOe4WRznoAjkNTkXv4ZUQpySgnq2jiWXByfyh+UKjsNrL5B+HxMTB4DeC9fKe+ysjPAAUddsZYDNYzlEhd/B87OBfr+w39OimLvZKgK2l9qpMEH8wQCgUAghAR2yo631r2F0upSfHbbZ0HzQ3Q4v2nTprL+Qons7GzesnBZS56VlYVJkyYhKysrpP1Q074SW3J0peiIlRUjR9pA6PgQCvVfDYx6I0wpnQRlUqKFZ5gAwNOJ9MzhtJg0VfyShGOHvUqPZrk997TjFWMY4AyeXF5G/988DABQZAPmlABnnSlEKjKA/153vHE8UTv/E9sGE2MMUF3I46DA9wVl8w4uUe6k6dO/+oK/blz9DhDrOQYROJeUgBRA599ivffYyZARScm+fAoAUHBxj/vaAkDpcffr/a8A+dzLDV1twFeQzoGUdlNcVOjSUWozHPoALXz/B8KPUOgDyBjIv1RVKc+1pIRAtcXyCuFcS2JQw9f8/Hy/nq+wkK+Plm+TUDv4+eDP+GTbJ5i1dxbe2/SeKJ1fDv6CUYtH4WT+SdX8CI85piohNLWRe3ed0CMxMRF33HEHEhMTQ9oPNe0rsSVHV4qOWFkxcqQNhI4PoVD/mdgEl4jxY9QbYdKbBGX+1+l/6Fi3I2+9j9ABndNaAghSXsImdO6mipjmrMO91nyGY5FtgDU93TN2mIGWE1+6AiiP59J/11/imrXi+Nw2Z8SK4zNWXgaWN/c+Doib7cQMxpyZDaylc17169ubv27EtWDvhudpx5OENvxlXGSvZb+3eAzoV7QG8unZZcmWgwCAWOeSRyc5G9yvKy/SieGt3mtF3W1AXP2R0m6ioyNcOkpt+qsPCFqXsnGw1yEtfP8Hwo9Q6APIGMi/mEzCfaO/CVRbjIyM9C3kAzV8jYuL8+v5YmKFN4HRyncfQRxSvodWnlnpej3v8Dyf8kXmIjz454NYeGQhbvn5Fln+caFeFtcwICaGv8GGS2cUExODLl26BNsNv/uhpn0ltuToStERKytGjrSB0PEhJOr/X+5jNqHAhwAGnQEmg/DA22Qw4b8n/0PjDxvjSql3DqLSWx8AOtK7wBWYC2T5oYiGtwMXf0M55d0uP8nKw08pcAeGTn3lLsxy54n8wxGzKrIDFgqI5GzijoAPV+DHK98SA6F7U1PqlnHmBavKoWdqAejQri3A2y9zBHCKD/Gfyyh+wA8AyPiF/d4zb5m1AjDTT5QjI+g6FBXhseNh+Tlvu/teBLrPYR1ytQHP2Vk8iG43q65HZMsnXDpKbfqlD7i8LHjL9654L6XUwvd/IPwIiT5ARVkyBvLGYODYwTWABKotmozKg29q+Colt5Wc80VFCtvXyncfIfgwN+3JLMsUkJQGmSklAbPZzFvGubtOCGI2m3H8+HHBaxEKfqhpX4ktObpSdMTKipEjbSB0fAiF+s/ELnLZkydGvRFGne9nN3qdnncSS6StAjAF6cniaApoPgYA8Nol74DZzwWFOG0BbFZ3onYbBSwtByot3Nndqx2f057QkV3gXL7mOYOISdPRgCGafUzo3jhnDZWe8pCnhy6ZR//mrxsU5R0oAuhlcpzyCpfcVFwAotPZx/K3AwCqLfSML/v+V9nlds9EXwDOfud1yNUGRPoout0U7oXF4Ztm+wDHElInwd7mWgvf/4HwIxT6ADIG8i+eu9wGmkC1RavV6lvIB2r4WlUtfrmknPNVeyWeVG6TEDy4+kqx/WewAuskKCWBkhL+ZLnh0hkVFxfjt99+Q3FxcUj7oaZ9Jbbk6ErRESsrRo60gdDxIRTqPxMlQSmxWw1z1fvuUQAuLQH0QZyU7BhcnObJ/9H6AnDX7yNc741ngLuzgNidWzjlqxwfszqyCcs+DtOzwbD7cX5fLswHbB4DWudMqTKOnX0T29P/j3sm3qSdqD7+DUryL9M7+Hlef8rKHcQ5MZXbt6ID/H6LggIiPIKPDr8ry8sAAPry0+zycz8Km0xoB3PdOxhtQFxdlNJuzJUVsFO6WtMHBHvrby18/wfCj1DoA8gYSH0ulV5yvS4zlwXRk8C1RSnBID7U8LW8jD+3lef3opzzVVQIbDMs0yYhPKAoCkuOL8GCwwtkj7cBsnxPEnXr1uUtC5etYOvVq4fXXntNlTXWWvZDTftKbMnRlaIjVlaMHGkDoeNDKNT/b7/+Flnl9PKpRgmNWDLJUckoqioCAEy9dSpeXvsypy2j3girZwJrBunx7pkxXPU+2vmwSRfc3BsAMCAhBv+WVnKW/ZWxDaAo2D1+S1XZAc8J/dUUQJmSEZ33N7uAIxcSL0WMZXSUI6D0Vyvg7hz3cZ0BriDM+Z+Arl/SQR+d3hVsuirmPKjTzwCn7ECjYUCbZ926dovblqVYvG+y0QNpNwAlx7xKEhPj5ZmMTEFUTLK7DdjFPaGW0m7i4+Og0+tRr149xTb91QdoaTGUFr7/A+FHKPQBZAzkX9ZdWhfU8weqLcbGcuxQKxE1fE1J9b2pipLzJSUlqW4zUIRyIJiLYHzeY3nHsPzkcvyv0/+8ytaeW4vhvw0HQI+bR3QY4SUjhvD45lSJcOlohNDr9YiOjg76tfC3H2raV2JLjq4UHbGyWrnvWkAL14LUf986qx9YjW7p3fBi9xfRpQE7D8LikYuRHp+ORzs/inG9xmHyLZMxoMUAL1sGvUEwH9Wq/63iLQPoJOe0oWhBuUDQ2CMw54mdssHzk47LB51YnEEVBegaDnQfoOzA0Y+lOVNTzNC3uWdLLWEERvQmwMZYTuCayUSBOWNIl70GKDmCV/f8hAGfxyOjOIO2x8y/VKre7jC86HTc+bEoStFAS5fxs7sNZAnk5rJVuWaLSe0DdJSNW5Zx/YP5vRew2VELBXKqrKOTuWrh+z8QfoRCH0DGQKFNoO6JGkuG1fBVz7UcXcXzkTYQWihZgscV9OrwdQe8ue5NDJw30Ktsyo4prtcTN02UfV5SsyRQVFTEWxYuW8EWFRVhyZIlgtciFPxQ074SW3J0peiIlRUjR9pA6PgQCvU/3ZSOXY/uwucDP/eS6du8Ly69dAmf3vQplixZgic6PMEZYIqLiGPt3GfQsRO7Nohr4HrNVe9d86P0gU8IWy+WPfPlh0yO5XEMLNYq2DzGIbNKgMIdT7COVVPAmqwe7gN2K3DwTbaizcdyB+bsM8oOXF7qLaMzsWc7revrkKfoZOcMthTlYMrZvVhdWo57nUsRmbpqzrW5bgb3cZ2RHURzkrcF2OH9ZFEctN+uNkB5JDrP/AcwZ9OvlzQAcuiZC1LaTaVjyQan7CJ3kCYs+gCuHF9OctYD0Mb3fyD8CIU+gIyBQptAtUU1lu+p4WtpWalfz1dezr88UK5NQuhxNO+o33JOkaCUBMJteiAXdrsdpaWlQe90/e2HmvaV2JKjK0VHrKxW7rsW0MK1IPVfuY5Op/OSXXqvOziyeexm2h5jfXxqdCrLhq+d+SqD2GWwBg0jK3yu85/731yvmVIAMNVj/Pl3BfDU6Sm47iKwpgJA7iZvpUXRwPr+AmdzXJim99Gziyo5dm/Rm4CjH/LrMjjGiD/tvrKXfsEMSqk5gGp6H9CSI2+WMQaITPU+nvmX9zGJuOuo43Os7kX/3zQYuOLYyrmmGLDQN8tutyO2bAfsIhIRU44Aoew+oOQ4sOF2sR9Fuwgl6Heyrp8mvv8B0geopUPGQPK5Ou3qoJ4/UPdEjd9+avi6I3OHX89H2kDwCPYGHp4EK9E5ySklgZQU/vW84bKWPDU1FWPHjg22G373Q037SmzJ0ZWiI1ZWjBxpA6HjQ7jW/2Fth2HPY3tQL7YeGic2BgDW8j3PIFRCZILrNVe93+CRAkgHXXASNRtjfIosP7UC93O4dsUjpdYbBQBAJ7vtfwWoaF8Jgx1YVQlcHwU0dI4qsjmWmukMQIe3AYPDn6j6jqV27Bkqx6qBkRdL0CY6Ab+nlULPGh95O1nJNUa21wAxjYHKSxyFCjBEAQ2HeC1rRARHQAoAjk/hPi6BsfcNAaJSgUpHHXPs6ueFI/CYmpqKAaYpQNJ7Pm3Hxsa5dITgbVcVF4Asepah4j5gdU+gP89nU5MNg4C+/7jf2yycucBcnP2B/p+zAakH7sbYsRyB2ABD+gB1dMgYSBoN4hq4cjW2q9suqL4EaiwWHaV8+b0avi45swRv9XuLs8wzcCbnfAkJCYLlWhj7EpQhJtgUzAk4ofvNSSAQCASCRK5reJ0rIAWAtXxPSk4HLrY9vE2RvhSYA4sKSwWaJTUTlLfYLJwzpXyRXV2J8YXAsCygdQa8lgCynbI5ckVVAE1HAXFX0Uve/nvDJXKpBuhwEThabcOS4lIsEl5RAAAo4QpKHZ4AJHf2rRzd0LcME30kUJ3rffzcD8ApnqV9SrGZgX97sJc9OrGWuxPHC+Q/qxXk880EYOQQcz5R3jAIKDoo/RwH3wayVrKPLYoE9r3ALV9yHNj1CFZXANOKgPKcwLVhAkFrKO0DCfLJreDodwiS0dqsJC2g9JqoFcgi3y4SyMnJ4S0Ll7Xk2dnZ+Oijj5CdnR3SfqhpX4ktObpSdMTKipEjbSB0fCD13w0r0TkFTOw9EclRyfjhzh9YcmLq/Q2Nb/ApoxbOGVntZ7ZH3OQ4OgG4AOszNnIGpXx9qoKCQ/jUscSvgqJnTAmiMwLrbwOKD9Mzp2zs6WRP57HF51qbsA9wBF6svsZDNQK5OIxxPpQZjCgF9Eb/Jk5v/iA944kxyJsxYzpQsAs4MdVb/sQ0YOU19GtHcndnfc7O8d0GSktLWDp8BLMP4BzvZq2kZ2kBdODIZgH+vQEoPyds7OhH9H9zFmAp8S6f7zE4N2fhYg0w4Arwcj7wRr4dX378FhkDBciWFvoAsXLhMgZyUlWlPNeSEgI1Fqus9NWp+UYNX20ilmMrOZ+vXFFaGPsSxOPP4JuQbSXnJUEpCcTF8Q9enVPigrUOM1DEx8fjlltuQXy8zC2ua4kfatpXYkuOrhQdsbJi5EgbCB0fSP13w8zFZDKYMKHPBBS8VoCHOj/EkuOt97fLmM2hAhRFYfD8wTief1y0zozqBl7HPJfvedLt2CnW+yFXuOXeLwC6XQR2FTkESo7QQSlWQnLgPMVeargm/yLbkIc8AP4ZXpnL6f86gUTzjYbyl3lictYTP37HWSuALcOB45+5ztOrV0+6rGC3t3xFhvu1I+G8sz7HC4xZnERGRrB0XPyexHrrtz7gyr8iZjz5iDr+3R7I2wwU7AQK9wMVF9m7L3Kxvj89m84zCAUAWauBy8scb+xYz4ibziym8EKTyWQMFCBbWugDxMqFwxiIufzcaAxuBphAjcUiIiIU21DFVwnVSs75oqOFlykG6nqTmUzBR817sO7cOiROThQlS3JKSSA2Npa3LBw6I4C+Bt27dw+2G373Q037SmzJ0ZWiI1ZWjBxpA6HjA6n/bpjL94wGusvkquNcx8b1GAckdxLli9pQoPDP6X98CzKYlJnldWytmUNQIleswPhC+nWPddNBtQKOVgOPrv4UN9RpiWkMWZ/fHp7BhtTusObt4pdvPByIbQIkdQSKD+OUBaihgA6RAJqMADp/Ss+0ubJC/AeyilhTKJdLi2lfY5oAFB0R7HzttYBHbA75O711q/KA8nOIjbsKABAb6wjwWSt584pFRkbSslEew8Ea9iwir7ay/UGg/WssGVl9wH+vAnX7ANd9JV7HfUbvQ2Wnga0jgJsWA43vFtB1/7gusdGWEpyxyw0D6NxnAEDZOWdqCY0HAwHpA9TRIWMg+ZhMwht9+JtAjcXU+Jyq+CqhWsk5X1RUlGC5Fsa+BJra9B0zfuN40bJkppQEqqsFtgsOE6qrq3HmzJmgXwt/+6GmfSW25OhK0RErq5X7rgW0cC1I/VdHR4wsM7l5cmSyaD8AoEuDLpLkQw49HfDI55jKdPsVYGf+OXx+fDX2MlaBWH3kJjCbUrCkHMhyzuAq2IUbhR7wxjSi138Z43DSArS9AFx9EfQ5b/yNlik/K3hOO0X/uRCaeTWAYzaTHE59RQeTAGRkcCxJO/KB97H4lsDyFqh2LKuprnJEFH+LBWrKOE9jrXYcXyT8g8SrrWT8QgeAjk32/VkE0cFrJlTFRWAvI8cTY8kmezDO0HPWG+e9cb7nmgnlPC9F4XwNkH6e/rvIjHc6Z0huGMA5TyvYfSHpA9TRIWMg+dhtwV2mGKh7ImXZHB9q+CqUt8dzAxU557PWCE+LJm2A4ETKhj3bL4nfvIQEpSQgtN42XNaSFxYW4tdff0VhYWFI+6GmfSW25OhK0RErK0aOtIHQ8YHUfzeTb5nsmso8uSf/D3Cueq/206y4CPH5j/Ir81U9txwonQHflQDj8rzLLjHGvxmMYMAJM/fUrHwbcDL/JF45+DeGZwE3XXbHHUyCl1lHBxh0Brye7w5jPMxMEVnqWOJo8t59qMAGtLkAtMgAsssduTTaPM8WGnyUcToVhlXFh+n/jl0JT6z7lEOIY1BYpxcAoLCwAABQVMSo1zxJ0I1H3hH2xVLssMnVVnRA7mbXO84+YPsDwKU/hc9BeQSXSk/SQTnnIcY5vPCcOecMStWUuANS1YV0zqkTX3qpP51L50Irp4DnmPU0z33OXRypc8gYKDC2tNAHiJULhzEQMzBSbQlucCJQYzEzT58kBTV8FapXngErOecrK+N+cKHEJkFb+GtppFq7SpOglATq1KnDWxYOW8ECQN26dfHSSy+hbt26Ie2HmvaV2JKjK0VHrKwYOdIGQscHUv/dtK/THiefOYn/HvoPN7e9mVeOq95z7VQ0a/AsRBuj6aV9Etn+sPgnTlrglzIdHssF1nmM6fd4/Mjf5/xtk3g1p51SG1DnHNB2Zlt8fY6eiXS2BihzjNGFh0M6OiCjM7ISopu5lBzL3pxYKeDtfOBMDZBhBZ5b+RxdEFXf4xTMpW8qfv85knYPrPOvd5nAU/O6jrFKnUQjiquKMacEOH16AXB5uZf+f9XA2GxgH1/O4j/o2YGcbcUj6OrqA2oYP1qyVwMlR8GLTg+AAmwOB/K2sexSFDA3X+BH0MnpTkn634FX6P+7HnHLrLwWOD0T2P+i+1jJESB3A/IYsbpCZtyOcX1nc+TJJ2OgwNjSQh8gVi5cxkBOoqOEcxD5m0CNxWJiuZc+S0ENX6XUKznnS0wSzvujhbEvH2oFRUIJfy7xE0x0ruC8JKeUBAwGgSn7YYLBYEBCgvfT5FDzQ037SmzJ0ZWiI1ZWK/ddC2jhWpD6r46OWNlWaa0k+eCyz7HM68nrnsTjXR+HXqfHtJ3TOLT4SYpKkuVHoCmyAckGYExmBWd5t0vs9x8XAedqgJ+SuZeQvcQz6UvvGPtwxmeM8YC1zBHgsNO75jFgDZtMCV479H1ZBLxZwA5eHc9zzKjyvK/M92oOBDmSurvIWslbZKimk8kbLLl4aNkj+DMXiFj8LMzdu0Pf6E6HFP3BOjtyVf1UBlBWM2Dk/qHJ2Vb4AmO2amDTUKD9G/QMJZ5ZWjSO5XuLnOe1g3l3dgpu8KWjE8P7ovISsJ8jCFx8mPVTZmsVHTC9PgpA4T5Bk8EeD5I+QB0dMgaST7Dz2gTqnnA9XJKKGr5KCbzIajd64e800gbCh2C17fAI56tESQnH9sEOnFMnhdb8hgIlJSX466+/BK9FKPihpn0ltuToStERKytGjrSB0PGB1H/pcs56nxhFP21MjU7FkNZDOGXlDHJ7Ne4Fo752PEfql0nPbpLCb+XA/afPcJb9wDFTBQDKHTOlvE4V0wRIcyRkzdtO77SmM7CG9Kwh13Vfu4868mC9mO89m8pqd6w5dAahBh1mv/e2HFgcdbDi8ib6/eob8Oe5jQAAC2WHOW+HlyyLDbfxmpbSBgDQOx+WnwNqigGbY0v1ykx6Z7uLi+kZUVzoDGBew1IfK6GqM//B5ELgm6MrhCaPeRPbHGj5hNdhV8DULrw0iYyBAmOrNvYBoTwGYgZGamp87HDpZwI1FlMjh5IavkpZFirnfBUVwgF+LYx9Cf4nmLPOSFBKAlYrfxK4cOiMALoTys7ODnpn5G8/1LSvxJYcXSk6YmXFyJE2EDo+kPovXc5Z72OMMdjy0BYcfuowok3Sljfc3vJ23rKPbvnI55NMrfBfNZ1MXCpLioolyX/lELd75IKyX/Mh4AwgFewEzJk+ZuswBvsCTwhtThvOIJTesVU4M1goNeDY7H/S5AWh66CtRsyPKO8fOFU524C8HUDGfK8y7jbA/q73+u630LmtcOwTwFIEXFoCbL4LOPI+kLHAIaRjB8jsVvc9KD3J4SXomVgOpp47gLcKgKe2Tce/ldyflBNTvPv+yYCMgQJjqzb2AaE+BnIS7NxZgRqLqfE51fBVSr2Scz6rTTjRuRbGvqGEv/I7yUHpzCjPuklRFE4XnIadktZ2asdjV42QmprKWxYua8nT0tLw2GOPBdsNv/uhpn0ltuToStERKytGjrSB0PGB1H/pcsz6f2OTG0Wd35PHuz6OlWe4l2W1r9NetUFM3di6yK3IVcUWH5eEx7eq8J8jNpFpZwcXrJQOEfk72MI6I/9MKebASWDg77r+rsCT8z0jWCgy0GGj6OTt9a5+F8iYRx9s/TwrwbcgSdcAxQfZxxyfI8FQ7FufY7D4XSnw7JqenOJp1v842gD7Wnl/9zPelxxjqNnc11DnsfvepcVA47vo1yvaegWldPZqYNOdLt1Pi9wSi8qAgbGc7ntTfAioe7OsFrXZDPRKkbYTp9qQPkAdHTIGkk9UlPCOnf4mUGOx6GjlubPU8FWoXnnObpFzvsQE4ZxSWhj7qkGwl52GAkLXUAcdxm8Yjw+2fIChbYZKshse35wEAoFAIGgcvpxR39/5PdJi0lRbvvfDnT+oYifYrKwEvisBnrvMTjpVbrOAslXjMvOBbtYqfkNpPYCuzp3ZRDyN1nkEp5hBqaj6wB2nBdUpCrj5MtDgPDDv+DJ3gVFsRAWASWAnRhv3blHlzAgPZfeKvx0WmmC1/jZ6phMTX0/u41twHKToJOM6g2PGk0dQymYGM2TodQqKAqoZ95sjbxsfZjsdDHTbsvu82/9wrGjpfRl4a+XT9K6C+14SfX4CgVD70MqMFn8vq9JKsEYrftR2uOptoK7tB1s+AAAsO7nMhyQbEpSSQG4u/5PlcNgKFgBycnLw2WefIScnx7dwLfZDTftKbMnRlaIjVlaMHGkDoeMDqf/S5eTU/4m9JwqWP9ftOex8ZCce7vwwAN+JSMXSNKmpKna0wFsF3sfe+28JRmcDjTOAiYxy3plSCW2ANs8DLR4F6vLvsMikwg78eHQJjlaDvfueTg/EtxTUPWoBtlfR/jyw6jVGidIfHQ79wxM5SyOcH7pwH5C5HFs8kohX+zr9luGoWjvM+3wAUF0Iu4/lHwDcATOdHlgUBa/lezoDsK6v661Xa7JbgKL9bnHfZwQAHLcA6eeBlhns4JzQjL5CGzD4CnfZp3tnA4V7vQN1AYL0AeroBLsPqG0wl+lUVQnuQuB3AjUWq6gUsZmCD9Tw1WYTn6hRzvmKiopUt0monQQrEEuCUhKIieHfFtQZfQz1CG9sbCx69OiB2FgJT3RroR9q2ldiS46uFB2xsmLkSBsIHR9I/ZcuJ6f+d6rXifW+cUJjJEa6p9BP6T8F3Rt1d73n2s1PDi1ThIMmtYk8jnH6D6fXYWE5/XpSofs4KyilA/Zn7cfsfbNRbnEIt34aaHw377mY9/aNfOChf1/D1ReBSitzipHv+1/FG/yhsLwcaJMBTBX+fSDqPJ64LtW5H4H/Xke2R0DGM7E7F1G5y4Djzl0jGQo7HoTeKiEB7gmHDZ0OMGe5j3vUceGf9zrWPf2xDOh1id5Bz5N7s4AiO5BhBYZeATZU0jnCuOqPk1MCmx+6XQhOf0f6AHV0gt0H1GaMhuBmgAnUWMxkMim2oYavUuqVnPP5Wo6phbFvqBIu3xm+IDmlJBAXxz9dPlw6o7i4ONx0003BdsPvfqhpX4ktObpSdMTKipEjbSB0fCD1X7qcnPrvuQtfi5QWWDB8Ad5c9yYe7vwwIgzs/ERqLd+LNESqYker2ASTmtOUUkZ0nd0VAHA45zCmD5pOF4jJKQVgBiP+cjT/FK53CSl71jfUEZ95JR94WTBtEbueWShg05Gf0S0KSOSJXdqdH42iAMoOq8dHFROUAgAceNltx4m1gp7FxMfZH4BzPMtGr6xwv9ax6/hlj8AZ61NvGuK19eL2KnoHvW/qAk844rs1FHCWsZRzvRlYnwkg81tOd05agDYRYuatSZvZRlEUnlzxJM4Xn8fcoXORnpAuSZ8J6QPU0Ql2H1CbUSNYo4RAjcUiTPI3RHCihq9S6pWc8/nKnaWFsW+wCebOdEzU3kxBqT21rguZKSUBi0XMY7PQxmKx4OLFi0G/Fv72Q037SmzJ0ZWiI1ZWK/ddC2jhWpD6r45OsOs/13K821vdjv+e/A/Pd39elLwcQv1Hk9Vj+YxzvMUcNmXWuKMdM/bMYErz2uW9bqz7EpxrOy4P6H8FGMCz3Azw+GSUzTOeIzCDS4TF3I3eydOZA93zP/GY8Dgpxd7ZiWsm0+RC4KlcoMhGB+O4eDIXOFhNJz+POANUSvhsbS84XPElaCmBlPu9+PhizN4/G2vOrcFDyx4S7xDXqUkfoIpOsPuA2oyU5WT+IFD3xGZX/jnV8FVK4EDO+XztqkfaQPjgK8gktLxPyfiSBKUkUFhYyFsWDmvJAaCgoABz585FQQFHIo8Q8kNN+0psydGVoiNWVowcaQOh4wOp/9LlAlH/PWdWcdG3WV+fMqGOxc6eXrNdQuqTgupyfMGzdO5E/gnuAuaSM457VJ0kcjdGU4I4OQCoYuf1mOmYubVL4LOyg1JWr5lSVVKrrq8fScyZUyJmrwEATs9ivbV5nKLYTucR+6YEeDVfeHbXzirgvmxxp+XC50/A0zPZ76uEd7Q8mO3eLXHNuTXynHJA+gB1dGpbH6Alqi1COyP4n0CNxSorKxXbUMNXoeCYZ8BKzvnKysoEy7Uw9lUDrSSu9ze18eEjCUpJIC0tjbcsXLaCrVOnDp555hnUqVMnpP1Q074SW3J0peiIlRUjR9pA6PhA6r90OTn1/+q6V7teD2gxQLSeEI0SGqliJ5QodfxG9BVksNlteGL3QryU70PQAx0jKGWl7Cg0FwKR7rpiuGm+OEMRqay3gjGfslOul0c8fhvaefQo5iu7FUc9HnjzBngsfLmifFzRLXcJlwOAtVywWOjn/felwqb5roNYfCV+/7gQGHQqA6cKHPdiST16mWIAIH2AOjrB7gNqM9FRwsu9/E2gxmJC+YTFooavOr34IIOc8yUmJgqWa2HsG6qovRyPDzEBOYqigha4IzmlJGA0kstlNBoFg3Oh4oea9pXYkqMrRUesrFbuuxbQwrUg9V8dnWDX/2ZJzTB36FzsvLwT43uPl6x/Y5Mb0a9ZP7y3+T3XsSijcLLScMQVMqrbF8jYwCmTX5mPTrM6Ias8i7NciAsll3AdgFwrUO9D+gfMO3Xj8L5jjG800jlJ5pcCG8zAQI/fOGV2IJ7jdywF78VhGTVAkh5IYkzOuvYiW8YKgCsLCisoZSnELI9YE+/yvb9acB+38M8eF03pce9DNmBqMR2Qmuwz4Ts/54RXowgysxh4Nk9Y5k3HhIFT8/rj6DMnkV0DNN31CNDiYfknFgnpA9TRCXYfUJsJ9kyMQN0TNYKMga4/cs5nMAinBwjUZwiXmUxaQmlbViuoFh7hfJUoLeV/LOe8IYGKdgaL0tJS/Pvvv4LXIhT8UNO+EltydKXoiJUVI0faQOj4QOq/dDm59X/stWPxzZBv0DC+oSQ9ABjUchBubMJeGhZtZD+9XnX/Ksl2AXonwFBBrwNQ92ZQAjm5Ri0eJSsgBQD3/H4PulwE6p13H/sgtxzrHKs+SsrKkH4OuD8H+K4UuMdjSdm7BeBc9rezCqBM7qfXf1Wa0DwDSD5H51Ny4rmow3NZnhPPw555lniDUtXcyzU+2DsXvS8Dh1RexfNGAfBeIfCBwpjXlGL5ur4CUkzOFl/Atd9ei2YZdOARl5cBGwayhQ6NV/VHPOkD1NHRQh9Qm2DmmvGVg8jfBGosVl2t/AtODV+l5LaScz5fyxS1MPYl+B+l/ZSSoCIJSklAKLlbOHRGAP3lfPbsWVW+pLXsh5r2ldiSoytFR6ysGDnSBkLHB1L/pcsFo/5Hm6K9kp9Hm9hBqfSEdLzf933JttVKqq4FdABw4x+Cg6W159aKstXnxz6osnonbjrAUTVuzQTuuAIkzWqFKwK/J74sdjrK9q/XZYCi3MfuzHT/COzqMTuKCd+SN4oCsPc51/t7PTYUPiPhN+b5GuDd0/uw2QxcI+CLHDxncNUGnPnG7s8BqAOvAbmb2QJHpLdBIUgfoI5Obe8Dgkmwc2cFaiymxudUw1cp9UrO+XwFGbUw9iWIpzbOOCPr0SRAckrRa4qffvrpYLvhdz/UtK/ElhxdKTpiZcXIkTYQOj6Q+i9dLhj1P8oYBYPOIyjlMVNKBx1SolMk2Y0xxXjZrc3oASCqDp3rSSGbLmxC9Ific6msqJBgnONHB199Om/lPAzAR06pUzOAxA4AgLYca/zWVgL9oh2zywTYbBYuD2fuPXUKvzXw7zlIH6COTm3vA4JJVFRwl4oHaiwWE61OTimlvkqpV3LOJyanVLDHvgTxBHt5rRzC45uTQCAQCIQQI9IQ6bUjn9nKjhbYKTtuvepW0Tbf7/s+9j++H0Z96Dyzcl6hBvF+jhQogaJg43oS3lNkknQG63kCRi/kAT0uAUdyjwIAunH8prwtE+hwASj3MTngJNkVnJffOXK3rygHPtv+GevYH8f+CJBHBII6hMssMC0idO0p33uFEgiiCVZAiwSlJJCXx59kIFy2gs3NzcUXX3yB3FzhrY9rux9q2ldiS46uFB2xsmLkSBsIHR9I/ZcuF4z6b9AbvJbZnS48zXpvo2ycs56uqXcNp813bn4HbdLahNTyPYNjfBVh4Er/rQ2sFIUhG2d6HX9l3yoUW6Ull/2MJzn40gpgVxXQ8SJwxQpE8Yw7T9QAH/qYVOapWiGj2lsoYHYJsEx4A75az9nCs7gjC17LPkf8PgKrz66WZZP0Aero1PY+IJhUVXkvYw4kgRqL+cq1JAY1fBUMSnmUyTlfcXGxYLkWxr4EZfgr2KRWUJQEpSQgNFXVeaNr43Q5KURHR6NTp06Ijg7uVrD+9kNN+0psydGVoiNWVowcaQOh4wOp/9LlglH/ddB5BZwySzNZ7612K6dPy+5bhld7vop5d83jtH2m8Ix6jgaZuaVA4seJWHJ8SbBd4cV0BliVdcTr+NT9X6BeRiEezOZQ4oErv5UnHX3MhroosDwQAL72yPt082Xf5wSATZXAb2V0Mvavi4EncoFhWcCcWphHSogcK1BZU4lqazU6z+rAKzdg3gBZ9kkfoI5Obe8DgonRENzZtIEai6mx83qgx41yzhcRIfzQRgtjX4I2EPqOU/L9Fzrz8wNAfHw8b1m4dEbx8fHo169fsN3wux9q2ldiS46uFB2xsmLkSBsIHR9I/ZcuF6z67zmjaVfmLtb7Ght38tKmSU3x6W2f4krZFc5yi833+qy4iDgMiijH7de9joc2fiLS48DzQykA1N4dgyyUHb+UiZc3i3hoWWgHhgpsNsiVl6rSDrySD0TrgGKPgNb+asDX4sgTFqCPI2b6XV1gXL677PFcoIUJ6Kc8fYsmaHAeqPNlczzS+RGUWdVPDEz6AHV0QqEPCCTMGREmkymIngRuLOYrWCMGNXyVMhtFzvliYoS/fLUw9uWDLCsNDchMKQkEe/tTLVBTU4OsrKygXwt/+6GmfSW25OhK0RErq5X7rgW0cC1I/VdHp7bXf51O55VTKi6CvaVa5wadBXdhUbJDS/s67bGoATC2w92ybRD8h5JxOlO1xAbYKHpJ36wSYFqxPJvfMGZDPZoLr59YdwsEyWobFIDcilxM3jrZp6zV7mNaGgekD2Cz5uwafLD5AxSaC8OqDwgmwV6mGKh7YrMLbJ0qkkDXHznns1qFv4dIG6hdyB3bBTPAR4JSEigoKOAtC5e15Pn5+Zg9ezby8/N9C9diP9S0r8SWHF0pOmJlxciRNhA6PpD6L10uUPWfuVwvNTrVa/lem9Q2GNZ2GACgV+NeiDIK75CUGOXecadtWlteuUc6P+J1LKM4g35hjMaBJw748JwQSGwUMEfB5DBnLV5RDqSdA66/BMyXMFvLF1zDZQvFv3NgKPPamtck65A+wE1uRS76z+uPdze8i2f+eSbk+wCtUF2t/gxAKQRqLGY2K99qVA1f7RR/vfKcRSXnfGWlwl/wWhj7EvyDZwBLycNKJZCglARSU1N5y8JlK9i0tDQ8/vjjSEuTlni1tvmhpn0ltuToStERKytGjrSB0PGB1H/pcoGq/5vGbkJKdApuvepWDGw50Gum1Fe3f4XfR/yOvY/txaaxmwAIT/uPMcXgj5uewBOJwKr7V/HKfXfnd17HciscCU8N0bi2/rVoltRM+gciyKbABjyWw13WMoPO1ySXQ47fm3dkAVbQeaoypE/okYSZAj7iSdIeyny+83PJOqQPcLM/a7/r9cIjC0O+D9AKQnl2A0GgxmJq5FAK9LhRzvkSEhNUt0kITTyDVmrNriI5pSQQ7PXTWsBkMqFBg+Bvq+1vP9S0r8SWHF0pOmJltXLftYAWrgWp/+ro1Mb636tJL+S8kgOjnu6+PQNOPRv3BAB0bdjVdczXgGF4k64Ynq0DkprKc8pAD9qdPhECw/N5/LOXlAaQTspYoVHm8SA/owZYWg4MjwOamNjL9XTwXr4HAO/yT0gnMCB9gBvP77dQ7wOCCfNaBzv4Fqh7okZCdzV8lZJTSs75fH1O0gb8h9Q8dHLz1gViBpSSc4RHOF8lysr4pzY6v6hDPdlaWVkZ1q9fL3gtQsEPNe0rsSVHV4qOWFkxcqQNhI4PpP5Llwtk/WcGf8Tku0iOTubUdaNwoBKRpEzfg1mDZ6lqL1RRczmdGnju5nfTZTqZ+S2O5OZmRnnopoIODKQPUEentvYBWiDYuYUCNRazWHxv+uELVXyVUK3knK/SXKm6TQJBCiQoJYGqqiresnDpjMxmMw4dOqTKGmst+6GmfSW25OhK0RErK0aOtIHQ8YHUf+lywar/Nsp3UColOgVfDvwS/Zr3w85HdnoL6PjmrQhze8vb6RfGWNqMSqGG1qmtVbFDCA7VFDCtCLjsmK11pgbQnWbnuArtXkIe03dNx+jFo3Gh+IJ34bHPAEZOGdIHuPGcQRJufUCwsNuCmzsrUGOxGqvy4JsavkqZKSXnfJZq4eCbFsa+aiB2llFtb8f+3AVUSl2UAplrL4E6derwloXLWvK6devixRdfDLYbfvdDTftKbMnRlaIjVlaMHGkDoeMDqf/S5YJV/8XuDPR89+fxfPfneUrVGbyE8lboBPHk24CXfeTCDY9U0OK5Y8EdWHFqBQDgTOEZ7H5sN1vgv9eAti8BjhxypA9w4/njMdz6gEDC/DEa7JxSgRqLxcbEKrahhq9SAgFyzpeUlKS6TUJ4oFaQKnS/OQkEAoFACHFMBhVyHepNgDGedWjMNWO8xG5uerPyc4mgtj+hDBX+rQi2B+GDMyAFAHuu7OEWKj/v0866c+vw438/osYWPtu2++upPYGgJYT6RdJnhhfBvt9Cs+KVPJwkQSkJkK1ggby8PHz99dfIy8sLaT/UtK/ElhxdKTpiZcXIkTYQOj6Q+i9dLlj1v3P9zujRqAf0Oj0WDF8gz0iTe4E7z7IOvXnjm15i8++eL2gmWNsIE/zDwCvB9oDAYoV7WSvXd9KJ/BO49Zdb8dCyhzBj9wxFp+Ky/++Zf/HDgR9gsUnLsePvPsDzB1q49QHBQiilSSAI1FisslI415IYAj1ulHO+kpIS1W3Kgcy49h+ily4GKdBPlu9JICIigrfMeaNDvTFFRkaiRYsWiIyMDGk/1LSvxJYcXSk6YmXFyJE2EDo+kPovXS5Y9V+n02Hbw9tQUFmAOrH8S8wFMUQABrauXuf9zCo9IR0tklrgbPFZ17l96ciBzHwgEITh+k6ad2ie6/W41ePw0g0vqWb/cM5hDPx1IACgtLoUL/Z4UZGv/tQNtz4gWKixK50SAjUWMxgMim0Eetwo53ymCOFZ11oY+/JBxgyhAQlKSSAhIYG3LFw6o4SEBAwYMCDYbvjdDzXtK7ElR1eKjlhZMXKkDYSOD6T+S5cLZv3X6/TyA1I8GPTcA3GhAfrcoXPR4/senGW9m/ZGm9Q2mL1/tu9z65T/CCAQajPdv+uOQS0HYUKfCZzlge4Dfj74s+v1S/++JCko5e8+wPMHaTj2AYGCOSvNVxDD3wRqLKZGEEYNX+2U+Bl4cs7nK3eWFsa+BPHInbkezAAfWb4nAavVGmwXgo7VakV+fn7Qr4W//VDTvhJbcnSl6IiV1cp91wJauBak/qujQ+o/P82TmqN9nfYAgA/7feg6LpTLoHuj7tj72F6v410adMHGsRsRaRQ3uFdrxhWBUFvZnbkbEzdNxKWSS5zlXN9Jai6fJX2Acj9CnWAvUwzUPVEjP5savkoJFjjPV2YuE61jswlvmkLaAMGJZ+BdrRxXZOQnAZJTil5TPHPmTE3klPKnH2raV2JLjq4UHbGyYuRIGwgdH0j9ly4XavVfp9Nh5yM7sfORnaz8Ur4Grl0bdvU6FmWkd2nietJ7N8fD2c4NOkv0lkAITU4VnOIc8Ofm5ga0D1Dy9NzffQBXTinSB/gfS7W03GJqE6ix2Hf7v1NsQxVfJTTBvLw83D3zbiR/loyPtnwkSqe4pNinzWCPfQnaR8nDERKUkkBKSgpvWThsBQsAqampeOihh5CamhrSfqhpX4ktObpSdMTKipEjbSB0fCD1X7pcKNb/+Mh4dG/UnfVUzOvzjfYeKc8aPIv1PtoYDYA7KJXksVLv2yHfIiGSf6k8gRBO3PrLrdC/p0cBIxb8zd5v0GV+F6A7WN9Jai4bq019gOf3CukD/AczOBns3EKBGouVWkoV21DDV6HAsGdZamoqtmALbJQNb69/W5T9hHjhflcLY1818OeGLGvOrmG935O5B/mV9ISWY3nH/HbeYMOsf0oeYITuN6cfEEp0Hi5ERESgSZMmQb8W/vZDTftKbMnRlaIjVlYr910LaOFakPqvjg6p/9IR88P3yeueZL3PqcgBwB2U8rR2XcPrZPtGIIQqN14CnBOCnvr7KeRU5GDiroms7yQ1f2yRPkC5H6FOsINvtemeqOGrlB/7cs5jMgnnCNPy9aYoCmXV4pcq+oOdl3ei/7z+rGPdvuuG9jPbY/XZ1ejwdYcgeebGXwG5rRe3ul7vz9ov2w4JSkmgvLyct8w5fVitdZVapby8HFu2bBG8FqHgh5r2ldiSoytFR6ysGDnSBkLHB1L/pcuFS/2XkmzVyfmi8wCAm5ve7FWm06uTLLdzfbLkjxC6nKgBLBxfLczvJDVnStWmPsDzxzrpA/yHze6esvfTwZ9YOz4GktMFp3E5/7LXPblYchELjyxEhaUiKH7xoUZ7klKv5JzHbDb7tCn3M1RYKvD2urcxY/cMybpiGLZoGFI+TcGvh35lHd9xaQdaTW/ll3N6MnnrZM7jeZV5GDCPP0F8uaUcVru4PF2Hcw5zHr9YchGvr3mddaw2brhAglISqKys5C0Lh84IACoqKrBz505UVAT3C9/ffqhpX4ktObpSdMTKipEjbSB0fCD1X7pcuNR/ys6Ypi3wWVskt3C9fqzLYwCAkR1G4qUe7G3q9Vc9xHrv60negBbcg7sD2QcE9QiEUKSiogIUReG+P+7DpE2TWGVnCs9g1OJR+H7/96JsVdZU4tdDv+JM4Rmv7zwl32ty+4DKmkosOrwIa3esldwHLNm+BN/v+x7mGuEf2lrtAy6WXERBZYFiO2pTZmHPRnlg6QM4mX8yoD78fepvtJ7RGp2+64TNOza77omdsqPLt10wavEovLDqhYD4Um2tFnW/1RhTCQUZPH3YkbFDsv2qqirBcudn2HBmA5afXC7pAdXEjRPx0daP8NzK57D23FrJvvli7bm1sNqt+N/S/7n8OpJ7BD1/6IkzhWdYshnFGXhtzWus2T1CVFnp67Lz8k5V8osx2XdlH+pPqe8VOLNTdqw7t85ro4tO33SCxeady23I/CH4dPunqvomhL9mXJGglATq1q3LWxYOa8kBoF69enj11VdRr169kPZDTftKbMnRlaIjVlaMHGkDoeMDqf/S5cKl/hsM7iRQQoPkRfcsQpQxCnVj62Jin4kAAKPeiGkDprkSnwPeO+05bX496GvW8c8HfI5jTx/DonsWKf0IBEKtZAHHBIWH1z0M/Xt6LDrq3S4G/ToIC48sxKN/PYqssiyf9l/+92X8b+n/0OHrDkhJS1GtD6hbty70vfSYcnAKyi3eH6KkqoRT7+m/n8ajqx/Fe+b3UGQo4rXv+YM8KjEKX1R9gRc3vogJGycI+qbFPmDX5V1o/mVzNPmiCXIrchXZEku5pRxrzq7h/MHri52Xd/rBI36GLBgCACiqLkJC7wTXPSmoLECBmQ7kfX9AXCCWyfrz63Hz3Jvxy8FfRMmvO7cOaZ+l4Zafb/EZmAr0uLH/4v6+hTxITk52vT5beNYVjHFSr149DBozCHcuuxNDFw7Fb0d/E217yo4prtd/n/pbsm9SeOKvJwDwz1watmgYPtv+GW6aexNr5p8nB7IP4Mf/fkTix4kY9Osg3PD9DXhixROq+nrdnOtQUVOByhr2pJdv936LW3+5FR1ndfTSOVt41uvY4VzuGVRcct3mdPM6vuDIAtfr3IpcfLbtM1b5V7u+EmVfKaE9eiYQCAQCgRBwujbsiivjruDCixeQGJXIKmM+YeULbHnmpdLr9GhXpx0iDNrLZ0EgBIKHcryP/XP6H17504WnXa8vlV7ilXPyzb5vAAAWmwXni88LylIUhZWnV2Lzhc0+7a48sxKvrHkFU3ZMwYQN7CDRuH/HIemTJEzcONFL76eDP7le3/7r7fy+eCzfY86A+Gz7Z57immf4b8Nhp+yorKnEe5veC8g571xwJ/rP64+n/35asm4wlwnV2GtUs3XLz7dgy8UtePDPB0XJ3/rLrSi3lGNDxgZsyNigmh8AnSD7lp9vYR0TCnz5yjclZfbeLwd/QcvpLdFpVievoM20HdNcrx/76zFeG4XmQkzeMhkbzntfl+LqYtZ7z6VrSmfhfHdA/Gwmofpz/Zzr8dCyh2CxWbDyzEpFPknl6X/odlhS7R2wb/91e2zM2CjL7gurXsCeK3tYxzwDYgDwwZYPvPSYKElmLgQJSkmgoIB/Km24bAWbn5+POXPmID8/P6T9UNO+EltydKXoiJUVI0faQOj4QOq/dLlwqf8mnTsHlMlHPqjk6GTWrCgnngPkLg26uF43SWwCwPuHjlPHoPfYro9ACCMqT8jPybL23FpM2jgJeRW+t3QvKioS/M5bdnIZBs0fhN4/9sZ/2f8J2vrj0B+u1zP20P5XWCow79A8fL7zcwDwWnroSUZxBm+Z5/dJSSn3zCsu+L7bmT/UzDVmnLp8KmB9QGm1e7c3z9kq/sIZVJEzw4griFBuKcdjyx/Di6teFJyN4smF4gv4ZOsnOFVwSpT8y6tfhm6SDq+sfkVWvkMpFFQW8M7q+2bvN4K6zHpmtVux8/JO1Nj4AyLdvuuG9efXs44xAwGebW712dWCgaeus7sKng8ASkroz+YMyp0uPM0KfuTn5+PEyRNufxzn23JhC9rOaMuy9fTfT+Ot9W+h38/9kF+Zz6ojP/73I1aepoM8+67sg+l9/nGExWbBunPrUGGpwO9Hf8ez/zyLrRe34vo51wt+luzybMFytVhxagUA+vti+cnlATknALz474uq2fJVL7jgmvGqBiQoJQGj0chb5hxA18bEYlIwmUyoX7++z10aarsfatpXYkuOrhQdsbJi5EgbCB0fSP2XLhcu9f/rAfSyOr1Oj6n9p8qywbxGOuiwZOQSPHXdU1g8cjFSolM4dZwDcqOevx9Wwr//+9cvdgkENYld9JwsvY0ZG3HbL7dh4qaJeGjZQz7l86ryXN95FEVh2s5prHLmjJqPt34saIsrkPzCqhfwwNIHOOUP5RzCpoxNPn104hmMEBqrM6EoCp/v/xyLLYtRYXPn+ll0ZBFSPknB8N+Go7S6FE2/aIqOP3ZEWXwZTCYTHlv+GJp90QxbL27Fq6tfRfMvm2PN2TWq9QGyZiFckT6Tw2Kz+C2QM3HjRHx34Dt8uetLfLP3G1bA5J/T/2DixomcObP6/tQXb6x7A52/lbZxxdQdU/HzwZ8V+83HifwTSJ+WjqRPkjBp4yRklmayyn8/9jun3k///YTH/3ocuVW5qF+/PmpQg3t+uwc3fH8D7v3jXtn+OIMhTp76+ylM2zGNN8BwIPsA6nxWx/WeoiivwBZXu3lj3RuuAK3JZMIhyyFXWUUNnc/u5h9vxskCdl4x5nLiQzmHvNrEoPmD8OHmD3HdHOHddp/951nc+sutaD2jNUb+MRIz98zETXNvwt4rewX1GkxtgPmH5wvKAMCwhcOgm6TD4PmDZbWFOxbcgfXn1yP2o1jJuv5m1+Vd0E3y/V20O3O3ZNtcywrVwD+juxAlMTGRtyxcfpAkJibijjvuCLYbfvdDTftKbMnRlaIjVlaMHGkDoeMDqf/S5cKl/vdu1Rsnnz0Jk96E5snNZdmoF1vPtZwoPjIeTZOa4uvBX/vQovHMQaUWt111m1/sEgha4PW17p2Z/j7tO6fL6L9GY/NDmxEVG4U/T/zpVS53e3qLzYL8ynzeGTnni87jmm+u4bW16/IubL+0HWOuHeMKYHvm04qJiRHl10PLHnItEXxhwwv4874/AQD3Lb4PALDk+BLERcQhr5KeWTbtyjQMqB7gWh5009ybXLb6z+uPdF06ABWCUowAzvcHvqc/7zVjMKrjKLy8+mV0qd8Fb970Jltp4yBgtPh7cizvGHr/2BtpMWnY8Yj0pNhMnJ+XoihsyNgAk97EuifPrnwWc/bPwa5Hd6HQXIjB8we7fPhtBDsvkXPZKNeSIl+sO7+O8/ias2uw+uxqPN/9eTRObMwqs1N26HV6XCi+IGj7zgV3otpWDQCYuGkifj38q5fMrD2zMGf/HHx0y0cY2HIgMoozMHbZWAB0UOu9vu+h4cyGLvmlJ5ZK+XguVp1ZhXc3vOt1/JU1r2Dd+XX4fQR3gKykugRf7/kaT133FCZtmuQ1OzE21juwsvfKXkzeMhnNkpph4qaJKLexZ8hsuuA7eDxj9wzO2XTvbHiHU95qt+JM4Rm0TGmJOfvnAACulF3xeR45/HuWfhj1z+l/sPDIQlk2PJdZaoVB8weJkus/T3r+MX9BZkpJwGYTPwU1VLHZbCgtLQ36tfC3H2raV2JLjq4UHbGyWrnvWkAL14LUf3V0SP2Xjs1mQ31TfTRJaCLbxuKRi2HSm5AclYzXe73uWwH0LkdOvh3yLXo06sEqrxvLvxGJGHQ6nd8CXgRCbaPMUobO33ZGn5/64EKJ9w92ZkJsqe3mxh9u5C37aMtHvGXTdkxDj+97YNzqcUj9NBX9fuoHO2Vn5c4CgN2XvZ/8c80gYeasWnZyGb7c+aWXDDNYkVORg5xyjsReHtjsNvT7qR8eXPogzhcJ5+YSw/H843hj3Rto+kVT/HHsD7y1/i3su7LPVU5RFJ7MoXfgYvq35PgSfLL1E86lNvf+cS/yK/NxIv8Ekj9J9iqXgjPgsP78etzy8y24+cebcbn0MkvmYM5BfLP3G+zLcvvNN7vIycdbP8ZP//3EOvb1Hv6HF1xLPCssFeg/rz+m7JiCuxbdBYC+XmvPrcUnWz9Bg6kNMHDeQJ/LwTzrmOd7gM4DdCD7AG7/9XZUW6txNPeoq2zLxS3o+1NfXvtScj4J5VdbeWYlOnzdgbf8mX+egf49PedyWb7xzYdbPsSjfz3qdU8BCH4mJ0tPLIWNEj926j+vP1pNbyVqlo+acAUa/ck9v98T0PPVBsgITAJ5efzr8MMln0hubi4+//xz5OYGZkeQYPmhpn0ltuToStERKytGjrSB0PGB1H/pcqT+i+f69OtxedxlXHzpIpKjxf0g+uO4Oy/N410fx5JBS9AGbVzHYkziZkcIsfL+wCYzJRCCTZG5CHP2zeHc0Qmgd1Yrqy7zOl5oLnS95koWnFWWhd2Zu0FRFCor2bNePJf6OPG13frLq19mvd+QsQGLjy32WnaTU8wOHOkm6ZDwcQKm75qOFadW8AaKuPK0MGeC2Ow2FBcV8/rn/O4vNBdiQ8YG/HLoF1z11VWYvMV7F7Cc8hysPbcWM3fPRO8fe2PbxW10weK6omahHck94no979A8fFtKz4B7fMXjAIDjeccx/LfheGPdG3j2n2fx1rq3WLulncg/4WXTyZ8n/nTlsqqx1WDowqHo+X1P3tkqFChU1lTi+VXPC/rMl+fHTtmx4fwGXCphJ+N/c92bGLtsLH448IMrGfYz/zzDa5+rXuVUuOuCMyC2/vx63PbLbXhj3RvIrcjFv2f/dc2GU4uoD6NwruicKNlPtn6COp/VwZx9c3wGpx5bzp9c3AlXEFkMxSXFnMf9ldSaj/1Z+wN6PidCm0b4g0DmoKotkOV7EmBul+lJuGwHnpKSgvvvvx8pKdx5P0LFDzXtK7ElR1eKjlhZMXKkDYSOD6T+S5cj9V8aUmc2MWdKOf1IT0/HyUz6h4iSHXse6fwIAKB/i/4489wZfL7zc8zcM1O2PQJB6xSZi5AcnYwH/3zQKz+NVA5kHXC9rrHV4N0N7+KTbZ8AABYMX4DoqGhRdh776zHc1OQm34IMlp5Y6pVIOyrKe3OFKmuVK2gSa4pF3qvSgxB6nR5x8XH85Y7vfuYsMgB4a/1b+F+n/yHKGIU6sXVgrjGj3cx2KKoqcsncOPdGUBMo2KvyUCkx77BziRjg/qHL3C2MOSOsTWobbL241WvHMyZ3LboLo64ehan9p6L7d91dS62fWPEEp/wDSx/AmD/H+MzJs/vKbjRKaMQ69u76d107fSVEJnDqPbL8EUzcOBEHnzwoaN+TP0/8ifT4dK/jL/37kiQ7cvEVpAPomUbOZOKPr3gcj694HImR/KlipOwsJ5WP9nyEYdcO85t9AsEXJCglgcjIyGC7EHQiIyPRsmXLYLvhdz/UtK/ElhxdKTpiZbVy37WAFq4Fqf/q6JD6L51gXYv+Ldh5DyIjI9EgpQHgyDfL94PGF5njMtEw3p3no0VKC9SPqy/bTwKhNvDqmldF77Q2fuN4wXLm8r2Ze2a6AlIAMGrxKDx7/bOi/dpycYtoWQBYcGSBtz8+HgxU1FTgi51fcJYVVxXz6tkoG4wmeT+bmnxBL3f++JaP8ca6NzhlfjjwA768KM7eH8f/QPdG3dE2ra1XMKjCUsGjRQdBmMEwPhYcWeB1bYW2oReTJHr9+fVeO8oxt55n7jroyaXSS7hjgbT8ks7lekzKqssCPvNHCK5rWlItfvdINTmSdwQxHymfcUwgyCW0H+mqTEUF/xe9c8qllHXBtZGKigrs2rVL8FqEgh9q2ldiS46uFB2xsmLkSBsIHR9I/ZcuR+q/f0mOYs9UrqiowN3Jd8OoN0IHHX6+y3vnJTH5qrh2+3vquqcQaaAfQn078FuZHhMI2kVsQEoMZ4vO4v4l9+Pngz9zzkKprqnm0PIfYs731vq3OI83nNqQ87iTRYcW8ZaJ+e7nC0gB9IygQxbeYhYrTq1Au5ntOHc+jJsc57XU0YmYgBQf/toGXizbLm1TbCPh4wTW0kcCgaAdSFBKAuXl/F/I4fKDpKysDOvWrUNZmXeOgVDyQ037SmzJ0ZWiI1ZWjBxpA6HjA6n/0uVI/fcvnk+3y8rKcGLHCewevRsZL2agU71OrPLZQ2ZjfG/hGR4AYNB5b1efGpOKjSM24lHDo7ijSfB3myUQtIydsmP+4fkY8+cYzvI5/80JqD+z9s+SrWu2mgXLZ/83m7csGEGbN9e96VuIQCAQagE6KtRH0CpQWlqKxMRElJSUICGBe4lAo0aNkJmZifT0dFy+7L1DAYEQ6pA2QAhnSP1XH+buO+/3fR/v3My9hTSXvPVdK2rsNYj+UDifjfVdKwx678AUn12CAFMBlAGIB8A9UYNACFmMXxhhLbaS+k8IT8j3P4GPKgAfQzCOApCZUgQCgUAgEDSO1OdnvgJNTqRuZ08gEAhcWG38ycMJBAKBIAwZjUmgsLCQtyxctgMvKCjAjz/+iIKCgpD2Q037SmzJ0ZWiI1ZWjBxpA6HjA6n/0uVI/a+dfuh03LOgfNlvkdxC0XkBoF1aO58yQ1sOVXweAoFAIBAIBC1DglIS4Bu8hhN6vR4JCQlB3/bc336oaV+JLTm6UnTEymrlvmsBLVwLUv/V0SH1XzrBuhaeOaW4/Pig7weINETio34fAQAiDZG4KvkqWedj2t/96G70a96PVW4ymNCjUQ8vvQhDhKDdD/p+gMYJjfHHiD/wSs9XfPqRHp+OPkl9JPlOIBAIBAKBUJsgOaVEQHJKEQi+IW2AEM6Q+q8+zFxOk/pMEpW43GKzsAJDWWVZ2HZpG0b8PoJTnpogfgh0+6+3Y9WZVQCANqltkBydjJ2Xd7Jkvhn8DZ5b+RxslI1zm3Tm+Wx2G6bvno7Ptn+GK2VXOM85rsc4xJhiWFunaxaSU4QQzpD6TwhnSP0n8EFySqlPqC/LEIPdbofZbA76tfC3H2raV2JLjq4UHbGyWrnvWkAL14LUf3V0SP2XjlauBZ8fnjOVGsQ3wD3t71HFPtO2yWDi1GuZ0hIXXryACy9e8Coz6o2s9wa9AS/2eBE7Htkh6EuNtUaK6wQCgUAgEAi1ChKUkkBubi5vWbjkE8nJycGnn36KnJyckPZDTftKbMnRlaIjVlaMHGkDoeMDqf/S5Uj99y+ek7qD0Qam9Z/mSow+d+hcJER6P/FLjk5Gg/gGaJTQyKtsRt8ZnOdqktgEOx/ZiQXDF3iVVVRWYMcO4aAVgUAgEAgEQm2GBKUkkJiYyFvmzDcV6nmnkpKSMHLkSCQlJYW0H2raV2JLjq4UHbGyYuRIGwgdH0j9ly5H6r/6/HbPbwAAk96Ep69/OqB+cNlvkdICp587jWNPH8N1Da/DzEEzYdK7Z0wNbTMUXRp04bXZun5r3rLujbrjvqvv8zr+SNdH0KF9B3kfgqAaex/bi5EdRuK3u34LtisEAoFAIIQcJKeUCEhOKQLBN6QNEMIZUv/Vh6IobL6wGQ3jG6JVaitFtpj5qVjnkJBTiovs8mwAQGp0qteSPs9zbn1oK3o16SVoz1OHmkBh/IbxeH/z+4r8FKJ7enfsytyl3FCI5hQZe+1YzB061/Wery4RwpwQrf8EgihI/SfwQXJKqU9lZSVvmTO2F+oxvsrKSuzfv1/wWoSCH2raV2JLjq4UHbGyYuRIGwgdH0j9ly5H6r/66HQ69G7WmzMgpZU2UD+uPurH1efNMcWkqqpKlh9ZWVmS9aTwdZev/Wq/tsNs08Ee+xAIBAKBEIqQoJQESktLecvC5QdJSUkJ/vrrL5SUlIS0H2raV2JLjq4UHbGyYuRIGwgdH0j9ly5H6n9o+aGGfR3YM2rKKsp86qwYtcL1+uSzJ1FSUoLTp0/L9kEMf/31l1/t1wZubnozbxlzF8Vg13sCgUAgEEIRsnxPBGT5HoHgG9IGCOEMqf/axl/L94RYf349bvn5Ftf7zWM346amN/nUK7eUw6g3IsoYBQD488SfuGvRXX7zk5pAqbMkrRYv37ipyU3YcnELAKBrg67Yl7XPVTbmmjH4cdiPrvdk+R6Bk1pc/wkExZD6T+AjHJbvnTp1CkOHDkVaWhoSEhLQq1cvbNiwgSVz8eJF3HHHHYiNjUVaWhqef/55WCyWIHlMIBAIBAIhHOjXvB/rPQVxAbC4iDhXQAqgE6gT/McrN7yCBvENXO8bxjdklbdO5U9QTyAQCAQCQTm1Oig1ePBgWK1WrF+/Hvv27cO1116LIUOGIDubTjxqs9kwePBgVFRUYOvWrVi4cCEWL16Ml1+WF8ItLCzkLQuX7cALCwsxf/58wWsRCn6oaV+JLTm6UnTEyoqRI20gdHwg9V+6HKn/oeWHP+wLpQAQ8mPBggWq+cDF/Pnz/WpfbdqltVPV3vXp1+OLAV8gLSYNKdEpmDloJrqld3OVt01r63od7HpPIBAIBEIoUmuDUvn5+Thz5gzeeOMNdOrUCa1atcLHH3+MyspKHD16FACwevVqHDt2DPPmzUPnzp1x6623YurUqZgzZ46swWGob/UtBp1OB4PBEPRr4W8/1LSvxJYcXSk6YmW1ct+1gBauBan/6uiQ+i8drVwLJX7MuH0GGsQ1wLdDvvWLfTVx+sHFyzeos0aCz77WiDXFYkjrIVg+armqdimKQoP4Brj00iVkjstE48TGWDh8IXo27okx14zBXW3dSyeDXR8IBAKBQAhFam1OKYqi0KFDB/Tq1QtffPEFIiMj8cUXX2DKlCk4ceIEkpKSMH78eCxbtgwHDx506RUVFSElJQXr169H3759RZ2L5JQiEHxD2gAhnCH1X9s88dcTmL1/Nno27oltD28L2HmZ+Yc2jNmAPs36KLbj5OUbXsbUHVPluuaituSUmnfXPNzf6X4A6uZ1mn/3fIzqOEq0PMkpReCE5NQhhDOk/hP4CPWcUjqdDmvWrMGBAwcQHx+PqKgofP7551i1ahWSkpIAANnZ2ahXrx5LLzk5GREREa4lflxUV1ejtLSU9QeE/q5KYqAoClarNejXwt9+qGlfiS05ulJ0xMpq5b5rAS1cC1L/1dEh9V86WrkWUv346vavsPL+lfhn9D9+sS8GOUs7nX7wlXlyXcPrJJ+Dz77WYO6C54tWKa0AAO/c9I5PWbG5vgAyDiQQCAQCwR8Yg+2AJxMnTsSkSZMEZfbs2YOuXbvi6aefRt26dbFlyxZER0fju+++w5AhQ7Bnzx40aEAnreSaak1RlOAU7MmTJ3P68OuvvyI5OZlTp7Ky0vXf3/kfgklVVRUuXryIJk2aICoqyrdCLfVDTftKbMnRlaIjVlaMHGkDoeMDqf/S5Uj9rx1+/LNHXFDKH59z1b+rkJOUI0nH6QcXJ06eQIw+BpX2Stex6uJqyX59+OGH0EEnKTgTDLbv2A7jMXHD1peTXsb56PNok93Gp+y27dugOyJu9lNVVZUoOQKBQCAQCOLR3PK9/Px85OfnC8o0a9YM27ZtQ//+/VFUVMSaCtaqVSs88sgjeOONN2Qv36uurkZ1tXtgV1paisaNG3POvHKSnp6OK1euoGHDhsjMzJTykWsVZrMZp0+fRqtWrRAdHR2yfqhpX4ktObpSdMTKipEjbSB0fCD1X7ocqf+h5Yda9plLvVbeuxID2w6U5cc1S6/xKvtr1F9olNAInb/t7DrWv0V/rD67WtI5Dt51EF+e+xI/HPxBUG7t7Wtx68pbOcu6NOiCg68dhK3E5rflG3OHzsXYa8cC8L2EjprgHtp+svUTfLDlA/Rt1hd/nfrLS/anYT/hwWseFOWD2WxGzKcxnGW/1AMKbMCLwkNYQqhCli8RwhlS/wl8iFy+p7mZUmlpaUhLS/Mp53wqrdezVyDq9XrXFPkbbrgBH374IbKyslwzp1avXo3IyEh07dqV13ZkZCQiIyO9jgsNTJ0zr0I9CWZ0dDQ6deoUbDf87oea9pXYkqMrRUesrBg50gZCxwdS/6XLkfofWn74w76cGVcuP5a6jz3R9Qmkx6djcKvB0Ol0aJvWFifyTwAA9DrpWRk6deqEtxq95TModUu3WzDmyhj8dPAnr7KBLQYiJy4HmSX+C8jKfYb6+o2v45Wer2BjxkbOoFSvxr1E2xIaB/4vAaAoEpQiEAgEAkEqtTan1A033IDk5GSMGTMGBw8exKlTp/Dqq6/i/PnzGDx4MACgf//+aN++PR544AEcOHAA69atwyuvvILHHntMMFLHh9ls5i1zDpY0NvFMdcxmMw4fPix4LULBDzXtK7ElR1eKjlhZMXKkDYSOD6T+S5cj9T+0/PCHfUu1RbYfa0evxdhrx2LXo7vwzZBv8G7vd10BUGauJR2kB0UPHz6MhtENse/xfWiX1o5Tpn1aexw+fBh3tLjDq2xE+xF4++a3/V73lSwvNOgNiDZ5B5Rub3k7WqS0EG3HV33Q6aQFuQgEAoFAINTioFRaWhpWrVqF8vJy9OvXD9dddx22bt2KZcuW4Zpr6GnuBoMBf//9N6KiotCrVy+MHDkSw4YNw5QpU2Sds6SkhLcsXH6QFBcXY8mSJSguLg5pP9S0r8SWHF0pOmJlxciRNhA6PpD6L12O1P/Q8sMf9isrKn0L8fjRPq495g6di27p3bxk3u/7vuv1Kz1fYZXd3vJ2n+dwfs4uDbqgf4v+nDLf9PsGS5Yscc1SZ/LbiN8QY4rxe91nBt+aJzWXrH9DoxvQtYF7lvyI9iPw1yjvmVNCiKkP3935nVTXCAQCgUAIazSXU0qLlJaWIjExEUVFRa6d/TwJl+3A7XY7rFYrjEaj19LJUPJDTftKbMnRlaIjVlaMHGkDoeMDqf/S5Uj9Dy0/1LLPzH20acwm3NzsZtX9sFN2LDqyCFHGKNzV7i7WOQteK0CvH3q5lvd50iSxCU4/fdpl/6VVL+GLXV+wZO5pfw8WDV8Eq9WKNRlrMGTBEFa5M3+Tsw34K6fI7CGz8VjXxwAAN829CVsvbuWVZeaUYmKz21BoLkSd2DqyfLDb7TC8b+A+ZyvHi9GUz5xXhBCE5NQhhDOk/hP4EJlTqtbOlAoGwRyAawW9Xo+IiIigXwt/+6GmfSW25OhK0RErq5X7rgW0cC1I/VdHh9R/6WjlWtSWNjCi/QjX6471OvrFD71Oj1EdR+GudncBAGJNsQCAKGMUUqJTsO/xfSz5N298EwNaDEDTxKZYMWoFyz5XTjQ7ZXf5YdT7TkVqMphEfbaejXuKknPCXL5ns9sk6Tox6A2yA1IA/zhwQu8Jsm0SCAQCgRDukBG2BIqKinjLnMnVnf9DlaKiIvz++++C1yIU/FDTvhJbcnSl6IiVFSNH2kDo+EDqv3Q5Uv9Dyw+17M8aPAvv3PAOJjSdQD8tDIAf6+9bj+Fpw7Hhvg0AvJOff3TLR1j1v1U4/8J5NIpoxLLPlZPKTtldfljM/HmxnHU/zhQnyk+pgRzm8j3ma0+aJjaVZFcKnvfhya5P4utBX+ONG9+gD9wnPW8YgUAgEAjhDglKSYCsdKQHndXV1UH/4eVvP9S0r8SWHF0pOmJltXLftYAWrgWp/+rokPovHa1ci9rSBlJjUvFi1xfR0tgyYG2gRWILDEschlZJ9HqySEMkOtfvDAB4qcdLLjmdTudln2v3Pjtld8l1r99d8mdg8taNb8GgM6BTvU649apbJekyx2Ap0Sm8cv/c/49s/3zheR9ua3Ebnrr+KUQZowB9BKAXN0uMQCAQCASCG5JTSgTOnFJCayHDJZ8IgcAHaQOEcIbUf4KWKa4qxp7MPejTrI/g8rrX1ryGz7Z/xjo2pPUQVkJwz3xJnjmlUuulouCpAk77ux7dheZJzZESnQKD3iAp99LMQTPx9PVPAwDOF51Hx1n0csg3b3wT72x4x8sff8H0ecnIJa5lk3wyhDCB5NQhhDOk/hP4IDmlCAQCgUAgEAhJUUm4rcVtPvM98c2UYvJ8t+cV+VIntg4Meu5k4UJ0adDF9bp5cnNkjsvElZevoFlSM0X+SGX8zeNdr/s27xvQcxMIBAKBEIqQoJQEsrOzecvCJZ9IVlYW3nvvPWRlZYW0H2raV2JLjq4UHbGyYuRIGwgdH0j9ly5H6n9o+RGubYArp1SDuAYsuZYpLTltOeu+lAn4K+9fyXn8hzt/QJPEJlgycgn+1+l/mHzLZPRo1IMlkxiViITIBMSYYkSfTylZWVmgNlOY2W8mDj15CElRSQE7N4FAIBAIoYrvbVQILuLj43nLnDvWcO1cE0okJCRg0KBBgtPvQsEPNe0rsSVHV4qOWFkxcqQNhI4PpP5LlyP1P7T8CNc24Fl/G8Q1wMe3foxoKlqVNuDMbeVkYMuBOPb0Mfxx7A+M3+iegfRQ54fwUOeHAIBzeRyTO9rcgZYpLXG28CyW3LtEUFYpCQkJuHPwnWjXrh1iY2NF6Xx/5/c4tvkRTC0GukQZMT3NihUNn8T5Y99ggxnIkbeRIIFAIBAIIQPJKSUCklOKQPANaQOEcIbUf0Io8M76d/Dhlg9d7y3vWLyW/E3fNR3Pr3Iv4fPMKVW3fl3kPpnrZbtHox7Y8cgOzvN+s/cbPPX3U142xWKxWZBXkYf0hHRJev6CmVNq2X3LMPjM29jVbiquPTAGMdXZwJBTwIrWuOYCcIhs2BcakJw6hHCG1H8CHySnlPpUVfHv5+yM7YV6jK+qqgonT54UvBah4Iea9pXYkqMrRUesrBg50gZCxwdS/6XLkfofWn6EaxvwXL7nDEhJaQNGPfck/PR4/oBRx7odXa89l+mJIcIQEZCAlJz7oYMOhsGH0fOq/ohx5dKyA3ee94+TBAKBQCDUMkhQSgLFxcW8ZeHyg6SoqAgLFy5EUVFRSPuhpn0ltuToStERKytGjrSB0PGB1H/pcqT+h5Yf4doGGiU0cpVdlXyVJJtK2kCvJr3w1o1vYXCrwVg4fKFk/UAh536wljM6E8lTFBDXDJ+lqewggUAgEAi1ELJ8TwTO5XuFhYVITk7mlAmXpRs2mw1VVVWIioqCwSB995za4oea9pXYkqMrRUesrBg50gZCxwdS/6XLkfofWn6EaxuosdXg5h9vxoXiC/j3f/+iY72OXnIz987EC6tecNnwXL6Xnp6OzMcyvc51T/t78PuI38V+dE0i9toyl++tGLUCg1sPdrxpB5SeAAYfBRLbg9r9FJqt+QYXrf72nOB3yPIlQjhD6j+BD5HL90iicwkEcwCuFQwGg+jknrXZDzXtK7ElR1eKjlhZrdx3LaCFa0Hqvzo6pP5LRyvXgrQBdXQ8ZU0GE7Y/vB12yg6D3sArF67IuQ6smVK3bQUWpwEUvVOhrtssDDy0FrMzz6jpJoFAIBAItQqyfE8CZPkefQ3+/PNPwWsRCn6oaV+JLTm6UnTEyoqRI20gdHwg9V+6HKn/oeVHOLcBnU7HCkiJtclsA/d2uNer3DNfVW1Ezv1g5diKTKX/G6Jdh95p3kEl7wgEAoFAqJ2QoJQEbDb+fXvD5QeJ1WpFYWEhrNbgzjX3tx9q2ldiS46uFB2xsmLkSBsIHR9I/ZcuR+p/aPlB2oB0OWYbWDB8AXJfyUXD+Iai/a4NiL1ec4fOBQA0TWyKfs37sQtH2YD4Fq63jaNi0CIqSnVfCQQCgUCoLZCcUiJw5pQSWgsZLvlECAQ+SBsghDOk/hPChS93fokX/33R9Z4rp5SzDaRPS8eVsisAgJEdRmLRPYsC7m+wOJZ3DE0SmyAuIk5YcNsonC46j9b7dgXGMYJ/IDl1COEMqf8EPkhOKQKBQCAQCARCsAjn557t67QXLdsqmuTrIhAIBEL4QpbvSSAnJ4e3zG63s/6HKtnZ2Zg8eTKys7ND2g817SuxJUdXio5YWTFypA2Ejg+k/kuXI/U/tPwgbYBfrnODzq7jtzS/xfXaVxsIhZxSfql3XacDPX9Vzx6BQCAQCLUMMlNKAkI7rjh3V2HtshKCxMXFoU+fPoiL8zEdvZb7oaZ9Jbbk6ErRESsrRo60gdDxgdR/6XKk/oeWH6QN8MvdXP9mvHvzuziWdwxfDvzSJcPVBiiE1kwpv9S7qDT1bBEIBAKBUAshOaVEQHJKEQi+IW2AEM6Q+k8Id7jawOJji3HP7/cAAPY/vp81y4rARjfJHcz7pi7waymwpYpfvuj255G88qsAeEYQBcmpQwhnSP0n8CEypxRZvieB6urqYLsQdKqrq3Hu3LmgXwt/+6GmfSW25OhK0RErq5X7rgW0cC1I/VdHh9R/6WjlWpA2oI6Ov9vAXe3uwvL7lmPDmA0hEZAKVP2/vVEXbH7yKOvYzDpsmYrIG/3qA4FAIBAIgYIEpSRQVFTEWxYu+UQKCwvxyy+/oLCwMKT9UNO+EltydKXoiJUVI0faQOj4QOq/dDlS/0PLD9IGpMtxtQG9To872tyBPs36iHNe4wSs/kekAInsROlPJ7FFvv/zCB7lf+hMIBAIBEKtgSzfE4Fz+V5BQQFSUlI4ZcJl6YbVakV5eTni4uJgNAYvJZm//VDTvhJbcnSl6IiVFSNH2kDo+EDqv3Q5Uv9Dyw/SBqTLhUMb8Ge9Yy7fy7jtaTS5YQb077mfHVOtgIeygR/L8P/2zjs8qqr549+7Nb33QhJ676EjvRfpAgKhCz94FUHA8lJFVFT0BQsoJPTeO0QpClIVkC4ooZcUSAgpZJPz+2Ozm91syb27m93N7nyeJ0+y987MnXvuTJKdPWcOersD8aNSId7rj/h0YFKKRV0hTIGWLxHODMU/YQiey/eo0bkAbPkPuL0gkUjg4+NjazdK3Q9L2jfHlim6QnT4ytrLc7cH7GEsKP4to0PxLxx7GQvKAcvoUA4Iw1rjUFDtPd0m8a5h+KntKIz942M0cAFkPj6AiMM7vgwVZUD3h0Wi7hzwkj5yJgiCIMoItHxPAOnp6QbPqSacOfrEs/T0dOzdu9foWDiCH5a0b44tU3SF6PCV5SNHOeA4PlD8C5ej+HcsPygHhMs5Qw7YNv45SEQcmroCMg7Yu3cfCmTKnfs4t3Atyc6GN4smCIIgCLuDilICyMvLM3jOGf4ZA4BXr17h/v37ePXqlUP7YUn75tgyRVeIDl9ZPnKUA47jA8W/cDmKf8fyg3JAuJwz5IC14l9nlhQAcBygcfz+g/tIa3ZSearcG1qi9M89QRAEUZagnlI8UPWUMrYW0hl6KRCEMSgHCGeG4p9wdigHzEOzp9TN/9xEed/yEM8Vq4+xOpFATBxwZZ7ywODCf9/XcThR/iO0OPiJWvYND2BjplXcJlRQTx3CmaH4JwzBs6cUfZhCEARBEARBEHaEiBPh03afopJfJewetBtwjwLk+jfbaRZUWes1p1eKIAiCIOwTKkoJ4OnTpwbPOct24E+ePMFXX32FJ0+eOLQflrRvji1TdIXo8JXlI0c54Dg+UPwLl6P4dyw/KAeEyzlDDlgr/lWLGN5v8T7+/s/f6F65O9D2F6DKO2oZTT+44FZY3HAQAGCGHyCiqhRBEARRhqCilABcXV0NnuM4Tuu7o+Lm5obY2Fi4ubk5tB+WtG+OLVN0hejwleUjRzngOD5Q/AuXo/h3LD8oB4TLOUMOWCv+9faUEssArujfdi0/3KMwsds65M3Iw1x/oKq0SK2zbVOVIAiCIEqEekrxgHpKEUTJUA4QzgzFP+HsUA6Yh2ZPqWsTrqFqQFX9gjcWAX+8o9VTSv1z4eucAqD9A+BZAXAwDIhMKj2/iUKopw7hzFD8E4agnlKWx9a7DdkDr169wr1792w+FqXthyXtm2PLFF0hOnxl7eW52wP2MBYU/5bRofgXjr2MBeWAZXQoB4RhF+NQ5W0AMOqHiwg4HglcLgdESLXPuYqlenUIgiAIwlZQUUoAaWlpBs85Qy8FAEhNTUV8fDxSU1Md2g9L2jfHlim6QnT4yvKRoxxwHB8o/oXLUfw7lh+UA8LlnCEHSjPuIr0i1T8HuQcZ96POOsN+VBil/lHfSsr1jQerf24d3VqwnwRBEARhaWj5Hg9Uy/dSUlLg7++vV8ZZpq3n5eXh2bNn8PX1hVRqu0/bStsPS9o3x5YpukJ0+MrykaMccBwfKP6Fy1H8O5YflAPC5ZwhB0oz7m6k3MCcY3PQpWIXDK0zlL8fm2Xay/cA5ZI+FXU/x3X/zhixewwaZp7B4k5f4uKp93A1fBj8yg9G57WdBfnZ1hXIY0C4BNiQKUi1RAoqAtkMcP9H+7inCHhh77VOWr5EODMU/4QheC7fk1jPo7KPLf8BtxekUimCgox/gucIfljSvjm2TNEVosNX1l6euz1gD2NB8W8ZHYp/4djLWFAOWEaHckAYpTkOVQKqYF3fdZb3o/o0VAVwcsQxYKMrwIlQRw7UiWqIoxK5YD9/iVB+v5ArrCjlLwJipMC5XMMyHAe46ZndFSYGbth7UYogCIIwGVq+J4CMjAyD51QTzhx94llGRgYOHTpkdCwcwQ9L2jfHlim6QnT4yvKRoxxwHB8o/oXLUfw7lh+UA8LlnCEHykz8N/rJiLZl/vWvKwcOhPGXf1geOBNZglCjpXoPN3QB5KW8qWOYuHTtEwRBEIahopQAcnMNf7zjDP+MAUBOTg7+/vtv5OTkOLQflrRvji1TdIXo8JXlI0c54Dg+UPwLl6P4dyw/KAeEyzlDDpSZ+K84Ws/BwqqOxE353S0SHMyr9HRy5y8r4/T3uNJC6qP3sDsHvKgATPQG/s8byK7A/7p88OCA3QIKbARBEIRloZ5SPFD1lDK2FtIZeikQhDEoBwhnhuKfcHYoB2zEOk63p5TqeIPFQJWJytf5Ocrle00SgPLDAQC/3vkVrVa0EnQ51mkk8G+8+jV3k6deJePy0RLg9tu3gN0VdWTGeAE/BmsfW/gMmJKi31aAGFgVIkLXB/zW/GVUUPatKn7dxYHK/lnNXYHG90owQj11CGeG4p8wBM+eUjRTiiAIgiAIgiAciXZHiwpSBjBpppSBJXamMtEbaOwC7AsHj6lURRhazrc2GEh+PwtdoprpnKskBVLL6+p4Gng35CsC3vUFGrnwdosgCIIwASpKCSA5OdngOWfYChkAnj59ikWLFuHp06cO7Ycl7ZtjyxRdITp8ZfnIUQ44jg8U/8LlKP4dyw/KAeFyzpADZSr+g4XNgOIN4/d8qwZUVf/cxaWTQbnFQcCpSKCarPCAR0XdS/J07asAYEBwNBZ9/xOyJRE65z/wBfzEwC8RejYucg3XOVRSiWyIJ0/HCIIgCKNQUUoAcrnhXUq4wk93OAGf8pRFXFxcUL16dbi42PZjo9L2w5L2zbFliq4QHb6yfOQoBxzHB4p/4XIU/47lB+WAcDlnyIGyHf+6z8W0Z1VYIqoyyaDEEE/gSNwR/Dz0Z3zd7mtMrPe2Xrn+lbvp+tj9Gt5rrC0fraeG5K+nMXl7NyA/vC+qV68OsUSCHwKVS/nqy4GlwWIMK1w50jainq6yTy2D92OI1SHAeG/BagRBEEQxqKcUD6inFEGUDOUA4cxQ/BPODuWAjTDUU6o4+bnARhegyQqgfBwA4Pjd42iZ0FLQ5dh/s5W9qWrNBi7N1urDNNgT+CYACJRA16d1ygKYe5IbsvKyAABjag/Cj9nri2R63QPclDOcriRw6PFQObPptwjAtdjH6Pm9HiJiYRge52v4VknjuqdGAv8mgLHCVYEiKVCQpzwX2hncrweK9N74GvCpBW5pe61rrA0GBhf+26+vFxarBLz9FFicDuqpQzg3FP+EIainlOXJy8uztQs2Jy8vD0+ePLH5WJS2H5a0b44tU3SF6PCVtZfnbg/Yw1hQ/FtGh+JfOPYyFpQDltGhHBCGvYyDSX5wEp1D1QKqqX/uXKGz1rlxdcZhWavpJZqdE+Kr/vkLVUFKj68qKvtXVv8c7BZYJNgvTV2QAoAacuBWNHA2slhBqvxIoPoHELuF4kykrj+q6xUUKKtVXJ9HyhNa969dMMurMAEIaadji89EMlMmm30bWLKMitN67rEsU0XPrDeCIAgqSgkgNTXV4Dln6KUAACkpKViyZAlSUgxseeIgfljSvjm2TNEVosNXlo8c5YDj+EDxL1yO4t+x/KAcEC7nDDlQpuNfJAbCugMeMepD/m7+2Dd4Hz5s8SFW9l6pJS65KMHrwU1wqVwxO2KNJYPyQEwfeh0rX1+Bk7EdEKZb91L7qmJ93/Xwd/FFeSkwvdH4IkGZr46uiNNX9GFA3fkA9Pd8Ul0vJydHecA1RFug2lS9OnrxrKT/uAamLIAcW8KSvzFeQEUpcDLC8Zqs++pZdkkQBEHL93igWr6XnJyMgIAAvTLOMm391atXSE5ORmBgIGQyWckKZdQPS9o3x5YpukJ0+MrykaMccBwfKP6Fy1H8O5YflAPC5ZwhB+wy/rfI+S3f4wE3p6jEcmbQGdT1yIT0aFv0Er2OXTd2YXGXxZjQaIJyKV6t2cCtH4HeD5QKOcnAtiDlzx4VgZ43tXwNP1Y4C2owQ07aJUj314a49z1gR6T6uBrGgPUGPjcvPxxokgAAuL+SQ2SShlol4FW/XCQnJyMk6QOI76xW2t3orixOZf4LtP8NEEnAfddUrZf7QS5kMhk2X9mMAVsGqI+vr9seA1/+rBybYsv3ergDu8KAd5OBb55D7/KlQR7A+kzdW2CVAJdbQK6Bx8aK1cL0LR0sDcpJgLuKotez/IA5afx0/88byCwAVr0wLtfWFTicbbqPhJ1Cy/cIQ/BcvqfnMw3CELb8B8RekMlkCA/X3aHE0fywpH1zbJmiK0SHr6y9PHd7wB7GguLfMjoU/8Kxl7GgHLCMDuWAMOxlHLT80DPzx1R2DtyJYduHoXe13oitHAs8/Q0AsP2N7UjJSkGgu7F1Zxpzhmr+V7+vhbhIZCVMMTJSZNPY/U/f0jn19e5qFLUqjgUeHyp6HdBERwcA+lbva8wpNZ/7A6MKZzvJjdzHsmD9RSkAOBAGtHnA63KlThMX4PcI5XhqFsCCBcxq+q6wHllSUUpWbLxi5cDZXP7XIZT81w+Yx7NgSBBlAVq+J4AXLwz/plVNOHP0iWcvXrzA0aNHjY6FI/hhSfvm2DJFV4gOX1k+cpQDjuMDxb9wOYp/x/KDckC4nDPkgF3Gf70FFrPbs0pPpE5LxaK2i3D06FFkZSkbknMcV0JBCsplfVIfg75qoY4RAYvfJB5AYEsNXf2orpeX90q/AKdbaVE9TxFX/G2Rfv+m+RXt/jfVF3DTI3Y6EnAz8i6rtRuwKcTweT5MqPQaDlugRsrBtN5YKhYL6JH1Pw1ZL5Gyib0+RhueUEEAGEvjQzgYVJQSQHa24fmmzvDPGABkZWXhzz//VP+j4qh+WNK+ObZM0RWiw1eWjxzlgOP4QPEvXI7i37H8oBwQLucMOeAM8S8WidX2c3IFTGGRegD9nyl/do9SH1bZAqDc+Q+Azkyozn8WM8YBUYPUr15UnKFsVO0ytYgAAHT+SURBVM5xWrpcQAsdN1TXUygUxc5wQK8HQEBjvTqm4i8GbkcDwcXWnuh7g/WRL/CnRuPySDPWq/RwB75tNxdt3ID25duXrGACJdWpXnNVLjWc6MPfZmUZ8G80cD0KSK8AyEVAeT3Nz5cECXDUhqwMts11i884I4iyDvWU4oGqp5SxtZDO0EuBIIxBOUA4MxT/hLNDOeCAPD0O/NxSf8+qS3O0e0qpWMcB7Y8BQa/pHlfZSb8K7K0BDFQAT48AIXqKKmnngQP1lT/XXQBc+QTwrQO4RQLN1gAAHr54iPCFRVOFWCUUXeNkHHB7lfL1H+8CjxOBbpfVspr9s9isovtbsLMPpl/YrnSzw2h4JS1Tymssa2NV5ECBdsEu4l0PPHiaqe6pczYSaOhSTE/VKyq8J/BgF87lALH3dG/dWE+pKAnQxwOY7Qd4DcoCNrnhSc/HWHR6Ebyvzcd0w3syGeTXCKClq+61fosAWhamciM5cEbjltcEA13cAb+ILsCj/Xp9Lc4Qfz+s9tNdc3Y7D1iSDix4VnSMVdK1tScM6P6w6PVn/sD7PO+3pgy4bGDynDmsCgaGPSlZzhTGeSsnBmYU6C4DfRIDBN8uneuaBPWUIgzBs6cUzZQiCIIgCIIgCKIYxno7GftMm+c0DpFYf0EKAGTeyuWA1aYVrS0LagX4xWpche90EV1fd9RugfrBNRHfM17r+LtV22NnGIcbtarCS2qol6yee5dqb6mn8qx/9f4AgPb+uuvs6suBagHVtI6FufoYuKaSSdU7Y+HAI/By8QEkykpSsEcwPmn3Cab5AWdGn4Gfq59RGyoWBQK/hBcVpDRnuAFAC1fgA1+gixuwMVRb900vwE8MIGqg0WvM9QP+2/K/+KBCffwvSv9awxgp8LmefaTmFruNbu7arxs1nKH12tfIu9rSmoFhSbs9it1fkBhYEgysC9WVDaRdDAkHg4pSAnD2rZABIDk5GT/88AOSk5Md2g9L2jfHlim6QnT4yvKRoxxwHB8o/oXLUfw7lh+UA8LlnCEHnC3+nz9/XoKkgaKQRm8mlS0tvKoC3a4ZN+1RHsmt/8YPp6LxnIsBoocAtecCVd/h5XtOjvEt3l7v/RsO9D2MnFM5WuMoFYnQ04ND5bofAJF91MfXBgO+cm986AvoK0UYivsVvVZgd4UIbKvfsehgYZFNVG8B/hj7B66Nv4RrI49gbuu5+K3De0qZBv/T73hoJyC4ddFSyWLEhsfi0ZRH+Cda2e/qx3BPQ0OAdq5AWzfNI7rPc34AsC8ciNazxI4PQ72Aj9t+jPlVmsJPImy9okjuq33ARXut3M7TGVqvlwQBbxmaiOFdvcTrdXEDtoYCQuo9DMDX+jdm12Gct+FzDeTA6mJLAfUta1RhTg+w4tyLtpwtgjAVKkoJQCo1/NuBK/ztwFnyt4QdIpPJEB0dbfOdCEvbD0vaN8eWKbpCdPjK8pGjHHAcHyj+hctR/DuWH5QDwuWcIQecLf4lUhOaHvW6DwQ01bGlBScCvKvy9oMLbQ/EfqtzXrcxeZGOSCQCXAobExmY1WV4HDmg/DAgpJ36yGAv4N+xt/BJ/f66hhot1R/3lSfCTeqG7j6e8JS6FB2vNk35vVx/uEpdUTWoJqpGtsaMVjNQ3rOwE3igbr8sAJCL5XqPa92XWIbyUmBBADDGzw3f8Cma1FU2zF8UCIRKJVjWY1nROT3N4XUQu+kcmld/MKLjCsc+qCUQ0duoiSPhQK+AUBwMU75u3fSzYhLazzEmLEbHhrvY0O8f7eO/RyiXCP5dODnMgwM2hSqXRt6LAS6OuGjUV02P3C3wblqf14M06onv+RT9/Im/+ddTMdgTiDCx4EgQloSKUgLw9jZc4naGf8YA5Rh06dLF6Fg4gh+WtG+OLVN0hejwleUjRzngOD5Q/AuXo/h3LD8oB4TLOUMOOFv8e7gbnmVjELdwrZlSKlvm+GHoPoPcg1A7uDYA4L8NRwIiqVpHJpUBnlU0pHXjUug4+vgFAEGtdYtcAc104p4TSYA6nxS+YoBIo5gU2Kzki/nV13u4bkhd7QP6+n0V4536cWjvWoJQWFcAwH98gIevf4xR9UeV7CNQNGWngq580yCN8Y96A6g1Q0dGk9ZuwPbaTdGxcBlb81pjMa9ef7RxBR5VDwUYw54wwFXiig7lO+Dtfm9r6TMAkOh/liPqjtA9+PodVJIBBRWBjC4T4FEYtqESoHa52ugYWM6ov0Ip6Tdj8Scp4wC0OQQA+CwA2BsGnHljPT7ktzpTTRsjzz6+jDSUJxwfKkoJQHcnD+dDoVAgLS3N5mNR2n5Y0r45tkzRFaLDV9Zenrs9YA9jQfFvGR2Kf+HYy1hQDlhGh3JAGPYyDlaL/3wLxv/rj0zXNXCfHMfh+Ijj+G3Eb5jT9SdgwEu1TgEreRkp7/jv9VQtry7CdDqrIaGnMBQTB0g11pLpnW2kR48xaJUvWmzSOh3gxnOtWNGFDfbt0rq6Z4Wi69Z4X9eGITwrKZc5BjQR5lbNmQZOaF/rox4bcLjDNIRIxUCbg+jmDqROS8XegXvx7Jn2EsYCACgfp9dq98rdtV6LOQDuyqITxwFcsZl4CoUCXr6N9Np6TaPIU6s0J0361IIisA3y/F+DmAO6ugOxoXUMivdwVy5B1GRzCHA4AvhKT9hM8FbufggAG0JMc7FmKdz/CMO9sLWgCV6OBRWlBEA9pZRr9RcvXmwX/RRK0w9L2jfHlim6QnT4yvKRoxxwHB8o/oXLUfw7lh+UA8LlnCEHnC3+jfeU4tfiWe1rhvCW0Hzu01PuiRblWiiX8omkRb57dwYqjSvyVc8MPt7xn65QyyOiN9DmIODfUEumeNxXb65Z5NB/fYNjqCkrD8BvEUBFF1f8J7IKKvlX0q8DAL0e6B7jOAAc5huqZfVLA/qmAmIXAwIlENAEaLlV/zljsyZrfAh0PFmyfU4ExAwB6n0FeFUGALhKXZGSkoLFixfriI9u8JYBVzgsKZwVVDWgKhqWsAoyOTkZUX9HwVPPO+W1wcAbHsBn7T5DA08veFng3XRVA8Wd5ORkLP+zWD+ssG56ZVdEBWNvGFBP494aFD7Wyb5AUrR2yY8rXAq67O5ovOEJfCpwWWB7V+BkJHAywrDM7xFAVgV+9gZ7AkM8gaU8Z2+FS4Cnuis4ywT6ioTODhWlBODr62vwnEgk0vruqPj5+SEuLg5+fgLnjpYxPyxp3xxbpugK0eEry0eOcsBxfKD4Fy5H8e9YflAOCJdzhhxwtvj38iph+R6PpZq2in/3Sv2B6MHm2689T33ez88PcA0BQtpqyzCmjntfV19cn3AdLhIeRR6Ox1wPxtDCFbj5zl0sGnLKuKxbWNHPwW20TsW6AL+N+E1XR+YLyDXuv8aHRT9Xnlj0c9RAHIsA+lfrj2OqIoSbRjVCb98uPfGhsi+WAx7FqhXlBkBvoc6nFhA1QOsaqmenCWNAtcBqOFw5EmvrdSl2juGt8PK42m8J/hz7J0T6QjeqKF78/PwwMW4i7ldwwb0es9XH48IrI0IKbAgFpreYDsTEoa+HrqktemYe6btktYBqqOJfBQsDADeNX51Rrp4AOPj5+aHzoOko8K5VdLLlNh07ZyMBP1dfcBywr/VkTPcF1jUZgRiNEIuSar/x5yqOBQC0H/gRAGVjfD7kVQR+jQB2hQEeIqCJkeWBTV0BVxHQooR0CBYDa0OA1SGAVMAK8EAJkBiu7AnWrqQlqqXE8/LAH5HCdHxFlu0N5gg47n8OpYBcXnJzQUdHLpcjOjra5mNR2n5Y0r45tkzRFaLDV9Zenrs9YA9jQfFvGR2Kf+HYy1hQDlhGh3JAGPYyDtaKf5nU/LU59hH/+mck6ZWVegFuGu8wa36kPm/YjyL7blI3VAmoUuy0xpI8eeE70TeyAXcB72RdAgCZD395TqNJvV89oPoHaFFOf/P0Ip1i1YCGi4F6Xyh/br4er41i2DRgU9HytZ7/8vdHhbrPlh5if0DJnZeUqJ6dJqqn0MbTHYMjqukq9biJatXHwlXqCriG6p5vvlbHvpeYQ4S7L65HAVte+z/8WPM1wK9BkU7DRZDocbkvj3ZsNWTAlf+7gmsTriFQouwhdeDNA/i/hv+Hnxv11PJD1O0vpZLYFRDr5qU6AiuMRkjsfHwWAAxqv0RHbpPGbb/XTLnTo2ocDfaI1+ADX0DCAS0Li00qNGeLjfYCfgwCcjRqjj8Ymf30iT9wRmBRR5P2bkBKeWVxyhQamPlr1FsM1DdhouEUH+3XY3guW3RUqCglgMzMTIPnWGH1nhnY4cNRyMzMxIkTJ4yOhSP4YUn75tgyRVeIDl9ZPnKUA47jA8W/cDmKf8fyg3JAuJwz5IDTxb9LLaDbVcvYsnn8677j1isbNRDofk1HTvO7LoxH/HNApf8D3AqbZ/NdLhfQGGh3mJ+sIbyrA3Xn6xxm1abr+ljcf4mHVrEqMzMTD7wGokAeDIg0puG4hQPyQG1renZHVJ4o7K9VfAwkHoDEXVn0KaGBu+rZad1Ps9Var7u7F/0c6R2pXAqoupfeD/Ubrr9Qy77KiyoyoG+9cZCJ9O9E2CqqlVF/Ad0I3B6qXFaobpLf+U90qtgJ33X7DhXdfQBw2jE6UAF4RCtlK+tp8g4AUm9kZucp7yH7lY4Pvd2Bw+HApXJAOW9lLBYfR0N4iYCPBl3Xe07VJN5fDPwUDIzxBuQxg9Tna8qBq1H67Y72AspJoVyiWcjiQEDOGZ+9pTmechGviZs6vFOhCY5HABUt3KDqWhTwppHCJMcV9fNSwXfZoi1YFQxEGtmMtZEFPh8xYa9X5+Xly5cGz6n+CLm4uCAnJ8daLlmdZ8+e4c8//0S5cuUgkdgufErbD0vaN8eWKbpCdPjK8pELDw+HVCpFUFAQ5UAZ94HiX7icNeNfIpFALBbbZJezzMxMHD9+HBUqVICHh541Cw7ihyXtm2PLFF0hOnxl+cg5S1HK6eI/RM+ME1NtlYX450Q6xZLMzEx4qL5bO/4l7jpL8XjhGgZIPAEfw42xUX5IsQMcdGaVxcRp9TDKzMzE3fuPERzkoj2zIbg10Ok0vntSHhOSgUiZFC2jDfg9qLCxvNQT6HAcSGyhXCqomgEkcdevp4Hq2Wl7r/E3kTGs6L0Wy6/uRKtKPeEmLdYBXJNWe4t+Lnz2KvvNogrHo3+6chZdRC/APxY4PVrLxMpeKxH9v2gAwLIey4Dro3FkyAG0WdMZANBa3BI5Aa5AunI3PSmASsUnPPnVM3ifOvHc8H/A3kVFt+vXCECGWudQyhA0y8yER2gn4NHBojHigDbFhuL48eOo02IiPO5oN3vXgcnxIt8bOk+n40lwaAoAcOEABLYAko8rl2dWnQJcVxabqsmAnaFA8T0P9P0nM9EHGOutnD32xTM9AihWhGq2Fvj9TXRzA/ZmGb8NTb4ZchJYx2GMFzA9lb+eigPtpgF3F+gcryoD1oQAa1/wt6XvX7oVwcDwJ8L9Mpfe7sB2jbJHfw/gTA7wbbp++Um+wODH2sdYJYC7yf+aHHPk/x4sREZGBry9vZGeng4vL/1z6yIjI9GxY0f06dMH5cuXt7KHBGF77t+/j/z8fIjFYkREGOl6SBAOiLXjXywWIygoCN7e3jYpThFEcSIiIvDgwQOEh4fj/v37tnaHKG2eXQDSr5bYt8kueHELyE1VzjoylXWc7uyddRzQ9S/AqzoiykUZjv/dlZUN0hWZQMpJoMufhq9zcwlwbgIwKF//NflSoADAAcVm9nBziv5eXBp/CTWDahad3FUJKNcPqPupcdvnpwP3tgI9b2kfz7wNtrM8zrU+g0r+leDj4sPP1311gMCWQOy3wO/DgKw7QPtjunL5ucDBWOWYF7LywkoM3zkcfq5+uP/ufeXSvD3VgdDOQIOFJV97HacsSoV3Vb6++QNw9v+Kxn2jK1D3c6DK27p6PJ5N/Lnvcf/kBEx5KxPTf56O785+B0A5KyTvg2dFSzKL23uUCLy8A1QcrWNTxZe/f4mpiVNRTgL827QjxFl3lQXE+l/q+qqPwQzISQZcAoEL7wN3N4M7r70kU8YBrwrdCnALQPLUZODuZsCzMrC/rvLEoAJE+Ivw4BkQHuyF+0m3gG1BQJeLgG9tnesfzgLaafTkTy4PBIihnKX252QdNzULGy4iEXIKNxUoLwX+adYNeLgXaHcU+KU1kqvNwsTDc7CpcFJjjGcobr8wvPMnm8WAdRw+TwPeL6Eo5c4pZ3RdK5yAdi8aiHhtDXByCFBrLrhtRTtKskq6vmuSEAwM99I+r6+IU1AREBVLM2tQvCiVXQGYlQYsMFAgzKoAuP2jfUx9PzkAPoPROgpAM6UsRr9+/dCtWzf4+/sjOjqa3iQQTkdubi4UCgUkEgliYsrodhgEYSLWin/GGBQKBTIyMvDo0SNkZ2cjNFRPbwyCIIjSxLeu8qss4FlR+VUaeFXVKfzowAp335MHajcHN4gF3kOITH2Lx6cIptEjSxOZH7jI1xEbHivwmjzvVyzXKkgBwLA6w1A1oCpifGOUBSmTMHbP5j2LkXVHAH9PAGTu2jO5AO0eYQ2/0z4X2qFE25ObTkaja1NRQwaI5X5A1l39gk0SgFMjgKargJPDtM+5aC651Pbv3Jhz+HpDQ/VsH7X/5foXCUUNLHYxrsimWP+artBioemueVmXICDnqf77ACDW9FEk14nzwKBG2BgK1E8DjmUDX3f7HFU3FLtngbwb7I8FPdbg1ZEuyAewJkO5cUCE5pK/8G5YGDAT36Zr7GIYNRC4uUGvTb5RVVI5wVcExAcDvQ3X3QAA5STANF9gookbtjIA032BJelAZgFwJAJofx/Ig3LZoasFGkJRUUoAqampeit8+fn5aN++PXx8fCASieDqaqP2/1YgLy8Pz58/h4+PD6RSCy/AtSM/LGnfHFum6ArR4SvLR05ViOU4Di4uJm4tXAawhxyg+LeMTlmOf09PT8jlcqSkpCAoKAhicQlviixESkoKdu7ciddffx0BAbbb07i0/bCkfXNsmaIrRIevLB+5gsJPr1XfHRGKf+vasqf4D1B915TTmNlScvxzQM0ZAOw4P3h8oJ6SkoKHf/2FGt4F0PmrI/MGXtthCUd4+aF6do0j9M2AM3UhkEjL/kh3Zl5ZSuKKlA5PsXP5cmT7Zmt4V8xq5f/Tq24sRkWcSNl03ruGsvC0v55+neihyqKUEfuDqmXBDUAPd2D3S+Cdxu+gQVgDLdmcnBzdHGi+XkuGscL47v1YWWACgB63gN0VgYrjgFtLdNqWFRU0OKDPk6KZVS7BgHsUcPOMWjZEJsc/OYXr81xDlbOr7u8EJNprEqf7AdMBwNdAI6tiyAw8ZF8RsHDkLSD1LCSFfo730S/7rq/yC9FvAklrlWPzs/6ilCE+8AU+LZyNFGzg37qj4UDPR8DLAmBvmHKHQz5M8OFflJrmqz1TigHwEwN3ooEXBUCkFMiuCGQUAL56/Hxiwmez1OhcAIb+6c/Ly7NpgcaacBwHqVRq85lgpe2HJe2bY8sUXSE6fGXt5bnbA/YwFhT/ltEp6/Hv7u4Oxhjy8vKsdk2JRILAwECb9hS0hh+WtG+OLVN0hejwleUjp1mYdVQo/q1ry57iX/O7PozHf+G7cJFYuzl4SXQ8xV/WUpTQ1UUikcDNzVXZe8uGGH12Qn4HtdwGBDYrel04o05lv9Cg6Y4CkEilCAwMhEikMWY8x49XjIrkWn3QdHSMzORTyap82zYxBRfGnsfXnb4GAMg1dF3ELgb9YK5hhT8VjpVrcNFzcC9s7t/oB2BgHpi+pZn68KwMeFbBH2P/QH05MKX+cFQPa6Q+zXFiZd80QFnAMsDKYKC+HFjc9C2DMmO8lQUoTXp6iHAiEsqx1Yiph+KmeixoxEizNeof3zKwWk1vRLX/FR/7Kxu/v16+LS5HAQh6TUvk0Tv/oJUbcDca+DdGrCxIRbxu8L6MXs8ITQwUunzEyoIUoNytUV9BCgCCTPjTQUUpAfj4+Bg858j/hGkikUjg4+NjF/+QlaYflrRvji1TdIXo8JW1l+duD9jDWFD8W0anrMe/Lf7u+Pj4oGfPnkb/HjqCH5a0b44tU3SF6PCV5SPnDEUpin/r2rKn+Nf8ro+S49+EvDCnB5ZJlOyjj48PKvZcDnG7RAtfW9jMJovFaGRvQKa5xRunZd8Sv85UtlzkwmdRWysHXEKaAGFdIXHxR53Quuo4/njUXcg45ajsHrZb22b1ot0bef/+F0kAub9xGfdojRcM9UPr449ywJc9EoqKUMVxCQZabAYCmihfdzqrPjXMC/ijHNAruomWygTvop89XP3xTzRwfcJ1PI0BMioAOzt8hGoyKItS7kVTf8KqtVfuFFmcup8BXtobQ3wdCGypVB4/BBaTjeilvQwSAFxCIOaUuxfuGPqLss9W9Q+1REJ8lH2rvcVAOXnh8kipj64vUM6kK86ZSKAxzzDsVdjRXsYVNrAHgFZ7+CmbABWlBJCfn29rF2wOYwz5+fk2312ntP2wpH1zbJmiK0SHr6y9PHd7wB7GguLfMjoU/8LJz8/HixcvbP73sLT9sKR9c2yZoitEh6+svTx3W2Mv40DxbxkdIfGv+b10se+/M/n5+XjxSop810jLGdUsZAS1VDYp5+OH0Wdn4jgW+qKyzzgxzJ0ppbLl61JU/Ir05jd+Jd6naokcoCz2SDz06zRYDAQ001FXy0b2Bxou0jkf5hmGpGjg+v/dQHXv6to2636mxyEe/3sZlCkc5xabC19qjHt95cwtP1c/9aFAd41Kj1iubNIvLzzv31DbJgBxsSLNfM3aWEAz+NafjyoBVRAoATxFAGrPLVqi61kB8FR2L8999QpM5gcdqk3V6Xnm6l0Jfav1wTgfoF25ovGvFzsXaLGpmIFi41J47W8DAW8R8HnDwt0yA1sAALJrfa0W/SEQcBWJMd0X2BcGbG/1NnpU7qE+rxqFWBfgYBh4kRAM/FC/Ny6XA0QqA2FdgHaHlT8PfFUkHPE6dg/ajUaBVbDS8KQ1o1BRSgDJySZ2B3Mg8vLy8OTJE6suF7GFH5a0b44tU3SF6PCVtZfnbg/Yw1hQ/FtGh+JfOE+fPsXChQvx9KnhRqSO4Icl7ZtjyxRdITp8ZfnIOUNPKYp/69qyp/jX/K4Po/EvkgKckL5/tpxtaLyoUOo5UHEMUOP9EsWM+tH2Z6DWHLPcUNuPPQZUGGURW0MrDEWEVwTcpe7YOmCrMD8MjXdEH6ifWZuDQI0P9etUmagsrAi1DyC0wSfwVHgalVPFPSvQEz+cBIj93qB9NUEtld/lAcoNBDSpOgkA8Hn7z+Et94ab1A0rXl9Rsk0VUm+EhLVDkwjlbKkvGrwJL82UfG0HUL3kuAOAPcduIdtLzyxGTmRggwFlPq/q/AWGB0dgUaVaqBVcCwBwctRJDImKxZFIjWW9TddoaU/wAdLKA9Paae8muXPfkcJ788I4HyCj/9f4rFs8urgDvcrVx8CaRU3o3/KGIPKlAfARA4ODaqGSrPBgiy3Ke+RUy0KlQKXxyp0ym65C98rdcbrP9xhmeIM9o1BRSgC2nq5taxYtWgS5XI4OHTrYfBmLRCKBn58fDhw4gGHDhqFWrVq8e77Ur18f77zzDgBg+PDh4DhO/SWXy1GlShXMmzcPbm5u6vucPXs2OI5DSkqK2k5xXXd3d0RHR6Nnz55ISEhAbm6ulq98xmzFihXgOA7nzp0TrFt8bPguXzIku27dOnzzzTd65TiOw+zZs3n7VBrk5eVh6dKliI2NhZ+fH9zc3BAVFYXXX38d27dvV8slJSVpPSeRSAR/f3907doVJ0+eFHTN6OhoyOVyhIeHQy6Xa9lVNbfeuXMnOI7DkiVLDNpJTEwEx3FYuJDHdsUAjh49qr7OihUr9D63tm3bguM4REdHC7onfWjaj46OxvDhwwXp79mzR52X7u7uCA8PF/w7Y8OGDWjUqBHKly+P6OhoTJo0CZmZmYJ8f/ToEf773/+iadOmCAgIgJeXFxo0aIAff/wR+fn5OuOYmZmJSZMmISwsDC4uLqhbty42bNigIxcdHY3u3bsb9UMVd19++aVRubKGr68vBg0aBF9f35KFy7AflrRvji1TdIXo8JXlI+cMy/co/q1ry57iX/O7PozGf/tjvAotNodH7paJHHANVTZdNwlOy753aA1AYt4GVipbEUER+Pftf/FwykPUD60vSNfgeGs+M4k7IJYZ16n/jTD7AFDjwxLljMY/xymLF4XI9e3K1+0q4Fc4Jh7RQPdreq8T7BGM+5Pv48HkB6gSUEU5O6zD74Z9V1F5Ajj3cBwbfgzXxl/GezW7FfNRVHL8MwZFpXdRq8d8iJqtKqZvQLfKJOXsopCOCPOrioSqtfGfiPLq000immB1szi0dhdDb0G40K4oZqjOksGWLQuLeNXeAwBIRCLAQ2Wb4Y0ab2BBkAyz/IB3fQoPt//V+D0WIpIqG8e7umk0kC/XV1cw9ntl3ytpYSUquDXQ+yFQ7wte19HEvhpk2DmOvKMYH+Lj4wEAV69exdmzZ9G4sbXXuhchEong4uKCnTt34tSpU6hXrx7kcjn++OMPo3q3b9/G+fPn1cUWAHB1dcXhw8qpiM+ePcP69evx8ccf48aNG9i4caNRe5q62dnZuHfvHvbv348xY8bgq6++woEDBxAREWFy7Kjus7R0jMmuW7cOly9fxqRJk3TkTp48iYgIPtsalx5Dhw7Ftm3bMGnSJMyZMwdyuRz//vsvDhw4gIMHD6J3795a8v/5z38wePBg5Ofn48qVK5gzZw7atGmDkydPol69eryuuX37dnWxUcXdu3fxxhtvqK/XrVs3hISEID4+HuPGjdNrJyEhAVKpFEOHDhV0z56enli+fDmGDx+u9Txu376No0eP6t0d1BRMiTtNtm/frpOXWg0+S2Dt2rUYMmQIRo8eja+//hp///03pk+fjqtXr+LQoUO8ff/jjz+watUqDBs2DDNmzIBUKsX+/fsxfvx4nDp1CvHx8Vr32adPH5w9exafffYZKleujHXr1mHQoEEoKCjA4MGDTRsMB8PFxQWVK1e2tRul7ocl7ZtjyxRdITp8ZfnIOUNRiuLfurbsKf41v+vDaPxrLrGyZ4Ja6fTEKU7pxZ6w5XZlOQekYv7N7i2eA1XfAYJaAAcaCrJfkpw67nn8/q/kXwkdynfAkaQjWNlrJXDpTf2C1d/X27vJQ6ZxjBMBgfoaj6sFtF7JxDJUDaoBJGkss/OLLdFnFRKJlN/z6FO4ukq1q2JwG4M+ATCywUChbPEiGIDwSo2Bf6CcuSSS6ZznOA5Tx6QBmzTGy53fboSq5yn1qwGUHw78u4KXHjiRsigsditZthg0U0oAL1++LFnIQTl37hwuXryIrl27AgCWLVvGSy8/P1/nTbwlyM/Px8uXL7FkyRL8/fff2LhxI5o0aVKi3pYtWxAUFIQWLVqoj4lEIjRp0gRNmjRBly5dsGrVKrRo0QKbNm3C3bt3jdrT1G3Tpg2GDRuG9evXY9++ffj777/Rr18/ta+m9lMQqitEh69scbkmTZrYtCh1+/ZtbNy4ER988AEWLFiArl27ol27dhgzZgy2bt2K77/XnSZcrlw5NGnSBM2bN8fYsWOxevVq5Obm6pU1RL169RAbG4tatWohNjYWTZo0wbVryk9zRo8eDUA5U2fYsGE4e/YsLl++rGPj+fPn2L59O3r27Kmxsws/3njjDRw/fhzXr1/Xeh7x8fEIDw9H8+bNBdkzhDkxCwA//fSTOi9VxWu+tvLz8zF16lR07NgRS5YsQaNGjTB69Gh8//33SExMxP79+3n73rx5c/zzzz+YN28eunbtig4dOmDhwoUYP348EhISkJSUpJbdt28fEhMT8f333+Ott95CmzZt8NNPP6FDhw6YOnUqMjIybN5Hxh54+fIlzpw5Y/O/h6XthyXtm2PLFF0hOnxl+cipeq45cu81in/r2rKr+K/wu+PHf6OlQIURRkVKJ/aEF7JLLQe8qgE1Zzl2DnjXBJokCLJfkpw67nnG/8EhB5E8NRmDaxn5wC+sS9GSPnMx5lfnM3yN4FVenu44eFYGiveYcgkQ4Byn7WNJhT2fOnhVbRbO3FL9T8qA0E5azdjVtiTuRcfaJhbthKjBoJqDIAEQ6BaIyl4hOBYBqFZhZknKqWNFx18LQ0UpAbx48cLWLtiM5cuXAwDmzZuHhg0bYuPGjcjKytKSUS1XWbBgAebNm4eYmBjI5XIcOXJEvfztr7/+Qv/+/eHt7Q0/Pz9MnjwZCoUCN27cQOfOneHp6Yno6GgsWLDAqD/5+flIT08X/Md/69at6N27d4mzNho1Um45evv2bUH2VXTs2BFjxozB6dOncfToUaSnp5tclBoxYgS8vb1x69YtdO3aFR4eHoiMjMSUKVN0Cn5z5sxB06ZNERERAV9fX9SvXx/Lly/XO07r1q1D8+bNERQUBG9vb9StW1f9nFu3bo29e/fizp074DgOEokEHh4e6nvQXL538eJFcByntWROxf79+8FxHHbt2qU+dvPmTQwePBhBQUGQy+WoVq0avvvuO0HjkpqaCgAIDQ3Ve57PrBxVEfPOnTuCrq2KPVXj64SEBJQvXx5t27ZVy4wapew/kJBQ/Bc5sH79euTk5GDkyJGCrgsAHTp0QGRkJOLj49U+FBQUYOXKlYiLi9N73zk5Ofjggw8QExMDmUyG8PBwTJgwAc+fP9eSy8vLw7Rp0xASEgJPT0+0adMGp06Zth21ph+qPgN84//UqVN49OgRRowYoTXW/fv3h4eHh94400RTx9fXF1Kp7ieSqvy+e/euWnb79u3w8PBA//7au6GMGDECDx8+xJEjR4zeg6owrq/IuXDhQsTExMDDwwNNmzbVGtfiy0uLf9kbGRkZOHToEDIyMhzaD0vaN8eWKbpCdPjK8pFziDflJUDxb11bdhX/ib84ffwDTpADrsFA7dllJwfco5RFESE6Yrly9osA30qSK4p/o2bUcBwHHxcf5YuulwGvKvwU+dBsfdHPEgMzdlwCAY+K+s/5Glg9IZYjN69Adxx63NBb7LEI+v4PjP0WqSFvaa8caLULCO9agq3CBXI1tHf0W9d3HZ4P+BpPpz7FjZGH8ZorkFpDuTpKb9uMAGMz0wqRmrBygxElkp6ezgCw9PR0veezs7PZoUOH2NmzZ9mFCxes7F3pk5WVxby9vVlsbCxjjLFly5YxAGzFihVacrdv32YAWHh4OGvTpg3bsmULO3ToELt9+zabNWsWA8CqVKnCPv74Y5aYmMimTZvGALCJEyeyqlWrskWLFrHExEQ2YsQIBoBt3bpVkJ8TJkxgxkL63r17jOM4dujQIfWxuLg45u7uriPbu3dvBoD9/fffjDGm9j85OblEXRUHDhxgANjHH3/M+x4SEhIYAHb27Fmt68hkMlatWjX25Zdfsp9//pnNnDmTcRzH5syZo6U/fPhwtnz5cpaYmMgSExPZxx9/zFxdXXXkZsyYwQCwPn36sM2bN7NDhw6xhQsXshkzZjDGGLty5Qpr3rw5CwkJYSdPnlR/qQDAZs2apX5dr149VrduXZ0cGDBgAAsKCmJ5eXlqu97e3qxWrVps1apV7NChQ2zKlClMJBKx2bNn8x6nzMxM5uPjw0JCQtjSpUvZ7du3Dcqq4vKLL77QOn7x4kUGgA0ePJj3dYtz6NAhBoDNmzdP51yLFi1YUFAQe/Xqldbx2NhYFh4ezhQKBe/rHDlyhAFgmzdvZjNmzGBhYWFq/f379zOO49itW7dYt27dWFRUlFqvoKCAderUiUkkEjZjxgx26NAh9uWXXzJ3d3dWr149lpOTo5aNi4tjHMexqVOnquMhPDyceXl5sbi4OGEDo0FJeVmcJUuWMADsypUrOucaNmzImjZtarIvKuLi4phEImEpKSnqY02aNFH/jtPk8uXLDABbunSp+lhUVBTr1q0bY0w5xlOmTGESiYTNnDlTHf+quIuOjmadO3dmO3bsYDt27GC1atVivr6+7Pnz54wxxnJycrRy7OTJk2zXrl3My8uLVatWzeh9ZGdns6tXr7Ls7Gyzx4QgzCU8PFz9PwBBOBsWi/+0C4xd0v2fwlKM3jmaYTYYZoNl59nJ34599Rg7Pc7WXghjLb2F1sQuf/8rCuP71z6M/b1EmK6+55udzFjeS22Zf9cIs3t9EWM3vtM+lpPCWPIpxp5fU9pM/bPo3JNjxmNtLRh7ea/o9eOjymO34rVlLs1jrKCAMcbY8xeP1L8DMLuY7eynRddbC8YybhX9XPy6xijIZ2xt4TXeh9E6igrKKB44e1Fq1apVDABbskSZ0C9evGAeHh6sZcuWWnKqN2EVKlTQeSOuKup89dVXWsfr1q3LALBt27apj+Xl5bHAwEDWp08fQX6W9Ob3m2++Yb6+vuoCCWNFhaW8vDyWl5fHkpOT2f/+9z/GcZzWG1RTilLXrl1jANj48eN534OhohQAtmnTJi3Zrl27sipVqhi0lZ+fz/Ly8tjcuXOZv78/Kyj8ZfTvv/8ysVjM3nzzTaO+FC9waFK8KLVo0SIGgG3ZskWdA2lpaUwul7MpU6ao5Tp16sQiIiJ0cmnixInMxcWFpaWlGfVJk71797KAgAAGZSMC5u/vz/r378927dqlJaeKy88//5zl5eWxnJwc9scff7DY2FgGgO3du5f3NYvzxhtvMLFYzO7fv69zTvUsNWNbVeD46KOPBF1Hsyj177//Mo7j2J49exhjjPXv35+1bt2aMab7zFSF0QULFmjZ27hxIwPAfvzxR8ZYUay+++67WnJr165lAKxalPrkk08YAPbo0SOdcx07dmSVK1c22RfGGDt48CATiUQ691qpUiXWqVMnHfmHDx8yAGz+/PnqY6qiVFZWFuvbty/z9vZmS5cu1foboIq7WrVqaRUgz5w5wwCw9evX6/Xv5cuXrFGjRiw0NJQlJSUZvRcqShH2hF2+KSEIK1FW4v9F7gu2/M/l7PKTy7Z2pYh99cteUYrQoqzEP2/4FB2f/cVYXqblrpmTytjxYh+UFxQoi1aGKF6USj1XWJRari2jUejKVeSqC1Lyj+Xa9ooXpV78U/Rz8euWhMCiFC3fE0BaWpppimfGA8d62vbrzPiS/TTA8uXL4erqioEDB0KhUCAnJwd9+/bFb7/9hps3b+rI9+zZU++SGQA6O1ZVq1YNHMehS5cu6mMSiQQVK1Y0uqxKoVAgJSUFCoWC931s3boVr7/+us4uYC9fvoRUKoVUKkVgYCAmTZqEzp07Y/ny5YLsF4cVzmEtKCgQ7KsK1XhzHIcePXponatdu7bOGB0+fBjt2rWDl5cXxGIxpFIpZs6cidTUVPU2romJicjPz8eECRN4j2NJcm+++SZkMhn27NmjPrZ+/Xrk5uZixAhlf4KcnBz88ssv6N27N9zc3KBQKNRfXbt2RU5OjqDlYl27dsXdu3exfft2vPfee6hRowZ27NiBnj17YuLEiTry06dPh1QqhYuLCxo0aIC7d+9i6dKl6j5pfFGNxdOnT7Fjxw507twZ4eHhOnIDBgyAp6eneoMAQNn7ieM49ZiYQkxMDFq1aoUffvgBT548wc6dOw0uBVQ14S++e17//v3h7u6OX375BQBw5IhyW9k333xT6x779Olj9k6bquV7QuOf4zi9cVfSkjZjsfrnn39iwIABaNKkCT799FMdWWO2s7KytGympqaibdu2OHPmDI4fP25w44du3bpBLC7ad7h27doA9C8bzc/PxxtvvIFr165h3759iIri15DSmqSmpmLVqlXqJbSO6ocl7ZtjyxRdITp8ZfnIqXJd9d0Rofi3ri2Kf8vjIfPAyHojUSOohkn6lAPWtVVWcqCsxL+5aI2DTy3tnk3mIvcDmq/VPsZxyh0GDfihg1+Dwh+KraP0K1qSKBPLsLHfRvSv3h9nxhTvp8Wp7QPAs2fPlYdL2ABBL32eChKn3fcEYHJ/j0Y/WNYRK3Lr1i38+uuv6Nu3LxhjeP78OTIzM9G3b1+sXLkS8fHx+PTTT7V0DPX5AQA/P+1GcDKZDG5ubjo7mshkshLXN2u+0SuJx48f48SJE5g2bZrOOVdXV/z6q3KLTLlcjqioKLi5uZndQ0z1pjMsLEyQr8URiUR6x0gulyMnJ0f9+syZM+jYsSNatWqFb775BhUrVoSbmxt27NiBTz75BNnZ2QCA5GTljhCqRuV8fTMm5+fnh1atWmHfvn34z3/+AwBYsWIFGjVqhBo1lP/4pKamQqFQYPHixVi8eLFeOykpKbx8UeHq6opevXqhV69eAJQ9grp06YLvvvsO48ePV18bAN555x0MGTIEIpEIPj4+iImJMTmnxWKxulG6qsF5cdzc3DBw4EAkJCTg8ePHCAgIwJo1a9CqVStUqFDBpOuqGDFiBEaPHo1vvvkGrq6u6Nevn1651NRUSCQSnYbqHMchJCRE/UdH9T0kJETrHiUSCfz9df8Yliaq66WmpsLf318r7tLS0nR+h+hDX6yeP38eHTp0QKVKlbBv3z7I5XIoFAq1rL+/v95/tlQfRhS/7t9//41nz55hzJgxqFmzJi5evGj0flTI5cqtkFX5qMm4ceNw4MAB7N27F3Xr1i3xPm2BSCSCu7u7oN0Uy6IflrRvji1TdIXo8JW1l+dua+xlHCj+LaND8S8cexkLygHL6FAOCMNexkHlB0zcS2xAjQEYUGOAUfvK74X/T3e/KvwiLsI2c6KilAB8fX1t7YLViY+PB2MMW7ZswZYtW3TOr1y5EvPmzdN6E2iN5rwSiUTQ89i+fTvc3d3RoUMHnXMikQgNGzbUOW7u81Y1927btq3JtiQSCWQy3W0+9bFhwwZIpVLs3btXq4C1Y8cOLTlVgeL+/fuIjIzk5Ruf8X799deRmJiIU6dOwcXFBWfPnsUPPxQVZH19fSEWizF06FBMmDBBr42YmBi9x/lSrlw5jB07FpMmTcKVK1e0ilIRERF6n7NQVGOxYsUKBAcH68z+02TUqFH46aefsGrVKlSuXBlPnz7FV199ZbYP/fv3x9tvv40FCxZgzJgxcHV11Svn7+8PhUKB5ORkrcIUYwyPHz9GbGysWg5QFm/Dw8PV96hQKMz+lFD1h43vjKtatWoBAC5duoTq1aur406hUOD69esYNGiQUX19sXr+/Hm0b98eUVFROHToELy9vXVka9WqhfXr10OhUGj5eunSJQBA48aNtY43bdoU/fv3Vze1HzduHK/7M8Ts2bOxbNkyJCQkoGPHjmbZKk18fX3Rt29fW7tR6n5Y0r45tkzRFaLDV5aPXNE/sY77poXi37q2KP7tj1KJvcBmgFdV2/tRSvadIQco/m3kxzrw7y4v0D4AePsKKyyZg2NHjoVx9CmJxcnPz8fKlStRoUIFHDlyBEeOHMHhw4fxyy+/4PDhw5gyZQoePXpU4hbtpQFjDAUFBbx3Odm6dSu6d++unqVgafvFSUxMxLJly9CsWTM0b97cZFtM2feNl6xqlzyRSKS+XnZ2NlavXq0l17FjR4jFYvzwww9G71Mul6tnc/AZj6ZNmyIoKAg7d+5EQkICXFxctAoIbm5uaNOmDc6fP4/atWujYcOGOl98Z+W8ePFC/44QAK5duwZAOUOtNGCM4cyZM/jrr78QFxdntNjSuHFj1KxZEwkJCUhISIC3t7dF/pi5uLhgxowZ6NGjB8aPN7w0t127dgCANWvWaB3funUrXr58qT7funVrAMDatcppw6rnvXHjRrOWsKpsaX4vicaNGyM0NBQrVqzQirstW7YgMzMTffr0KfF6mrF64cIFtG/fHhEREUhMTNQqWGnK9u7dG5mZmdi6dauWvZUrVyIsLAyxsbE69xAXF4cNGzYgISEB//3vf03aYRNQLpGeM2cO5s6dq7PU0t4oKChAbm6uzf8elrYflrRvji1TdIXo8JW1l+dua+xlHCj+LaND8S+cUhmLhouByvo/rLSqH6Vkn3LAcbCXcVD5YRAzC1UFBQXI7fUMBS4hJQtbCCpKCUDVk8dZ2L9/Px4+fIixY8eidevWaN26NZo3b46qVauiefPmeP/99yGXy7F8+XKr+5aXl4fHjx/j1q1b6llc//zzDwCoX587dw6AchnQsWPHBBUDVPbz8vKMyhUUFODUqVM4deoUjh07htWrV2Pw4MHo0qULqlSpgk2bNvG2ZcgPfct89NGtWzdkZmZi0KBB2LRpE9auXYuWLVvqFOKio6Px4YcfYvXq1ejXrx/i4+Nx8OBBLF68GLNmzVLL1apVC0+fPsUPP/yA33//HQcPHjR6D2KxGF27dsXRo0excuVK9OnTRz0jRcX//vc/3L17Fy1btsSKFStw9OhR7N69G19//TXatm3Le1xu3LiBqKgoTJgwAZs2bcJvv/2GXbt24a233sLSpUvRunVrNGvWjLc9IeTl5eHbb78FAPUsGWOMHDkS169fx+7duzFo0CCDs5qE+qB6znXq1DEo16FDB3Tq1AnTp0/HnDlz8PPPP2PhwoUYMWIE6tWrh6FDhwJQ9nYbMmQIvvnmG0yfPh379+/H3LlzMW3aNHh5Cd/W9c6dO+o8vHXrFgBg48aNWnmpkpNIJFrjKBaLsWDBAhw4cABjxozBtm3bsGTJEowfPx4dOnRA586dSxwbVb7duHED7du3BwB88sknuHnzpjpfT506hYcPH6plu3Tpgg4dOmD8+PH46aefcOTIEYwdOxYHDhzA/PnzkZycrDf++/Xrhx07duDw4cP44IMPBOf5yZMnMW7cODRv3hwdOnTQ8k9IjzVr8eTJE3z22Wd48uSJQ/thSfvm2DJFV4gOX1k+cs7QU4Ti37q2KP7tD8oB69oqKzlA8W8bP0rV/hf/s+59ltw6nVDtvvf48WO95x11971evXoxmUzGnj59qj6Wn5/PsrKyWH5+PmOMsYEDBzKJRMIeP36s3m3qiy++0LGlb/c6xgzvYNeqVStWo0YNg76p/Fi+fLl697XiX6odw5YtW8bc3NzYy5cvdewYun7x+zS0+57m9VxdXVm5cuVYjx49WHx8PMvNzdVryxjFd9/Lz89nQ4YM0eujyidN4uPjWZUqVZhcLmfly5dnn376qXqMbt++rSW7atUqFhsby1xcXJiHhwerV68eS0hIUJ9PS0tj/fr1Yz4+PozjOAZAfQ8otvseY4xduHCBbd26VT0eiYmJeu/x9u3bbOTIkSw8PJxJpVIWGBjImjVrxubN478F8rNnz9i8efNY27ZtWXh4OJPJZMzd3Z3VrVuXzZs3j2VlZWldz1BcmkJmZibz9vZmr732Gi/55ORkJpPJGAB25swZk66pufseY4ZjSt+OidnZ2Wz69OksKiqKSaVSFhoaysaPH8+ePXumJZebm8umTJnCgoKCmIuLC2vUqBE7ceIEi4qKErz7niqOjeUlY0XPRp/9devWsdq1azOZTMZCQkLY22+/zV68eFHitTXHxpgfANjy5cu1xvHFixfs7bffZiEhIUwmk7HatWuz9evX64y3avc9TX766Sfm5ubGmjdvzrKysozGnWb+lOSjMWyx+15WVha7fPmyVo7ZgtL2w5L2zbFliq4QHb6yfOTCwsIYABYWFsbb17IGxb91bVH82x+UA9a1VVZywOHi38DucvYW/2wtGMu8o31yLRi7+VPR61fGd73TIjuZsbUo+T757L7HmKDd9zjGSmEhooORkZEBb29vpKen6501kJOTg99++w2+vr6QSqVGZy4Q1qdr165wdXXVWZZDWJaLFy8iLy+PcoBwSmwR/zk5Obh9+zZiYmJ0NkIgCGsTERGBBw8eIDw8HPfv37e1OwRhVSj+CWfG4eKfMeXOd/bOOg54/Q7gXq7o2P3dgF99wE13Z/ASefUM2OIHDC6hPLSOK1kGADeHA3IAfAaDdRQVtHxPAFlZWbZ2webk5+cjKyvL5N4ptvBj3759ggtSlrxPc2yZoitEh6+svTx3e8AexqK0faD4N98PRyUrKwsXLlyw+d/D0vbDkvbNsWWKrhAdvrJ85JjA/nFlEYp/69qi+Lc/KAesa6us5IDDxb+BgpS9xb9eInqYVpACAJkv0O+5Te6TilICyMjIsLULNic/Px/Pnz+3+Zuz0vbDkvbz8/ORlpaG3NxcKBQKg1+W8kOIDl9Zaz73/Px8o+NUGj4IuaYlx4IxZvS6CoVC7x94W8V/Sb7q6yVgjq/GdA35kJubi5SUFF69newx/u2d9PR07Ny5E+np6Q7thyXtm2PLFF0hOnxl+cg53JsSPVD8W9cWxb/9QTlgXVtlJQco/m3jR6kg8y75PltbfpMzWr7HA9XyvefPn+s0bgaca/meZrhwNpzWWNp+WNI+YwyzZ8/G3Llzjcrdvn0b0dHRZvshRIevLB85Sy1fio6Oxp07dwyeb9WqFY4ePWqyfX20bt0ax44dM3g+KioKSUlJACwbGytWrMCIESOMyhw5ckS9O54KW8V/SdeKi4vDihUreNkyx4+kpCTExMQY1Z05cybmzJljkn1T5Jxl+R4r3BGU4zib/w0oTT8sad8cW6boCtHhK8tHzuGWb+iB4t+6tij+7Q/KAevaKis5QPFvGz9EG8TA60mAe1Sp2Df3Pvtu6ott57fxWr5neC9zQgdbBp+9YC9jUNp+WNI+x3F466230KNHD6NyYWFhFvFDiA5fWWs+9927dxvd5tTT09Pi11y6dClevHhh8LzmDoaWHIsePXrg7NmzRmWqVKmic8xW8V+SrwEBAbxtmeNHWFhYib7oyye+9k2VcwZs/Y+YtfywpH1zbJmiK0SHr6y9PHdbYy/jQPFvGR2Kf+HYy1hQDlhGh3JAGPYyDmUl/pd2X4pgcTB+wA8lylJRSgBpaWkmbY/uSCgUCqSnp8Pb2xsSie3Cp7T9sKR9hUIBuVyOunXrCrZlih9CdPjKWvO516pVq1Tt60Nf4ccQlhwLf39/+Pv7C9azVfw3bNjQYrbM0ZXJZAZ90dSxlG/28nvPHkhLS8PBgwfRqVMn+Pn5OawflrRvji1TdIXo8JXlI+cMW4JT/FvXFsW//UE5YF1bZSUHKP5t48egUrZv7n0GuAXgsw6f8SpKUU8pgiAIgiAIgiAIgiCIsoSDdGKinlI8UPWUMrQW0pl6ShGEIWzRU4cg7AVn6SlFEIZwlp4iBKEPin/CmaH4txHrOKDnbcAj2taeGKSkOooK516HIBCq31Gjc2vbKkuNzp0FexgLin/L6FD8C8femnxSk1vzdCzZ6NkZsJdxoPi3jA7Fv3DsZSwoByyjQzkgDHsZB3Wj81K2b837pOV7Anjy5ImtXbA5eXl5ePToEa/t1suyH5a0b44tU3SF6PCVtZfnbg/Yw1hQ/FtGh+JfOI8fP8bHH3+Mx48fO7QflrRvji1TdIXo8JXlI+cMPUUo/q1ri+Lf/qAcsK6tspIDFP+28aO07VvzPqkoJQBnb3IOAGKxGD4+PhCLxQ7thyXtm2PLFF0hOnxl7eW52wP2MBYU/5bRofgXjre3N15//XVejeTLsh+WtG+OLVN0hejwleUjp/o01ZE/Raf4t64tin/7g3LAurbKSg5Q/NvGjwKvWoDU8ruS2+I+qacUD6inFEGUDPWUIpwZ6ilFODvUU4RwZij+CWeG4p8wBN+eUjRTSgDZ2dm2dsGmLFq0CBzHoUaNGjafnllQUIDs7Gzs2rULw4YNQ61atSCVSnlV6OvXr4933nkHADB8+HD1elmO4yCXy1GlShXMnDkTz549U9/n7NmzwXEcUlJS1HaK67q7uyM6Oho9e/ZEQkICcnNztXwVOmamjrfm9R4+fIjZs2fjwoULOnKqe+Ljm6n3wIdr165h6NChKF++PFxcXBAQEID69etj4sSJyMjIUMsZelazZs1CTk4O7+utWLFCy07xr88++wwAUK9ePYSHhyM/P19LX3MsmjdvjoCAALx69YrXtVu3bg2O41C+fHm9Pep+/fVXtR8rVqwwaEfo81Ddc1JSEi/5goICPH36FFOnTkXHjh0RGBgIjuMwe/ZsXvoqnj59iri4OAQEBMDNzQ1NmzbFL7/8wltfdZ9btmzBoEGDULFiRbi6uiI6Ohpvvvkmbt68qVdn7969aNq0Kdzc3BAQEIDhw4fj6dOnWnKqMTl+/LjRcRw+fDg8PDxKLf7LGtnZ2bhy5YrN/x6Wth+WtG+OLVN0hejwleUjp/qd5sifdVL8W9cWxb/9QTlgXVtlJQco/h3LD1vcJxWlBJCenm5rF2xKfHw8AODq1av4/fffbeqLQqHAs2fPsH37dpw6dQrVq1fnNTvh9u3bOH/+PPr27as+5urqipMnT+LkyZPYsWMHGjdujI8//hhxcXFQKBRG7Wnq7tmzB3PnzoW7uzvGjBmDBg0a4P79+2pfS7JVHFPHW/N6Dx8+xJw5c/QWpUaPHo1ff/2Vl2+m3kNJnD9/Hg0aNMDVq1cxc+ZMHDhwAEuWLEG3bt1w8OBBpKWlacnre1Zz585FXFwc72t269ZNbUPzq0OHDgCA3r17AwBGjRqFhw8f4uDBg1r6qrFQPZehQ4dCJpPxvr6npydu376Nw4cP65yLj4/ntUy4tJ6Hpv3bt2/jp59+Qm5uLnr16iXYRm5uLtq1a4fDhw9j9uzZ2LJlC4KDg9G5c2ccO3aMtx/Pnj3DggULkJWVhY8++ggHDhzAvHnzcP78edSvXx9XrlzR0jl8+DB69eqFwMBA7Ny5E//73//w888/o127dupCsSYvXrzgNY6lOd5liefPn2PLli14/vy5Q/thSfvm2DJFV4gOX1k+cs7wpoTi37q2KP7tD8oB69oqKzlA8e9YftjkPhlRIunp6QwAe/bsmd7z2dnZ7NChQ+zs2bPswoUL1nXOSpw9e5YBYN26dWMA2OjRo3npKRQKlpOTY3F/CgoKWH5+PlMoFOpjEyZMYCWF9IIFC1hQUBDLz89njDEWFxfH3N3ddeRatmzJALB79+4xxhibNWsWA8CSk5PVMoZ0GWPs4MGDTCqVssaNG6t9LSgo4H1/po43Y0zreio7CQkJJcrytWmICxcuCM6BYcOGMXd3d5aRkWHwuipKelb379/nfd3iZGZmMg8PD9aiRQv1sbS0NObi4sL69u2r41N+fj6bNm0aA8D++usv3tdp1aoVq1GjBmvSpAkbPHiw1rmMjAzm5ubGxowZY/SZafrAN6YSEhIYAHb79m1e8gUFBUyhUKjzJDk5mQFgs2bN4qXPGGPfffcdA8BOnDih9jUvL49Vr16dNWrUiLcf+fn57PHjxzrnHjx4wKRSKRs1apTW8djYWFa9enX26tUr9bETJ04wAOz7779XH1ONyenTp42OoyruSiP+zSU7O5tdvXqVZWdnW+2a+fn5LCcnRx0btqK0/bCkfXNsmaIrRIevLB+58PBwBoCFh4fz9rWsQfFvXVsU//YH5YB1bZWVHKD4dyw/LGlfVUdJT083KkczpQQgEjnvcC1fvhwA8Nlnn6FZs2bYuHEjsrKytGSSkpLAcRwWLFiAefPmISYmBnK5HEeOHFEvFfvrr7/Qv39/eHt7w8/PD5MnT4ZCocCNGzfQuXNneHp6Ijo6GgsWLDDqD8dxEIlEghsPb926Fb179y7xWTZp0gQAcPfuXUH2VXTs2BFjxozB6dOn8dtvv0EkEglq/sdnvAHgwYMHGDt2LCIjIyGTyRAWFob+/fsjOTkZx44dQ2xsLABgxIgR6mVhqiVYs2fPhkgkUvvWq1cvREVF6V2i1KRJEzRs2FB9D4wxfP/996hbty5cXV3h6+uL9957T/A68tTUVHh5ecHDw0PveT5jpnpWd+7cEXRtTTZu3IjMzEyMHj1afczX1xe9e/fG7t27kZqaquUTYwxr1qxBbGwsatWqJfh6I0eOxLZt27Q+gdiwYQMAYODAgXp1jh8/jnbt2sHT0xPu7u5o0aIF9u3bpyN36tQpNG/eHC4uLggLC8MHH3wgeNc4juMgFovN+p23fft2VKlSBc2aNVPHmEQiwZAhQ3DmzBk8ePCAlx8ikQjBwcE658LCwhAREYF79+6pjz148ABnz57F0KFDIZVK1cebNWuGypUrY/v27Tp2NHPz0aNHaNCgASpVqqSzNPDff/9Ft27d4OHhgcjISEyZMkVr5tWMGTMQGxuLunXr6iwJFbrs0Z4RiUSQy+U2/3tY2n5Y0r45tkzRFaLDV9ZenrutsZdxoPi3jA7Fv3DsZSwoByyjQzkgDHsZh7IU/7yvabUrOQDPnj2ztQs2ITs7G+vXr0dsbCyqVq2KN954Ay9evMDmzZv1yi9atAiHDx/Gl19+if3796Nq1arqcwMGDECdOnWwdetWjBkzBl9//TXeffdd9OrVC926dcP27dvRtm1bTJ8+Hdu2bTPokynLl+7fv48zZ85oLd0zhOoNqa+vL2/7xenZsycA4OjRo4J85TveDx48QGxsLLZv347Jkydj//79+Oabb+Dp6YmkpCTUrl0bCQkJAID//ve/6mVqmoUXoGhZ0siRI3H37l2dZWXXr1/HmTNn8MYbb6jv4a233sKkSZPQvn177NixA99//z3++ecfjBo1SquAUxJNmzbFo0eP8Oabb+LYsWMmrV2+desWACAwMFCwrorly5fDy8sL/fv31zo+atQovHr1CmvWrFEfUygU2Lp1Kx4+fIhRo0aZdL2BAwdCLBZj/fr1Wj7069dP7/K9Y8eOoW3btkhPT8fy5cuxZs0auLi4oEePHti4caNa7urVq2jXrh2eP3+OFStWYMmSJTh//jzmzZsnyD9LLA+8fPkyateurWOrdu3aAKCz7E6oH//++y/u3LmDGjVqaF0TAMqXL6+jU7t2bfV5TTIyMqBQKHD58mU0btwYcrkcJ0+eRKVKldQyeXl56NatG9q0aYOdO3di5MiR+Prrr/H555+rZcaOHYv4+HisWrVKnWtDhgwBAFSvXr3Eey0rPHv2DFu3brX538PS9sOS9s2xZYquEB2+snzknGFLcIp/69qi+Lc/KAesa6us5ADFv2P5YYv7lFjtSg4AM2GdbMMfG+Jx5uNS8EY4IR4hODf2nGC9LVu2ID09Xf0GvGfPnvjoo4+wfPlyvb18XFxccPDgQa2ZCirGjh2LyZMnAwDat2+PQ4cO4dtvv8W2bdvUvXxat26NPXv2YO3atejTp49Bv4o3oC6JrVu3wsfHB23atNE5p3oD+/z5c6xbtw47d+5EvXr1tN6YCiUqKgoA8PDhQ0G+8h3vmTNnIiUlBRcvXkS1atXUx/v06YPnz5/Dy8sLNWvWBABUqFBBPaOoOCrfunbtiuDgYCQkJKB9+/bq8wkJCZDJZOrnc+rUKfz000/46quv1M8SAPz9/dGzZ0+sXr0abdu25XWv7733Hs6dO4f169dj/fr1EIvFqF27Nrp27Yp33nlHb6Gp+LPasWMHYmNjTX5W169fx++//4633noLbm5uWufatm2LmJgYxMfHq5vjA8Dq1avh5uaGQYMGmXRNT09P9OvXD/Hx8Rg/fjyuXr2K06dPaxU5NHn//ffh6+uLo0ePwsPDAwqFAs2bN0e7du3w3nvvYcCAAeA4DnPnzgVjDIcPH1bPLurWrZs6DoQgNL+Kk5qaCj8/Px1bqmN8i5f6/FAoFBg1ahQ8PDzw7rvval0TgN7Cnp+fn95rFhQU4JdffsGAAQPQsWNHrF69Wmcnu1evXmHatGmIi4uDRCJBu3btcO7cOaxbtw4zZ84EAERGRiIkJES9+97mzZuxdu1afPjhhxgwYACvey0LFBQU4OXLlzb/x7O0/bCkfXNsmaIrRIevrL08d1tjL+NA8W8ZHYp/4djLWFAOWEaHckAY9jIOZSn+eWP2QkEnoKS1kMZ6SoV/Fc4wG3bxFf6Vaet8W7VqxVxdXdnz58/Vx0aMGMEAsL///lt97Pbt2wwAe/fdd3VsqHoy3bhxQ+v4oEGDGMdxOj1RmjZtyho0aCDIz5J6SrVs2ZINHz5c61hcXBwDoPXFcRzr2rWrVo8ioT2lGGPs6tWrDAAbP368oPvgO96hoaGsY8eORm0Z6ymluidNpkyZwlxcXNTXVigULDQ0lPXv318t89FHHzGO49iTJ09YXl6e+uvcuXOsVq1arGbNmoLulzHlWH399dfszTffZBEREQwA8/f3Z9evX1fL8H1WQnnvvfcYAHb27Fm95+fOncsAsHPnzjHGGEtJSWEymYwNHTpU8LVUPaUYY+zYsWPqnlSTJ09mFSpU0NsHLDMzk3Ecx/7v//5Px97nn3/OALBr164xxhgLCgpi3bt315FTPWu+PaWKY0pPKalUysaNG6dz/Pfff2cA2Pr1603ypaCggA0bNoyJxWK2Y8cOrXNr165lANipU6d09MaOHcvkcrn6taqn1MSJE5lUKmWTJ0/W2zMqLi5O7++o999/n7m4uKhfa/aUOnr0KJPL5SbFiBBs0VOKIAzhLD1FCEIfFP+EM0PxTxiCb08pmilVyoR4hNjaBTWm+HLr1i38+uuv6Nu3Lxhj6h44/fr1Q0JCAuLj4/Hpp59q6YSGhhq0p5oloUImk8HNzU1nZoJMJkNGRoZgfw3x+PFjnDhxAtOmTdM55+rqil9//RUAIJfLERUVxWsHtJJQ9TgKCwvjrSNkvJOTkxEREWG2n5qMHDkSX331FTZs2IC33noLBw8exKNHjzBixAi1zJMnT8AY09vnB4BJPlWrVk0924sxhm+++QaTJ0/GjBkzsGnTJrWcpZ9VXl4eVq1ahTp16qBhw4Z6ZUaMGIHZs2cjISEBDRo0wNq1a/Hq1SuTl+6peO2111CpUiUsXboUmzZtwqRJk/T20Hr27BkYY3rzShVbqhlAqampCAnRzXN9x0obf39/vTOTVDsqFv9dwAfGGEaPHo01a9Zg5cqVeP3113WuCeifhZWWlqb3mhs2bICrqytGjx5tsIeZvt9RcrkcOTk5OrK3bt3C6NGj0bJlS3VvOIIgCIIgCIIg9EM9pQTw+LHwZXjnxp7D/cn37eLLlKV78fHxYIxhy5Yt8PX1VX9169YNALBy5Uqd5TVCGnqbyqtXr/Dw4UO8evWKl/z27dvh7u6ODh066JwTiURo2LAhGjZsiFq1asHLy0uwfX3s2rULANC8eXPetoSMd2BgoN7G4kJ915StXr06GjVqpO5FlZCQgLCwMLRu3VotFxAQAI7jcPz4cZw9e1b9tXbtWqxcuRJff/01r+saguM4vPvuu/Dx8dHpAaTvWZnDnj178PTpU50+W5pERESgY8eOWLduHXJzcxEfH4/o6GiDyyGFMGLECPzwww9IS0vTuxQWUPY1E4lEePTokfqY6hmrGvEHBAQAUBZl9P2eEvq7yxLxX6tWLVy6dEnH1qVLlwCA15JCTV1VQSohIQHLli1T92vSRGXzxIkTOr5funRJ7zUXLVqEKlWqoFWrVrhw4YJBX/iMx5MnTzBhwgSUK1cOW7du1buEuazz6NEjzJs3TyseHdEPS9o3x5YpukJ0+MrykXOGniIU/9a1RfFvf1AOWNdWWckBin/H8sMW90lFKQF4enra2gWrkp+fj5UrV6JChQo4cuQIjhw5gp9//hn79u3Dzz//jClTpuDRo0fYv3+/1X0Ti8Xw9vbmvfve1q1b0b17d8jl8lKxX5zExEQsW7YMzZo1w2uvvcbLltDx7tKlC44cOYIbN24Y9F11v8YaiBf3bcSIETh9+jSOHz+O3bt3Iy4uDjKZTC3XvXt3MMbw4MEDdYGoYcOGqFGjBqpXry6ot5OhX3YPHz5ERkaGoFlmprB8+XK4uLjgzTffNCo3atQoPHv2DDNnzsTFixfVvYXMJS4uDj169MDUqVMRHh6uV8bd3R2NGzfGtm3b1M9RLBbD09MTGzZsQEREBCpXrgwAaNOmDX755Rc8efJErZ+fn6/VDJ0P5sY/APTu3RvXr1/HuXPn1LYUCgXWrFmDxo0b83q2Kj9EIhHGjBmDhIQELF26VGvmnibh4eGIjY3Fjh07tI6fOnUKN27c0NujLiIiAocOHUK1atXQpk0bnDp1Sq/tksbjxYsXeOedd8BxHPbt22eR2Zb2iJeXFzp27Gjz+yttPyxp3xxbpugK0eEry0dO9YGUNT6YshUU/9a1RfFvf1AOWNdWWckBin/H8sMm91mqiwgdBHN6SpVldu/ezQCwzz//XO/55ORkJpfLWa9evRhjRT2lvvjiCx1ZfT2ZGDPcl0mz944xkpKS2ObNm9nmzZtZ586dGQD1a1WPoJSUFCaRSNiWLVt09EvqC2XM/7i4OObq6spOnjzJTp48yY4ePcpWrVrFBg0axMRiMatZs6agXkdCx/v+/fssNDSUBQUFsW+++Yb98ssvbOvWrWzMmDHqHkMvX75krq6urHnz5uzIkSPs7Nmz7MGDB1r3VJznz58zV1dXdW+n4n3AGFP253Fzc2NTp05lu3fvZocPH2bz589nffv2ZR9++CHve+7evTtr0aIF+/rrr1liYiI7fPgw+/7771mlSpWYRCJhhw4dUsvyfVZ8efDgAROLxWzw4MElyubm5rKAgADGcRwTi8Um97DiE9f6+oAdPXqUSaVS1rhxY7Z582a2c+dO1qlTJ8ZxHNuwYYNa7tKlS8zV1ZVVr16dbdiwge3atYt16tSJRUZGmtRTat++fWzz5s0sPj6eAWD9+/dX59fLly/VciNHjmRisZglJSWpj+Xk5LAaNWqwyMhItnbtWpaYmMh69+7NJBIJO3r0qCA/Jk6cyACwkSNHqvNN9fXnn39qyR45coRJJBLWu3dvlpiYyNauXcsiIyNZzZo1WU5OjlpO1VNK9XsiKyuLde7cmXl4eLDDhw+r5QzFXfH8adGiBROJRGzWrFk6Pt67d0/Q/fKFekoR9gT1FCGcGYp/wpmh+CcMwbenFBWleKAazCdPnug976hFqV69ejGZTMaePn2qPpafn8+ys7NZfn4+Y4yxgQMHMolEwh4/fmzVopTKj+XLl+s0v1Z9xcXFMcYYW7ZsGXNzc9N6E13S9Yvfp6GilOb1XF1dWbly5ViPHj1YfHw8y83N1WvLEELHmzHG7t27x0aOHMlCQkKYVCplYWFhrH///uzOnTtqnfXr17OqVasyqVSq1axadU/6fBs8eDADwJo3b27wHuLj41njxo2Zu7s7c3V1ZZGRkaxbt25s3bp1Ru9Tk4MHD7KRI0ey6tWrM29vbyaRSFhoaCjr06cPO3nypJaspYtSn3zyCQOgVYAwxrvvvssAsC5duvB6nvowtSjFGGO//fYba9u2rXq8GzVqxHbu3Kmjf+LECdakSRMml8tZSEgImzp1Kvvxxx8FFaVUzzsqKspgfmnaUuVCcfuPHz9mQ4cOZX5+fszFxYU1adKEJSYm8vKBrx9RUVE6Onv27GFNmjRhLi4uzM/Pjw0bNkzn97eqKHX8+HH1s8zNzWV9+/ZlLi4ubO/evep7c3d313nmxYtSoaGhBn0U0iBeCLYoSmVnZ7MbN27YvBBW2n5Y0r45tkzRFaLDV5aPXFhYGAPAwsLCePta1qD4t64tin/7g3LAurbKSg5Q/DuWH5a0T0UpC6IaTH0zRhhz3KKUPnJzc9mDBw/UBZey4EeXLl1Ynz59Ss1+adoyRVeIDl9ZPnKau485MvaQA6XtA8W/cDlbxL8tilIPHz5ks2fPZg8fPrTaNW3hhyXtm2PLFF0hOnxl+cipCrOhoaG8fS1rUPxb1xbFv/1BOWBdW2UlByj+HcsPS9rnW5TiGGPMrPV/NuTPP//E9OnTcfbsWYjFYvTt2xcLFy6Eh4eHWubu3buYMGECDh8+DFdXVwwePBhffvklZDIZ7+tkZGTA29sbaWlp8PX11Tmfk5OD3377Db6+vpBKpahTp45F7s8eYYyhoKAAIpHIpuuGS9sPS9o3x5YpukJ0+Mrykbt48SLy8vIoBxzAB4p/4XK2iP+cnBzcvn0bMTExOrsDlhb5+fnIysqCm5ubWT3H7N0PS9o3x5YpukJ0+MrykYuIiMCDBw8QHh6udxMOR4Di37q2KP7tD8oB69oqKzlA8e9YfljSvqqOkp6ebrRHlfmdem3Ew4cP0b59e7zxxhv49ttvkZGRgUmTJmH48OHYsmULAOWAduvWDYGBgTh+/DhSU1MRFxcHxhgWL14s+Jq2DD57geM4uxiH0vbDkvY5jgPHcTq7FBZHX+NsU/wQosNXVqgfjLES71csFlu0oGKta+obi/z8fBir71s6Xs2xV1BQUOLuKBKJxKLxb8gWX18sdT1TZe3l9549oGqyb2tK2w9L2jfHlim6QnT4ytrLc7c19jIOFP+W0aH4F469jAXlgGV0KAeEYS/jUJbiny9ldve9PXv2QCqV4rvvvkOVKlUQGxuL7777Dlu3bsWtW7cAAIcOHcLVq1exZs0a1KtXD+3bt8dXX32Fn376CRkZGYKv+fz5cwvfRdlDoVDg+fPnUCgUDu2HJe0rFAp8+OGHkEqlRr+SkpIs4ocQHb6yQv1YuXJlifd77NgxXrb4cuzYsRKvuXLlSrOvo28sKlSoYPS67dq1M/u6JfnAl7lz55Y4Trdu3bJo/BuyNXLkyBJ9KYvx78g8f/4cu3btsvnfw9L2w5L2zbFliq4QHb6yfORUhfkyPAG/RCj+rWuL4t/+oBywrq2ykgMU/47lhy3us8zOlMrNzYVMJoNIVFRXc3V1BQAcP34cFStWxMmTJ1GzZk2trcc7deqE3Nxc/PHHH2jTpo1B27m5uerXqgJWSbMwnAHGGPLy8mz+S6e0/bCkfcYY3nzzTfTq1cvorA/NODXHDyE6fGWF+tGjRw+cPXvWqEyVKlV42eJLgwYNSrxmTEyM2dfRNxa7d+/W+p1RHEt/2mBOfI4dOxbdu3c3KhMaGoqsrCyLxb8hX2fPno2JEyca1FUoFGUy/h0ZhUKB5ORkmxfoStsPS9o3x5YpukJ0+MrykXOGNyUU/9a1RfFvf1AOWNdWWckBin/H8sMW91lme0pduXIFdevWxfz58/HOO+/g5cuXGD16NLZt24b58+fjgw8+wNixY5GUlIRDhw5p6crlcqxYsQKDBg3Sa3v27NmYM2eOzvFly5bBzc1N57hUKoWXlxf8/PwgkUgQGRlpmZskiDLEvXv3oFAoKAcIp8QW8f/q1Ss8ePAASUlJyMvLs8o1CcIQEydORFpaGvz8/PDtt9/a2h2CsCoU/4QzQ/FPGCIrKwujR48uez2lDBWENDl79iwaNmyIlStXYvLkyfjggw8gFovx9ttvIzg4WKv3h77+MYwxo31lPvjgA0yePFn9OiMjA5GRkejfv7/ewVQ1Olddz9/fv8T7JAhHQ9XYkHKAcEZsEf85OTl4/vw5unfvbrVG5wRhiKlTpwJQzlo39KEfQTgqFP+EM0PxTxgiIyMDo0ePLlHO7npKTZw4EdeuXTP6VbNmTQDA4MGD8fjxYzx48ACpqamYPXs2kpOT1Ut0QkJC8PjxYy37z549Q15eHoKDgw36IJfL4eXlpfUFAE+ePDGoU0YnnAkmLy8Pjx49svmn8qXthyXtm2PLFF0hOnxl7eW52wP2MBYU/5bRKevxb4u/O48fP8bnn3+u87fV0fywpH1zbJmiK0SHrywfOdWmBSVtXlCWofi3ri2Kf/uDcsC6tspKDlD8O5YftrhPu5spFRAQgICAAEE6qgJTfHw8XFxc0KFDBwBA06ZN8cknn+DRo0cIDQ0FoGx+LpfL0aBBA8G+ubu76z0ukUicpt+USCSCp6enVi8vR/TDkvbNsWWKrhAdvrL28tztAXsYC4p/y+iU9fhXFcmsuTOgh4cHWrRoAQ8PD6td0xZ+WNK+ObZM0RWiw1eWj5xqBrold1W1Nyj+rWuL4t/+oBywrq2ykgMU/47lhy3us8z2lAKAb7/9Fs2aNYOHhwcSExMxdepUfPbZZ3j77bcBKBuT161bF8HBwfjiiy+QlpaG4cOHo1evXli8eDHv62RkZMDb29vgWkjGGNatW4fKlStDJpOhTp06FrtHgigrXLx4EXl5eZBKpZQDhNNh7fhnjOH+/fvIy8tD+fLlS/16BFESERERePDgAcLDw9XLWQnCWaD4J5wZin/CECXVUVTY3UwpIZw5cwazZs1CZmYmqlatiqVLl2Lo0KHq82KxGHv37sX//d//oXnz5nB1dcXgwYPx5ZdfmnQ9Q7trcRyHbdu2Ydy4cQgICEB2drbDVooLCgrUzXxtOWugtP2wpH1zbJmiK0SHrywfOc2dN3Jycnj5Whaxhxyg+LeMTlmMf9VOgOnp6cjMzER4eHipXUsfubm56tnHcrncqte2ph+WtG+OLVN0hejwlbWX525r7GUcKP4to0PxLxx7GQvKAcvoUA4Iw17GoSzFP1/KdFFq1apVJcqUK1cOe/bsscj1nj17hsDAQL3nTp06BR8fH/Ts2dOhG87m5+fjxYsX8PT0tOqSEWv7YUn75tgyRVeIDl9ZPnLJycnIz8+HWCx26D9Y9pADFP+W0SnL8S+XyxEeHm70U6fSIC0tDStXrsTYsWPVy+JtQWn7YUn75tgyRVeIDl9ZPnLO0FOE4t+6tij+7Q/KAevaKis5QPHvWH7Y4j7L9PI9a6Gadpaamgo/Pz+9MqppixUrVsSlS5es7KH1UCgUyMzMhIeHByQS29U0S9sPS9o3x5YpukJ0+MrykWvVqhWePHmC4OBgHDt2jJevZRF7yAGKf8volNX4F4vFkEqlpXoNQygUCmRkZMDLy8vmfwNK0w9L2jfHlim6QnT4yvKRc4blGxT/1rVF8W9/UA5Y11ZZyQGKf8fyw5L2+S7fo6IUD/gMprMkI0EYgnKAcGYo/glnh3KAcGYo/glnhuKfMATfopR9bSVk56Snpxs8p9lPxJFJT0/H/v37jY6FI/hhSfvm2DJFV4gOX1k+cpQDjuMDxb9wOYp/x/KDckC4nDPkAMW/dW1R/NsflAPWtVVWcoDi37H8sMV9UlFKAKrtt/XhLMn46tUrJCUl4dWrVw7thyXtm2PLFF0hOnxl+chRDjiODxT/wuUo/h3LD8oB4XLOkAMU/9a1RfFvf1AOWNdWWckBin/H8sMW90nL93hAy/cIomQoBwhnhuKfcHYoBwhnhuKfcGYo/glD0PI9giAIgiAIgiAIgiAIwm6xXdv4MoRqMtk///yDChUq6JVRKBTq7xkZGVbzzdo8ffoUmzZtwoABAxAUFOSwfljSvjm2TNEVosNXlo8c5YDj+EDxL1yO4t+x/KAcEC7nDDlA8W9dWxT/9gflgHVtlZUcoPh3LD8saV8VDyUtzqPlezy4f/8+IiMjbe0GQRAEQRAEQRAEQRBEmeHevXuIiIgweJ6KUjwoKChA5cqV8ccff4DjOL0yGRkZiIyMxL1794yul3QEYmNjcfbsWVu7Uep+WNK+ObZM0RWiw1e2JDnKAcfygeJfmBzFv+P5QTkgTM5ZcoDi37q2KP7tD8oB69oqCzlA8e94fljKPmMML168QFhYGEQiw52jaPkeD0QiEWQyGby9vUuU9fLycvhkFIvFdnGPpe2HJe2bY8sUXSE6fGX5ylEOOIYPFP+myVH8O44flAOmyTl6DlD8W9cWxb/9QTlgXVtlKQco/h3HD0va51NDoUbnPJkwYYKtXbAb7GUsStsPS9o3x5YpukJ0+Mray3O3B+xhLCj+LaND8S8cexkLygHL6FAOCMNexoHi3zI6FP/CsZexoBywjA7lgDDsZRzKUvzzgZbvWQi+2x0ShKNCOUA4MxT/hLNDOUA4MxT/hDND8U+YC82UshByuRyzZs2CXC63tSsEYRMoBwhnhuKfcHYoBwhnhuKfcGYo/glzoZlSBEEQBEEQBEEQBEEQhNWhmVIEQRAEQRAEQRAEQRCE1aGiFEEQBEEQBEEQBEEQBGF1qChFEARBEARBEARBEARBWB0qShEEQRAEQRAEQRAEQRBWh4pSVmDPnj2oUqUKKlWqhGXLltnaHYKwOr1794avry/69etna1cIwurcu3cPrVu3RvXq1VG7dm1s3rzZ1i4RhNV48eIFYmNjUbduXdSqVQs//fSTrV0iCKuTlZWFqKgovPfee7Z2hSCsjkQiQd26dVG3bl2MHj3a1u4QdgjtvlfKKBQKVK9eHUeOHIGXlxfq16+P06dPw8/Pz9auEYTVOHLkCDIzM7Fy5Ups2bLF1u4QhFV59OgRnjx5grp16+Lp06eoX78+bty4AXd3d1u7RhClTn5+PnJzc+Hm5oasrCzUrFkTZ8+ehb+/v61dIwir8dFHH+HmzZsoV64cvvzyS1u7QxBWJSAgACkpKbZ2g7BjaKZUKXPmzBnUqFED4eHh8PT0RNeuXXHw4EFbu0UQVqVNmzbw9PS0tRsEYRNCQ0NRt25dAEBQUBD8/PyQlpZmW6cIwkqIxWK4ubkBAHJycpCfnw/6PJRwJm7evInr16+ja9eutnaFIAjCLqGiVAn8+uuv6NGjB8LCwsBxHHbs2KEj8/333yMmJgYuLi5o0KABfvvtN/W5hw8fIjw8XP06IiICDx48sIbrBGERzM0BgijrWDIHzp07h4KCAkRGRpay1wRhGSwR/8+fP0edOnUQERGBadOmISAgwEreE4R5WCL+33vvPXz66adW8pggLIslciAjIwMNGjRAixYtcOzYMSt5TpQlqChVAi9fvkSdOnXw7bff6j2/ceNGTJo0CR999BHOnz+Pli1bokuXLrh79y4A6P00kOO4UvWZICyJuTlAEGUdS+VAamoqhg0bhh9//NEabhOERbBE/Pv4+ODixYu4ffs21q1bhydPnljLfYIwC3Pjf+fOnahcuTIqV65sTbcJwmJY4m9AUlIS/vjjDyxZsgTDhg1DRkaGtdwnygqM4A0Atn37dq1jjRo1YuPGjdM6VrVqVfb+++8zxhg7ceIE69Wrl/rc22+/zdauXVvqvhJEaWBKDqg4cuQI69u3b2m7SBCliqk5kJOTw1q2bMlWrVplDTcJolQw52+AinHjxrFNmzaVlosEUWqYEv/vv/8+i4iIYFFRUczf3595eXmxOXPmWMtlgrAolvgb0LlzZ3b27NnScpEoo9BMKTN49eoV/vjjD3Ts2FHreMeOHfH7778DABo1aoTLly/jwYMHePHiBfbt24dOnTrZwl2CsDh8coAgHBk+OcAYw/Dhw9G2bVsMHTrUFm4SRKnAJ/6fPHmi/lQ8IyMDv/76K6pUqWJ1XwnC0vCJ/08//RT37t1DUlISvvzyS4wZMwYzZ860hbsEYXH45MCzZ8+Qm5sLALh//z6uXr2K8uXLW91Xwr6R2NqBskxKSgry8/MRHBysdTw4OBiPHz8GoNwC86uvvkKbNm1QUFCAadOm0Y4zhMPAJwcAoFOnTvjzzz/x8uVLREREYPv27YiNjbW2uwRhcfjkwIkTJ7Bx40bUrl1b3Yth9erVqFWrlrXdJQiLwif+79+/j1GjRoExBsYYJk6ciNq1a9vCXYKwKHz/ByIIR4VPDly7dg1vvfUWRCIROI7D//73P9qFntCBilIWoHiPKMaY1rGePXuiZ8+e1naLIKxGSTlAO04Sjo6xHGjRogUKCgps4RZBWAVj8d+gQQNcuHDBBl4RhHUo6X8gFcOHD7eSRwRhXYzlQLNmzXDp0iVbuEWUIWj5nhkEBARALBbrfBry9OlTnYoxQTgilAOEs0M5QDgzFP+EM0PxTzg7lAOEpaCilBnIZDI0aNAAiYmJWscTExPRrFkzG3lFENaDcoBwdigHCGeG4p9wZij+CWeHcoCwFLR8rwQyMzNx69Yt9evbt2/jwoUL8PPzQ7ly5TB58mQMHToUDRs2RNOmTfHjjz/i7t27GDdunA29JgjLQTlAODuUA4QzQ/FPODMU/4SzQzlAWAWb7ftXRjhy5AgDoPMVFxenlvnuu+9YVFQUk8lkrH79+uzYsWO2c5ggLAzlAOHsUA4QzgzFP+HMUPwTzg7lAGENOMYYs0bxiyAIgiAIgiAIgiAIgiBUUE8pgiAIgiAIgiAIgiAIwupQUYogCIIgCIIgCIIgCIKwOlSUIgiCIAiCIAiCIAiCIKwOFaUIgiAIgiAIgiAIgiAIq0NFKYIgCIIgCIIgCIIgCMLqUFGKIAiCIAiCIAiCIAiCsDpUlCIIgiAIgiAIgiAIgiCsDhWlCIIgCIIgCIIgCIIgCKtDRSmCIAiCIAiCIAiCIAjC6lBRiiAIgiAIgrAIw4cPB8dx6q8lS5ZY9fq3bt3Sun50dLRVr08QBEEQhDAktnaAIAiCIAjCGElJSYiJiTEqwxizkjcEH9555x34+PigYcOGWsejo6Px+PFj5OTkGNR1cXFBSEgIkpKSBF/Xz88Ps2bNAgB88803gvUJgiAIgrAuVJQiCIIgCKJMUKFCBQwZMsTWbhA8mDRpkk1mKfn5+WH27NkAgBUrVlj9+gRBEARBCIOKUgRBEARBlAkqVqyoLjgQBEEQBEEQZR/qKUUQBEEQhEMwe/ZscByHo0ePYuXKlWjQoAHc3NzQunVrtcyLFy8wa9Ys1KhRA66urvDx8UHnzp1x/PhxvTavXLmC7t27w9PTE97e3ujatSsuX76s7p2kucRM8/rFWbFiBTiO0zt756+//sLAgQMRGhoKmUyGqKgo/Oc//0FqaqqWXFJSEjiOw/Dhw/Hvv/+iX79+8PX1hbu7O9q3b4+LFy/qvYenT5/ivffeQ5UqVeDi4gI/Pz80adIEX331FQDg33//hUgkQrdu3fTqP3v2DC4uLqhTp47e86WN6r6NfZmy1I8gCIIgCNtDM6UIgiAIgnAovvjiCxw5cgQ9e/ZEhw4dIJEo/91JS0vDa6+9hitXrqBly5bo1KkT0tPTsXPnTrRp0wabN29Gr1691HYuX76M5s2bIzMzE3369EGlSpVw5swZNG/e3GIFml27dmHAgAEQi8Xo2bMnIiMjcfXqVXz77bc4ePAgTp8+DV9fXy2dpKQkNG7cGNWrV8fIkSPxzz//qO/h2rVrCA4OVsvevHkTbdq0wYMHD9CiRQv06tULL1++xOXLl/HJJ59gypQpKF++PNq3b48DBw7g/v37iIiI0Lre6tWrkZubizFjxljknoXi4+Oj7hOlSXZ2NhYuXIiCggK4uLjYwDOCIAiCIMyFilIEQRAEQZQJbt26pXf5XufOndGkSRP162PHjuH06dOoVauWltx//vMfXLlyBfHx8RgxYoT6+Pz58xEbG4uxY8eic+fO6gLHxIkTkZGRgTVr1uDNN99Uy3/44Yf49NNPzb6f1NRUDB06FIGBgThx4gTKlSunPrd+/XoMHjwYM2fOxOLFi7X0jh07hs8++wzTp09XH5sxYwbmzZuHhIQEvP/+++rjQ4YMwYMHD/Djjz/qFJXu37+v/nns2LFITExEfHw8Zs6cqSW3fPlyuLi4WKyfl0KhMLoMU6FQaL328fHRkWeMYeDAgVAoFPjiiy8QEhJiEd8IgiAIgrAyjCAIgiAIwo65ffs2A2Dw6+uvv2aMMTZr1iwGgL377rs6NpKTk5lYLGbt2rXTe41FixYxAGz37t2MMcbu3LnDALDatWvryL548YL5+PgwAOz27dvq46rrHzlyREcnISGBAWAJCQnqYwsXLmQA2OrVq/X6VL9+fRYQEKAzDjExMSw/P1/vGPXp00d97MyZMwwAe+211/Ta1+TVq1csODiYRUdHs4KCAh0bQ4YMKdEGY4zFxcXpjIsmUVFRRp+l6isqKsrodWbMmMEAsBEjRhiUiYqKKtEOQRAEQRC2hWZKEQRBEARRJujUqRMOHDhQolyjRo10jp09exb5+fnIycnRO0vn5s2bAIDr16+je/fu6v5MLVq00JH18PBA3bp19faOEsKpU6fU32/duqVzPicnBykpKUhJSUFAQID6eJ06dSASabcFVS25e/78ufrYmTNnAAAdO3Ys0RepVIqRI0fi008/RWJiolpn+fLlAIDRo0cLuDPjyOVy5OTkGDxf0lK89evX4+OPP0bLli2xZMkSi/lFEARBEIT1oaIUQRAEQRAOhWZPJRVpaWkAgBMnTuDEiRMGdV++fAkASE9PBwAEBQXxvoZQVD599913RuVevnypVZTy9vbWkVH1zcrPz1cfUxWowsPDefkzZswYfPbZZ1i2bBk6duyIrKwsrF+/HpUrV0arVq142ShtTp06hZEjR6J8+fLYtm0bZDKZrV0iCIIgCMIMaPc9giAIgiAcCo7jdI55eXkBAKZMmQLGmMEvVUNtVeHn6dOneq/x5MkTnWOq2UvFeyIBRUUufT5dunTJqE9RUVF8blsHHx8fAMCDBw94ycfExKBDhw7YuXMnUlJSsGnTJmRkZFh0lpQ53L17F7169YJMJsPu3bu1CnUEQRAEQZRNqChFEARBEITDExsbC47jcPLkSV7yqt31jh8/rnMuMzMTFy5c0Dmu2iVPXxHo/PnzOscaN24MALx9EopqGeOhQ4d464wdOxavXr3CqlWrsHz5ckilUsTFxZWKf0LIzMxEjx49kJKSgo0bN6J69eq2dokgCIIgCAtARSmCIAiCIByekJAQDBgwAL///ju++OILMMZ0ZE6fPo2srCwAQLly5fDaa6/hr7/+wtq1a7Xk5s+fr9W7SUXDhg0BAKtWrUJBQYH6+MmTJ3VsAMCIESPg6emJjz76CFeuXNE5n5WVpe47ZQqxsbFo1KgRfv31V/z000865/UVz15//XWEhITgq6++wvHjx9GzZ0+DSxitRUFBAQYPHoy//voLCxcuROfOnW3qD0EQBEEQloN6ShEEQRAE4RR8//33uHHjBqZNm4bVq1ejadOm8Pb2xr179/DHH3/g5s2bePToEdzc3AAoez01b94cw4YNw44dO1CpUiWcPXsWZ86cQcuWLfHbb79p2W/SpAmaNm2Kw4cPo2nTpnjttddw584d7Nq1Cz169MD27du15AMDA7F+/Xr0798fderUQefOnVG1alXk5OTgzp07OHbsGJo1a8arubsh1qxZg9atW2Ps2LHqe87JycGVK1dw/vx5pKamaslLJBKMHDkS8+fPB2DZBuemsmXLFuzevRuhoaFIS0vT26h+0qRJ6uWKBEEQBEGUHagoRRAEQRCEU+Dn54fff/8d3377LTZu3Ii1a9eioKAAISEhqFOnDmbMmKHVp6hmzZo4ceIEpk+fjgMHDuDgwYNo0aIFTpw4gS+//FKnKMVxHHbt2oXJkydj7969uHTpEurUqYNdu3bh4cOHOkUpAOjWrRvOnz+PL774Aj///DMSExPh7u6OiIgIjBgxAkOGDDHrnitVqoQ///wTn376KXbv3o1vvvkGHh4eqFSpEv773//q1YmLi8P8+fNRrlw5Xjv3lTaq2WuPHj3CnDlz9MoMHz6cilIEQRAEUQbhmL756wRBEARBEIRBhg8fjpUrV+L27duIjo62tTsWZdOmTXjjjTcwZ84czJw5U5CuPY2L6vpJSUk29YMgCIIgCMNQTymCIAiCIAgCAMAYw8KFCyGRSDBq1CiT7cTExIDjOCxZssSC3pXMrVu3wHEcOI7DnTt3rHptgiAIgiCEQ8v3CIIgCIIgnJxLly5hz549+P3333H69GmMGzcO4eHhgu306tVLa4aUqvm7tfDz88OsWbPUr2lJH0EQBEHYN7R8jyAIgiAIQiD2tEzNEqxYsQIjRoyAj48Pevbsie+++w4eHh62dosgCIIgCAeHilIEQRAEQRAEQRAEQRCE1aGeUgRBEARBEARBEARBEITVoaIUQRAEQRAEQRAEQRAEYXWoKEUQBEEQBEEQBEEQBEFYHSpKEQRBEARBEARBEARBEFaHilIEQRAEQRAEQRAEQRCE1aGiFEEQBEEQBEEQBEEQBGF1qChFEARBEARBEARBEARBWB0qShEEQRAEQRAEQRAEQRBWh4pSBEEQBEEQBEEQBEEQhNX5f/MHmd2hXfJFAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_analysis(processed_data_bkg, processed_data, Sxx_bkg, Sxx, filename_bkg, filename_data, peak_find_threshold=-60)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "2522948d", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "f91c772c", + "metadata": {}, + "outputs": [], + "source": [ + "\"\"\"Synthetic data to validate analysis\"\"\"\n", + "# # Generate time series data with values against time in seconds\n", + "# num_seconds = 10 # Total number of seconds\n", + "# time = np.arange(0, num_seconds, 1/30) # Create timestamp index\n", + "# voltage = np.sin(2*np.pi*4*time) + np.sin(2*np.pi*7*time) + np.random.randn(len(time))*0.2 # Generate 4 Hz and 7 Hz sine wave\n", + "# data = np.column_stack((time, voltage))\n", + "\n", + "\"\"\"Real data\"\"\" \n", + "dir = str(globals()['_dh'][0]).replace('\\\\','/') + \"/Time Series Data/\"\n", + "filename_bkg = \"Arm 1/PID_Active_SP_7V_Mod_1.0_100khz\"\n", + "filepath_bkg = dir + filename_bkg + \".csv\"\n", + "\n", + "background_data = extract_data(filepath_bkg)\n", + "\n", + "dir = str(globals()['_dh'][0]).replace('\\\\','/') + \"/Time Series Data/\"\n", + "filename_data = \"Arm 1/PID_Inactive_SP_7V_Mod_1.0_100khz\"\n", + "filepath_data = dir + filename_data + \".csv\"\n", + "\n", + "data = extract_data(filepath_data)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "f8ad9496", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Calculating power spectrum...\n" + ] + } + ], + "source": [ + "# Extract the first and second columns from data_array\n", + "time_bkg = background_data[:, 0]\n", + "voltage_bkg = background_data[:, 1]\n", + " \n", + "processed_data_bkg, Sxx_bkg = compute_psd(background_data, new_sampling_rate = 1000000)" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "1a9afee9", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Calculating power spectrum...\n" + ] + } + ], + "source": [ + "# Extract the first and second columns from data_array\n", + "time = data[:, 0]\n", + "voltages = data[:, 1]\n", + "\n", + "processed_data, Sxx = compute_psd(data, new_sampling_rate = 1000000)" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "3bbcd482", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAMWCAYAAAAgRDUeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3xUxfrGn930EEIChBBCF0SEi1QFG6ACKgrYUX+KesVyRcV2vSpXQUVFQLyi2Bs2LCgqFhARBQRF6YoISCe99zq/P9asRLLJzO7Zs3POeb6fTz4he9733XfnPA/BcWaOSwghQAghhBBCCCGEEEKIibhD3QAhhBBCCCGEEEIIcR6clCKEEEIIIYQQQgghpsNJKUIIIYQQQgghhBBiOpyUIoQQQgghhBBCCCGmw0kpQgghhBBCCCGEEGI6nJQihBBCCCGEEEIIIabDSSlCCCGEEEIIIYQQYjqclCKEEEIIIYQQQgghphMe6gasQG1tLQ4dOoTmzZvD5XKFuh1CCCGEEEIIIYQQbRFCoKioCO3atYPb7Xs9FCelJDh06BA6dOgQ6jYIIYQQQgghhBBCLMP+/fvRvn17n9c5KSVB8+bNAXgGMz4+vsGYY445BmlpaUhJScFvv/1mZnuEaAE9QJwM9U+cDj1AnAz1T5wM9U98UVhYiA4dOnjnU3wiSJMUFBQIAGLHjh0+Y1JSUgQAkZKSYmJn5pOeni4ef/xxkZ6ebus+jKwfSC1/clVyZGNl4ugB+/RA/avHUf/26oMeUI9zggeof3NrUf/6QQ+YW8sqHqD+7dWHkfXr5lEKCgoajeNB5wrExsb6vFZ31pTdz5xq1qwZBg8ejGbNmtm6DyPrB1LLn1yVHNlYmTh6wD49UP/qcdS/vfqgB9TjnOAB6t/cWtS/ftAD5tayigeof3v1EYrP6RJCCNPezaIUFhaiRYsWKCgo8Ll9r3379jh48CBSU1Nx4MABkzskJPTQA8TJUP/E6dADxMlQ/8TJUP/EFzLzKADAlVIKVFZWhrqFkFNZWYl9+/aFfCyC3YeR9QOp5U+uSo5srC73XQd0GAvq35gc6l8dXcaCHjAmhx5QQ5dxoP6NyaH+1dFlLOgBY3LoATV0GQcr6V8WTkopkJub6/NabW1tve92JScnB6+++ipycnJs3YeR9QOp5U+uSo5srEwcPWCfHqh/9Tjq31590APqcU7wAPVvbi3qXz/oAXNrWcUD1L+9+gjF5+T2PQnqlp3l5OSgZcuWDcY4ZdlidXU18vPzkZCQgPDw0D28Mdh9GFk/kFr+5KrkyMbKxNED9umB+lePo/7t1Qc9oB7nBA9Q/+bWov71gx4wt5ZVPED926sPI+vLbt/jpJQEPFOKkKahB4iTof6J06EHiJOh/omTof6JL3imVBAoLCz0ea1ubs/uc3yFhYVYsmRJo2Nhhz6MrB9ILX9yVXJkY2Xi6AH79ED9q8dR//bqgx5Qj3OCB6h/c2tR//pBD5hbyyoeoP7t1UcoPicnpRRo7LAvp5ixoqICu3btQkVFha37MLJ+ILX8yVXJkY2ViaMH7NMD9a8eR/3bqw96QD3OCR6g/s2tRf3rBz1gbi2reID6t1cfofic3L4nAbfvEdI09ABxMtQ/cTr0AHEy1D9xMtQ/8QW37xFCCCGEEEIIIYQQbeGklAJZWVk+rznlUZiZmZl48sknkZmZaes+jKwfSC1/clVyZGNl4ugB+/RA/avHUf/26oMeUI9zggeof3NrUf/6QQ+YW8sqHqD+7dVHKD4nJ6UUiI6O9nnN5XLV+25XYmJi0KdPH8TExNi6DyPrB1LLn1yVHNlYmTh6wD49UP/qcdS/vfqgB9TjnOAB6t/cWtS/ftAD5tayigeof3v1EYrPyTOlJOCZUoQ0DT1AnAz1T5wOPUCcDPVPnAz1T3zBM6WCQFVVVahbCDlVVVVIS0sL+VgEuw8j6wdSy59clRzZWF3uuw7oMBbUvzE51L86uowFPWBMDj2ghi7jQP0bk0P9q6PLWNADxuTQA2roMg5W0r8snJRSICcnx+c1p+ylzc7OxgsvvIDs7Gxb92Fk/UBq+ZOrkiMbKxNHD9inB+pfPY76t1cf9IB6nBM8QP2bW4v61w96wNxaVvEA9W+vPkLxObl9T4K6ZWfZ2dlo1apVgzFOWbZYVVWF7OxstG7dGhEREbbtw8j6gdTyJ1clRzZWJo4esE8P1L96HPVvrz7oAfU4J3iA+je3FvWvH/SAubWs4gHq3159GFlfdvseJ6Uk4JlShDQNPUCcDPVPnA49QJwM9U+cDPVPfMEzpYJAUVGRz2t1c3t2n+MrKirC8uXLGx0LO/RhZP1AavmTq5IjGysTRw/YpwfqXz2O+rdXH/SAepwTPED9m1uL+tcPesDcWlbxAPVvrz5C8Tk5KaVAeXm5z2tOMWNZWRk2b96MsrIyW/dhZP1AavmTq5IjGysTRw/YpwfqXz2O+rdXH/SAepwTPED9m1uL+tcPesDcWlbxAPVvrz5C8Tm5fU8Cbt8jpGnoAeJkqH/idOgB4mSof+JkqH/iC27fI4QQQgghhBBCCCHawkkpBfgoWCArKwvz5s1DVlaWrfswsn4gtfzJVcmRjZWJowfs0wP1rx5H/durD3pAPc4JHqD+za1F/esHPWBuLat4gPq3Vx+h+JyclFIgMjLS5zWXy1Xvu12JiorCUUcdhaioKFv3YWT9QGr5k6uSIxsrE0cP2KcH6l89jvq3Vx/0gHqcEzxA/Ztbi/rXD3rA3FpW8QD1b68+QvE5eaaUBDxTipCmoQeIk6H+idOhB4iTof6Jk6H+iS94plQQqK6uDnULIae6uhrZ2dkhH4tg92Fk/UBq+ZOrkiMbq8t91wEdxoL6NyaH+ldHl7GgB4zJoQfU0GUcqH9jcqh/dXQZC3rAmBx6QA1dxsFK+peFk1IK8Ewpzx7TZ555Rou9tMHsw8j6gdTyJ1clRzZWJo4esE8P1L96HPVvrz7oAfU4J3iA+je3FvWvH/SAubWs4gHq3159hOJzcvueBHXLzrKystC6desGY5yybLGyshLp6elo27Zto2dsWb0PI+sHUsufXJUc2ViZOHrAPj1Q/+px1L+9+qAH1OOc4AHq39xa1L9+0APm1rKKB6h/e/VhZH3Z7XuclJKAZ0oR0jT0AHEy1D9xOvQAcTLUP3Ey1D/xBc+UCgLFxcU+r9XN7dl9jq+4uBgrV65sdCzs0IeR9QOp5U+uSo5srEwcPWCfHqh/9Tjq31590APqcU7wAPVvbi3qXz/oAXNrWcUD1L+9+gjF5+SklAKlpaU+rznFjCUlJVi7di1KSkps3YeR9QOp5U+uSo5srEwcPWCfHqh/9Tjq31590APqcU7wAPVvbi3qXz/oAXNrWcUD1L+9+gjF5+T2PQm4fY+QpqEHiJOh/onToQeIk6H+iZOh/okvuH2PEEIIIYQQQgghhGgLJ6UUyMnJ8XnNKY/CzM7Oxosvvojs7Gxb92Fk/UBq+ZOrkiMbKxNHD9inB+pfPY76t1cf9IB6nBM8QP2bW4v61w96wNxaVvEA9W+vPkLxOTkppUB4eLjPay6Xq953uxIREYG2bdsiIiLC1n0YWT+QWv7kquTIxsrE0QP26YH6V4+j/u3VBz2gHucED1D/5tai/vWDHjC3llU8QP3bq49QfE6eKSUBz5QipGnoAeJkqH/idOgB4mSof+JkqH/iC54pFQRqampC3ULIqampQWFhYcjHIth9GFk/kFr+5KrkyMbqct91QIexoP6NyaH+1dFlLOgBY3LoATV0GQfq35gc6l8dXcaCHjAmhx5QQ5dxsJL+ZeGklAJZWVk+rzllL21mZibmzJmDzMxMW/dhZP1AavmTq5IjGysTRw/YpwfqXz2O+rdXH/SAepwTPED9m1uL+tcPq3ugqKgIkydPRqdOnRATE4MTTzwR69atqxeTkZGByy67DKmpqYiLi8OZZ56JHTt21IvZtWsXzjvvPCQlJSE+Ph4XX3wxMjIy6sWsX78eI0aMQMuWLdG2bVtMmDABxcXF9WK+/vprnHjiiWjevDlSUlJw9913o7q6utHP2dR7Z2ZmYtCgQejYsSOio6ORkpKCK664AocOHWp0HIcNG4bJkycfEfPaa6+hZcuWjY439W+vPkLyOQVpkoKCAgFAZGZm+oxJTU0VAERqaqqJnZlPeXm52LFjhygvL7d1H0bWD6SWP7kqObKxMnH0gH16oP7V46h/e/VBD6jHOcED1L+5tah//bC6By6++GJx7LHHim+//Vbs2LFDPPDAAyI+Pl4cOHBACCFEbW2tGDx4sDjppJPEwoULxebNm8V1110nOnbsKIqLi4UQQhQXF4uuXbuK8847T2zevFls3rxZjB07VgwaNEjU1NQIIYQ4ePCgSExMFDfccIPYvHmzWLhwoRg8eLC44IILvL1s2rRJREZGimnTpokdO3aIFStWiGOOOUbccccdPj+nzHuXl5eLe++9V3z77bdiz549YvXq1WLIkCFiyJAhjY7j0KFDxa233npEzKuvvipatGjR6HhT//bqw8j6dfMoBQUFjcZxUkoCmcF0ihkJ8QU9QJwM9U+cDj1AnAz1rz+lpaUiLCxMLF68uN7rxx13nLjvvvuEEEJs375dABBbt271Xq+urhYtW7YUL774ohBCiCVLlgi3213vvwtzc3MFAPHVV18JIYR4/vnnRZs2bbwTRUIIsWHDBgFA7NixQwghxD333CMGDhxYr5ePPvpIREdHi8LCwgY/g8x7N8THH38sXC6XqKys9BnT1KRUHZ06dRIAGvyi/snfkZ2U4vY9BUpKSnxeE3+eFy9sfm58SUkJfvjhh0bHwg59GFk/kFr+5KrkyMbKxNED9umB+lePo/7t1Qc9oB7nBA9Q/+bWov71w8oeqK6uRk1NDaKjo+u9HhMTg1WrVgEAKioqAHi2odXVDwsLQ2RkZL0Yl8uFqKgob43o6Gi43e56MZGRkXC73d5e67RxeExDvZSXl+Pnn39u8HPKvPffc3Jzc/HWW2/hxBNPPOJpairjWBe3bt06pKWlIS0tDQcOHMDgwYMRGRkJgPq3Sx+h+JyclFLg7/uAD8cpv4yKiorw9ddfo6ioyNZ9GFk/kFr+5KrkyMbKxNED9umB+lePo/7t1Qc9oB7nBA9Q/+bWov71w8oeaN68OYYMGYKHHnoIhw4dQk1NDd5880388MMPSEtLAwAcc8wx6NSpE+677z4sXrwYOTk5eOyxx5Cenu6NGTx4MJo1a4a7774bpaWlKCkpwV133YXa2lpvzGmnnYb09HTMnDkTOTk5WLx4MaZMmQIA3phRo0bh+++/xzvvvIOamhocPHgQDz/8cL2Yv39Omfeuy7n77rvRrFkztGrVCvv27cPHH3/c5DjOmzcPcXFx9b5uuOEGCCG8cUlJSWjbti3atm2Lxx9/HGlpaUhISABA/dulj5B8ToNXaNkSbt8jpGnoAeJkqH/idOgB4mSof2uwc+dOceqppwoAIiwsTAwaNEhcfvnlomfPnt6Yn376SRx33HHemFGjRomzzjpLnHXWWd6YJUuWiK5duwqXyyXCwsLE//3f/4n+/fuLG2+80Rvz1ltvieTkZBEWFiYiIyPFnXfeKZKTk8WMGTO8MbNnzxbx8fEiLCxMxMbGikcffVQAEO+++67PzyDz3kIIkZWVJbZv3y6WLl0qTjrpJHH22WeL2tpan3WHDh0qrrrqKrFjx456XzNmzKi3fa+O559/XjRr1kxs3LBBpKakePSfkiJEI+9BnIfs9r1w86a/CCGEEEIIIYQQ8znqqKPw7bffoqSkBIWFhUhJScEll1yCLl26eGMGDBiAjRs3oqCgAJWVlUhKSsIJJ5yAgQMHemNGjhyJXbt2ITs7G+Hh4UhISEDbtm3r1bnssstw2WWXISMjA82aNYPL5cITTzxRL+b222/HbbfdhrS0NCQmJmLPnj2455576sX8HZn3BoDWrVujdevWOProo9GzZ0906NABa9euxZAhQ3zWbtGiBbp161bvtTZt2hwRt2LFCtx888145/LLcdz48cCfq7SQlgb07AnceCMwYQLw5woqQpqC2/cUyM3N9XnNKY/CzMnJwWuvvYacnBxb92Fk/UBq+ZOrkiMbKxNHD9inB+pfPY76t1cf9IB6nBM8QP2bW4v61w+7eKBZs2ZISUlBXl4elixZgrFjxx5R/6OPPoLb7caOHTvw008/HREDeCZ+EhISsHz5cmRmZmLMmDFHxISHh+ODDz7Ayy+/jOjoaIwYMaLedZfLhXbt2iEmJgbvvPMOOnTogP79+zf5OX29d0M54s9tdXVnZh3+OWXGUQjhjdu5cycuGDMG97pcOP+NN4C+fSESEz1xiYlA377AnXcCnToBS5Y0Wtdq2EX/oa7fEFwppYDL5Qp1CyHH7XYjPj4ebndo5zOD3YeR9QOp5U+uSo5srC73XQd0GAvq35gc6l8dXcaCHjAmhx5QQ5dxoP6NyaH+1dFlLPztY8mSJRBCoEePHti5cyfuuusu9OjRA1dffbU35v3330d0dDRKS0vx5Zdf4r777sO4ceMwcuRIb8yrr76Knj17IikpCWvWrMGtt96K2267DT169PDGPP300zjxxBNRU1OD1atX46233sJjjz3mPX8JAGbOnIkzzzwTbrcbH374IR577DG89957CAsLAwCkp6fjvvvuQ/v27XHGGWdIvfeGDRuwatUqdO3aFZ06dcIff/yB+++/H0cdddQRq6RUxjE+Ph4VFRU497TT0Le4GNeddhrSn3gCaNMG1ccdBwAQ0dHAggVAejpw7bXAOecAixcDo0Yp3Sddsbr+danfIGbsJbQ6PFOKkKahB4iTof6J06EHiJOh/q3Bu+++K7p27SoiIyNF27ZtxU033STy8/Prxfzvf/8T7du3FxEREaJjx45iypQpoqKiol7M3XffLZKTk0VERITo3r27mD179hHnNV1xxRWiZcuWIjIyUvTp00fMnz//iH6GDx8uWrRoIaKjo8UJJ5wgPv/883rXd+/eLQCIb775Rvq9N2/eLIYPHy5atmwpoqKiROfOncUNN9wgDhw40OjYDB06VNx6661HvP7qq696z5TavWmTAODzq57+q6qEGD1aiPh4IfLyGn1vYl9kz5RyCWHzY/INoLCwEC1atEBeXl692e3Dad++PQ4ePIjU1FQcOHDA3AZNpLa2FhUVFYiKigrpLHGw+zCyfiC1/MlVyZGNlYmjB+zTA/WvHkf926sPekA9zgkeoP7NrUX96wc9YG4t7Tzw/PNw33UXsH8/0Lat97pP/aelAR07ArNnA7fcItW/zlD/6tTNoxQUFCA+Pt5nHNehKpCZmenzmlP2kmdkZODxxx9HRkaGrfswsn4gtfzJVcmRjZWJowfs0wP1rx5H/durD3pAPc4JHqD+za1F/esHPWBuLa08MGMGap9+GrjggnoTUgBQVlUGACivKq+fmJICnH8+MG8eYIN1MNR/8OBKKQnqZvjS09ORnJzcYExqaioOHTqEdu3a4eDBgyZ3aB5lZWXYs2cPOnfujJiYGNv2YWT9QGr5k6uSIxsrE0cP2KcH6l89jvq3Vx/0gHqcEzxA/Ztbi/rXD3rA3Fo6eWD/hg04+qSTgPfeAy66qN51V7wLKALQHBCFf5taeO894JJLgOxsoFUrqc+gK9S/OrIrpTgpJYHMYDpl2S4hvqAHiJOh/onToQeIk6H+ie3Zswfo0gX46ivgz0PX62h0Uuqrr4CRI4Hdu4HOnc3qlmgCt+8FgdLSUp/X6ub27D7HV1paivXr1zc6Fnbow8j6gdTyJ1clRzZWJo4esE8P1L96HPVvrz7oAfU4J3iA+je3FvWvH/SAubV08sCmXbs8P+TlSfdSL755c7U8DaH+gwcnpRQoLCz0ec0pv4wKCgrw6aefoqCgwNZ9GFk/kFr+5KrkyMbKxNED9umB+lePo/7t1Qc9oB7nBA9Q/+bWov71gx4wt5ZOHli0ciWqjzoKWLhQuhcAnvgePYCWLdXyNIT6Dx7cvicBt+8R0jT0AHEy1D9xOvQAcTLUP3EE//sfcOedRzx9z+f2PZs9fY+ow+17hBBCCCGEEEIICZwJE4DYWODaa4Hq6sZjq6uBiRM98VdeaU5/xLJwUkqB3Nxcn9ec8ijY3NxcvP32242OhR36MLJ+ILX8yVXJkY2ViaMH7NMD9a8eR/3bqw96QD3OCR6g/s2tRf3rBz1gbi3tPFBb63ma3pIlwLhxnpVQDZGW5rm+ZAnw/vtAQoJ0/zpD/QcPTkop4HK5Qt1CyHG5XAgLCwv5WAS7DyPrB1LLn1yVHNlYXe67DugwFtS/MTnUvzq6jAU9YEwOPaCGLuNA/RuTQ/2ro8tY0APG5PjlgVGjgMWLgZUrPVvzLrkEMX8umoqpBnDJJZ7XV64EPvvM8+Q9m0D9Bw+eKSUBz5QipGnoAeJkqH/idOgB4mSof+I48vOB+fOBefPQfvt2HASQCuBAjx7Av/7l2erXokWImyShhmdKBQHO33nGoLq6OuRjEew+jKwfSC1/clVyZGN1ue86oMNYUP/G5FD/6ugyFvSAMTn0gBq6jAP1b0wO9a+OLmNBDxiTE5AHEhI8h5dv24ZDcZ6XDsUB2LbN87oNJ6So/+DBSSkFMjIyfF5zyl7y9PR0TJ8+Henp6bbuw8j6gdTyJ1clRzZWJo4esE8P1L96HPVvrz7oAfU4J3iA+je3FvWvH/SAubUs4QGXC+LPXV7C5fnZrlD/wYPb9ySoW3aWnp6O5OTkBmNSU1Nx6NAhtGvXDgcPHjS5Q/MoKyvDjh070L17d8TExNi2DyPrB1LLn1yVHNlYmTh6wD49UP/qcdS/vfqgB9TjnOAB6t/cWtS/ftAD5tayigdc8S6gCEBzQBTad2qB+ldHdvseJ6Uk4JlShDQNPUCcDPVPnA49QJwM9U+cjFMmpYg6PFMqCJSVlfm8Vje3Z/c5vrKyMmzZsqXRsbBDH0bWD6SWP7kqObKxMnH0gH16oP7V46h/e/VBD6jHOcED1L+5tah//aAHzK1lJQ84AV3GwUr6l4WTUgoUFBT4vOaUX0b5+fn48MMPkZ+fb+s+jKwfSC1/clVyZGNl4ugB+/RA/avHUf/26oMeUI9zggeof3NrUf/6QQ+YW8tKHnACuoyDlfQvC7fvSVC37CwvLw8JCQkNxjhl2W5tbS2qq6sRHh4Otzt0c5rB7sPI+oHU8idXJUc2ViaOHrBPD9S/ehz1b68+6AH1OCd4gPo3txb1rx/0gLm1rOIBp2zfo/7Vkd2+Fx7QuziMUIpPF9xuNyIjI0PdRtD7MLJ+ILX8yVXJkY3V5b7rgA5jQf0bk0P9q6PLWNADxuTQA2roMg7UvzE51L86uowFPWBMDj2ghi7jYCX9S7+nqe9mcfLy8nxec8qjYPPy8vD+++83OhZ26MPI+oHU8idXJUc2ViaOHrBPD9S/ehz1b68+6AH1OCd4gPo3txb1rx/0gLm1rOQBJ6DLOFhJ/7JwUkoB7nT0/LKtqKgI+S/dYPdhZP1AavmTq5IjG6vLfdcBHcaC+jcmh/pXR5exoAeMyaEH1NBlHKh/Y3Kof3V0GQt6wJgcekANXcbBSvqXhWdKSSCzF9Ipe8kJ8QU9QJwM9U+cDj1AnAz1T5yMU86UIurIninFlVKEEEIIIYQQQgghxHQ4KaVAenq6z2tO2UuelpaGBx98EGlpabbuw8j6gdTyJ1clRzZWJo4esE8P1L96HPVvrz7oAfU4J3iA+je3FvWvH/SAubWs5AEnoMs4WEn/snBSSoHmzZv7vOZyuep9tyvx8fE4++yzG11+Z4c+jKwfSC1/clVyZGNl4ugB+/RA/avHUf/26oMeUI9zggeof3NrUf/6QQ+YW8tKHnACuoyDlfQvC8+UkoBnShHSNPQAcTLUP3E69ABxMtQ/cTI8U4r4gmdKBYHy8nKf1+rm9uw+x1deXo7t27c3OhZ26MPI+oHU8idXJUc2ViaOHrBPD9S/ehz1b68+6AH1OCd4gPo3txb1rx/0gLm1rOQBJ6DLOFhJ/7JwUkqB/Px8n9ec8ssoLy8PCxYsQF5enq37MLJ+ILX8yVXJkY2ViaMH7NMD9a8eR/3bqw96QD3OCR6g/s2tRf3rBz1gbi0recAJ6DIOVtK/LLbYvldRUYETTjgBmzZtwoYNG9C3b1/vtX379uGmm27C8uXLERMTg8suuwyzZs1CZGSkdP26ZWe5ublITExsMMYpy3ZrampQXl6O6OhohIWF2bYPI+sHUsufXJUc2ViZOHrAPj1Q/+px1L+9+qAH1OOc4AHq39xa1L9+0APm1rKKB5yyfY/6V0d2+154QO+iCf/+97/Rrl07bNq0qd7rNTU1GD16NJKSkrBq1Srk5ORgwoQJEEJg7ty5yu8TSvHpQlhYGJo1axbqNoLeh5H1A6nlT65KjmysLvddB3QYC+rfmBzqXx1dxoIeMCaHHlBDl3Gg/o3Jof7V0WUs6AFjcugBNXQZByvpXxbLb9/74osvsHTpUsyaNeuIa0uXLsWvv/6KN998E/369cMZZ5yB2bNn48UXX0RhYaHye3H7nmcMFi1a1OhY2KEPI+sHUsufXJUc2ViZOHrAPj1Q/+px1L+9+qAH1OOc4AHq39xa1L9+0APm1rKSB5yALuNgJf3LYulJqYyMDEycOBFvvPEGYmNjj7i+Zs0a9O7dG+3atfO+NmrUKFRUVODnn3/2WbeiogKFhYX1vgDPyitfOOWXUXV1NXJzc1FdXW3rPoysH0gtf3JVcmRjZeLoAfv0QP2rx1H/9uqDHlCPc4IHqH9za1H/+kEPmFvLSh5wArqMg5X0L4tlz5QSQuDss8/GSSedhClTpmDPnj3o0qVLvTOlrrvuOuzZswdLly6tlxsVFYXXXnsNl156aYO1p06dimnTph3x+ksvvdTg5BcATJo0Cbm5uWjZsiWefvrpwD4cIRaEHiBOhvonToceIE6G+idO5rLrL/OeKfX282+Huh2iEaWlpbj22mubPFNKu0kpXxNCh7Nu3Tp8//33ePfdd/Hdd98hLCzM56TU3r17sWTJknr5kZGRmD9/PsaPH99g/YqKClRUVHh/LiwsRIcOHRodTKcccEiIL+gB4mSof+J06AHiZKh/4mScctA5UUf2oHPttu9NmjQJ27Zta/Srd+/eWL58OdauXYuoqCiEh4ejW7duAICBAwdiwoQJAIC2bdsiPT29Xv28vDxUVVUhOTnZZw9RUVGIj4+v9wV4tgv6ora2tt53u5Keno5HH330iHG1Wx9G1g+klj+5KjmysTJx9IB9eqD+1eOof3v1QQ+oxznBA9S/ubWof/2gB8ytZSUPOAFdxsFK+pdFu6fvtW7dGq1bt24y7qmnnsLDDz/s/fnQoUMYNWoU3n33XZxwwgkAgCFDhmD69OlIS0tDSkoKAM/h51FRURgwYIByb42dQu9yuep9tytxcXEYNmwY4uLibN2HkfUDqeVPrkqObKxMHD1gnx6of/U46t9efdAD6nFO8AD1b24t6l8/6AFza1nJA05Al3Gwkv5l0W77nr80tH2vpqYGffv2RXJyMmbOnInc3FxcddVVGDduHObOnStdW2bZGZftEqdDDxAnQ/0Tp0MPECdD/RMnw+17xBeW3b5nJGFhYfjss88QHR2Nk046CRdffDHGjRuHWbNm+VXv8HOmnEpFRQX++OOPkI9FsPswsn4gtfzJVcmRjdXlvuuADmNB/RuTQ/2ro8tY0APG5NADaugyDtS/MTnUvzq6jAU9YEwOPaCGLuNgJf3LYptJqc6dO0MI4V0lVUfHjh2xePFilJaWIicnB3PnzkVUVJRf75GXl+fzmlP2kufm5uKNN95Abm6urfswsn4gtfzJVcmRjZWJowfs0wP1rx5H/durD3pAPc4JHqD+za1F/esHPWBuLSt5wAnoMg5W0r8sttm+F0zqlp3l5OSgZcuWDcY4ZdludXU1iouLERcXh/Dw0B1JFuw+jKwfSC1/clVyZGNl4ugB+/RA/avHUf/26oMeUI9zggeof3NrUf/6QQ+YW8sqHnDK9j3qXx3Z7XuclJKAZ0oR0jT0AHEy1D9xOvQAcTLUP3EyTpmUIurwTKkgUFBQ4PNa3dye3ef4CgoK8NlnnzU6Fnbow8j6gdTyJ1clRzZWJo4esE8P1L96HPVvrz7oAfU4J3iA+je3FvWvH/SAubWs5AEnoMs4WEn/snBSSoGqqiqf15zyy6iyshIHDhxAZWWlrfswsn4gtfzJVcmRjZWJowfs0wP1rx5H/durD3pAPc4JHqD+za1F/esHPWBuLSt5wAnoMg5W0r8s3L4nAbfvEdI09ABxMtQ/cTr0AHEy1D9xMty+R3zB7XuEEEIIIYQQQgghRFs4KaVAZmamz2tOeRRsRkYGZs+ejYyMDFv3YWT9QGr5k6uSIxsrE0cP2KcH6l89jvq3Vx/0gHqcEzxA/Ztbi/rXD3rA3FpW8oAT0GUcrKR/WTgppUBMTIzPay6Xq953uxIbG4tBgwYhNjbW1n0YWT+QWv7kquTIxsrE0QP26YH6V4+j/u3VBz2gHucED1D/5tai/vWDHjC3lpU84AR0GQcr6V8WniklAc+UIqRp6AHiZKh/4nToAeJkqH/iZHimFPEFz5QKAqE+aV8HKisrsX///pCPRbD7MLJ+ILX8yVXJkY3V5b7rgA5jQf0bk0P9q6PLWNADxuTQA2roMg7UvzE51L86uowFPWBMDj2ghi7jYCX9y8JJKQVyc3N9XnPKXvKcnBy88soryMnJsXUfRtYPpJY/uSo5srEycfSAfXqg/tXjqH979UEPqMc5wQPUv7m1qH/9oAfMrWUlDzgBXcbBSvqXhdv3JKhbdpadnY1WrVo1GOOUZbtVVVXIy8tDYmIiIiIibNuHkfUDqeVPrkqObKxMHD1gnx6of/U46t9efdAD6nFO8AD1b24t6l8/6AFza1nFA07Zvkf9qyO7fY+TUhLwTClCmoYeIE6G+idOhx4gTob6J07GKZNSRB2eKRUECgsLfV6rm9uz+xxfYWEhli5d2uhY2KEPI+sHUsufXJUc2ViZOHrAPj1Q/+px1L+9+qAH1OOc4AHq39xa1L9+0APm1rKSB5yALuNgJf3LwkkpBSoqKnxec8ovo/Lycvz+++8oLy+3dR9G1g+klj+5KjmysTJx9IB9eqD+1eOof3v1QQ+oxznBA9S/ubWof/2gB8ytZSUPOAFdxsFK+peF2/ck4PY9QpqGHiBOhvonToceIE6G+idOhtv3iC+4fY8QQgghhBBCCCGEaAsnpRTIysryec0pj4LNzMzEU089hczMTFv3YWT9QGr5k6uSIxsrE0cP2KcH6l89jvq3Vx/0gHqcEzxA/Ztbi/rXD3rA3FpW8oAT0GUcrKR/WTgppUBUVJTPay6Xq953uxIdHY1jjz0W0dHRtu7DyPqB1PInVyVHNlYmjh6wTw/Uv3oc9W+vPugB9TgneID6N7cW9a8f9IC5tazkASegyzhYSf+y8EwpCXimFCFNQw8QJ0P9E6dDDxAnQ/0TJ8MzpYgveKZUEKiqqgp1CyGnqqoKGRkZIR+LYPdhZP1AavmTq5IjG6vLfdcBHcaC+jcmh/pXR5exoAeMyaEH1NBlHKh/Y3Kof3V0GQt6wJgcekANXcbBSvqXhZNSCuTk5Pi85pS95NnZ2XjuueeQnZ1t6z6MrB9ILX9yVXJkY2Xi6AH79ED9q8dR//bqgx5Qj3OCB6h/c2tR//pBD5hby0oecAK6jIOV9C8Lt+9JULfsLCsrC61bt24wxinLdisrK5GVlYWkpCRERkbatg8j6wdSy59clRzZWJk4esA+PVD/6nHUv736oAfU45zgAerf3FrUv37QA+bWsooHnLJ9j/pXR3b7HielJOCZUoQ0DT1AnAz1T5wOPUCcDPVPnIxTJqWIOjxTKggUFRX5vFY3t2f3Ob6ioiKsWLGi0bGwQx9G1g+klj+5KjmysTJx9IB9eqD+1eOof3v1QQ+oxznBA9S/ubWof/2gB8ytZSUPOAFdxsFK+peFk1IKlJWV+bzmlF9GpaWlWL9+PUpLS23dh5H1A6nlT65KjmysTBw9YJ8eqH/1OOrfXn3QA+pxTvAA9W9uLepfP+gBc2tZyQNOQJdxsJL+ZeH2PQm4fY+QpqEHiJOh/onToQeIk6H+iZPh9j3iC27fI4QQQgghhBBCCCHawkkpBfgoWCArKwvPPvsssrKybN2HkfUDqeVPrkqObKxMHD1gnx6of/U46t9efdAD6nFO8AD1b24t6l8/6AFza1nJA05Al3Gwkv5l4aSUAhERET6vuVyuet/tSmRkJDp37hzSx2Ca0YeR9QOp5U+uSo5srEwcPWCfHqh/9Tjq31590APqcU7wAPVvbi3qXz/oAXNrWckDTkCXcbCS/mXhmVIS8EwpQpqGHiBOhvonToceIE6G+idOhmdKEV/wTKkgUF1dHeoWQk51dTVyc3NDPhbB7sPI+oHU8idXJUc2Vpf7rgM6jAX1b0wO9a+OLmNBDxiTQw+oocs4UP/G5FD/6ugyFvSAMTn0gBq6jIOV9C8LJ6UU4JlSnj2mc+fO1WIvbTD7MLJ+ILX8yVXJkY2ViaMH7NMD9a8eR/3bqw96QD3OCR6g/s2tRf3rBz1gbi0recAJ6DIOVtK/LNy+J0HdsrPMzEwkJSU1GOOUZbsVFRVIS0tDSkoKoqKibNuHkfUDqeVPrkqObKxMHD1gnx6of/U46t9efdAD6nFO8AD1b24t6l8/6AFza1nFA07Zvkf9qyO7fY+TUhLwTClCmoYeIE6G+idOhx4gTob6J07GKZNSRB2eKRUEiouLfV6rm9uz+xxfcXExVq9e3ehY2KEPI+sHUsufXJUc2ViZOHrAPj1Q/+px1L+9+qAH1OOc4AHq39xa1L9+0APm1rKSB5yALuNgJf3LwkkpBUpKSnxec9Ivo1WrVmlhxmD2YWT9QGr5k6uSIxsrE0cP2KcH6l89jvq3Vx/0gHqcEzxA/Ztbi/rXD3rA3FpW8oAT0GUcrKR/Wbh9TwJu3yOkaegB4mSof+J06AHiZKh/4mS4fY/4gtv3CCGEEEIIIYQQQoi2cFJKgZycHJ/XnPIo2OzsbLz88svIzs62dR9G1g+klj+5KjmysTJx9IB9eqD+1eOof3v1QQ+oxznBA9S/ubWof/2gB8ytZSUPOAFdxsFK+peFk1IKhIWF+bzmcrnqfbcr4eHhSEpKQnh4uK37MLJ+ILX8yVXJkY2ViaMH7NMD9a8eR/3bqw96QD3OCR6g/s2tRf3rBz1gbi0recAJ6DIOVtK/LDxTSgKeKUVI09ADxMlQ/8Tp0APEyVD/xMnwTCniC54pFQRqampC3ULIqampQVFRUcjHIth9GFk/kFr+5KrkyMbqct91QIexoP6NyaH+1dFlLOgBY3LoATV0GQfq35gc6l8dXcaCHjAmhx5QQ5dxsJL+ZeGklAJZWVk+rzllL3lmZiaeeOIJZGZm2roPI+sHUsufXJUc2ViZOHrAPj1Q/+px1L+9+qAH1OOc4AHq39xa1L9+0APm1rKSB5yALuNgJf3Lwu17EtQtO8vIyECbNm0ajElNTcWhQ4fQrl07HDx40OQOzaO8vBz79u1Dx44dER0dbds+jKwfSC1/clVyZGNl4ugB+/RA/avHUf/26oMeUI9zggeof3NrUf/6QQ+YW8sqHnDK9j3qXx3Z7XuclJKAZ0oR0jT0AHEy1D9xOvQAcTLUP3EyTpmUIurwTKkgUFJS4vNa3dye3ef4SkpK8OOPPzY6Fnbow8j6gdTyJ1clRzZWJo4esE8P1L96HPVvrz7oAfU4J3iA+je3FvWvH/SAubWs5AEnoMs4WEn/snBSSoGioiKf15zyy6iwsBBLly5FYWGhrfswsn4gtfzJVcmRjZWJowfs0wP1rx5H/durD3pAPc4JHqD+za1F/esHPWBuLSt5wAnoMg5W0r8s3L4nAbfvEdI09ABxMtQ/cTr0AHEy1D9xMty+R3zB7XuEEEIIIYQQQgghRFs4KaVAbm6uz2tOeRRsTk4O5s+fj5ycHFv3YWT9QGr5k6uSIxsrE0cP2KcH6l89jvq3Vx/0gHqcEzxA/Ztbi/rXD3rA3FpW8oAT0GUcrKR/WTgppYDL5Qp1CyHH7XajWbNmcLtDK51g92Fk/UBq+ZOrkiMbq8t91wEdxoL6NyaH+ldHl7GgB4zJoQfU0GUcqH9jcqh/dXQZC3rAmBx6QA1dxsFK+peFZ0pJwDOlCGkaeoA4GeqfOB16gDgZ6p84GZ4pRXzBM6WCgN2X5MpQW1uLioqKkI9FsPswsn4gtfzJVcmRjdXlvuuADmNB/RuTQ/2ro8tY0APG5NADaugyDtS/MTnUvzq6jAU9YEwOPaCGLuNgJf3LwkkpBTIzM31ec8pe8oyMDDz22GPIyMiwdR9G1g+klj+5KjmysTJx9IB9eqD+1eOof3v1QQ+oxznBA9S/ubWof/2gB8ytZSUPOAFdxsFK+peF2/ckqFt2lp6ejuTk5AZjUlNTcejQIbRr1w4HDx40uUPzKCsrwx9//IGuXbsiJibGtn0YWT+QWv7kquTIxsrE0QP26YH6V4+j/u3VBz2gHucED1D/5tai/vWDHjC3llU84JTte9S/OrLb9zgpJQHPlCKkaegB4mSof+J06AHiZKh/4mScMilF1OGZUkGgtLTU57W6uT27z/GVlpZi48aNjY6FHfowsn4gtfzJVcmRjZWJowfs0wP1rx5H/durD3pAPc4JHqD+za1F/esHPWBuLSt5wAnoMg5W0r8snJRSoLCw0Oc1p/wyKigowMcff4yCggJb92Fk/UBq+ZOrkiMbKxNHD9inB+pfPY76t1cf9IB6nBM8QP2bW4v61w96wNxaVvKAE9BlHKykf1m4fU+CumVn+fn5aNGiRYMxTlm2K4SAEAIulwsul8u2fRhZP5Ba/uSq5MjGysTRA/bpgfpXj6P+7dUHPaAe5wQPUP/m1qL+9YMeMLeWVTzglO171L86stv3wgN6F4cRSvHpQqhNaFYfRtYPpJY/uSo5srG63Hcd0GEsqH9jcqh/dXQZC3rAmBx6QA1dxoH6NyaH+ldHl7GgB4zJoQfU0GUcrKR/Wbh9T4Hc3Fyf15zyKNjc3Fy88847jY6FHfowsn4gtfzJVcmRjZWJowfs0wP1rx5H/durD3pAPc4JHqD+za1F/esHPWBuLSt5wAnk5ubi3bdfD/k4WEn/snBSihBCCCGEEEIIIaQRLsFVoW7BlvBMKQlk9kI6ZS85Ib6gB4iTof6J06EHiJOh/omTccqZUgCAt13AZTb/jAYie6YUV0opwPk7zxjU1taGfCyC3YeR9QOp5U+uSo5srC73XQd0GAvq35gc6l8dXcaCHjAmhx5QQ5dxoP6NyaH+1dFlLOgBY3LoATXqPn+ox8FK+peFk1IKZGRk+LzmlL3k6enpeOihh5Cenm7rPoysH0gtf3JVcmRjZeLoAfv0QP2rx1H/9uqDHlCPc4IHqH9za1H/+kEPmFvLSh5wAnWfP9TjYCX9SyNIkxQUFAgAIi0tzWdMu3btBADRrl07Ezszn5KSErFhwwZRUlJi6z6MrB9ILX9yVXJkY2Xi6AH79ED9q8dR//bqgx5Qj3OCB6h/c2tR//pBD5hbq6Hcb7/9VpxzzjkiJSVFABAfffTRETnLli0Tl19+uUhJSRExMTFi1KhR4vfff68Xt3PnTnHuueeKhIQE0bx5c3HRRReJ9PT0ejE///yzOOOMM0SLFi1EixYtxNVXXy2KiorqxSxbtkzADQFAwAXx73//W1RVVdWLeffdd8Vxxx0nYmJiRMeOHcXjjz/e5Gffvn27GDNmjGjVqpVo3ry5OPHEE8Xy5cvrxQA44uvZZ59ttG6nTp3EnDlzjnj9gQceEMcdd1yjuSUlJUK8Bepfgbp5lIKCgkbjeKaUBDxTipCmoQeIk6H+idOhB4iTof6JWXzxxRdYvXo1+vfvjwsuuAAfffQRxo0b570uhMCJJ56IiIgIzJ49G/Hx8XjiiSfw5Zdf4tdff0WzZs1QUlKCPn364LjjjsO0adMAAP/9739x6NAhrF27Fm63G4cOHULv3r1xySWXYPLkySgsLMTkyZORkpKCDz74AACwefNmDBo0CJWoBCoBxADHdDoGo0ePxqxZs7z9jhkzBnPnzsXIkSOxbds2XHvttbjvvvswadIkn5+ze/fuOProo/Hoo48iJiYGTz75JF577TXs2rULbdu2BQC4XC68+uqrOPPMM715LVq0QExMjM+6nTt3xuTJkzF58uR6r0+dOhWLFi3Cxo0bG78BPFNKCZ4pFQTKysp8XhOa7DENNmVlZfjll18aHQs79GFk/UBq+ZOrkiMbKxNHD9inB+pfPY76t1cf9IB6nBM8QP2bW4v61w96wNxaDeWeddZZePjhh3H++ec3mLNlyxasXbsWc+bMwaBBg9CjRw/MmzcPxcXFeOeddwAAq1evxp49e/Dss8/C7XajW7duePXVV7Fu3TosX74cALB48WJERETgmWeeQceOHREbG4vZs2dj4cKF2LlzJwBgwYIF6NOnDxD155uHA48++iieeeYZFBUVAQDeeOMNjBs3DjfccAO6du2K0aNH4+6778aMGTN8+iU7Oxs7d+7Ef/7zH/Tp0wfdu3fHY489htLSUvzyyy/1YhMSEtC2bVvvV2MTUiq4XK4jvjp16gSg8TkBM7CS/mXhpJQCBQUFPq855ZdRfn4+PvjgA+Tn59u6DyPrB1LLn1yVHNlYmTh6wD49UP/qcdS/vfqgB9TjnOAB6t/cWtS/ftAD5tbyJzc7OxsAUFlZ6X0tLCwMkZGRWLVqFQCgoqICLpcLZWVl3vrR0dFwu931YiIjI+F2u719VFVVAUC9mOjo6HrvHxMTg/Lycvz888+Nxhw4cAB79+5t8DO0atUKPXv2xPz581FSUoLq6mo8//zzSE5OxoABA+rFTpo0Ca1bt8agQYPw3HPPGXauW1pamvdr586d6NatG44//ngAoP6DQcAbBR1A3V7IvLw8nzGpqakCgEhNTTWvsRBQU1MjysvLRU1Nja37MLJ+ILX8yVXJkY2ViaMH7NMD9a8eR/3bqw96QD3OCR6g/s2tRf3rBz1gbq2mctHAmVLl5eWiY8eO4sILLxS5ubmioqJCPProowKAGDlypBBCiMzMTBEfHy9uueUWkZubKwoLC8VNN90kAIjrrrtOCCHE1q1bRXh4uHj88cdFWVmZSEtLE+edd54AIB555BEhhBBLliwRbrdbIPrPM52aQZx88skCgHj77beFEEI8//zzIjY2VixbtkzU1NSI7du3i2OOOUYAEN9//73Pz37gwAExYMAA4XK5RFhYmGjXrp3YsGFDvZiHHnpIfP/992LDhg1i1qxZIjY2Vjz00EONjmmnTp1EZGSkaNasWb2viIiIBs+Uqq2tFeedd54YMGCAKC4uFuItUP8KyJ4pxZVSCrjdHC63242oqKiQj0Ww+zCyfiC1/MlVyZGN1eW+64AOY0H9G5ND/aujy1jQA8bk0ANq6DIO1L8xOdS/OrqMBT3gm6ioKHz44YfYsWMHWrZsidjYWKxYsQJnnXUWwsLCAABJSUl4//33sXjxYrRq1QqJiYkoKChA//79vTG9evXC66+/jtmzZyMuLg6dOnXCUUcdheTkZG/MyJEjMXPmTKD8zzcvAUaPHg0A3piJEydi0qRJOOeccxAZGYnBgwdj/Pjx9WL+jhAC//rXv9CmTRusXLkSP/74I8aOHYtzzjkHaWlp3rgpU6ZgyJAh6Nu3L+644w48+OCDnn6a4K677sLGjRvrfd1www0Nxt57771Ys2YNFn30EZqVlQFZgDs3Fwjhqkgr6V/6PU17JxuQl5fn85pTHgWbl5eHhQsXNjoWdujDyPqB1PInVyVHNlYmjh6wTw/Uv3oc9W+vPugB9TgneID6N7cW9a8f9IC5tfz1wJ49e/DNN98gPz8faWlp+PLLL5GTk4MuXbp440aOHImffvoJL7/8Mnbu3Ik33ngDBw8erBdz2WWXIT09Hb/88gtefvll3HrrrcjKyqoXc/vttwNxf/4QB4wdOxYAvDEulwszZsxAcXEx9u7di/T0dO82uM6dOzf4GZYvX47FixdjwYIFOOmkk9C/f3/MmzcPMTExeP31131+9sGDB6OwsBAZGRmNjlHr1q3RrVu3el8tW7Y8Iu7NN9/EnDlz8NH48Wg/YgSQlARMhud7z57A//4HhGArn5X0LwsnpRQQNt8nLkNtbS1KSkpC/ks32H0YWT+QWv7kquTIxupy33VAh7Gg/o3Jof7V0WUs6AFjcugBNXQZB+rfmBzqXx1dxoIekMtp0aIFkpKSsGPHDvz000/eCaPDY8PCwtC8eXMsX74cmZmZGDNmzBE1W7dujdraWnz44YeIjo7GiBEj6ge4/vr+zjvvoEOHDujfv3+9kLCwMKSmpiIyMhLvvPMOhgwZgjZt2jT4GUpLSwEcuUvJ7XY3OhYbNmxAdHQ0EhISfMbIsmbNGlx7zTV43uXC4KefBvr2RdHLLwP3wPO9b1/gzjuBTp2AJUsCfj8VrKR/aQLeKOgAZPZCOmUvOSG+oAeIk6H+idOhB4iTof6JWRQVFYkNGzaIDRs2CADiiSeeEBs2bBB79+71xrz33nvim2++Ebt27RKLFi0SnTp1Eueff369Oq+88opYs2aN2Llzp3jjjTdEy5Ytxe23314vZu7cueLnn38W27dvF08//bSIiYkR//vf/+rFPP744wKxf54pFQkRERFR75yrrKws8eyzz4pt27aJDRs2iFtuuUVER0eLH374wRvzww8/iB49eogDBw54c1q1aiXOP/98sXHjRrF9+3Zx5513ioiICLFx40YhhBCffPKJeOGFF8SWLVvEzp07xYsvvug9J6sxOnXqJObMmXPE6w888ID3TKm0tDSRnJgoJrhcIu3000Xapk0iLS1NZGZmCvHWYdMnaWlCjB4tRHi4EF9+2ej7OhXZM6XCzZv+IoQQQgghhBBCiD/89NNPGD58uPfn22+/HQAwYcIEvPbaawA8T467/fbbkZGRgZSUFFx55ZX473//W6/O9u3bcc899yA3NxedO3fGfffdh9tuu61ezI8//ogHHngAxcXFOOaYY/D888/jiiuuqBfzxRdfAKV//lANfLz4Y5x11ln1Yl5//XXceeedEEJgyJAhWLFihXcLH+BZGbV9+3bv0/1at26NL7/8Evfddx9OO+00VFVVoVevXvj4449x3HHHAQAiIiIwb9483H777aitrUXXrl3x4IMP4qabbvJvYA/jt59+QkZeHl4H8PrXXwN/vmenTp2w55HDAtu2BRYtAsaNAy6+GNi7FzBglZYjMWeOzNrUzfBt377dZ0xKSooAIFJSUkzszHwOHTokHnroIXHo0CFb92Fk/UBq+ZOrkiMbKxNHD9inB+pfPY76t1cf9IB6nBM8QP2bW4v61w96wNxaVvEAmv+5Uqq5TaYWnnzSs/opLa3ey4cOHRLiLRw5DocOeeL/toosWFhJ/3z6XhBo3ry5z2sul6ved7sSHx+PkSNHIj4+3tZ9GFk/kFr+5KrkyMbKxNED9umB+lePo/7t1Qc9oB7nBA9Q/+bWov71gx4wt5aVPGAbhACefRa44ALPSqjDiI+PR5XAkeOQkgKcfz4wb54pT+Wzkv5lcQnB07uborCwEC1atEBBQYHPm9O+fXscPHgQqampOHDggMkdEhJ66AHiZKh/4nToAeJkqH/iZFzxLqAIQHNAFFp8aiE72/N0vffeAy66qN6l25fcjud+mIOnznkR1/a/tn7ee+8Bl1ziyW/VysSG9UZmHgXg0/eUKC8v93mtbm7P7nN85eXl+P333xsdCzv0YWT9QGr5k6uSIxsrE0cP2KcH6l89jvq3Vx/0gHqcEzxA/Ztbi/rXD3rA3FpW8oBtKC72fE9MPOLSnLVzUCaAiZ9OPDKvLr6oKIjNebCS/mXhpJQC+fn5Pq855ZdRXl4e3nnnHeTl5dm6DyPrB1LLn1yVHNlYmTh6wD49UP/qcdS/vfqgB9TjnOAB6t/cWtS/ftAD5taykgdsQ1yc57vqZ62Lb+S4H6Owkv5l4fY9CeqWneXm5iKxgVlTwDnLdmtqalBaWorY2FiEhYXZtg8j6wdSy59clRzZWJk4esA+PVD/6nHUv736oAfU45zgAerf3FrUv37QA+bWsooHbLV9TwigZ0+gb19gwYJ6l1zT/jozTjzwt895ySXApk3Atm1AkM+Ws5L+ZbfvhQf0Lg4jlH/56kJYWFijB77bpQ8j6wdSy59clRzZWF3uuw7oMBbUvzE51L86uowFPWBMDj2ghi7jQP0bk0P9q6PLWNADxuTQAw3gcgE33gjceSeQnn7EYecNkpYGfPghMHt20CekAGvpXxZu31OA2/c8Y/DJJ580OhZ26MPI+oHU8idXJUc2ViaOHrBPD9S/ehz1b68+6AH1OCd4gPo3txb1rx/0gLm1rOQBWzFhAhAbC1x7LVBd3XhsdTUwcaIn/sorTWnPSvqXhZNSCtTU1Pi85pRfRtXV1cjKykJ1Uwa1eB9G1g+klj+5KjmysTJx9IB9eqD+1eOof3v1QQ+oxznBA9S/ubWof/2gB8ytZSUP2IqEBM/T9JYsAcaN86yEaoi0NM/1JUuA99/35JmAlfQvC8+UkkBmL6RT9pIT4gt6gDgZ6p84HXqAOBnqnzgZW50pdThLlgAXXwyUlgLnn4+La99DXgyQWAa8577Ys2UvNtYzITVyZKi71RKeKUUIIYQQQgghhBCiyqhRwN69wPz5wLx5eG/7Ydd6bPKcITVhAtCiRchatAvcvqdARkaGz2u1tbX1vtuV9PR0zJgxA+np6bbuw8j6gdTyJ1clRzZWJo4esE8P1L96HPVvrz7oAfU4J3iA+je3FvWvH/SAubWs5AHbkpAA3HILsG0bWv0b6Hwr0Orf8Dxl75ZbQjIhZSX9y8KVUgo0a9bM5zXXnyftu0w4cT+UxMXF4eSTT0ZcXJyt+zCyfiC1/MlVyZGNlYmjB+zTA/WvHkf926sPekA9zgkeoP7NrUX96wc9YG4tK3nA9rhcyI0FcmP/+jlUWEn/svBMKQl4phQhTUMPECdD/ROnQw8QJ0P9Eydj2zOl/oZr2l8TUeIB+35OI5E9U4rb9xSoqKgIdQshp6KiAnv27An5WAS7DyPrB1LLn1yVHNlYXe67DugwFtS/MTnUvzq6jAU9YEwOPaCGLuNA/RuTQ/2ro8tY0APG5NAD1sRK+peFk1IK5OXl+bzmlL3kubm5eP3115Gbm2vrPoysH0gtf3JVcmRjZeLoAfv0QP2rx1H/9uqDHlCPc4IHqH9za1H/+kEPmFvLSh4g5mEl/cvC7XsS1C07y8nJQcuWLRuMccqy3erqahQWFiI+Ph7h4aE7kizYfRhZP5Ba/uSq5MjGysTRA/bpgfpXj6P+7dUHPaAe5wQPUP/m1qL+9YMeMLeWVTzA7XvmYiX9y27f46SUBDxTipCmoQeIk6H+idOhB4iTof6Jk+GkFPEFz5QKAgUFBT6v1c3t2X2Or6CgAF988UWjY2GHPoysH0gtf3JVcmRjZeLoAfv0QP2rx1H/9uqDHlCPc4IHqH9za1H/+kEPmFvLSh4g5mEl/cvCSSkFqqqqfF5zyi+jyspK7NmzB5WVlbbuw8j6gdTyJ1clRzZWJo4esE8P1L96HPVvrz7oAfU4J3iA+je3FvWvH/SAubWs5AFiHlbSvyzcvicBt+8R0jT0AHEy1D9xOvQAcTLUP3Ey3L5nMrU1QOa3QNvTQteDJNy+RwghhBBCCCGEEGIXKjKB5aeHugtD4aSUApmZmT6vOeVRsBkZGXjiiSeQkZFh6z6MrB9ILX9yVXJkY2Xi6AH79ED9q8dR//bqgx5Qj3OCB6h/c2tR//pBD5hby0oeIOaRlZUFAJbQvyyclFIgJibG5zWXy1Xvu12JjY1F//79ERsba+s+jKwfSC1/clVyZGNl4ugB+/RA/avHUf/26oMeUI9zggeof3NrUf/6QQ+YW8tKHiDmUTcnYQX9y8IzpSTgmVKENA09QJwM9U+cDj1AnAz1T5wMz5QymbI04KN2wGX6jzXPlAoCfOKAZwwOHjwY8rEIdh9G1g+klj+5Kjmysbrcdx3QYSyof2NyqH91dBkLesCYHHpADV3Ggfo3Jof6V0eXsaAHjMmhB6xJ3X2wgv5l4aSUAiXb3wb2vgfsfRfY8w6w521g95vA7jdRW10GAKitqQZsvPgsJycHL730EnJycmzdh5H1A6nlT65KjmysTJxTzlPQwQPUvzE51L86OujfjD7oAfU4J3iA+je3FvWvH/SAubWs5AFiHnl5eQBgCf3Lwu17EtQtO8tZ/zRaJsQDcAMu15/f3QAE2p9wPQ5mFCA1KQYH3j/jz4kpAUS0AOK6AM27//UV1frPfOtRVVWF3NxctGzZEhEREbbtw8j6gdTyJ1clRzZWJs4pS9d18AD1b0wO9a+ODvo3ow96QD3OCR6g/s2tRf3rBz1gbi2reIDb98ylqnAfIhZ3QtVFldrrX3b7HielJPD7TCkhgKoCoHg3ULQDKN7p+V7uOTEfMSnAwGeAsEiTPgkhwcMp/yAjpCGof+J06AHiZKh/4mQ4KWUyPFPK2RQWFvq8Vje3V2+Oz+UCIhOAlv2AThcDve4FBr8KDFvs+WozDNj+ZFB7NprCwkIsW7as0bGwQx9G1g+klj+5KjmysTJxDXrAhujgAerfmBzqXx0d9G9GH/SAepwTPED9m1uL+tcPesDcWlbyADGPoqIiAI3PTQRCKO43J6UUqKio8HnNr19GnS8DMlcCJfsDbc00ysvL8euvv6K8vNzWfRhZP5Ba/uSq5MjGysQ55R9kOniA+jcmh/pXRwf9m9EHPaAe5wQPUP/m1qL+9YMeMLeWlTxAzKNuTsIK+peF2/ck8Hv7ngwFvwJbHwZOetugbgkJDVy6TpwM9U+cDj1AnAz1T5wMt++ZDLfvEcNpcSwQ2x5IWxrqTgghhBBCCCGEEEJMg5NSCmRlZfm8FtCjYHvfD/w6A6jxvT1QFzIzM/H0008jMzPT1n0YWT+QWv7kquTIxsrEOeVxyDp4gPo3Jof6V0cH/ZvRBz2gHucED1D/5tai/vWDHjC3lpU8QMwjOzsbACyhf1k4KaVAVFSUz2sul6vedyUi4oDuNwDbZvnbmmlER0fj6KOPRnR0tK37MLJ+ILX8yVXJkY2ViQvIAxZCBw9Q/8bkUP/q6KB/M/qgB9TjnOAB6t/cWtS/ftAD5taykgeIedTNSVhB/7LwTCkJgnqmVB1CAN+NAwb8D4jrHFC/hIQCnqdAnAz1T5wOPUCcDPVPnAzPlDIZnimlF507d4bL5ar39Z///KdezL59+3DuueeiWbNmaN26NW655RZUVlb69X5VVVVGtN0wLhfQ73Fg493Bew8DqKqqQmZmZnDHQoM+jKwfSC1/clVyZGN1ue86oMNYUP/G5FD/6ugyFvSAMTn0gBq6jAP1b0wO9a+OLmNBDxiTQw9Yk7r7YAX9y2LpSSkAePDBB5GWlub9mjJlivdaTU0NRo8ejZKSEqxatQoLFizAwoULcccdd/j1Xjk5OT6vGbKXPL4HEHcUcPAz/2sEmezsbDz77LPevax27cPI+oHU8idXJUc2VibOKecp6OAB6t+YHOpfHR30b0Yf9IB6nBM8QP2bW4v61w96wNxaVvIAMY/c3FwAsIT+ZbH09r3OnTtj8uTJmDx5coPXv/jiC5xzzjnYv38/2rVrBwBYsGABrrrqKmRmZja6hOxw6padZWVloXXr1g3GGLZst7oE+PZcYNjnQJh++3YrKyuRkZGB5ORkREZG2rYPI+sHUsufXJUc2ViZOKcsXdfBA9S/MTnUvzo66N+MPugB9TgneID6N7cW9a8f9IC5taziAW7fM5fKgr2I/KwzKi+s0F7/stv3LD8pVVFRgcrKSnTo0AEXXXQR7rrrLu/g3X///fj444+xadMmb05eXh5atmyJ5cuXY/jw4Q3WraioQEXFX0/CKywsRIcOHYJ7ptTh7HwBCI8HOo8PrA4hJuKUf5AR0hDUP3E69ABxMtQ/cTKclDIZG54pFW5iT4Zz6623on///khMTMSPP/6Ie+65B7t378ZLL70EAEhPT0dycnK9nMTERERGRiI9Pd1n3UcffRTTpk074vUFCxagefPmDeaUlpZ6v7/zzjv+fiQAQIQIwwmYjVVr9BNadXU1CgoK0KJFC4SHh04+we7DyPqB1PInVyVHNlYmzkgP6IwOHqD+jcmh/tXRQf9m9EEPqMc5wQPUv7m1qH/9oAfMrWUlD9RhZ/0fTig/Z0R1Ni4MA9544w3t9V/3d2OTCM144IEHBIBGv9atW9dg7gcffCAAiOzsbCGEEBMnThQjR448Ii4iIkK88847PnsoLy8XBQUF3q/9+/cLAGLHjh0+c1JSUgQAkZKSoviJfbD6CiGK9xlTy0DS09PFrFmzRHp6uq37MLJ+ILX8yVXJkY2ViTPcA5qigweof2NyqH91dNC/GX3QA+pxTvAA9W9uLepfP+gBc2tZxQNo/ud/pzfXbmrBUDAV3q9Qkrl3kxBvwRL6LygoEABEQUFBo3Habd/Lzs5u8lCtzp07Izr6yPOWDh48iPbt22Pt2rU44YQT/N6+93dklp0Zvmw3fRmQ/QPQ+77AaxFiAly6TpwM9U+cDj1AnAz1T5wMt++ZDLfvBZ/WrVv7PEy8KTZs2AAASElJAQAMGTIE06dPR1pamve1pUuXIioqCgMGDDCm4WCRfBrwy2NAr3sBl6vpeEIIIYQQQgghhBAL4Q51A/6yZs0azJkzBxs3bsTu3bvx3nvv4frrr8eYMWPQsWNHAMDIkSNx7LHH4oorrsCGDRvw9ddf484778TEiROln7x3OKY+CtblBpJOBLJWG1PPILKysvD8888jKyvL1n0YWT+QWv7kquTIxsrEOeVxyDp4gPo3Jof6V0cH/ZvRBz2gHucED1D/5tai/vWDHjC3lpU8QMwjJycHACyhf1mkJqXCwsIC/nrwwQcNbTwqKgrvvvsuhg0bhmOPPRb3338/Jk6cWO/QsbCwMHz22WeIjo7GSSedhIsvvhjjxo3DrFmz/HrPiIgIn9dcf65mchm5qqnLBGD3a8bVM4DIyEi0b98+pI+BNaMPI+sHUsufXJUc2ViZuKB4QEN08AD1b0wO9a+ODvo3ow96QD3OCR6g/s2tRf3rBz1gbi0reYCYR92chBX0L4vUmVJutxudOnVC586dld9ACIHvvvsOU6dOxf333+9PjyEnJGdK1bHiHODkd4HwZsbVJCQI8DwF4mSof+J06AHiZKh/4mR4ppTJOPlMqauvvtrvSSW327K7BOtRXV1t/pt2vBDYtxDoeqX5790A1dXVKC4uRlxcXMgfBRvMPoysH0gtf3JVcmRjdbnvOqDDWFD/xuRQ/+roMhb0gDE59IAauowD9W9MDvWvji5jQQ8Yk0MPWJPq6mqE133XXP+y2GO2yCRMPVOqjg4XAvveN7ZmAGRlZeF///tfyPcUB7sPI+sHUsufXJUc2ViZOCedpxBqD1D/xuRQ/+rooH8z+qAH1OOc4AHq39xa1L9+0APm1rKSB4h5mHGmlNn3W2r7Xk1NDdxut9/7pAPNDzV1y84yMzORlJTUYExQl+2uvQboPQWI62psXT+oqKjwfs6oqCjb9mFk/UBq+ZOrkiMbKxPnlKXrOniA+jcmh/pXRwf9m9EHPaAe5wQPUP/m1qL+9YMeMLeWVTzA7XvmUpG/B1Gfd0HFBeXa6192+57UpJTTCemZUgCQ+R2Q/jXQZ5qxdQkxEKf8g4yQhqD+idOhB4iTof6Jk+GklMnY8Ewpv7bvfffdd/jpp58ajdm3bx++++47f8prS3Fxsc9rdXN7QZnjSzoFyFoNiNAvCS4uLsaaNWsaHQs79GFk/UBq+ZOrkiMbKxMXVA9ohA4eoP6NyaH+1dFB/2b0QQ+oxznBA9S/ubWof/2gB8ytZSUPEPMoKSkB0PjcRCCE4n77NSk1bNgwnHDCCbj11lt97p1+9dVXMXz48ICa0406ATREUH8ZuVxAm6FAxgrjaytSXFyMFStWhPwvpWD3YWT9QGr5k6uSIxsrE+ekf5CF2gPUvzE51L86OujfjD7oAfU4J3iA+je3FvWvH/SAubWs5AFiHmZMSpl9v/3avud2u9G8eXMUFRVh1KhRePfdd49YjjVt2jQ8+OCDqKmpMazZUBHy7XsAULIP2PxfYMjrxtcmxAC4dJ04GeqfOB16gDgZ6p84GW7fMxlu3/uL2267DXfccQeWLFmCIUOGYPfu3f6WIjI06wjA5TlfihBCCCGEEEIIIcTi+D0p5Xa7MXPmTLz00kvYuXMnTjjhBKxcudLI3rSj7vGLDWHKo2AHPg1sfQgo/iN479EE2dnZeOWVV5CdnR2yHszow8j6gdTyJ1clRzZWJs4pj0PWwQPUvzE51L86OujfjD7oAfU4J3iA+je3FvWvH/SAubWs5AFiHjm5njkJK+hfFr8npeq45ppr8NVXX6G2thYjRozAK6+8YkRfWhIWFubzmsvlqvc9KETEASe8AvwwEagsCN77NEJ4eDhatmyJ8PDwkLy/WX0YWT+QWv7kquTIxsrEmeIBDdDBA9S/MTnUvzo66N+MPugB9TgneID6N7cW9a8f9IC5tazkAWIe4WGe+2AF/Usj/MDlcolp06bVe23nzp3imGOOEW63W9x5553i/vvvF26325/y2lFQUCAAiIKCAp8xqampAoBITU0NfkNZa4X49jwhaqqC/16ESGKqBwjRDOqfOB16gDgZ6p84jUceeUQMHDhQxMXFCbggAAg0qz+1cM8994hWrVoJl8slAIg2bdqIL7/8sl7M2rVrRYcOHYTb7RYARHJysvj+++/rxSxatEgkJSV563Tp0kXs2rWrXsyzzz4rWrRoIQAIl8sl+vTpI/Ly8urFTJkyRcTGxgoAwu12i6FDh4qqqvr/Pf3uu++K4447TsTExIg2bdp4PlcDXz/++KM358cffxR9+vQRYWFhAoCIiIgQw4cPb3T8oqKixKmnnnrE62PHjm16DqXkoBBv+TWNYzoy8yhCCBHwSqk6jjrqKPzwww84/fTTMXv2bMyZM8eo0tqgzaHtrU8AOl4EbLjL9LeuqalBSUlJyMci2H0YWT+QWv7kquTIxupy33VAh7Gg/o3Jof7V0WUs6AFjcugBNXQZB+rfmBzqXx1dxoIeMCYnEA98++23uOmmm7B27Vog5s8XS/96MpwQAvPmzUOrVq3w9ttvY9GiRYiOjsbo0aORmZkJwPOUt6FDh6K0tBRvvvkmPv74Y0RHR2PYsGEoKioCAOzcuRPnn38+4uLisGjRIrz99tsoKCjAwIEDvdtlly1bhhtvvBHdu3fHkiVL8Oyzz2LHjh04/vjjvf3OmzcPDz/8ME477TR8/fXXmD59OlatWoVRo0Z5Y7744gtcfvnluOGGG7B161Y8//zzSEpKwvTp05GWlgbcAaA/gARg4MCBAICioiKcdtpp+O233zBlyhQsXrwYw4cPx/r161FVVdXkPfCHmlrPfbCC/mUxbFIKAOLj4/HFF1/gxhtvtOUjI7OysnxeM30veedLgYjmwM4XzHm/P8nMzMSsWbO8f5mEimD3YWT9QGr5k6uSIxsrE+eU8xR08AD1b0wO9a+ODvo3ow96QD3OCR6g/s2tRf3rBz1gbi2dPfDll1/iqquuQq9evYC6E24E8PPPPwMAduzYgYKCAnz44YcYP348xo4dix9++AE1NTWYNWsWAOC9995DRUUFPvvsM1x66aUYM2YMfvrpJ1RWVuKBBx4AADz99NOora3F+vXrMWbMGFx66aX46KOPkJeXhzfeeAMAMHv2bISHh+OHH37AyJEjcf3112P69OnYsWMHNm7cCAB45plnkJiYiE8//RSnnXYa/vOf/2DChAlYvnw5CgsLAQBvvPEGxo0bhxtuuAFdu3bFuHHjcO+99+LZZ59FcnIyEAtgO4B+f23V/eWXX1BcXIyHH34YU6dOxejRozFr1iwUFBRg3759MresUVwu1xFf4c07eu9LMAiFz/3aKNjYX7hhYWF45plncNVVV6G0tNTvxnQkISHB57WQ7CX/x1Tg+yuA7DVAdDIQ1QaITvrre3QbICoJCIsy7C0TExMxfvx4JCYmGlZTxz6MrB9ILX9yVXJkY2XinHKegg4eoP6NyaH+1dFB/2b0QQ+oxznBA9S/ubWof/2gB8ytZSUP1NGyZUsAQEVFBQAgOjrae61u0cr27dsB/LWqqnnz5t6YZs2aAQCWL18OACgrKwMAxMTEeGNatGgBAPjoo48wYcIEVFRUwO12w+3+a71NXc0FCxagb9++qKysPOKMpLr3+vzzzzF+/HhUVFQgNja2XkxMTAwOHDiAvXv3eiakSgH0/et6XX+rVq3Cm2++iYyMDERHR6Nbt27o1KlTk+PVFFu2bPHOvRQVFeGMM85A87hmAHIsoX9pzNlNaG20O1PqcGprhCjLFCJvqxDp3wix510hfpsrxKb7hfjhBiG+u0CIb84R4uuRQmx/2hNPSBDgeQrEyVD/xOnQA8TJUP/EySDuz7OWwv6aWqisrBSdOnUSF110kcjNzRXl5eXimGOOEQDEyJEjhRBCHDx4ULhcLtG9e3dx4MABkZubKwYPHiwAiPbt2wshhPjuu+8EAHHyySeLvLw8sX//ftG1a1cBQAwaNEgIIcTzzz8vAIhLL71UlJaWiq1bt4pWrVoJAOKSSy4RQghx6623CgDi3nvvFZWVleK7774TMTExAoCYOnWqt05sbKxYtmyZqKmpEdu3b/f2/P333wt0g+dr6l+f85133hEARHh4uHC73cLtdov4+HiRkJAgcnJyfI5ZVFSUz/OqGjpTqra2Vhx11FEiMjJS7N2+jmdKOZm62dyGEELU+24aLrdnVVRCLyB5GNDpYqDHJKDPNOD4Z4FTPgCGfQoM/wIQtcB35wEl+/1+u5KSEvz000+NjoUZBLsPI+sHUsufXJUc2ViZuJB5wGR08AD1b0wO9a+ODvo3ow96QD3OCR6g/s2tRf3rBz1gbi3LeKDiz+9/LYpCREQEFi5ciN9//x0tW7ZETEwM9uzZg+HDh3ufaN+uXTvMnTsXe/fuRfv27dGyZUvs3bsX8fHx3lVPp5xyCu6++26sWbMGiYmJ6NChA6KiohAeHu6tc9111+Hyyy/HggULEBsbi969e+PYY48FAG/MnDlzMHz4cDzyyCOIjIzEqaeeihNPPNHbKwBMnDgRkyZNwjnnnIPIyEgMHjwY48ePBwBkZ2cDu+A5U+owysvLAXjOmFq7di1Wr16N008/HUVFRXjrrbcaHdc+ffpg2bJl9b7qevo7Z599Nv744w98+vHHaJ2bB/wGlGzYAARhy3AofC49KRUWFqb8ZbfHRtYduNYQ2v8ycrmBHjcD/R4HfpwI/DEf8KPXwsJCfP755969t6Ei2H0YWT+QWv7kquTIxsrEae8Bg9DBA9S/MTnUvzo66N+MPugB9TgneID6N7cW9a8f9IC5tazggZtvvhmo/vOHv80sDBgwABs3bsTEiRPRtm1b/PrrrygpKUGXLl28MTfddBMqKiqwa9cu7NixA4cOHUJZWRlSU1O9MY899hiqq6vxyy+/YP/+/Vi3bh2qq6vRrVs3b8ybb76JmpoabNy4EZmZmd6HrvXu3RuAZ2vt8uXLUVVVhZ9++gn5+fm46KKLvH3WxcyYMQPFxcXYu3cv0tPTvYelr1692nOge4/6n/GXX34BAMyYMQODBg3C4MGDsWDBAggh8PXXXzc6rgkJCTj99NPrfSUlJR0Rd9999+HLL7/EIz17YuTYsYgdMhJ4CGjWvz8QEwOcfz6wd2+j76VCKHzuEpJ/ex5zzDFH7JPOzs5GTk4OevTo4SML2LZtW2AdakBhYSFatGiBgoICxMfHNxjTvn17HDx4EKmpqThw4IDJHSpSWw1sexzI2wj0fwKIbR/qjogNsJQHCDEY6p84HXqAOBnqnzgNIQRuvvlmfPTRRzhUcAgoAdAcEIWiwZgVK1YA8MwpfPHFFxg5cmSDdefPn48JEybgpZdewj//+c8GY+666y7MmjULP/74IwYNGtRgzJgxY7B48WJkZWWhVatWDcb06dMH27dvR2lpqXdF1d+58sorsWPHDmRkZGB3293Anw/rEw94PufMmTPx73//Gy+++CKuvfZaAJ5zppo1a4ZrrrkGL730UoN1o6OjccIJJ+Dbb7+t9/q4cePw6aefep989/777+Piiy/GOAAfAUCHDsC4s4CsF4CU24APPgD2/7kL6uGHgfvua/D9QoXMPAqgcND5b7/9dsRrU6dOxUMPPWSLiSdH4Q4Het0LFPwK/HAd0O4soPu/AHfDZiSEEEIIIYQQQgDPCqe3334bH3/8MYaNHuZ5sdYzIVN3KPmZZ56J1atX48UXX8Tq1avx3//+F2eeeSZOOeUUb51//etf6N27N3r27IlPPvkETz31FLp161ZvQur//u//MGLECKSmpuKNN97A/PnzMWzYsHoTUuPGjcOll16KuLg4PPvss/jss8/wz3/+0zshlZ2djeuuuw5XXXUVqqqqMGvWLGzZsgUzZszwTkgtXboUV155Jd599120aNECr776Kt5//33MmjULkyZNAs4GcADAR8DBaz2T0Oeeey7uueceTJ48GQDQtm1b75/vuOOOgMZ49+7duPSSS9AWwNTERGx+4QXg6KPhrsxB799fAC57AnjiCWDzZmDECGDKFE+iZhNTUgRycNXUqVMbPIjLbtQd0LV7926fMSkpKQKASElJMa8xI6itEWLHC56D0HM3NBmenZ0t3njjDZGdnR383kLYh5H1A6nlT65KjmysTJxlPaCIDh6g/o3Jof7V0UH/ZvRBD6jHOcED1L+5tah//aAHzK2lswfg45DuV199VSnm9NNPF26323tY+BlnnCHKy8vrvX+vXr2Ey+USAERkZKS49NJLRW1tbb2Y5ORkb0xsbKy444476l3PysoS8fHx3h7i4+PFE088US9m0aJFAoCIiYkRsbGx4vTTTxdr164Vl156qTjxxBMFpkJgAo6YF/j8889Fu3btvO+fmJgo3nrrrUbHNCoqSpx66qlHvD527Fjv/Mo7Tz3lcwzFW6h/38rKhGjTRghAiD17Gn3vpjBS/7IHndvr0KcgY8vHvLrcQLeJQOoY4OebgeThQPcbfYa73W5ERUXVe+RmKAh2H0bWD6SWP7kqObKxutx3HdBhLKh/Y3Kof3V0GQt6wJgcekANXcaB+jcmh/pXR5exoAeMyQnEA+KwE4Bc8S6gCEBz4KqrrmowxhfLli1rMmbr1q1NxqSnpzd6vXXr1igoKGg0ZuzYsQ32/PbbbwMAXNNcQBcAU4HOnTt7r5911lk4ePBgkz0eTt0B6X9n0aJF3j+P/+YbjAeATZuAPn28r+enbQO+Obb+fYuOBpYsAfr1A26/HVi4UKmfwwmFz6XPlGqIadOm4cEHH/TuebQrtjtTyheiFtj6MFCeDgz4H+COCHVHxELYwgOE+An1T5wOPUCcDPVPnMzhk1KHnyllN1zT/lqgUnemVNCorfUcYp6cDOzbV+/S+t1LsPqLM3HFNXlIiE6on9exI5CRAZSVARpMpMueKRX6Ti1EbRAeuagVLjfwj/uBtmcA350HlGcfEVJbW4vKysqQj0Ww+zCyfiC1/MlVyZGN1eW+64AOY0H9G5ND/aujy1jQA8bk0ANq6DIO1L8xOdS/OrqMBT1gTA49oDE7dgCVlcCFF9Z7ubSqFAPmn4lbsoAbFzewu+mCCzx5u3b5/dahuN+clFJgz8E9KCgvQE5pDtKL03Gg8AD25O/B3vy93tVitjBrh/OB46YDqy4CSvbXu5SRkYFHH30UGRkZIWrOnD6MrB9ILX9yVXJkY2Xi6rRvCw80gg4eoP6NyaH+1dFB/2b0QQ+oxznBA9S/ubWof/2gB8ytZSUPEIPJyvJ8b9u23su7cv+abFrwy4Ij85KTPd8DuFehuN/SZ0plZmYe8VpxcTEAICsry+ee0TZt2vjZmn70e7MfEN3wtaiKKAA2Oncq8TjghJeAtVcDp34ERDQHACQkJOD8889HQkJCSNsLdh9G1g+klj+5KjmysTJxddq3jQd8oIMHqH9jcqh/dXTQvxl90APqcU7wAPVvbi3qXz/oAXNrWckDxGCSkjzfmzgr6wjqJpLqJqf8IBT3W/pMKbfb3eBftEIIn38Bu1wuVFdXB9ahBtTthcR/4HNSCrMBFMF+e8mzvge2zQJOfg9w81x84huep0CcDPVPnA49QJwM9U+cDM+UCgI+zpTakrEFfZ7769DzI/qw+5lSp556aoNfQ4cO9XntlFNOMeTD6MLJHU7GyKNGYnT30RjbYywu6HkBLuh5Qb2Y6lrrT8LVI+lEoPOlwM+3AkKgrKwMmzdvRllZWUjbCnYfRtYPpJY/uSo5srEycXXz2wE8O8ES6OAB6t+YHOpfHR30b0Yf9IB6nBM8QP2bW4v61w96wNxaVvIAMRi3Gxg9Gti/H9i8WS5n40ZP/DnnBDQhFYr7Ld3tihUr8M033yh/2YmXz3gZS/5vCRZfthiLxi/CBxd/gA8u/gAT+0/0xuSX54euwWDR8SKgWUdg20zk5+Xho48+Qn5+fkhbys/PD2ofRtYPpJY/uSo5srEycU75B1mwtadDD9S/ehz1b68+6AH1OCd4gPo3txb1rx/0gLm1rOQBEgTmzPF8HzECKC9vPLa8HBg1yvPnJ54I6G1Dcb+lt+998803OPXUUxEWFhbsnrSjbtlZfn6+Zxvf38gry0PrlNaoLagFmgMf/vAhzut5Xgg6DSJCAL88ApHzA2qO+Q/C2gwJ6b55IQRqamoQFhYWlD6MrB9ILX9yVXJkY2XinLJ0Pdja06EH6l89jvq3Vx/0gHqcEzxA/Ztbi/rXD3rA3FpW8QC37wWR6dOBKVOANm2AJUuwJSXsyO17Gzd6JqQyM4FHHgHuuSegtzRS/7Lb96QPCTr99NORmJiI0aNHY+zYsRg1ahTi4uICatJq+LopiTGJSIhKQC5yAQA3f3EzTu96OuKjfA+85XC5gN73wVWWjvCtDwM7ngKOud1zIHpYVAjacSE8PHhnXBlZP5Ba/uSq5MjGBnu8rYQOY0H9G5ND/aujy1jQA8bk0ANq6DIO1L8xOdS/OrqMBT1gTA49YAHuu8/zfcoUoF8/9GjXFk90ANLjgLbFAF7u6NmyBxgyIQWE5n5Lb997++23MXLkSHz66ae46KKLkJSUhLPPPhsvvPACDh06FMwetSEvL8/ntajDJmYOFh3EfV/fZ0ZLppNXHoV3/zgFBZ3/DRz8GFh9KbBiNLD6MqA827w+8vLw7rvvNnpPdKkfSC1/clVyZGNl4pzyOORga0+HHqh/9Tjq31590APqcU7wAPVvbi3qXz/oAXNrWckDJIjcdx+wZw9w/vkIz8rGbT8AM74GbvsBnkPNzz8f2LvXkAkpIDT3W3oKbPz48Rg/fjyqq6vxzTff4OOPP8ann36KL7/8Ei6XCwMHDsS4ceMwZswY9OrVK5g9hwyZnY4ulwsCAs+sewaX97kcg9sPNqEz86hbzlcT2xloP/2vCztfALJWAR3GmdpHsPbuG1k/kFr+5KrkyMYGe7ythA5jQf0bk0P9q6PLWNADxuTQA2roMg7UvzE51L86uowFPWBMDj1gITp1AhYuxC9pm3Deo33RttizWmrnk8Y/ZS8U91v6TClfbNiwAYsWLcInn3yCTZs2weVyoUuXLt4JqpNPPhluDR5HGAgyeyHr9pK3SGqBgpsKAAC92/TG+uvWIyIswsx2Q0P2j0Dal8A/7g91JyREOOU8BUIagvonToceIE6G+idOhmdKmceWjC1HnimlMbJnSgU8W9SvXz9MmzYNGzZswJ49ezBnzhx07twZTz31FIYPH47k5GRcddVVgb6NZYiLjEP/lP4AgK2ZWzF7zewQd2QSCb2Agq2h7oIQQgghhBBCCCEWwdAlTB07dsQtt9yCZcuWISsrC/Pnz8fw4cOxaNEiI98mZKSnp/u8dvhe8hfOeQFul2dop307DTtzd5rSnxmkpaVh2rRpSEtLq38hvBlQXRr6PjSsH0gtf3JVcmRjZeKccp5CsLWnQw/Uv3oc9W+vPugB9TgneID6N7cW9a8f9IC5tazkAWIfQnG/g7avrkWLFrj88svx3nvvISsrK1hvYyqNLTmrezKfy+XCgHYDcOsJtwIAyqvLccPiG2yzB7dFixY499xz0aJFiyMvhscC1SWh70Oz+oHU8idXJUc2VibucA/YmWBrT4ceqH/1OOrfXn3QA+pxTvAA9W9uLepfP+gBc2tZyQPEPoTifgd8plQdq1atwvr161FbW4tTTjkFAwYMMKKsFqicKVW3l7y4shi95vXCvoJ9AICHhj+EKadOMbNt89nyIJByJtD6+FB3QkIAz1MgTob6J06HHiBOhvonToZnSpkHz5QC8Nxzz6FLly6Ii4vD0KFDsXXrVlRWVuLcc8/F0KFDcdttt+GOO+7A8ccfj+uvvz7gD6EbZWVlPq/Vze3VfY+LjMPz5zzvvf7fb/6Ld7a8E9wGTaCsrAzbtm1reCwS+gD5m0Pfh2b1A6nlT65KjmysTNzfPWBXgq09HXqg/tXjqH979UEPqMc5wQPUv7m1qH/9oAfMrWUlDxD7EIr7LT0p9cknn+Bf//oX9u7di+joaKxcuRLnnXceZsyYgc8++wwnn3wybr/9dlx11VVo0aIFXnrpJbzxxhvB7N10CgoKfF5r6JfRmd3OxIwzZnh/vvrjq/H9/u+D16AJ5Ofn47333kN+fv6RFxP+YdqkVKN9aFY/kFr+5KrkyMbKxDnlH2TB1p4OPVD/6nHUv736oAfU45zgAerf3FrUv37QA+bWspIHiH0Ixf2W3r43atQorFq1Ct9++y0GDhyIn3/+GUOHDoXb7cY111yDJ5980hu7b98+9O7dG/3798eKFSuC1Lp51C07y8vLQ0JCQoMxvpbtCiEw8dOJeHnDywCApNgkrL12LbomdjWjdcOpra1FRUUFoqKi4Hb/bU5T1ALfjgGGLQ5tH5rVD6SWP7kqObKxMnFOWboebO3p0AP1rx5H/durD3pAPc4JHqD+za1F/esHPWBuLat4gNv3zMOM7XtG6t/w7Xvr16/HmDFjMHDgQADAgAEDcO6556KkpAS33nprvdiOHTti3Lhx2LzZnFUzZuHPTXG5XJg3eh5O63IaACCrNAvnvH0O8svzDe7OHNxuN2JiYhoeC5cbgABM+L9EjfahWf1AavmTq5IjGxvs8bYSOowF9W9MDvWvji5jQQ8Yk0MPqKHLOFD/xuRQ/+roMhb0gDE59ABpiFDcb+l3ysvLw1FHHVXvta5dPat9OnbseER8p06dUFhYGGB7epGXl+fzWmOPgo0Mi8QHF32AHq16AAC2ZW/DRe9fhKqaquA0GkTy8vLw4Ycf+h6L2PZA2cHQ96FR/UBq+ZOrkiMbKxPnlMchB1t7OvRA/avHUf/26oMeUI9zggeof3NrUf/6QQ+YW8tKHiD2IRT3W3pSqra2FpGRkfVeq/s5LCzsiPjw8HDb7asO5PMkxiTis8s+Q6uYVgCAZX8sw02f32S5MaqtrUVhYaHvX7oJfYC84K+Qa7IPjeoHUsufXJUc2dhgj7eV0GEsqH9jcqh/dXQZC3rAmBx6QA1dxoH6NyaH+ldHl7GgB4zJoQdIQ4TifkufKeV2uzF16lTcf//93temTZuGBx98EDU1NUfEN3bNasjshZTdS75q3yqcPv90VNZUAgBmj5yN24fcHpS+Q0LmSiBrNdDrP6HuhJiMU85TIKQhqH/idOgB4mSof+JkeKaUeWzO2Izjnjsu5H3IInumVLhK0a1bt+K9996r9zMAvP/++0es+Km7RupzcseT8cqYV/B/H/0fAOA/y/6DM7udiWOTjg1xZwaR8A9gx7Oh7oIQQgghhBBCCCGao3R61cKFC3HppZd6vxYuXAghBMaPH1/v9bprdiMjI8PnNZW95Jf3uRz/PvHfAICq2irc+NmNltnGl56ejkceeQTp6ekNB0QmAFUFoe9Do/qB1PInVyVHNlYmzinnKQRbezr0QP2rx1H/9uqDHlCPc4IHqH9za1H/+kEPmFvLSh4g9iEU91t6pdQDDzwQzD4sQVxcnM9rLper3vemmDpsKhZuW4hdebvw3d7v8Pqm13FV36uMaDOoNG/eHKeffjqaN2/uO8gdCdRUAGFRoe1Dk/qB1PInVyVHNlYmTtUDViXY2tOhB+pfPY76t1cf9IB6nBM8QP2bW4v61w96wNxaVvIAsQ+huN/SZ0o5GSPPlDqcJTuX4My3zgQAtIpphe2TtqNVbCvD+g4Zm+4DOl4EJPYNdSfERHieAnEy1D9xOvQAcTLUP3EyPFPKPOx6ppTS9j2nU1FRYWi9Ud1G4ZJelwAAcspycPeyuw2tHwwqKiqwc+fOxsfChCfwSfWhSf1AavmTq5IjGxvs8bYSOowF9W9MDvWvji5jQQ8Yk0MPqKHLOFD/xuRQ/+roMhb0gDE59ABpiFDcb05KKZCXl+fzmr97yZ8Y9QTiozyzhi9veBmr9q3yv0ETyM3NxVtvvYXc3FzfQQnHAfveA4p2hrYPTeoHUsufXJUc2ViZOKecpxBs7enQA/WvHkf926sPekA9zgkeoP7NrUX96wc9YG4tK3mA2IdQ3G+p7Xtdu3b1r7jLhV27dvmVqxN1y85yc3ORmJjYYEwgy3af/vFp3PzFzQCAXkm9sOH6DYgIiwi472BQU1ODkpISNGvWDGFhYb4DM1cCu98ASvcDHS4AjvonYOA+e+k+NKgfSC1/clVyZGNl4pyydD3Y2tOhB+pfPY76t1cf9IB6nBM8QP2bW4v61w96wNxaVvEAt++Zhxnb94zUv+z2PamDzmtra484uK+yshJpaWmeIuHhaNWqFXJyclBdXQ0ASElJQWRkpL/9a0mw/vK9ceCNeH3T6/jp0E/4JesXzFk7B/8+6d9Bea9ACQsLa1RQXtqc4vmqKQe2zQa2TAX6TKsfk/8LUJEFRMQDUa2AZp2M78NPjKwfSC1/clVyZGODPd5WQoexoP6NyaH+1dFlLOgBY3LoATV0GQfq35gc6l8dXcaCHjAmhx4gDRGK+y21fW/Pnj3YvXu392vDhg1ISUnBqaeeipUrV6K8vBxpaWkoLy/Hd999h1NPPRXt2rXDxo0bg9y+uRQUFPi8VrfgzJ9z48PcYXhu9HNwuzy3Y+qKqdiTv8evHoNNQUEBPv3000bHoh5h0UDv+wAIYNsTntdELfDLI8Av04Hc9cCBT4BN/wXW/QuoLgtOH4oYWT+QWv7kquTIxsrEBeIBKxFs7enQA/WvHkf926sPekA9zgkeoP7NrUX96wc9YG4tK3mA2IdQ3G+/zpS6++67UV5ejq+//honnXQS3G5PGbfbjZNPPhnLli1DaWkp7r5b/4O7VahbBdYQgf4yGtBuACYNmgQAKKsuw81f3KzlL7aqqiqkp6ejqqpKLfEf04CSvcC2WcDK84GoNsCJbwE9bwf6TAVOnA+kjgW+PdezgipYfUhiZP1AavmTq5IjGysT55R/kAVbezr0QP2rx1H/9uqDHlCPc4IHqH9za1H/+kEPmFvLSh4g9iEU91vqTKm/07ZtW1x11VV47LHHfMbcfffdmD9/vneLn5WR2QtpxF7ywopC9HymJw4VHQIAPHXmU7j5hJv97ls7RC3w6wwg9Rwg4R8Nx5SlA6svBU75wLOlj1gGp5ynQEhDUP/E6dADxMlQ/8TJ8Ewp8zDjTCkjkT1Tyq+VUoWFhVLL/LjET434qHg8O/pZ78+3L71d+6fxKeFyA73u8T0hBQAxbYE+DwJbHzKvL0IIIYQQQgghhJiOX5NSvXr1woIFC3w+WW/Hjh1YsGABevfuHVBzupGZmenzmlGPgh3TYwz+faLnkPPq2mpc9P5FSCvSZ7VZRkYGZs6ciYyMjOC9SZtTgPIMoPD3kPVhZP1AavmTq5IjGysT55THIZvigRD3QP2rx1H/9uqDHlCPc4IHqH9za1H/+kEPmFvLSh4g9iEU99uvSakpU6agoKAA/fr1w2233YaFCxdi5cqVWLhwISZPnowBAwagqKgIU6ZMMbrfkBIbG+vzWt3TCf/+lEJ/mH76dJzW5TQAQHpxOi56/yJU1lQGXNcImjVrhsGDB6NZs2bBfaM+DwObfesn2H0YWT+QWv7kquTIxsrEGekBnTHNAyHsgfpXj6P+7dUHPaAe5wQPUP/m1qL+9YMeMLeWlTxA7EMo7rdfZ0oBwPz583HzzTejqKio3l/AQgjEx8fjqaeewpVXXmlYo6HErDOlDierJAsDXhiA/YX7AQA3H38znjrrqYDrWor1dwItBwAJvQFXmOcLbiAyEYhuHeruyN/geQrEyVD/xOnQA8TJUP/EyfBMKfPgmVJ/48orr8SBAwfw+uuv47bbbsM111yD2267Da+//jr27dtnmwmpw6msNG+1UlKzJCy8eCEiwyIBAHN/nIs3N79p2vv7orKyEvv27TNnLHpPAYp+B/YuAHbPB3a9BOx4Flg5DpUFe4Lah5GfM5Ba/uSq5MjGmnrfNUeHsQh2D9R/4H3YFV3Ggh4wJoceUEOXcaD+jcmh/tXRZSzoAWNy6AHSEKG4335PSgFA8+bNccUVV2DWrFl48cUXMWvWLFxxxRWNzoJZmdzcXJ/XgrGXfFDqIDxz9jPen6/79Drc/839mPzlZPzfh/+HM988E4NeHIRz3j4Hr2x4BbllvvszipycHLz66qvIyckJ+nshMgH4xwPAcdOBvo8B/WYCA54ABj2LmnWTG++jYBuw8wXg0BKgPFv5rY38nIHU8idXJUc2VibOKecpmOqBEPVA/avHUf/26oMeUI9zggeof3NrUf/6QQ+YW8tKHiD2IRT32+/te06ibtlZTk4OWrZs2WBMMJftTvxkIl7a8FKTceHucJze5XRcdOxFOK/neWgZ03CvgVBdXY38/HwkJCQgPDzc8Pqy1G64B8VRxyL26EuP7CN7LbD5fqD7v4DS/UDaUmDYp0r1jfycgdTyJ1clRzZWJs4pS9d18ECwe6D+1eOof3v1QQ+oxznBA9S/ubWof/2gB8ytZRUPcPueeZixfc9I/ctu35OalHrhhRcwcOBA9O/f369mAs0PNaE4U+pwyqvLMfS1ofjx4I/SOS2iWuDHiT/i6FZHG9qLNlSXAd+OBk75CIhs8dfrh5YAv88FTnobiPjzXq37F9D9JiChV2h6dQhO+QcZIQ1B/ROnQw8QJ0P9EyfDSSnzcPSZUjfccAMWL17sdzOB5utCYWGhz2t1c3vBWHgWHR6Nr6/8Gu9f9D4+Gf8Jvr/me/w+6Xfk/jsX1f+txg/X/oA7h9yJTi06eXMKKgrw3i/vGd5LYWEhlixZ0uhYmEFhaRXWlI9D9TdjgN/nASV7gTVXAYcWAye/99eEFAB0uwHY+ZxafQM/ZyC1/MlVyZGNlYkLpgd0QgcPBLsH6l89jvq3Vx/0gHqcEzxA/Ztbi/rXD3rA3FpW8gAxBzP+jgnF/ZY+Uyo/Px/79u3z68suNHbYV7B/GcVFxuHCYy/EuT3OxZAOQ9C9VXckxiQizB2G41OPx8yRM7H71t348vIvvTlrD6w1vI+Kigrs2rULFRUVhtdW7WPD3nDk9XsXCI/1PKnvmMnAwLmenw8nsQ9Q/AdQVaxU36jPGUgtf3JVcmRjZeKc8g8yHTwQ7B6of/U46t9efdAD6nFO8AD1b24t6l8/6AFza1nJA8Q+hOJ+S23fc7vdcLlcTYU1ygMPPID7778/oBqhItTb91QQQqDNrDbILs1Gq5hWyLorK+B7Zwt2vwVUFwIJfYHCX4Gu1wAcF0PRxQOEhALqnzgdeoA4GeqfOBlu3zOPTemb0Pf5viHvQxbZ7XtSJ1dNmDAh4Ib69u0bcA3SNC6XC4PbD8bi3xcjpywHO3N3onur7qFuK/R0vBBYPR4oSwdENfDbHKDn7aHuihBCCCGEEEIIcSxS2/deffXVgL/GjBkT7M8SdLKysnxe0+lRsINTB3v/vObAGkNrZ2Zm4sknn0RmZqahdYPeR1gUcOpHQJ9pQJ+HgZwfgWzfB8cb+TkDqeVPrkqObKxMnE4eCCY6eCDYPVD/6nHUv736oAfU45zgAerf3FrUv37QA+bWspIHiH0Ixf2WPlOKANHR0T6v1W2R02Gr3OD2f01KGX2uVExMDPr06YOYmBhD65rah8sFHP8csOk/QFmG8fUNrOVPrkqObKxMnE4eCCY6eCDYPVD/6nHUv736oAfU45zgAerf3FrUv37QA+bWspIHiH0Ixf2WOlPK6VjpTCkAKKooQovHWkBAoF/bflh//fqQ9qMtBduAn28FTlkI1JR5nuJXWw7EdgC63wi4OGergk4eIMRsqH/idOgB4mSof+JkeKaUedj1TCn+V7cCVVVVoW5BiuZRzdG7TW8AwOaMzSipLDGsdlVVFdLS0kI+Fob00aIn8I9pwDejgLVXA8nDgM5XAKIGNetuRtqhQ4Z8zkB69SdXJUc2Vpf7rgM6jEWwezCyPvVvL3QZC3rAmBx6QA1dxoH6NyaH+ldHl7GgB4zJoQdIQ4TifnNSSoGcnByf13TbSz6k/RAAQI2owU+HfjKsbnZ2Nl544QVkZ2cbVjOkfSQNAU79GBi62DMpldAL6HELil3tsH3h5YZ8zkB69SdXJUc2ViZONw8ECx08EOwejKxP/dsLHfRvRh/0gHqcEzxA/Ztbi/rXD3rA3FpW8gCxD6G439y+J0HdsrPs7Gy0atWqwRjdlu2+uuFVXPPJNQCAR09/FP85+T+G1K2qqkJ2djZat26NiIgIQ2rq2EdVVRVqvh6FsNO+RERkZMC1/O3Vn1yVHNlYmTjdPBAsdPCAGfo3qj71by900L8ZfdAD6nFO8AD1b24t6l8/6AFza1nFA9y+Zx5mbN8zUv+y2/c4KSWB1c6UAoDfsn9Dz2d6AgDG9hiLReMXhbYhK/Lz7UC3a4EWx4a6E0ugmwcIMRPqnzgdeoA4GeqfOBlOSpkHz5QiKCoq8nmtbm5Plzm+o1sdjYToBADAmgNrDOurqKgIy5cvb3QszCDYfRQVFWFTRiuU7/3ckFr+9upPrkqObKxMnG4eCBY6eMAM/RtVn/q3Fzro34w+6AH1OCd4gPo3txb1rx/0gLm1rOQBYh9Ccb/9mpTq168fnn32WRQWFhrdj9aUl5f7vKbbLyO3y40TUk8AAGSWZGJP/h5D6paVlWHz5s0oKyszpJ6ufZSVlWH1jjAgc6Uhtfzt1Z9clRzZWJk43TwQLHTwgBn6N6o+9W8vdNC/GX3QA+pxTvAA9W9uLepfP+gBc2tZyQPEPoTifvu1fS86OhpVVVWIjo7GRRddhGuvvRYnn3xyMPrTAitu3wOAaSumYeq3UwEAb5//Ni79x6WhbciKfHM2MPRTwB0W6k60R0cPEGIW1D9xOvQAcTLUP3Ey3L5nHty+dxjp6emYM2cOunXrhvnz52Po0KHo2bMnnnjiCZ7KrxGD2w/2/nnNgTUh7MTCJPYF8jeFugtCCCGEEEIIIcR2+DUplZCQgFtuuQWbNm3Cjz/+iIkTJyItLQ133nkn2rdvj0suuQRLly41uteQY7VHwZ7Q/gTvn9ceWGtIzaysLMybNw9ZWVmG1NO1j7r6+dH9ga0PAetuAjJWBFTLn179yVXJkY2VidPRA8FABw+YpX8j6lP/9kIH/ZvRBz2gHucED1D/5tai/vWDHjC3lpU8QOxDKO53wAedDxw4EM899xzS0tLwyiuv4Pjjj8f777+Ps846C126dMH06dORlpZmRK8hJzIy0uc1l8tV77sOJEQnoGdrzxP4NqRvQFlV4PtCo6KicNRRRyEqKirgWjr3UVffnXI6cMztQI/JwNYHgcp8v2v506s/uSo5srEycTp6IBjo4AGz9G9EferfXuigfzP6oAfU45zgAerf3FrUv37QA+bWspIHiH0Ixf3260wpX+Tm5uL111/H7NmzcejQIe/rERERmDhxIh5//HHExsYa9XamYdUzpQDgnx//E69sfAUAsOrqVTip40kh7sjCZK4Cds8HTngh1J1oia4eIMQMqH/idOgB4mSof+JkeKaUefBMqUZYtmwZxo8fj9TUVNx5552ora3Fvffei+3bt2PBggXep/VNmjTJiLcLGdXV1aFuQRmjz5Wqrq5GdnZ2yMci2H00WL/NyYArDMjdEHitIOaq5MjG6nLfdUCHsQiJ/kNQi/rXD13Ggh4wJoceUEOXcaD+jcmh/tXRZSzoAWNy6AHSEKG4335PSh06dAgPP/wwjjrqKIwaNQrvv/8+hg4divfffx/79+/Hww8/jO7du+Piiy/G2rVrcfbZZ+Pjjz82snfTsdqZUkD9SSkjzpXKysrCM888E/I9xcHuw2f9HrcAO9VWSgXSqz+5KjmysTJxunrAaHTwQMj0b3It6l8/dNC/GX3QA+pxTvAA9W9uLepfP+gBc2tZyQPEPoTifvu1fe/cc8/Fl19+iZqaGiQnJ+Oaa67BxIkT0blzZ585jz76KKZMmYKamppA+g0JdcvOsrKy0Lp16wZjdF22W1Nbg8QZiSiqLEJys2S8eO6LSI1PRbvm7ZAUm4Qwd5hSvcrKSqSnp6Nt27aNnrEVbILdR6P1V5wDnLQAiIgLeq/+5KrkyMbKxOnqAaPRwQMh1b+Jtah//dBB/2b0QQ+oxznBA9S/ubWof/2gB8ytZRUPcPueeWxM34h+z/cLah9G6l92+55fk1JutxsjRozAddddh7FjxyI8PLzJnK1bt+Lnn3/GhAkTVN8u5Fj5TCkAOGP+Gfh699dHvN48sjleH/c6zut5Xgi6sjC73wJqSoFuE0PdiVbo7AFCgg31T5wOPUCcDPVPnAwnpczDjEkpIwnqmVK7du3CkiVLcMEFF0hNSAFA7969LTkhdTjFxcU+r9XN7Rl4brxhXHTsRQ2+XlRZhElfTEJ5dbl0reLiYqxcubLRsTCDYPfRaP2OFwB7FwC1VYHXCkKuSo5srEyczh4wEh08EFL9m1iL+tcPHfRvRh/0gHqcEzxA/Ztbi/rXD3rA3FpW8gCxD6G4335NSj300EP45JNPGo35/PPPcc011/jVlK6Ulpb6vKbzL6PrBlyH1desxgvnvICpQ6fiuv7XoUerHgCAQ0WH8MLP8mcklZSUYO3atSgpKQlWu1r00Wj9sGig2/XA5vsDrxWEXJUc2ViZOJ09YCQ6eCCk+jexFvWvHzro34w+6AH1OCd4gPo3txb1rx/0gLm1rOQBYh9Ccb/93r43depU3H+/7/8onzFjBu69915LniH1d6y+fa8hDl/6l9wsGX/c+gdiI2JD3JXF+PFGoMP5QMqIUHeiBVbzACFGQv0Tp0MPECdD/RMnw+175rEpfRP6Pt835H3IEtTtezKUl5dLb+0j5tO3bV9c0PMCAEBGSQaeXfdsiDuyIH2mAXvfDnUXhBBCCCGEEEKIJfF7UsrlcjX4uhAC+/fvx+eff4527dr53ZiO5OTk+LxmxUfBTh02FS547uOM1TNQXNn0vtHs7Gy8+OKLyM7ODnZ7Ie1Dqn50G6C86UdlBtKrP7kqObKxMnFW9IA/6OABLfRvQi3qXz900L8ZfdAD6nFO8AD1b24t6l8/6AFza1nJA8Q+hOJ+S09Kud1uhIWFISwsDAAwdepU78+Hf4WHh6Nz585Yt24dxo8fH7TGQ0FjK7/qJul8TdbpSO82vXFJ70sAAFmlWXj6x6ebzImIiEDbtm0RERER7PZC2odS/SZ2wAbSqz+5KjmysTJxVvSAP+jgAa30H8Ra1L9+6KB/M/qgB9TjnOAB6t/cWtS/ftAD5taykgeIfQjF/ZY+U2rYsGHev2i/++47dOzYEZ07dz4iLiwsDC1btsRpp52GiRMneiexrIwdz5Sq47fs39BrXi/Uilq0jGmJ3bfuRmVNJb7f/z22ZGzBiKNG4PjU40Pdpr78eD3Q+79AbPtQdxJyrOoBQoyA+idOhx4gTob6J06GZ0qZh13PlJI+9GnFihXeP7vdblx99dWNHnRuR+xwaPvfOab1Mbj8H5fjjc1vILcsF93ndkdmSab3+kPfPYRV16zCwHYDAXjGoKSkBM2aNQvphGOw+5CuH38sULCt0UmpQHr1J1clRzZWl/uuAzqMhTb6D3It6l8/dBkLesCYHHpADV3Ggfo3Jof6V0eXsaAHjMmhB0hDhOJ++3WmVG1treMmpAAgK8v3+UFW3kt+/9D7EebyCO7wCSkAqKipwPnvnu99PTMzE3PmzEFmZuYRdcwk2H1I12/REyj41ZhaBuWq5MjGysRZ2QMq6OABbfQf5FrUv37ooH8z+qAH1OOc4AHq39xa1L9+0APm1rKSB4h9CMX9lt6+52Tqlp1lZmYiKSmpwRirL9v9z7L/YMbqGQh3h2NAygCc3PFkrNq3Cj8c/AEAMKzzMHx1xVeoqarB/v370aFDB0RFRYWs34qKiqD2IV2/9ACw9WHg+OeC0qs/uSo5srEycVb3gCzB1p4OPRhZn/q3Fzro34w+6AH1OCd4gPo3txb1rx/0gLm1rOIBbt8zDzO27xmpf9nte1KTUtdccw1cLhceeeQRJCcn45prrpFqwuVy4eWXX5bvWlPsfKZUHUII7C/cj9axrREbEQsASCtKw4AXBiCtOA0AcNvg2/DEqCdC2aZ+CAF8ey4wbHGoOwk5VvcAIYFA/ROnQw8QJ0P9EyfDSSnzsOuZUlLb91577TW89tprKCgoqPezzJedKCkp8Xmtbm7PqgvPXC4XOrbo6J2QAoCU5in44OIPEOH2nLw/Z+0c/G/1/7B27dpGx8IMSkpK8MMPPwStD+n6Ek9ZCaRXf3JVcmRjZeKs7gFZgq09HXowsj71by900L8ZfdAD6nFO8AD1b24t6l8/6AFza1nJA8Q+hOJ+S01K7d69G3/88Qe6du3q/Vnm648//ghq82ZTXFzs85pdfxmd2OFEzD1rrvfnycsm4/+W/h/W71sfwq6AoqIifP311ygqKgp9/ajWQO7PQFk6UF3qWT1lUK/+5KrkyMbKxNnVA38n2NrToQcj61P/9kIH/ZvRBz2gHucED1D/5tai/vWDHjC3lpU8QOxDKO43z5SSwAnb9xpDCIGbv7gZz6x7xvtahDsCtw2+DVOHTUVMREwIu9OArDXAvveB6iKgMg+ISQEG/jWRh+I9QLNOUquqrIydPUBIU1D/xOnQA8TJUP/EyXD7nnk4evueChUVFaiurja6LAkhLpcLc8+ai48u+QidWnQCAFTVVuHx7x/HiDdGIL88P7QNhpqkIcCAJ4ATXgRO+QBwhQGHvvBcy1oNfHUSkPF1aHskhBBCCCGEEEI0w69JqVWrVuHBBx9Efn6+97WcnBycddZZiIuLQ3x8PO677z6jetSG3Nxcn9fs/ihYl8uFcceMw8rxKzGmxRhEhXlO4l+9fzWGvTYM6cXppvaTk5OD1157DTk5OfrVP+5R4LcngZUXAVumIW/Q5zi47DbkZGeb0odKjmysTJzdPVBHsLWnQw9G1g+kFvWvHzro34w+6AH1OCd4gPo3txb1rx/0gLm1rOQBYh9Ccb/9mpSaPXs2Xn/9dSQkJHhfu+OOO7BkyRJ07doVCQkJeOyxx/DBBx8Y1acWuGy+/UqGuKg4TOg4AUsuWoKk2CQAwKaMTTjl1VOwJ3+PaX243W7Ex8fD7TZ8sV/g9cNjgNOWAEPmA0MXA806oiCyNyJz1FdL+dOHSo5sbLDH20roMBZa69/AWtS/fugyFvSAMTn0gBq6jAP1b0wO9a+OLmNBDxiTQw+QhgjF/fbrTKkuXbpg6NCh3qfrlZaWonXr1jj11FPx5ZdfoqioCH369EGXLl2wfPlyo3s2HaefKeWL33N+x4g3RmBfwT4AQEpcCj4e/zEGpQ4KcWcaUrwH2DYTGPRMk6FWxYkeIKQO6p84HXqAOBnqnzgZnillHjxT6jAyMzORmprq/XnNmjUoLy/H1VdfDQBo3rw5zjnnHPz222/+lNcWuy/JlaG2thZlZWWora3F0a2OxuprVuOY1scAANKK03DKq6fgrc1vmdqH7vVra2tR5m4DUbLHlD5UcmRjgz3eVkKHsbCc/v2sRf3rhy5jQQ8Yk0MPqKHLOFD/xuRQ/+roMhb0gDE59ID1EAj+JFQo7rdfk1LR0dH1HhH47bffwuVyYejQod7X4uLikJeXF3iHGpGZmenzmlP2kmdkZODxxx9HRkYGAKB9fHusvHolTu54MgCgoqYC//fR/+Hur+5GTW2NaX3oXD8jIwOPz5yJivIKQHFhoj99qOTIxsrEOdUDduzBcP37WYv61w8d9G9GH/SAepwTPED9m1uL+tcPesDcWlbyALEPobjffm3fO+GEE5CXl4ctW7bA7Xajd+/eiIyMxJYtW7wxl19+OVatWoW9e/ca2nAoqFt2lp6ejuTk5AZjUlNTcejQIbRr1w4HDx40uUPzKCsrw549e9C5c2fExMR4X6+sqcRNn92Elza85H3twmMvxJvnvYmo8CjT+tCxfl2t7nkzEd73YSC2XVD7UMmRjZWJc7oH7NRDMPTvTy3qXz900L8ZfdAD6nFO8AD1b24t6l8/6AFza1nFA9y+Zx4b0zei3/P9gtqHkfqX3b7n16TUSy+9hOuuuw7t27dHZGQkdu/ejccffxx33HGHN6Zbt27o3r07vvjiC/8+gUbwTCk5hBB4Zt0zmPzlZNQIzyqpEV1H4MNLPkRcZBwAz+RVZFhkKNsMHdufApr3ANqNCnUnQYEeIE6G+idOhx4gTob6J06Gk1LmYcaklJEE9Uypf/7zn7jrrrtQWlqK/Px8XH/99Zg8ebL3+jfffIM//vgDp59+uj/ltaW0tNTntbq5PT/m+CxFaWkp1q9f3+BYuFwuTDp+EhZfthgx4Z5Z1a/++AqnvX4ablh8A3o83QNRD0fh3HfORa0IbHlzY30YgZH162qVR3cHCrYGvQ+VHNlYmTh6wD49BEP//tSi/vVDB/2b0Qc9oB7nBA9Q/+bWov71gx4wt5aVPEDsQyjut1+TUi6XCzNmzEB2djays7Mxb948hIWFea+fdNJJyMvLqzdRZQcKCwt9XnPKL6OCggJ8+umnKCgo8BlzZrczsezKZUiITgAArDu0Ds///Dx+z/kdALD498X4dPunQe9Dl/reWugA5G9pOiHAPlRyZGNl4ugB+/QQFP37UYv61w8d9G9GH/SAepwTPED9m1uL+tcPesDcWlbyALEPobjffm3fcxrcvucfmzM2Y9Sbo5BenA4AcLvc3hVSJ6SegDX/XAOXy9VYCfuxYjQw7LNQdxEU6AHiZKh/4nToAeJkqH/iZLh9zzzsun0vPJA3qa6uxvbt25Gfn4+amoaftHbqqacG8hbEwvRJ7oP1163Hwm0L0aNVDwzpMAQnvnwitmRuwQ8Hf8C3e7/FsM7DQt2mucR2BPZ9AHS8MNSdEEIIIYQQQgghIcWv7XtCCPz3v/9F69at0adPH5x66qkYPnx4g192Ijc31+c1pzwKNjc3F2+//XajY3E4Kc1TMOn4SRhx1AjERcbhPyf/x3vt0VWPmtZHKOvXqzVwLnDgEyDjm6D1oZIjGysT59MDJfuA/F+abtwiBFt7OvQQNP2bkKud/m2GDvo3ow96QD3OCR6g/s2tRf3rBz1gbi0reYDYh1Dcb79WSj300EOYPn06EhIScOWVV6J9+/YIDw9o0ZXffPbZZ3jwwQexefNmNGvWDKeeeio+/PBD7/V9+/bhpptuwvLlyxETE4PLLrsMs2bNQmSk+hPgHLfVrAFcLhfCwsL8HouLe12MKcunYHf+bizdtRTr09ajf0p/0/sws369Wu5woPuNQMZyILnpSVupPkoPAuUZQMv+vnNqqwB3hH/1FeIaJOcHoPgPIKGXeq6GBFt7OvQQNP2bkKuSY4r+bYYuY0EPGJNDD6ihyzhQ/8bkUP/q6DIW9IAxOfQAaYhQ3G+/zpTq3LkzXC4XfvrpJ7Rq1SoYfUmxcOFCTJw4EY888ghOO+00CCGwZcsWXHihZ2tUTU0N+vbti6SkJMyePRs5OTmYMGECzj//fMydO1f6fXimlLE8u+5Z/OvzfwEATupwEq4fcD2OTToW/VL6we3ya/GetSjLADbdCwx+2Zh6m6YAhz4HRqwG/nzqIUQtsHo80P9JILoN8EVf4OwtQBD/cvHpgV0ve1ZKDXgiaO9NSKjh7wDidOgB4mSof+JkeKaUedj1TCm/ZgAyMjIwbty4kE5IVVdX49Zbb8XMmTNxww034Oijj0aPHj28E1IAsHTpUvz6669488030a9fP5xxxhmYPXs2XnzxxUafpOcLngnvGYPq6uqAxuLqflcjuVkyAGD1/tW4ctGVGPjiQAx8YSD25O8xrQ+z6h9RK7oNUJ4ZWB91PwvhWYnU+37gl+l/5WSshnBHAWuuBA59BhTvBkr3ydf3M65Bqgo9K7lsQrC1p0MPQdV/kHNVckzRv83QZSzoAWNy6AE1dBkH6t+YHOpfHV3Ggh4wJoceIA0Rivvt16RUly5d/JrUMZL169fj4MGDcLvd6NevH1JSUnDWWWfhl1/+OrtmzZo16N27N9q1a+d9bdSoUaioqMDPP/+s/J4ZGb7/w9ope8nT09Mxffp0pKen+10jOjwaD5/2MFyov2pnQ/oGDHpxEL7b+50pfZhV/4haTa1WqioCSvb67uO3J4HPewPpy4G8jUBiX6DDOKBoB1DwK9LT0/HjwruRnTQBOOZ2YM0EoMetQN5mvz+nTJxPD9hsUirY2tOhh6DqP8i5Kjmm6N9m6KB/M/qgB9TjnOAB6t/cWtS/ftAD5taykgeIfQjF/fZrUmrSpElYvHgxMjPlVnsEgz/++AMAMHXqVEyZMgWLFy9GYmIihg4d6j2UKz09HcnJyfXyEhMTERkZ2eggV1RUoLCwsN4XALRo0cJnTt2eS7vvtU1ISMB5552HhISEgOpc2/9aHLj9AD6/7HPMGjEL3Vt2BwBkl2bj9Pmn4+0tb5vShxn1G6zlDvec89QQm+8Hfrrlr9xx56J15svA7jeAynwg81tg1I/A1geBDXcC3W7w5PWfDWz8DxKax+Af7WsQl3oikHo2cMpCIPUcIP/ISSnZzykT59MDVYVARXaj9a1EsLWnQw9B138Qc1VyTNG/zdBB/2b0QQ+oxznBA9S/ubWof/2gB8ytZSUPEPsQivvt15lS+/btw5133on169fj/vvvR79+/XxO2HTs2FGp9tSpUzFt2rRGY9atW4fff/8dl19+OZ5//nlcd911ADyTSe3bt8fDDz+M66+/Htdddx327t2LJUuW1MuPjIzE/PnzMX78eKUeXnrpJcTGxjaYM2nSJOTm5qJly5Z4+umnZT4qOYzimmLMTZuLLaVbAABRrig83vlxJEUkhbiz4NBfvI7fcSaKXX9NmoaLUsSgAH3wHqoQg204B62xA52xCntwEjphLXZhGCJQhj9cwxEuSlGLSNS6/nrIQG/xAZKwHTswAgdcx9erfTxexo+4FtWumKB8Jl8eGCReRAL24Ws8UK9XQuwEfwcQp0MPECdD/RMnc9n1l3nPlHr7+cYXFliZy36/zPvnt48OzefcU74H9+67N+R9yFJaWoprr722yTOl/JqUcrvdcLlcEEI0+n8EXC4XqqurlWpnZ2cjO7vxVRWdO3fGmjVrcNppp2HlypU4+eSTvddOOOEEnHHGGZg+fTruv/9+fPzxx9i0aZP3el5eHlq2bInly5dj+PCGn35WUVGBiooK78+FhYXo0KFDgyuv6khNTcWhQ4fQrl07HDx4UOUjW4qysjLs3LkT3bp1Q0yMsZMb1bXVuObja/DG5jcAAGd3PxuLL13coMaC2YfR9Rus9dv/gBbHAikjPD+LWuDLgUCzzkDfR4GacuC7sajqdBV+c49Bt+49EbP1LiBvPXDyB0Bsu4bfrKoYVb8+id/cY4/s/fM+QGUBMHaPdwuh7OeUifPpgVUXe9634BfgrA1AtLUnGoOtPR16CLr+g5irkmOK/m2GDvo3ow96QD3OCR6g/s2tRf3rBz1gbi2reIAHnZuHGQedG6n/oB50fuWVV+LKK6/EhAkTvH9u6OuKK65Qrt26dWscc8wxjX5FR0djwIABiIqKwvbt2725VVVV2LNnDzp16gQAGDJkCLZu3Yq0tDRvzNKlSxEVFYUBAwb47CEqKgrx8fH1vgCgoKDAZ07d3J7dD4DLz8/Hhx9+iPz8fMNrh7vD8fTZT6Ndc8+Ey+c7PscHv34AACiqKEKt+GuffjD7MLp+g7XiugIluw8L2gy0HQGc+iEQ3wNIPA4Y/hWyk6/Hhx996sntfBlQU+F7QgoAIuKQ3eafDfc+/CsgeThQkaP8OWXifHqgugxIHQ30eQjY/mSj72MFgq09HXoIuv6DmKuSY4r+bYYO+jejD3pAPc4JHqD+za1F/esHPWBuLSt5gNiHUNxvv1ZK6cLkyZPxwQcf4JVXXkGnTp0wc+ZMfPrpp/jtt9+QmJiImpoa9O3bF8nJyZg5cyZyc3Nx1VVXYdy4cZg7d670+9TN8OXl5fncW+mUR8HW1taiuroa4eHhcLv9mtNskg+3fYgL3rsAANAqphWS45Lxa9avOCrxKPx03U9IiE4Ieh9G1m+wVv5WYM+bQN/HPD//NgeI7wm0O9N3rsvleYJes07+9/7Lo0CboUDSiUqfUybOpwdWnAsM+9SzGuybM4HTlvpuPvtHYO8Cz/lYmp7LYIYHQt1D0PUfxFyVHFP0bzN00L8ZfdAD6nFO8AD1b24t6l8/6AFza1nFA1wpZR5mrJQyUv9BXSmlCzNnzsT48eNxxRVXYNCgQdi7dy+WL1+OxMREAEBYWBg+++wzREdH46STTsLFF1+McePGYdasWX69Xyj/8tUFt9uNyMjIoI7Fecech3OPPhcAkFOWg1+zfgUA7MrbhYW/LjSlDyPrN1grrgtQfNhKqazVQNLJjee6XE1OSDXZe/OjgaLf5WJla8ricnsm3rJW//Va+jLPSqqaSs+B6Jvu9Uy8lem79N0MD4S6h6DrP4i5Kjmm6t8m6DIW9IAxOfSAGrqMA/VvTA71r44uY0EPGJNDD5CGCMX9Duid0tPTMW/ePNxyyy345z//6X09KysLP/74I8rKygJusDEiIiIwa9YsZGRkoLCwEF999RV69epVL6Zjx45YvHgxSktLkZOTg7lz5yIqKsqv98vLy/N5zSmPgs3Ly8P777/f6FgEisvlwtNnP42WMS09P+OvWemlfyw1pQ8j6zdYK7wZUF0K7FsI1NYANWVARJwhfTSaE380ULhdLlalDyEgqss9f6z+m+8PX/HU50HP0wXzf/H8/OtMYNN9wKfdgW/PBfpMA1qfWK9H3TDDA6HuIej6D2KuSo5h+gd/B9itD3pAPc4JHqD+za1F/esHPWBuLSt5gNiHUNxvvyel5s2bhy5dumDSpEl4+umn8dprr3mvZWZmYsiQIXjzzTeN6FEbLLzT0TBqa2tRUVER9F+6HVt0xOYbNmP5lcuR/e9sJEQnAAC+2vUVamprgt6HkfV91jploecsqe/GAKnnGtZHozlx3YCiHcr1m4zb8gBQU/pncEXDMQAQ2QI48U1gy1TPz+4IICwa6HEr0PVqIOkkz5laGk9KmeWBUPZgiv6DlKuSY5j+HYQuY0EPGJNDD6ihyzhQ/8bkUP/q6DIW9IAxOfQAaYhQ3G+/zpT69NNPMXbsWAwcOBD3338/vvjiCzz33HOoqanxxvTr1w/t2rXDZ599ZmjDoUBmL6RT9pKHigvfuxALt3m27v1w7Q84PvX4gGtW1lQiwh3R6BMkbcnXpwFDP/Ws1mqIwh1AbCoQHitXr7IA+P4ytP+/TR4PJEXjQOafq6Vqq4BVl3gOcD+cn24BIhOB3PWe86YOp2iX54ytQXykMrEO/B1AnA49QJwM9U+cDM+UMo8NaRvQ/4X+Ie9DlqCeKTVz5kx07NgR33zzDc455xy0adPmiJh//OMf+PXXX/0pT8gRjDxqpPfPS3c1clC2JLO/n42oh6Nw+YeXO28FXO8HgO//z/f1358CDn1x5Os7XwLKs458/eAnQKfxf/18+HAW7fI8afDvDHwKyF4DhDfwmNG4rkDRdsBp94UQQgghhBBCHIZfk1IbN27E6NGj0ayZj5UWAFJTU5GRkeF3YzqSnp7u85pT9pKnpaXhwQcfRFpamqnvO6LrCO+fl+5aGlAfGcUZmPLNFADAO1vfwYvrXzwixsjPGUgtf3KbzEkeCoTFAuXZDceWpQFZK+ul5G59G3u+nY6iDTOPrJexHEg+3at9AfHXhFLRds92vIaI6wLEpB75ussFJPQBCrc19VFDQqg8YGYPtta/H7EycfwdYK8+6AH1OCd4gPo3txb1rx/0gLm1rOQBYh9Ccb/9mpSqra1FREREozFZWVl+HyiuK82bN/d5rW4LmN23gsXHx+Pss89udPldMOiS2AXdW3YHAKw5sAaIgrePvfl7sWb/GtQKuX8IPLHmCZT/eSg3ANy59E4cKPxrqfX+gv14dfurWNl2JW5fdTvuWXYP8svzvddrRS22ZW1DdW11vbplVWWYv2k+Xvj5BRRVFHlfD2TM/MmVykkeBmR+23BsTbnnTKecn7wvxZVvRmmPBxFbtM5zMHsdQngmsWLbHeYBN1CZ67le+JvvSanEfkBMu4avRbX2bAvUkFB5wMwejKyvpf4VY2Xi+DvAXn3QA+pxTvAA9W9uLepfP+gBc2tZyQPEPoTifvt1ptSAAQPgcrnw00+e/2idNm0aHnzwQe+ZUtXV1ejZsydSUlLw3XffGdtxCOCZUnow6fNJeGbdMwCAacOm4UDhASz7Yxl25+8GANw55E7MHNnASh4AxZXF2Jq5FQnRCRj04iAUVxbXu350q6Nx/jHnY9X+VVi1b9UR+aO7j8anl36KzJJMnPfueVhzYA3G9hiLDy/5EC64MG/dPDyw4gHklOUAAFpEtcCskbNwbf9rjRwC42js3KYV5wKx7YCsVcDQz4C4zsD3V3i23O14Dkg4DmjZH4hpC5Sle56eN/jlvzzQJh4Hfl0GtBoErL0GOO5RICb5yPepzPc8dTAm5chrvz3pWS3V9jSDPzghwYG/A4jToQeIk6H+iZNxwplSQgi4H/xrPQ/PlJIjqGdKXX755Vi/fj0efvjhI67V1NTgzjvvxB9//IErr7zSn/LaUl5e7vNa3dye3c8nKi8vx/bt2xsdi2Ax6qhR3j8/sOIBvLj+Re+EFAAs3rHYZ+7YBWMx5OUh6PlMT++E1KW9L0XbuLYAgN9zfsdjqx9rcEIKAD7b8RluW3IbBr882LNSC8DH2z/Gg98+iMs/vByTvpjknZACgIKKAtz0+U0oriwOaMz8yZXKiesKlKehavOj2P7bb3/F1un3+OeBAU8Bu18HKvNQU56L7bszUdH2fOD7yz0TUQBQsBVo0evP1D9zXWFA8R9/NpMJRB955hwAIDKh4QkpAAiL8UxYaUgoPWBWD0bW11L/irEycfwdYK8+6AH1OCd4gPo3txb1rx/0gLm1rOQBYh9Ccb/9mpS6+eabMXToUDzwwAPo0aMHFi70PBXt4osvRvfu3fHUU09hxIgR+Oc//2los6EmPz/f5zWn/DLKy8vDggULkJeXZ/p7D+s8DOHu8HqvRYVFIebPw7J35OxAZU3lEXl78vdg+e7l9V4Lc4Vh+mnT8dlln2FQu0H1rh2bdCz+PfDfuBE3Yu7wud7X//fD/7Anf0+92GnfTsM7W9/x/nzZPy7DKR1PAeB5ut/qfasDGjN/cqVyXC7g5A9QVl6JuO9PR+2aazyvV+YBUS09f24zzDO5tOYqVFVVYsGCBcitjAfO2gCU/3m+Wv4vR0xK1cL916RU3XupEhYD1JSq55lAKD1gVg9G1tdS/4qxMnH8HWCvPugB9TgneID6N7cW9a8f9IC5tazkAWIfQnG//dq+BwCVlZWYNm0annvuuXoNx8fH48Ybb8S0adMQGRlpWKOhpG7ZWW5uLhITExuMccqy3ZqaGpSXlyM6OhphYWGmv/9/l/8Xc9bOwUkdTsL4nuNxYe8Lcf1n13snhrbeuBW92vSql/P6xtdx1cdXAQBSm6dCQOD2wbfjjhPv8Mb8kfcH1h1ch55JPfGPNv9AbW2t93Net/g6vLLxFW/s8anHo1dSL7y68VXva3GRcXh93Os4v+f5eHfruxi/0PM0urtPuhvTh0/3e8z8GW+VnJqaGpSXlSJ23cVwDf8CyN8K7HkT6PvYX0ErL4AQLpQOeP2vmitGAy0HAoc+B079CIht/5cH2rXFgQ/P8Wzb23AHMOR1pc8MANj3PlBdBnTVb7VlqD1gRg9G1g+klin6l4iViePvAHv1QQ+oxznBA9S/ubWof/2gB8ytZRUPcPueeZixfc9I/ctu3wv3eaUJIiMjMX36dDz88MPYvn07cnNzER8fj549e4b0L6lgYtfPpUJYWFijT10MNg+d9hAeOu2heq/1SvprEuqXrF+OmJRasXeF989vX/A2Tu106hF1uyZ2RdfErt6fD/+c/zvrfwh3h6OwshBX970aI7qOQEVNBUqrSrElcwsu7Hkhbhh4A1Kae7aiDes8zFvnmz3fBDRm/uSq5ISFhaFZXHMgIh6oKvQcWv73w8fbngFX0a76NSMTgbQvgdqqI5+g5wrznDXV2JP3mmwsBqjI9S83yITaA2b0YGR97fUvEavDPdcFXcaCHjAmhx5QQ5dxoP6NyaH+1dFlLOgBY3LoAdIQobjffm3fOxyXy4VjjjkGJ554Inr37m3riRtu3/OMwaJFixodC7P7ODbpWO/rv2b9ekTsij0rAADR4dE4PvV45fpxkXF4/tzn8c4F72DkUSPhcrkQHR6NBRcuwC//+gXThk/zTkgBQHJcsrennw/9jH0Z+7Bo0SLk5uViS8aWBrcYyvQRjJy62LLYXkDuz0DZwSPPeep0KQrbjK9fs3kPz0qpszZ4t+fV84Co8qx2Sugj3Xc9ND5TSgcPBLsHI+sHUsss/TcVKxPH3wH26oMeUI9zggeof3NrUf/6QQ+YW8tKHiD2IRT32++VUr/88gvWrVuH7OxsAEBSUhIGDRqEY489tolM61L3dMGGcMovo+rqauTm5qK6uvr/2TvvMCeq7o9/kmxll92l9yJIEwGlq6Ai9t5AxN5fe3l/+upr7933tRfsvgKiiCJio0uTqjTpbVm2977ZZH5/TNqkTpLZZJLc7/Psk5l7zzlz5s45ubMn556rGz38BaUOVBxw1IE6rvtxpCWlBS0/FEzoPYFtxduwSBaW5y4ntyiXZ756hvWF65nQewKLrlkUWEiIegTDY6dtPGoY6cUroWYPDH1KSZSSQ1Nab8rKNjlldrEVnXepF6XwgWNegtxvoOs5qvVWQMdBKT34QEvroKX8cGRFyv4D0aqhE3NAfOkhfCB4ukTwAWH/kZUl7F9/ED4QWVmx5AMC8YNoPO+ga0otWLCA++67j61bt3rtHzp0KK+99hoTJkzQREE9QM1ayERZS65HNFubafVsK8xWM4M7DGbLbVscfZ//9TnXfHcNAE+c9ASPn/x4RHT69u9vuWTWJQD0bdOXkroSKhsrHf2H7j1Et6xuvtgjD6sFFp8OxhSY8FNIIjT1gbKNcGiOZ4BMQECnEHOAQKJD+IBAIkPYv0AiQ9SUihwiUVNKS7RITalvvvmGqVOn0tzcTO/evRk/fjxdu3ZFkiTy8/NZtmwZf/31F2eccQazZs3iwgsvDPc+BAQCIsmYxID2A9hStIWdpTsxW8wkm5IB59I9UNZ6ammcdeRZHNn2SHaX7WZP+R6P/hW5K5g8eHLE9AkIowm6nQfm6mhrIiOplW4zpQQEBAQEBAQEBAQEBAS0geqaUuXl5dxyyy0kJyfz2WefsWfPHj777DOef/55XnjhBT777DP27t3LJ598QnJyMjfffDOVlZWBBccQCgsLffZZrVbFZ7yioKCA559/noKCAl3pYS92braa2V2220G39MBSAFJNqYzpPiZk+cEiPTmdX678hc6ZnR1tQ9s76yv9fuD3FtMjGB4F7YC7YfBDIcvU1AdM6fLuezqEHnygpXXQUn44siJq/2HSiTkgvvQQPhA8XSL4gLD/yMoS9q8/CB+IrKxY8gGB+EE0nrfqoNSXX35JeXk5b731FldddRUGl1oydhgMBq655hrefPNNSkpKmD59uqbKRhv+qtDbx8PbuMQTMjMzOfnkk8nMzNSVHt7qSu0t38ve8r0AjO0+VnU9KW/yQ0GfNn1Ydu0ybjnmFp4a+hTzp8zHgGwfy3OXt5gewfAoaA0GMHpPnlQjU1Mf0HFNKT34QEvroKX8cGRF1P7DpBNzQHzpIXwgeLpE8AFh/5GVJexffxA+EFlZseQDAvGDaDxv1TWlLrzwQtavX8/BgwcDfuFarVZ69erFiBEj+O6777TQM6oQNaX0j2+2fcOkrycB8NTJT/HoSY/y/O/P8+9F/wbguVOe46Hx3rOAIolj3juGvwr/wmgwUvZAGdlp2dFWSTNo6gPmGlhzM5wQX4FtgfiFmAMEEh3CBwQSGcL+BRIZoqZU5BCvNaVUZ0pt2rSJ8ePHq/oFwGg0cuKJJ7J582a14mMCjY2N0VYh6mhsbGTv3r1RHwt3PRSZUiVyptSMLTMcbVOOnhKWfK10HddzHABWycqqQ6taRI9geNTSRvy56zhTSg8+0NI6tJT9R4I3Luxfx9DLWAgf0IZH+EBw0Ms4CPvXhkfYf/DQy1gIH9CGR/iAgDdE43mrDkqVlpbSvXt31YK7d+9OSUlJSErpFeXl5T77EmUteVlZGV988QVlZWW60uPItkeSZFt6trVoK1uLtrK5SA6Kju0+liPaHBGWfK10Hdt9rKN9a5H3HSzD1SMYHrW0aug09QGjCSR9+pIefKCldWgp+48Eb1zYv46hB/uPhB7CB4KnSwQfEPYfWVnC/vUH4QORlRVLPiAQP4jG81a9fM9kMvH444/z2GOPqRL85JNP8vTTT9Pc3ByWgnqAPe2stLSUtm3beqVJlLTd5uZmampqyMzMJCkpqM0bW1yPo94+ir9L/ibFlMJ1x1zH++vfB+D1M1/nrjF3hS1fC11XH17N+E/GA3D3mLv575n/1VyPYHjU0qqh09wHll4AJ30fvhyNoQcfaGkdWsr+g5WV0PavU+jB/iOhh/CB4OkSwQeE/UdWlrB//UH4QGRlxYoPiOV7kUMklu9paf9ql++pvorK2FXYPHpGNL989YKkpCRycnKirYZXPUZ0HcHfJX/TZGlyBKSMBiOTB0/WRH6ocJXVI6uHo/1g5cEW0SMYHrW0UXnupjQo3wRthgamjSD04AMtrUNL2X8keOPG/nUKvYyF8AFteIQPBAe9jIOwf214hP0HD72MhfABbXiEDwh4QzSet+rlewDLly/npZdeUvW3fLm63cViCZWVlT777AG4eAvEuaOyspIff/zR71hES4/HTnyMrq27Kugm9J5A58zOmsjXQteurbtiNMhul1uV2yJ6BMOjllYNneY+MPA+ODQH9nwCDSVQsQXKNmgjOwzowQdaWoeWsv9I8MaN/esUerD/SOghfCB4ukTwAWH/kZUl7F9/ED4QWVmx5AMCkYFEy3/HRON5B5X6s2DBAhYsWKCaPt62RTWbzT77EmUyampq4tChQzQ1NelOj37t+rH+5vVcOutSVuSuAOCaYddoJl8LXbNN2XTJ7EJedR65lYGDUqHoEQyPWlo1dJr7QM5Q2PIU7PkYmmuhuQZq9sKYD7SRHyL04AMtrUNL2X8keOPG/nUKPdh/JPQQPhA8XSL4gLD/yMoS9q8/CB+IrKxY8gGB+EE0nrfqmlKfffZZSBe45prQggJ6gpq1kImyljwW0GRp4r117wFw5+g7dRccPe6j41h9aDUADQ83kJqUGmWNtEGL+MD8oTDkCdj1PtQfhuQsOH2FNrIFBDSEmAMEEh3CBwQSGcL+BRIZoqZU5LAhfwMjPhgRdT3UQvOaUvEQXBJIDKSYUoIubB5J9Mzu6QhKHao6RN+2faOskY4xcQmktpWzpn4bBxm9o6yQgICAgICAgICAgICAgFYIqqZUoqOoqMhnX6JsBVtYWMirr75KYWFhXOuhpXx3Wa7Fzq/49go+/+tzn+nehYWFvPLKK0HpEYzuamnV0LWID6TadrtsfSSc8BXoIOtNDz4Qy/bf0rxxZf86hB7sPxJ6CB8Ini4RfEDYf2RlCfvXH4QPRFZWLPmAQPxA0+edq24ndRGUCgLp6ek+++xLxPS2VExrtGrVilGjRtGqVau41kNL+e6yXINSf+T9wTXfXYPxKSOjpo1i+ubpCt61JWv5r/W/TJo3iYbmBs11V0urhq7FfaDTSYABpOi+8OnBB2LZ/luaN27tXyfQg/1HQg/hA8HTJYIPCPuPrCxh//qD8IHIyoolHxCIH2j6vK2NqshU15RKZIiaUgJaYs7fc7h41sVe+5KMSWy4eQNDOg3hl92/cOaXZzr6vrr0KyYPnhwpNYNGRHxg+WUw9lNI8h0gFhCIBsQcIJDoED4gkMgQ9i+QyBA1pSKHjfkbGf7B8KjroRZVmz8ke+hNAWtKiUypICB2HJDHIDc3N+pj0dJ6aCnfXVaP7B4+aZutzVz7/bXsK9/HDXNvUPStzF3pk0+SJB5d9CjHf3Q8G/M2qtZd7X3q5bljSgOruoyxFkHFZl2MRSzbf0vzBsMTc/avA+hlLIQPaMMjfCA46GUchP1rwyPsP3joZSyED2jDI3xAwBui8bxFUCoIlJWV+exLlLXkpaWlfPzxx5SWlsa1HlrKd5flunwP4ObhN/PoiY/SOqU1IO+q0OeNPuRV5yno3INSJXUlnP3l2Vw480K+3vY1z/z+DKsOreKmuTep1l3tfaqhi4gPmNLAEqWglKUBVt+gCx+IZftvad5geGLO/nUAPdh/JPQQPhA8XSL4gLD/yMoS9q8/CB+IrKxY8gGB+EE0nrdYvqcC9uV7JSUltGvXzitNoqTtms1mysvLadOmDcnJyXGrh5by3WVZJStpz6RhtpoBsDxmwWgwsiF/A2f87wxK6kocvCaDCatkRUIiyZhE5YOVrMpdxW3zb2Nn6U6f1/xj6h8c2/vYgLqrvU81dBHxgXV3w8B7IPOIlpHvC8sugjbHwN5PMZ+9M+o+EMv239K8wfDEnP3rAGIOiKws4QP6grD/yMoS9q8/CB+IrKxY8QGxfC9yiMTyPS3tXyzfawFE88tXL0hOTqZjx45RH4uW1kNL+e6yjAYj75/7Psf3OJ5frvwFo0F2w+FdhrPttm3ceOyNZKZkAvDguAe54Vh5GV+ztZm1eWt55vdn/AakAH7I/UGV7mrvUy/PPWqZUuV/wsFvoLFUF2MRy/bf0rzB8MSc/esAehkL4QPa8AgfCA56GQdh/9rwCPsPHnoZC+ED2vAIHxDwhmg8bxGUCgJVVVU+++wJZ/GeeFZVVcWvv/7qdyziQQ8t5XuTdd2x17Hi+hWc3vd0BW2HjA5MO38axfcXc+jeQ9w/4n6yq7Id/Uv2L2HJ/iUBr/nyipdZtXdVSLqFShcRH4hWUCqlDVRuAaCqokRb27NagmaJdftvSd5geGLO/nUAMQdEVpbwAX1B2H9kZQn71x+ED0RWViz5gED8IBrPW1VQ6pRTTgnpb+LEiS2tf0TR2Oh7S8NEmYwaGhrYuXMnDQ1RLDYdAT20lB+KrLSkNLpldaOxsZHsUmdQ6pM/P1HQDes0jNIHSnlk/CNMHjyZSUdNAqDR2sjEGRP5YP0Hmuimhi6ug1LpXWzXT8G48w3tbK9yO8xMko8lK1RsVcUW7/YfDm8wPDFn/zqAmAMiK0v4gL4g7D+ysoT96w/CByIrK5Z8QCB+EI3nraqmlNEYWkKVwWDAYgk+C0BvsNeU8rcWMlHWkgtEByM/GMn6/PWKtuuPuZ4Pz/8Qg8HgaKttqmXktJFsL9nuaHv/3Pe5ecTNLa5jRHxg+3/k2k6dJgTHV7ULMnuDMYQ0VEmCJWdByR8w4RfY9LD8adAg0XTby7D5CbisFjY/DZsfg6nx/UIbrxBzgECiQ/iAQCJD2L9AIkPUlIocIlFTSktoWlPKarWG9BcPASkBAT3gwoEXerQN6zxMEZACyEjJ4PfrfnfUoQJ4eNHDWKWW3w2mzlwHQHlDOdWN1S1zkWAzpbb/B/64CTbcC6XrQrvmpseg23kwqRzajwbJAiuvgKaK0OS5onILtBkGlkZoLIHW/eQgmICAgICAgICAgICAQAJA1JQKAsXFxT77EmUr2KKiIt544w2KioriWg8t5Ycjy857YscTPfoGtR/klcdaY2Xo/qFM6CFnE5XUlbCjZEdYugWiqzPXUd5QLh831fHpn5/6lRcyjEEGpYpXykXKi5ZC1faA5B6wNkPZOuh/u6OpNu0oODATvmkTfmCqsQy6XwRfpUFdLmQfDZb6gGyJZv/B8AbDo5X9g5gD4k0P4QPB0yWCDwj7j6wsYf/6g/CByMqKJR8QiB9E43mLoFQQSE1N9dlnz1hxz1yJN6SlpXHUUUeRlpYW13poKT8cWXbeYV2GcXyP4xV9A9sP9Mtzcq+THW3LDy4PS7dAdMW1xeCS4PNX4V9+5YWMYDOlmmuh320w7DnY/b58bockgTlAAb/makjrqGiyDHqIP9q8S8NRz8Nu/zW7VKHdaPnz0BxIbQ/myoAsiWb/wfAGw6OV/YOYA+JND+EDwdMlgg8I+4+sLGH/+oPwgcjKiiUfEIgfRON5q6op5QsNDQ2sXbuWw4cP+ywCfvXVV4esnF4gakoJ6AGL9i1i4ufOzQMsj1kw+qlrtDJ3JSd8fAIAVw+7ms8u/KzFdPuz4E+O7X+sYz35+NfHs+y6ZdpfKHeOnJ3U97rAtPX58NcjMPYjuYj4ng+hchuM+K/cX74Jfhrmv4ZT3jw4PB9GvePZV74JDn4Nw54O5U5kLDkPTvgSvrYVsx/0f9D1XOh0UugyBaICMQcIJDqEDwgkMoT9CyQyRE2pyCGha0p5w9tvv03Xrl05+eSTmTp1Ktddd53i79prr+W661T84xhDMJvN0VYh6jCbzRQWFkZ9LFpaDy3lhyPLlfeUI05x1Ja6cuiVPgNSdp6h7YeSapKz+3xlSqnVLRBdWX2Z4nxn6U6/8kKGKQ2sKjOlStdCu1HyscEIR94MVTvAaqt1Z8+48ldva/X1kJSpaHKMBanQXBPkDbgKqobk1pCcBZNsNbg6nQrF3p+VVx0SyP5bgkcr+08k6GUshA9owyN8IDjoZRyE/WvDI+w/eOhlLIQPaMMjfEA9JPQd/NES0XjeIQWlvv32W+6880569OjBK6+8giRJXHDBBTz33HOceeaZSJLEJZdcwscff6y1vlFFaWmpz75EWUteUlLCe++9R0lJSVzroaX8cGS583516Vds+scmv1lPdp7qimqGdR4GwN7yvdQ21fqkDaRbILry+nLFeWFtIZUNgZehBQ1TGjRVQuXfgWldg1J2pHcGc4V83GxbutfgY730T8OhsRiSMhTN9rEoq2oMLyhVlwetusnH9mukd1ZVUyrgc6s9ANbQJxK92r/WPFrZP4g5IN70ED4QPF0i+ICw/8jKEvavPwgfiKysWPIBgfhBVJ63FALGjx8vderUSaqtrZUkSZIMBoP05JNPOvq//PJLKSkpSVq8eHEo4nWHyspKCZCKi4t90nTr1k0CpG7dukVQs8ijsbFROnTokNTY2BjXemgpPxxZofC68lwz5xqJJ5B4AmnD4Q0hyw9E98G6DyRaIwHy5xNIaw6tUa2zalTukKQ5PSRp8dmS9Pd/JKnusG/aJedLUrObvuvvk2VIkiQd/FaSvustScV/eOf/Evlv01OKZsdY1JZJ0vIpod9L/gL5HuywWmTd1t8XkNXv87BaZb1z54asWrzYv1a0aujEHBBfeggfCJ4uEXxA2H9kZQn71x+ED0RWVqz4gOv/APEKi9Xi+J+KJ6J3n+sPr29xPbS0/8pN0yRAqqys9EsXUqbUpk2bOP/882nVqpWjzWKxOI6nTp3KxIkTeeqpp0KPlukQKSkp0VYh6khJSaFbt25RH4uW1kNL+eHICoXXlcd1h77tJZ67z6mV749OkiSK6zx3pmyRJXxZ/WHQ/fLSt81PyhlBngrB1udBagaTm76p7aDRlvForpJ3u6s76P+aUrPi1DEW6dnQXBfafZirYNGpzkwpkJcYmtJVZUr5fW77PrfpHXqmVLzYv1a0evne0wP0MhZiDtCGR/hAcNDLOAj714ZH2H/w0MtYCB/Qhkf4gIA3RON5hxSUMpvNdOjQwXGenp5ORUWFgmbo0KFs2LAhLOX0hurqap99kq1evBR63fiYQHV1NUuWLPE7FvGgh5byw5EVCq8rj+sOfd6CUmrl+6IrqSth8DuDeXjRwx48f5eoWGIXCgbcCcNfg8EPet89r3oXbH4cUtp49qW0hSZb/StzNbQ5RqZ3R7NLYMhtGZxjLGpqwdf68qodsnxfaLItbcweomxPagW73oWDs33zEuC5NdoChOvuBHNoywvjxf61olVDJ+aA+NJD+EDwdIngA8L+IytL2L/+IHwgsrJiyQcE4gfReN4hBaW6du1Kfn6+47xXr15s3LhRQXPgwAGSkpLC005nqK/3ncGQKJNRXV0dGzZsoK4uxAyRGNFDS/nhyAqF15XHNSjlLUikVr4vukcWPeIz+PTs78/yy+5fVOsdFNqNhLTO3oNSud9AZl9o3c+zzzVTqrkaOp0MZes86dbdJhdGB49MKVVjNm8gfJ0FVTthdkd5x0BXNNfKO+1lD1S2m9Llz3z/4+ZXB4Pte7f+MJSt9SsnJPkRlBWu/WtFq4ZOzAHxpYfwgeDpEsEHhP1HVpawf/1B+EBkZcWSDwjED6LxvA1SCN+eU6dOZdu2bfz5558A3Hfffbz++us8++yznHfeeSxfvpw77riDU089lZ9++klrnSOOqqoqsrOz/W5lKLaCFdAjzBYzGc9lYLaayUrNIv+f+bRKbhWYUQWarc0kP53sbHgVx3aw/FNuGt9zPMuuW6bJ9TyQO0cO9vR12eWzagesuwN6XAyp7aHnJCVP4RI5CDXo/+DPh6D3FfDng3DyPBcZO2Hj/TDgLvjjJjhhOrQf612HJefByT94tk83OI+zB8MxL0K3c5xtZRvg0FwY+oSST7LCDBP0vQnGfKBiELxgx5uw/i75eMTr8n0ItDjEHCCQ6BA+IJDIEPYvkMgwZBkc/wNIVfEZmLVKVkxPmRzn0uPRuc8N+RsY8cGIqOuhFlWbPyR76E1+4ygQYqbUpEmTaGxsZP/+/QA89NBDdO/enYcffpihQ4dy6623kpmZyUsvvRSS8gICAtog2ZTs2IGvqrGK3v/tzYzNMzSRfaDCSz0nwGR0fmH/fvB3yurLHPQXf3UxN829iUNVGrywJWd5Zkodng9HPQhH3gI9LvXkaX2kc7leQ6EcuDImgdVWE6+xFOYPgTbDIPsoGPuR74AUyDWrLA2++9uNheO+kDOf1tzqbG+ulZfqucMQ0leyEk1lMHqafLz+7vDlCQgICAgICAgICAgItBBC+g/ooosu4u+//6Z3794AdOjQgT///JMXXniBm2++meeee44tW7YwZMgQ/4JiDGIrWCguLubdd9+luNizsHU86aGl/HBkhcLrzvPa6a+RmZIp99UVc+uPt2K2mIOS741ub/ler7Q5qTmK80X7FvHMsmfo/Xpv5myfw4cbP+S676/zyhsU3INSO96EHW9ARm85uGMwePKkd4O6PPm4/jCkd4a0TnKACqD2IAx6AIY+BeldoNMEDxGKsWjVS+axo7leXrrX7Ty43AqnLZcDXIe+g93vOelWXeNcZucN9iLltQfkwu3+dHBFcx3snw5tR3jwBIN4sn8taNXQiTkgvvQQPhA8XSL4gLD/yMoS9q8/CB+IrKxY8gGB+EE0nndIRZ8OHjxISkoKnTt3drS1adOG+++/XzPF9Ijk5GSffQbbP8AGb/8IxxFSUlLo3bt31HdfaGk9tJQfjqxQeN15xvcaz6obVjHkXTlIXNlYyepDqxnfa7xq+d7o3INSBoMBCYnUpFRmT57NJbMuAWDS125L6ICN+Rs92oJGUmu5LpQdez6SgzitevjmMRjAYIKCBXJQCyC9O5SshMqt0GY4ZPjhx20sUrKVOpStlZcQNhQ7rwVgTJU/rWYwJkPtPmgo8H6By62w9Dz5+PveMPZT6HONbx1csft9qN4JmUfA0Y9D+UZ5SWCQGVjxZP9a0KqhE3NAfOkhfCB4ukTwAWH/kZUl7F9/ED4QWVmx5AMC8YNoPO+QakqZTCauvfZaPvroo5bQSXcQNaUE4gGf/fkZ135/LQA3HHsDH57/YVjyHvjtAV5e+TIA30z6hrtPv9vhAwv+XMCgtwf55a96sIrWqa1DV6DuMGx5Cka/Jy+7W3cXlK+Hcz13GVSg9gD8ejx0PUeu27R7mhyQqj0IRUvguP9Bt7PV6bDtRWh/AnQcJ5/vnw4rr4CB/4ThrzjpfhwMldvgnL+hIR8WngKj3oF+t3qXu/R8OGmuszbVVBVf09ZmmJUJgx+CIY/Lbcsvg7GfeF8qKKApxBwgkOgQPiCQyBD2L5DIEDWlIgdRU8oFbdu2pW3btiErF6tobm4OTBTnaG5upqysLOpj0dJ6aCk/HFmh8PriOb3v6Y7jjzZ+xDPLnlEt352uydLkCEgBDO8yXEHft01fDxn3jLmHM48803G+r2Kf6nvyiuQsOTOobD1UbIa2x8IpiwLzZfSC1A7OTKmUNjJ/fT5kHgmdJ/plV4yFKR2sLjWlLLYdOvter2RKsl3r9wthydny8j5fASk7rM3y0sIOJ/jXwY6S1dDvH86AFMj6+at55QPxaP/h0Orle08P0MtYiDlAGx7hA8FBL+Mg7F8bHmH/wUMvYyF8QBse4QMC3hCN5x1SUGr8+PGsXr1aa110D1FTSl5j+uabb0Z9TXFL66Gl/HBkhcLri6dL6y6M6znOcf7SipfIL8xXJd9d5ssrnAEpk8FEj+weCh9INimXuk48YiKvnvEqY7s5i4bvr9iv+p68IilD/ixbLy9Zaz0AWnVVx5uS7RKUypGDUg2Fco0pU6pfVsVYmNLlOlJ2NNdDx5Mh4wgl04SfYMDd8tI+S4NngXZ3GEzQWAKdT5UDU7+MUezo5/UZ1x6QC6u7wpQWUlAqHu0/HFo1dGIOiC89hA8ET5cIPiDsP7KyhP3rD8IHIisrlnxAIH4Qjecd0vK9HTt2MHbsWO655x4efvhhkpJCKk0VM7Av3ysqKqJDhw5eaRIlbbexsZH8/Hy6dOlCaqr/f95jWQ8t5YcjKxRefzxFtUV0fqUzErLbL7lqCb2MvQLKd5c5/pPxLD+4HIDz+p/H3MvnevjA3T/dzRtr3qB7Vnd23rGT9OR0Pv/rc675Tq6PdN0x1/HyaS+zp3wPo7qOCq0OQ9Uu2PWOHEzqMM5rVpFXLL1ALmI+8B45qPXzSMgZAlmDYNxXflkVY3F4llwvqtdkuXPby9B+DHQ80ZNxy7Ow6RH5OK0TXOyjphTAqmvlHQRzv4E9H4O5Qm63LePz+ox3fwBpXaD7eU456++BAXdBZp9AI+L7HuPI/kOlVUMn5oD40kP4QPB0ieADwv4jK0vYv/4gfCCysmLFB8TyvcghEsv3tLR/tcv3QgpKXX/99ezatYuVK1fSuXNnhg0bRqdOnTz+qTQYDHFRd0rUlBKIJ0xbP42b590MQLfW3RjbfSzPnPIMA9sPVMXfbG0m6/ks6m0ZQpbHLBgNRg8fqDfX8+OuHxnZdSS9c3oDsP7wekZOG+kh87LBlzHjkhnBB6aszfDTMMg+Go5+DHIGq+NbdQ10PEleZle9B+YNgJ6XybWXxkxTf/2D38i7+fW5Vs6+2vwUdD0L2o3ypN31Lqy9TT42tYLLan3L3fIs1B2CVt2dgayu58LJP/jm2f4fyBkGnU9xtv35EPS+AuYPUVeXSiBkiDlAINEhfEAgkSHsXyCRIYJSkYOoKeWCTz/9lBUrViBJEvn5+fz888989tlnfPrppx5/8YSamhqfffbYXggxvphCTU0NK1as8DsW8aCHlvLDkRUKbyCeiX2cNZPyqvOY/fdsJs+a7HdHPFeZW4u2OgJSU46egtG2s5u7D6Qnp3PpUZc6AlIAx3Q+xqv8r7Z+5ci8CgrGJOh/JxT8JgeF1CLZbfleehc5AJQcWIZifE1psOEe+OMGudNSLy/p84acYZBtC5qltvd/kf63w8FZkOpSu6+xRN69z10HO5prnUsa7TAmw6LT5OMgvpvi2f5DoVVDJ+aA+NJD+EDwdIngA8L+IytL2L/+IHwgsrJiyQcE4gfReN4hBaX27dun6m/v3r2BhcUQamt9ZzYk0mS0fPnyqH8ptbQeWsoPR1YovIF4+rTpw5huYxRtm4s3M/yD4Xyz7ZuAMtcdXudoH9XVmRGkxgdMRhNXDb3Ka9+e8j0++fwisy80lUNyjnqelBxnUCo5G1r1lANTyb4j+HYoxtcegDLYfjmx1Pve6a7D8XD2ZphUBWcEqMmXkgPpXSHFFpQ6+WcoXQ15P3rqYIe3oNSR/5ADZxBUbSnVdlexBbY+p40sjXiD4VFLq4ZOzAHxpUc8zwGh0AofkCHsP7KyhP3rD8IHIisrlnxAIH4Qjecd0vK9RINYvicQb8iryuPa769lwd4FivYTe53I0muX+uW99+d7+e8f/wVgwVULHJlXan2goKaALq928Wh/5+x3uHVUgB3pvKF8E/w8HKaYQe3yv+IV8i58rbrL57W5ULIS6gtg4N3qr128An4b51xat+YWGPKEHOAKF3/cKC8pXHw6nLoMavaCMQV6TgajyZN+zT/g6Eec92SHvUD6ebsgo7ecXSZZwRDSbxJK7P4Q1twklgYi5gABAeEDAokMYf8CiQyxfC9yEMv3XHD99dczd+5cvzTz58/n+uuv90sjICAQHXTL6sZvV/3Gy6e9rGg3ugQqCmoK+GHHDzRZmhQ020q2OY4Hd1RZw8kFnTM7s+/ufR7t9a672AWDtE5yZlEw9ag6nKAM3mT0gC5nQq/Lgrt2c53nua/le8Fi4H3QbrR8bEqHjJ6wcip8192Ttu4wHJ4vZ1f5wg/9YN8X8vEME7g915AQSnF6AQEBAQEBAQEBAQEBG0KuKfXnn3/6pdm8eTOfffZZKOJ1i9LSUp99ibIVbElJCR999BElJSVxrYeW8sORFQpvMDwj2oxQnLdKlpeezds5j/5v9uf8medz9pdnU1xc7JC5tWgrAG3S2tApo5ODNxgf6J3Tm1+v/FXRVm8OMSiV2s65zC0cpGTLu/gFgGJ8swbAsS6BPXOlXMRcC2Qf5ayTZUyGDuPl44YCz2e87QWoy/We/XSKSzZcSo7zuNYzMGiHehsKHJTSs/2rpVVDJ+aA+NIjUeYA4QPBQdh/ZGUJ+9cfhA9EVlYs+YBA/CAaz1uD9Rve0dDQQFJSUkuJjwpMJi9LZmyw7xoW0rb2MYSkpCQ6dOgQ9Wfb0npoKT8cWaHwBsNzTOdjOKf9OY7zioYKSutKuXrO1VQ3VQOwcN9Cbl1wK8XpxZzz7TnkVecBcpaUq70H6wOn9T1NEZgKOVPKmAQdxoXGGwIU45vREwb9HxyeBz+PBkMSmFK0v6i1Sb5PW30ohQ7N9bDzTd+8rY90Hm/4J6y4XD5u9l0jT7UNqVgCqGf7V0urhk7MAfGlR6LMAcIHgoOw/8jKEvavPwgfiKysWPIBgfhBNJ53SDWljEYjTz75JI8++qhHnyRJHDp0iEsvvZSioiL27fP9a3ysQNSUEoh3ZD6XSa25lk4Znbhk0CW8s+6dgDy3jbyNt89523Eeig8sP7ic8Z/IGUD3jb2PV894NbQbiDbsdZvGz4EeF2oru2afXIjdaIKv24C5QlnDqWoHzBsI476Bnpd48lsa4CsvSwpPXw3tx3i2B4O9n8Hqa0VNKcQcICAgfEAgkSHsXyCRIWpKRQ4JX1PKaDRiMpkc2UJPPPGE49z1Lykpid69e7N27VqmTJkS/p3oCBaLJdoqRB0Wi4Xq6uqoj0VL66Gl/HBkhcIbDI+dtk1aGwAKawsdAakkYxL3jb3PK192ajZ3jw2iILgPpCc5gyUhZ0pFGF7Hd8C98mfmEdpfMPMIZ2HzNsfIOpgbnDpse0nus/qoEWVKg/P3QMeTle1WsydtgbzUT70NBf5FOBbsPxCtXr739AC9jIWYA7ThET4QHPQyDsL+teER9h889DIWwge04RE+IOAN0XjeqoNSJ554ouPPYDDQs2dPRZv9b8KECVxyySW88847PPPMMy2pe8RRXFzssy9R1pIXFRXx2muvUVRUFNd6aCk/HFmh8AbDY6dtndzao++EHifw6hmv8sppr3j0/X7d7/Rv11/RFooPpCc7g1INzQ2q+aIJr+M74jX5M6Nny1584kLodTnFBYecOuz9GNqNkYu3+0JmHzh1MfS42NkmmaFwsZJu0WlAEDb010MBl/DFgv0HolVDJ+aA+NIj0eYA4QPqIOw/srKE/esPwgciKyuWfEAgMghhkVvQiMbzDnn53hNPPMFjjz3WEjrpDvble4WFhXTs2NErTbdu3Th8+DBdu3YlLy8vwhpGDg0NDRw8eJCePXuSlpYWt3poKT8cWaHwBsNjp71h+Q0sz12u6Ht6wtM8cuIjNFmaSH0m1dH+21W/cWqfUz1kheID+8r30eeNPgBMOXoKMy6ZoYovmvA5vnnzoetZLb8j3erraRj0FAcL6+jZvQtpP/eHs/+CNO/fTQosOgPK10NjKUz4BRafAVOaQLKCMQVmGGGqpN6GphvAmApTfAcUY8H+A9GqoRNzQHzpkWhzgPABdRD2H1lZwv71B+EDkZUVKz4glu9FDusPr2fktJEtqoeW9q92+V5IQalEg6gpJRDvuHDmhXy/43tF2+ZbN3N0x6MBWLB3AZfOupQx3cfw49QfSTJ6Fr4LxQcKagro8moXAC4YcAEfnPcBHTNUBFcSGWtvg90fwKh3oedkWHcHHP+FOt5fj4fmGqjYDCfNg6XnwiWlsHwyjP0Ivu8dXH2o6QbI6A0XxH7twHAh5gCBRIfwAYFEhrB/gUSGCEpFDpEISmkJzWtKueLQoUPMnTuXiooKr/3l5eXMnTs37n4pqK31vVuVPbYX7zG+2tpa1qxZ43cs4kEPLeWHIysU3mB47LStk5TL92ZeMtMRkAI4rtNx/DLhF7696FuvASkIzQdca0p9v+N7Or3SiUcXeW6goCdE3QcaikCykL9zGXyTA0mt1PMO/w+cMBOGPAl1uXJbUzkULpQDUgCSRG1Njf97NNfAknOh67mQfbR3GhvCtv8/VrW4/QeiVUMn5oD40iPR5gDhA+og7D+ysoT96w/CByIrK5Z8QCB+EI3nHVJQ6tlnn+W6664jPd3Ljk5Aq1atuP7663n++efDUk5vqK6u9tmXKJNRVVUVv/76K1VVVXGth5byw5EVCm8wPHbadIPSly87+jIPut9++82vzJCCUsme3yHP/K7vWnRR94HGYpqyR5F7YLd8bkxRz9t+DGQfJWdLrb1VbitZqaRZfR3WTY/5v8fGEjj8o3wcYLliOONl2fISOZuua3H7D0Srhk7MAfGlR6LNAcIH1EHYf2RlCfvXH4QPRFZWLPmAQPygqrKSDpsvj+jzDmn5Xv/+/RkxYgQzZviu/zJ16lQ2bNjA9u3bw1JQDxDL9wTiHXf9dBdvrnnTcR5KKmgoPiBJEklPJ2GVlIVBS+4voV2rdkHrkBD4ZQyktof0LrDnI3kJ37ivgpOx8X7421bA/sh/wO73nH3txkDOEBgzTclTsAh2vgknzpGX/80fCt3OByQ4aW5Yt+QTKy6HAzNhcm1wGWFRgJgDBBIdwgcEEhnC/gUSGWL5XuQQkeV7khVmmIIr6eEDLbp8Ly8vj969e/ul6dWrV9wt3xMQiFdUNzmzAF2X1LU0DAaD1+v9VfhXi11TkiSPXzKbrc0tdj3NYamH5GxoqoAO4+WleMGi2ZaOmzNUGZBKzgapGQxelmgumgiHvgNLIyy7UG4zpXrSaYkUW2CyTswlAgICAgICAgICAvGIkIJSKSkpqtL8DC29C1WEUVZW5rMvUbaCLS0t5fPPP6e0tDSu9dBSfjiyQuENhsdOm23MdrSN7DrSJ50/maH6gLclfC8sf0GWJWnrTyV1JQx+ZzCtnmvFO2vf4XD1YU79/FQyn8tk2vppgQWgAx9ofxy16UPJP/A3Dam9IXtg8DJ6XCx/Vu+GdqPlHfQAOowDq5mmyj2+77GhCGr2ysfJ2Z79bghnvOrNRvZaj6OyWH0h9VDsPxBtS9p/rCHq9h8hPRJtDhA+oA7C/iMrS9i//iB8ILKyYskHBOIH9uccyecdUlBq6NCh/PDDDzQ2Nnrtb2hoYO7cuQwZMiQs5fSGeAuyhQKj0UhGRgZGY0imEzN6aCk/HFmh8AbDY6e9Y8QddM7sTFZqFh+d/5EmeqiFt0yp3/b+xg3f30DOCzn885d/hn0Ni9XC/F3z6fByB/4u+ZuG5gZun3873V7rxsJ9C2m0NHLzvJspqi0KKCvqPjD6fZp6XkuaqR5MIWa1dT5V/rTUwemrYEoDHHG1XCeqYhMpxb/5vkdrk/yZ2g5S2gS8VMDxqt4j7+Lnjq9aYcAMSZkYsKi8sdDsPxBt1J+5jqCXsRBzgDY8wgeCg17GQdi/NjzC/oOHXsZC+IA2PMIHBLzB/pw1ed4qK0WFVFPqs88+47rrruO0007j3XffpU+fPo6+PXv2cNttt7FgwQI+/PBDrrvuumDF6w6ippRAIqDJ0oTFavGauaQGofrAgLcGsLN0p1+ac/qdQ7+2/Xj59Jd97v7nDZIkcfV3V/O/Tf9TRX9e//P44qIvWLhvIROPmEh2WuBMoKjAvta73Rg4Y3VoMna8CevvUq4Xdw0OudZxOvwzLDkLMMDQp2HTI5DWCfrdBmXr4ehHoN2o0PQ49L28HNB93fp0A/S7XV4i2PUc6HxKaPIjBDEHCCQ6hA8IJDKE/QskMkRNqcgh5mpKbZpG9rCbW6am1DXXXMPkyZP57bffGDhwIAMGDOCUU05hwIABDBo0iN9++43JkyfHRUDKFfGekqsGVquVxsbGqI9FS+uhpfxwZIXCGwyPK22KKcVnQKolx7tVcuAC1j/u+pH//vFfPvvzs6Bkby3eqjogBfDDzh/o+lpXLpl1CRfMvMArjR58wGqbI6wn/xq6kLYjPNsm1wEg9bmBxpoi5z1ueRo6ngjJreWA1JAnQLKAwQTFy+GX0b51DTReTZU+eSVLI82GNKyWhsD301QOTZUh278WdIkAvYyFmAO04RE+EBz0Mg7C/rXhEfYfPPQyFsIHtOERPiDgDdFYjhxyTtbMmTN566236NevH7t27WLJkiXs2rWL/v378/bbb/vdmS9WUVTke2lPoqwlLyws5IUXXqCwsDCu9dBSfjiyQuENhkctrRq6UH1gUPtBivN7x97rk/aVVa8EJfuHHT8ERQ9QZ5YDM0sPLPXarwcfsF+7sKw2dCFtjoXj3b6nk9KhyxnUNRl4/53/OO+xfKNc/LxZHhta9ZALnhuToMlHrT2rGeZ0Czxe1bsgvavXrvq6Khb/voaKsuLA9/P7JNhwT8zZf6xBD/YfCT3EHBA8XSL4gLD/yMoS9q8/CB+IrKxY8oF4RwiLy2IWjv8zIvi8w1ooeNttt7F161Zqamo4dOgQ1dXVbNmyhVtvvVUr/XSF7GzfS3ns9abive5UTk4Ol156KTk5OXGth5byw5EVCm8wPGpp1dCF6gPuQanXzngN6XGJ7y77zoP2YOVB1ZNCs7WZd9a9E5Qu7rAHqFyhBx/IycmhMaVneDokpUPvKZ7tE34mrf5vrj52ryxfkuQd/wxJ8s58AFkD4aS50MclG7ZsvVJOcy3UHw48Xk3lkNpe2WZ7xilJMHjYWFo3bYeaAMXOzZVgSI45+4816MH+I6GHmAOCp0sEHxD2H1lZwv71B+EDkZUVSz4gED+wP+dIPu+QakolGkRNKQGBwAjVBw5VHaLfm/1oaG7g+YnP8+C4BwEoqi2i0yudPOnvPUS3rG5+ZT6++HGeWvaU4/z0vqfz8mkvM+y9YY62kV1Hsu7wOgC6ZHYhvybfQ07uvbl0z+qu+l7iBjNT5EynqRLU58OcrtD9Qjj0ndx/9ibIsW1k4VqH6qJ8SO8sH9cXwJwucLkV/L2kr7oWanbDacudbZYm+CoVelwK3c6F1dfCoAfg2Be9y5Ak+L63rOPI10O547Ah5gCBRIfwAYFEhrB/gURGItSUslgtJD3trGsb1zWlrBaYmaT/mlJ2bNy4kQceeIDzzz+fU0891dF+4MABZs2aRVmZj2UdMYq6Os+sCTvssb14j/HV1dXx559/+h2LeNBDS/nhyAqFNxgetbRq6EL1ge5Z3Vl49UKmnTeNu8fc7WjvmNHRK32gouiAIiAFcFKvkxjaaSh3jLoDgCuGXKHY9a9TZiduH3W7h5zSOs+tUPXgAy2tg/nI+xzXoWYvZA+Wi5pfZqvtlNTaSXxxIXSaIB/P6SJ//vUw7PlQllFbyaYNK6mr9JEC3FwDSZnKNqt8nWZzPfsO2ZZNH5wl6+INhYug7iAkpcec/cca9GD/kdBDzAHB0yWCDwj7j6wsYf/6g/CByMqKJR8QiB/U1cvPOZLPO+Sg1AMPPMDIkSN55ZVXmDdvHosXL3b0SZLE1KlT+eKLLzRRUi+oqqry2Zcok1FlZSXff/89lZW+ixPHgx5ayg9HVii8wfCopVVDF44PHN/jeG4cfqNHofVvJ3/rsdteoKBUk6XJo+2EHicA8MZZb7Dv7n18cdEXpCalOvobmhu4YsgVHnyl9Z5BKT34QEvrUNLtbrZWH0Vd7lKoy4OB/4Qup8k74YEyiJTWESb8Cp0myucVW2Drc1Ak1+SqP/AzaeuvxfjHNd4vZmkEQ7Jbmy0o1dTA+rVr5Lba/TC3L5irPWU02AJXpvSYtP9Ygh7sPxJ6iDkgeLpE8AFh/5GVJexffxA+EFlZseQDAvED+3OO5PMOafneJ598wg033MB5553Hs88+y4wZM3jhhRewWCwOmuOPP5709HQWLlyoqcLRgH35XkVFhc+6UomStitJEpIkYTAYorpuvqX10FJ+OLJC4Q2GRy2tGrqW8oHaplpWH1rNqV/I2Zj3jb2PV8941Sd9YU0hnV/t7Dg3YKD5sWaMBmUM/rwZ5zFv5zwAjsg5gpU3rKTLq10UNLMuncWkwZMUbXrwgUjYPz+PxFC+QW44foaz/tR0g5wxZUpVMi06Awp+hSNvgd3vQ5ezIP8np8yOEzCcukjJYzXLSwW7nivXqLLfS20ufN8TqfNpSD0uwbj2H06e8/dAZh+lnBlJ8m6Ao95BOvIfcWX/eoMe7D8Seog5IHi6RPABYf+RlSXsX38QPhBZWbHiA2L5XuQQieV7kqUZw1fJSJdbw7b/Fl2+98477zBo0CBmz57N0UcfTUpKigfNwIED2bVrVyjidYt4L16oBgaDAaPRGPWxaGk9tJQfjqxQeIPhUUsbzeeekZLBgPYDHOc7y/xnSpXVK5cNL7h6gUdACiDVpMyU6pzZmZdOfUlB4y1TSg8+EAn7NxhdspdMaUoC94AUALZJcff70HMyNCp3KzVg8WQpttWRMlfC4fnOdlumlEFqxthco+Qxu50DHHGV7SLJcWf/eoNexkLMAdrwCB8IDnoZB2H/2vAI+w8eehkL4QPa8AgfEPAG+3OO5PMOKSi1bds2TjvtNJKSknzSdOrUiaKiIp/9sQh/NbISZSvYsrIyZsyYEfV6YS2th5byw5EVCm8wPGpp1dC1pA90bd2VVsmtANhRssMvbXlDueN4ytFTOOWIU7zSpSU5Ay2NlkYA7j/hfsWuf95qSunBByJh/3+V9nI2mFyWVXY9xzuT5BJ0SusEDcoaUuamBi9MBjj2FSj+HZae62y215RqqOT7jcnUDH0f+t4o9zXXQOXfSjHWZvuBvu3fV02sGIIe7D8Seog5IHi6RHgPEvYfWVnC/vUH4QORlRVLPiAQPygrl59zJJ93SEGppKQkmpo867a44vDhw2RmZvqlERAQEFADo8HIoPaDANhVtovdZbt90rpmSh3V/iifdPcdd5/j+M2z3nQct2vVznHsLVMqUbCTM50nrplSJ8/zzmC21dzrei4M/4+zzpMNBsnLi/rCCdBcC6Pek5f72WELEppqdlBn6IC5/cnOoFdzDfzo9lyttvnI2zVc0VAM+76UdwZ0Qfr2x/zzaYW5fSNzHQEBAQEBAQEBAYEYQUg1pcaNG0dpaSlbt27FaDTy5JNP8tRTTzlqStXV1dGvXz+OPvpofvnlF82VjjTsNaX8rYVMlLXkAgK+0NI+8PKKl3lgwQMAPD/xeR4c96BXui/++oKrv7sakINNd4y+w6fMH3f+SFl9GZcPudxRUP3v4r856h1n0KP50WZMRpNWtxE7sDTBV7ZlemeshXYj/dPn/wprboacoXJ9qOluKb+9pkBKGyhYCOfZst2mG2DIE3DkP2DTwzBG3rGPouXw+4VyUfMpjdBYBhvuhX2fw5iP4I8blNvULrtIzqSq3Q/9PXdRdGDeQKjaAWM/hT4uhdenG8Le9jag/ed+C79fEt51rGYwJgemExCIAsR7kEAiQ9i/QCJD1JSKHNYdXseoaaNaVg+rBWYmhf1uDC1cU+r6669nx44d3HrrrR4ZU1VVVVx77bUUFBRw0003hSJet4j3HTXUQJIkrFZr1MeipfXQUn44skLhDYZHLa0envtJvU9yHB+q8v3CV1xX7Dhum97Wr8xz+p/DVcOuUuzw55opBbCpcJPiXA9jERH7xxaI630FZA8KzNTldDkg5UumpQl2vQvVO51ZVfLFIClDDjyB/LnmJmiuRUppK98nRqi21Sj84wb587CziDrWZqjZB+vucI5N8UrYeL9SiSpbMMxWy0qSJKxmb8sK3XTXYrx/vyR0XjtmetZvjDT0YP+R0EPMAeHrEY/QyzgI+9eGR9h/8NDLWAgf0IZH+ICAN9ifcySfd8hBqcsvv5xp06bRvn17PvroIwBGjx5Nt27d+Oabb7jmmmu49NJLNVU22igsLPTZlyhryQsKCnj66acpKCgITBzDemgpPxxZofAGw6OWVg1dS/tAh1YdHMeugSd35FbmOo57ZPUI6zoA24q3Kc714AMRsf9nnpFPjv+fHDQKBQY5sFVnScdSusHZvvUFJV1yJhyaIy/5m90OqrZDSlsassbw9NNPU1hUAiWrlDxNbtvU2nbkK8jP5+mnn6Zm59ewf4aSJuMI+XPPh477XPX+qQFvQ814S7agmpgD4kMPMQcET5cI70HC/iMrS9i//iB8ILKyYskHBOIHBQX5ts/IPe+QglIAX375Je+//z5HHHEEeXl5SJLEunXr6NmzJ++++y4ff/yxlnrqAv5SzqJRpT4ayM7O5oILLiA7Ozuu9dBSfjiyQuENhkctrRq6lvaBDhnOYFFRre9NFA5WHXQc98zuGfR1DAYDsy6d5Tj/s+BPRb8efCBS9t80+LnwBKV1xNLpdPYMmoepIc/Z7mojrgGvOheaYc8jHT+dCy64gKycNs72LNtOjKkuWXAGA3Q7W9a9dRoXnH8+rQ/8F4wpsP2/sMCWZdfxRIV62dnZDDqiDYGgyv4t9TZVxBwQD3qIOSB4ukR4DxL2H1lZwv71B+EDkZUVSz4gED+wP+dIPu+Qakq5o76+nvLycrKysuKyuLmoKSUgEBgt7QOSJJHxXAb1zfUM7jCYLbdt8Uo3atoo1h1eh9FgpOHhBpJNwdfgKaototMrnQAY2XUka29aG5buCYOl58uf9ppSZ6yFVj0gvRN83QbMFXL/4Edg2NMyzalL5WDR1uegwzg5gJQzBM52WTbpWt+qzbFQvhFOng9dz3Je137NS8vkguez20O/W+XlgAe/gsstsO4uqD8sZ2XZ18nvfAc23ANT/G/eEQjd2xrIK8e3/S+9QC7W7qtQvBpMN8DA+2D4q6HLEBBoIYj3IIFEhrB/gUSGqCkVOUSmplQzzEzWf00pd6Snp9O1a9e4DEi5or6+3mdfNNZeRgP19fVs3brV71jEgx5ayg9HVii8wfCopVVD19I+YDAYHNlS3pbv1ZnrOO2L01h3eB0A3Vp3CykgBdAxoyNDOg4B5C//veV7HX168IGYsP+TfoA2w6gni61btyJJFjjWFkypt72wdzvPmb1kTIHaA/Jxba5SjyaLU+6gB6DnJHnCdMeRt1BfU8aOv20BLUsjJKXLx8Ur5KDQyDfk69rkFxzej2RM97tzXzDjIfmUI4HBKNfQCgfbXwuPP0zowf4joYeYA4KnS4T3IGH/kZUl7F9/ED4QWVmx5AMC8QP7c47k8w4rKFVbW8v06dN54IEHuOWWW3jggQeYPn06tbW1WumnK1RWVvrsS5TJqKKigm+++YaKioq41kNL+eHICoU3GB61tGroIuED9npPRbVFnP3l2fxd/Lej7+ONH7Ng7wLH+Tn9zgnrWpMHT3Yc932jr+O+9OADurX/vB/kP4Bu54Ix2SELSwOY0uS+vZ/KnwpbMcIqeddEe0aVQo82x8p9vadAlzPg7xc9r29Kp7qiiA0LPpDPLQ1gtF2zsRSsTWBMVdzn1k0bsJoy5D4fCDgeFiev5C1Y5rjFFL/XiQXowf4joYeYA4KnS4T3IGH/kZUl7F9/ED4QWVmx5AMC8QP7c47k8w55+d6MGTO44447qKioUHwBGwwGcnJyePvtt5kyZYpmikYT9uV75eXl5OTkeKVJlLRdq9WK2WwmOTkZo1GTRDtd6qGl/HBkhcIbDI9aWjV0kfCBy2dfzswtMx3nVw69ki8u+gKA4e8PZ2PBRkff1tu2clSHo0K+1r7yffR5o4/j/OA9B+mR3UMXPqBb+59uq6Xhku5rl5U6Ow1GT5N31gN5Cd/WZ5y0Pw2Xl+XZMVVS6lHwGyw5U6bf+xmsvtbJu+QcOPlH+PMhrD0vx1K9H1PdHowly6FVL9jxH5mu+4Vw3Gew8ko4aS5WqxXrX49iOvw9htN+hxTv9aUCjsei0+h+6QJ5+V7ndhzKL/GkWXo+JGfDyLcgJYQ1+jV7YW5fx9hEC3qw/0joIeaA4OkS4T1I2H9kZQn71x+ED0RWVqz4gFi+FzlEYvmetbkJ46xUrFMsYdt/iy7f++GHH7jyyitpaGjgtttuY+bMmSxevJiZM2dy66230tDQwJVXXsmPP/4Y8g3oEdH88tULjEYjqampUR+LltZDS/nhyAqFNxgetbR6ee6PjH+E1imtHec7S3c6juubnSmmw7sMDysgBXBEmyMU5zVNNYA+xkK39m9MgQv2e5WFMUXOXOp7o9xR8ZeSd8Qb/vXoegYcP13usO3qR20ulK2Hw/Plc1M6RqmRZKMVY0qWnMGUlCEv9wM49J2cKWUwglWeaJNoxlC5FXK/9X1bUhOphjrf41G9y8+guMCUDpYQU6EPzQ2NT2Powf4joYeYA8LXIx6hl3EQ9q8Nj7D/4KGXsRA+oA2P8AEBb7A/50g+75Cu9Mwzz9C6dWs2btzIm2++yeTJkznppJOYPHkyb731FuvXrycjI4Onn35aa32jivLycp99ibIVbHl5ObNnz/Y7FvGgh5byw5EVCm8wPGpp1dBFwgcGdxzMvrv3Oc5L60odx4U1hY7juVO0+Qf+tpG3OY5rzfKyZD34gG7tf0ojZPTyKsuS1h2wwphp0PUcKF2j5O04Tv4c+gyctsK7Hr0vlz/tQalfx8qFzO2wLd/7Y9Uyauub5V35JDMMecJJY0yR/yQz5eXl7N65hcYeV0OmMyvOHfUbnqJy9jG+x6O5xnHoN/fYlCYH5nzBXlPLGwz6eBHUg/1HQg8xBwRPlwjvQcL+IytL2L/+IHwgsrJiyQcEIgMDLb/Dp/05R/J5h/SWu3nzZqZMmUL//v299g8cOJApU6awadMmr/2xinhfJ64GVquV2traqE+6La2HlvLDkRUKbzA8amn18twB2rVqx8D2AwEorHUGouxBo2M6H0O3rG6aXCsjJcMpv0mWr4exiEX7rzhuIfS7XW7sME4uOm7PYHJF9lHQ4Xj/etiX2dUfhsWny0EmAFM6UnMd5sYarAZbkXtLo6KOFAaDo7aT1WrFYm7AasqGhiJ5WWC5WwZXQzHpu57HaK3zPR7mGu/t7giUKfV9b7CavffpZP7Rg/1HQg8xB4SvRzxCL+Mg7F8bHmH/wUMvYyF8QBse4QMC3hCNIHtINaU6d+7MtddeywsvvOCT5l//+heff/45+fn5YSmoB9hrSvlbC5koa8kFBHwhkj5w8qcns/TAUgBq/11LiimF5KflIMQJPU5g+fXLNbnOk0ue5ImlTwAw7/J5nNM/vOLpVsnKusPr6NumL+1atdNAwxjF7mnw54Nw7g5Ia+9sn26AE7+H7uf75y//C346xnl+xNVyrajdH0JaBznAlNYJll0g9194CL7rLh9PlWD19XDMS/K1pxug7w2w5yPIGgBdzoYRLjvcVe2Cef3lDDC3pYmuene/A7mmVJf2HDrsuTskS8+Xi7V3vxDaHutTDpNrIamVZ9/2/8KGe533ICCgM4j3IIFEhrB/gUSGqCkVOaw/vJ6R00a2rB5WM8xM0eR9s0VrSp133nnMmzcPi8Xitb+5uZkff/yR888P8I+FgICAQAjolNnJcVxYU0iduc5x3irZyz/0IUKRKWUObVfRerMzM+bVla8y5sMxHP3u0Yr2hENqe2gqg6R0L50qJsB0t0w4eyaUwQSSVc6gcs2Ocj0GW6ZUo8slbddMyoLmaiVts8osKDU4PB/y5vmnKVrmoyM+X/IEBAQEBAQEBAQSGyEFpV5++WXS0tI466yz+OOPPxR9q1ev5qyzziI9PZ0XX/SyZXcMo6CgwGdfoqwlz8/P55lnnol6BlxL66Gl/HBkhcIbDI9aWjV0kfSBjq06Oo6LaoscS+tAGUgKF5kpmY5j+zXUjpkkSVw661JaPdeKK7+9kl92/8IDCx4AoKCmgLWH14asV8zbf6otO8rkJSjV7Aww+tQjrb38602382zntiClwUh5WQlsfoKqQ6ud9KY0z+usv5v8vP3y8d6PbY1WZ70qhz4226o9oG48mipg0+PO86odzqBXantoCrA+P9VHBp1Olu+JOSCyssQcoC8I+4+sLGH/+oPwgcjKiiUfEIgf2J9zJJ93UmASTwwfPpympiY2btzIwoULSU5Opl27dpSWlmI2y/UwunTpwvDhwxV8BoOBPXv2hK91lNC6dWuffQaDQfEZr8jKyuL000/3m34XD3poKT8cWaHwBsOjllYNXSR9IDst23Fc01SjyGLKSNYuKOUqy34NtWO2p3wPs/+eDcCXm7/ky81fKvoPVx8OWa+Yt/+UtvKnt+Ldzc5nqUqP7hdCf1utKoOJ9FQ5qGQaeDvsfkJuT86EYc/BX/+Wz61NkDubnJ43yaeZAzDW7ABrs6dObvoEhLUZtjwFQ5+Uz+cNhEttgai+NwbOvLI2++jQR1BKzAGRlSXmAH1B2H9kZQn71x+ED0RWViz5gED8wP6cI/m8QwpKWa1WkpOT6dmzp6K9S5cuinP3clWxXig8I8P3P7uJMhllZGQwevToaKvR4npoKT8cWaHwBsOjllYNXSR9wDWDqaapJjLL92yZUmrGYs7fc7h41sV+aQ5VhV5zwl2H2qZaXlzxIqmmVB4c9yAmo8kPd/DyNZdlSvVOnJShCNqo0iM521no3GAizSIXv8/Iag89L4OjH7b1JUFyjoI1PV22FePg++GPG6HiL+g4Xim/dq9Cn5BgNcuZTsZkWH0tlK2HnpOdOw4qaH3szrdFH7vZijkgsrLEHKAvCPuPrCxh//qD8IHIyoolHxCIH9jfd0N+7w0BIS3f279/P/v27QvpL5bR0OB7K297wC3WA2+B0NDQwM6dO/2ORTzooaX8cGSFwhsMj1paNXSR9AHXoFRuVS4TP5/oONcyU6pdunMp1e6y3YC6sXhr7VsBZYdTU8pdh+eXP8/Ty57mkcWPBAyGhSJfc1n2IJI7BtwDbY4JUg/Jmd1kMNLcWOvgZdxMyBnihUWuh9jYJNeVMptd6yO6TYtrb1Poowr24NemJ+RPS4Osp30b351vQtXf3nkXTvTebq5Ud+0WhpgDIitLzAH6grD/yMoS9q8/CB+IrKxY8gGB+IH9OUfyeYcUlEpUVFRU+OxLlMmovLycGTNmUF4eoC5KjOuhpfxwZIXCGwyPWlo1dNEKSt35052U1JU4zrWsKTWq2yhSTHIAZf7u+TRbm1WNxbbibQFlN1oaA9L4grsOz/7+rKNv7o65lNWXhSzbm3zNZRmTvRMPewY6nRycHpIVR7DHYKKhroI1FaO88LjYpS0o1bx3JgC1dc5MO69LCl308YrW/ZGSXJZ3W2wBxy22JXyWBllHV9kGt0Rlqz0wpu85RMwBkZUl5gAbdrwB6+/VXm6QEPYfWVnC/vUH4QORlRVLPiAQP7A/50g+b4Ok0bdnc3MzmzdvBuDoo48mOdnHPx0xiKqqKrKzsykrK6NNmzZeaRJlK1iLxUJdXR2tWrXCZApviZCe9dBSfjiyQuENhkctrRq6SPrAN9u+YdLXk7z2PXvKs/x7/L81u9YFMy9g7o65ACy6ehEn9jzR61hUNlRy3ozzqG+u56+CvzBbzX7l/vO4f/LK6a+EpJP78zA8qVwusOOOHfRv1z8k2d7kh4PaxlpKq0rp1rabU1ZjKcxuH3Cr2YB6LD0fklrD6PcguTXkfou1YAlmQyuSjn1WybPtJdj2AlxaBssvg4OzsA59HkvRCoxjPsC0+WHY+wkMvA+Gv+rk++1ELEOexrrtVYwnzfHUo6EYvutB9/9rL9t/Gzj0TjJMaYLptudy9mb48yHodyssPUduG/Mh9L3BKadgISw6VT72Ni7TDTDmY9j0KFwUvTlGzAGRlSXmABv+uAnK/4Iz12grN0gI+4+sLGH/+oPwgcjKihUfMGQZoBpoDVJVfAZmLVYLSU87f1CUHo/Ofa4/vJ6R00a2qB4WcwOmr9OxXNYctv1XbZpG9rCbqays9FujSnWm1L59+/j444/ZuXOnR9+8efPo1q0bI0eOZOTIkXTp0oVZs2aFprmOEc0vX73AZDLRunXrqI9FS+uhpfxwZIXCGwyPWlq9PHc7XDOl3BHOsjhvuGTQJY7jFbkrfI7FtA3T+P3g76w7vC5gQAqgobkBs8XMY4sf48XlLyJJEqV1pby26jXWH17vl9dVh+rGao/+mqYAxbQDQKvnXdFQwaB3BtHn3T7M3DrT2eErUyokPVyWxUkWjIe+ITU9yz+PbSmcsXUfko+4DFNGF+hhe87uu+8lZ2NqO4zktGynzJr9cPBr+ThvHljdst7cn7+lAQxumVKS2w5NgQqgA/S9DtoOD0ynBn89AjXBL6nXy3eBmAO04YmZOaD+MJSFvmOpVoj6OERID2H/4esRr9DLWAgf0IZH+ICANzy+7En67IPf9v0WsWuqDkpNmzaNm266idRUZYHa3bt3M3nyZIqLi+nZsycDBw6kvLycK664go0bN2qucDQhlu/JYzB37ly/YxEPemgpPxxZofAGw6OWVg1dtJbvuaOotkjTax3f43jH8apDq3yOxbIDyzx4M1My+eSCT7zKfXvt27y15i2eXvY0Dy58kLk75vLgggf556//ZOS0kZTWlfrUya7DgcID9H69t0e/vSh7qFi8YzHDXh3GC4tfCEvO2ry15FblYpEsXDnnSmeHQV1QKqDdNdfBgRnOYE/tQajPZ+vfu73wuNhlk9xXV1XA+g1/yrRJNpvysnyvoqqWvEP7nTLz5sHKq+TjJHm5qF+7t9R5tq25GfJ+dKGxBbba+SgkmjXAt/xQsPVZKNsQNJuYAyIrS8wBNhyer73MECDsP7KyhP3rD8IHIisrlnxAIDKQWrjMQ3VjNc8uf4F9zXDWl2e16LVcoTootXz5coYNG0avXr0U7a+//joNDQ3cfvvt7Nu3j61bt/L1119jsVh4663AxX5jCRaLxWdfokxGzc3NFBcX09zsa9vy+NBDS/nhyAqFNxgetbRq6PQSlLppxE2aXqtvm760b9UegOUHl1PdUO11LCoaKjx4WyW34tpjrvUp+75f73McT9swjQ83fug491ew3P48Pv7rY6/1o6oaq3zyqsELq19gU80mHlr2EN9t/y5kOfbi8B4wpcH4bwPyB7S76l3ypz2Q1CwHfyprGj15+t4IE5fIxzXyjnrWxkoqq6tlWltwySODyWCg2WqgW/NyUv5+HMw1IDU7s6PSO8OxL3va/Xcuc2VDsfxZ7vZDzdJzncf27Krso73fa2vbcsy8H2DnO95pgoXke07zBTEHRFaWmANsSO8SmCYCEPYfWVnC/vUH4QORlRVLPiAQH2hojk4xe9U1pXr06MHJJ5/MF198oWjv168fubm5FBcX07q1s9DrSSedRH5+vtflfrEGe00pf2shE2UtuYCAL0TSB3aX7abfm/0Uba+e/irHdj6WCUdM0Px6l31zGbO2OpckNz7S6CiAbsfw94ezsUAZdOiV3Yv99+z3qPnkDef0O4cfd/2oaNt862aO7ugjSAE8ueRJnlj6hEf74A6D2XLbloDX9AVXfcf1HMfv1/0etIyXVrzEvxb8S9Gm+bp3e82myxrAlAp7P4fV18Cw52DwQ775fhruDBAdeYtck6pyO/w4CAbcCyNec9IuOQ9OmgszbIGv01dD7jfw9yty7af836Dqb7pPfEm2//apHPp8MJS7ZCGd8BXs/x+0GwObHlHqYq8flf8rHJwlB9ZOmO6p89LzZT2mG6DjyXDq4qCGygPTDXD8dOh9eXhyBARsaNE5YP09UPAbnLNVW7kCAhpB/B8gkMgQNaUih3WH1zFq2qgW06O4tpiOr3TUTL7mNaVKSkro0aOHoq2iooI9e/YwZswYRUAK4JhjjiEvLy9ItQUEBAQCwz1T6qtLv+K+4+5rkYAUwL1jlbs+tX2xLfsr9ivawq3jtLd8r0fbI4se8ULphK+MsfIG7XbLqDN7WXqmAu4BKYBDVS30om7PlOpztfwZKAPozHVOHnu2VbJtLHf8B8xumWYGl6Dixn/KASk7dr4pFym3I7U9VNoCgl3PhR6XgrVJrlWVnO1bJ6sZco5x7tznD+ZKOPQ97P00MK0/uGeFCQgICAgICAgICEQYqoNSSUlJHutI7TWjRo4c6UGfmel7eU2sorCw0Gef1WpVfMYrCgoKePHFFykoKIhrPbSUH46sUHiD4VFLq4Yukj6QlaqMtJ/R94wWvd6orqMU57XmWvq83odPNjrrRXkLSh2oPADAkW2PDHiNv0v+9mg7WHnQK639eVRVe1+md7j6cFhBsozkDMex2RK4aLtabCkKLntLvS0rp7IVvy/xz2MwOgIyf+6pkWlNrZz9XyuDR0pZbllveT9AxSal/VubbKQG6DnJVug8CbzVAbAnK1vNkJTuPaDmmtA8/DXofoF83V3v+r5HNfAXvCtdByV/eDSLOSCyssQcYEfgbNNIQNh/ZGUJ+9cfhA9EVlYs+YCAQDhQHZTq378/CxcuVLT9+uuvGAwGjj/+eA/6w4cP06WLPmoAaIWMjAyffQbbL+kGgz5enFoKmZmZjBs3LupBx5bWQ0v54cgKhTcYHrW0augi6QOtkltx3THXkWxM5uPzPyY7zU8GigYwGU3svlNZH0lC4t+L/u04z6/J98l/5RC5yLd7cCsQ+rXr57Xd/jwaafTaD+FlbjVaGr0eh4vD1YeDoldtyy42Z23Vi549ugbmyTgCgA5d+8q0Sa280xkMZGZm0pBkm8/qbBnApnT5c+gzcNwXSvvP7OPCb5KDUsZkz135wFmbytoExhTPfnO1XBTdntnVdoRc/8rSBKVrlLTbXoaKzf7vWy22Pgubn/RoFnNAZGWJOcAOfSwHEfYfWVnC/vUH4QORlRVLPiAgEA5UB6UuueQSdu3axS233MKmTZv49ttveffdd8nMzOTMM8/0oF+xYgVHHhk4OyCWICYjeQxOOOGEqH8ptbQeWsoPR1YovMHwqKVVQxdpH/j4go9peKSB6469LiLX69u2r0dGVkFNAR9v/JjlB5d75Xl6wtMAPH7y4+Tem8sfN/7B9cdcr/qa3oqYg/N5NErKgFGPLOcS61CX3VklK81WZyHLnaU7uXXerTRZmoKS0ymjk0fb/zb9LygZAe3OsVOe0+aMphR6dOsU2P5P+RWAbmdOk2mNtp1l2xzjVY+0I2yF52v3yZ/2IFbdIUjOdLN/l6nVYAKrLVPKm2+YbcFDq1neldBc7WwDKP8T9nzolGlIhn2fQ5uhnrI2PwaFS/3ftwL+/tH37sdiDoisLDEH6AvC/iMrS9i//iB8ILKyYskH4h0tvetdokN1UOree+9lyJAhTJs2jWOPPZZJkyZRVVXFY4895pFBtG7dOnbv3s1pp52mucLRRGOjdhkDsYrGxkb2798f9bFoaT20lB+OrFB4g+FRS6uX5+4Oo0H1V5gm8JaRdcPcGzjtC+/fdTcNd+4E2D2rOwaDgY8u+IiB7Qequl5xbbHXdvvzKK931o6ac9kcRdCstqlW1TU8ZDd7PuP31r/HDXNvCEpOalKqR9vi/cEV5w5sd7aXf5d/ApqOm01uxuTAtmpMBmD/oWKZ1mCQi46X/+lVj6ZDPysbTbZ5b/d7njWoul/gcp0kZ6ZUv9s89bDYnpO1Qd6VsGiJnBnlfo9NtmctmeVsKKPn+GJpgJIVXm8XgL8eVp57y9wKAL18F4g5QBueWJ8DIg29jIOwf214hP0HD72MhfABbXiEDwjoBar/o0tPT2fFihU8+eSTnHnmmUydOpXvvvuOf/7znx60GzZs4IILLuD888/XVNloo7zcd/HgRFlLXlZWxmeffUZZmfcMjnjRQ0v54cgKhTcYHrW0augSwQd8ZQv52j61Y0ZHr+3PnfKc3+u0SpazcNyLqdvheB41zucxvMtwTEaT49xXPapA8HUvwWY5ue9OGApU2WfPyYrTUnN7Pp4xP7D9G+QdVNTaf1VlhbLRninV/SJoO0pp/8NfkXfaA9vyvUY5OGXyEkiyZ0Vt/w80246ba+Vz+zFAxSb5s6nCKdcOyQq1ufLxgZnO9uJVzuO8+bDVze6swb9cijkgsrLEHOCK6GegrMcMoQABAABJREFUCPuPrCxh//qD8IHIyoolHxCID0QrI8wgSZLIRQuAqqoqsrOzKS0tpW3btl5pEmUr2ObmZqqqqsjKyiIpKSkwQ4zqoaX8cGSFwhsMj1paNXSJ4AP93+zPrrJdqmhP63Mav171q8/+c6efy4+7fvRo753Tm5y0HP4s+BOAhVcv5JQjTlHQ2J/H5T9ezq975WuUPVDGU0uf4r9//BeAs448i/lXzFelqysOVx+m22vdvPYFsy3s4HcGs614W1gyAtrdDBOMfBv6/UM9jx31hTCnM2Vnlippp9v+8Z0qQe0B+L43zZPN8MsYkio3OPnbjpB38Vt2EYz7hu49eyntf7oBup4DA+6Ggl+huQ5GvS2397gUcr+R5Zy+GtqPkdsHPyzXcup6LhyeJ+twcDYsv9SpU9UOmDcQRr0La2+V24pXwm8nyNczGOGkuc57udwit/35EGx7Qaa39x37Kgy6z/v4LLtYzryaoLQhMQdEVpaYA2xYfw8U/AbnbNVWbpAQ9h9ZWcL+9QfhA5GVFSs+YMgyQDXQGqSq+AwtNFubSX462XEezPusllh3eB2jpjlr1GqtR1FtEZ1ecZbgCFd+1aZpZA+7mcrKSrKysnzSRXbti4ZYsmQJBoPB69/atWsddAcPHuS8884jIyOD9u3bc9ddd9HUFFxtFDui+eWrFyQlJdG2bduoj0VL66Gl/HBkhcIbDI9aWr0892jj2mOuDUjzzaRvuGroVbx2xmt+6dKT0722j+k2hu5Z3R3nEz+fiPtvB/bnUeNSe6h1amvGdB/jOK9q9L4zXyB4CyTZUW+uVy0nyejdVoL5HaRl7V/Wwy9t4WKHzKRxX7pdqDVYm+Ud7Fwy1BSwNioLndsx9GnnsT0Tqu0o6GOrj+Zak8TiNuZZA6DbeXJAyg77MtbDP+KRTWJfjrjtBWebJEFqexWZUp7PSi/fBWIO0IZHzAHBQS/jIOxfGx5h/8FDL2MhfEAbHuEDAnpBzAaljj/+ePLz8xV/N954I71792bkyJEAWCwWzjnnHGpra1m+fDkzZ85k9uzZXpccqkFlZaXPPvs/WvGeeFZZWclPP/3kdyziQQ8t5YcjKxTeYHjU0qqhSwQfuHXkrVw26DKf/cf3OJ5LjrqEzy/6nKM7Hu1X1o3H3ui1/eXTXuaxEx9TtP139X8V5/bnUVFXAUB6UjpJxiQuPerSwDcRAK51qtxRWFuoWo6rHQzIGOBsDyItOKDdTVwKPS4JjscO2/I7/7QGp8yV+6ia8JezK7WdHGyywav9FyxwLt+zLRdk4iLIHgiXlsGgB2DRRLk9ayCkumXibn4apGb8ovYglLvo5V4nau8nnjyVW6CxRNYrSIg5ILKyxBzgiugv3xP2H1lZwv71B+EDkZUVSz4gIBAOYjYolZKSQufOnR1/7dq1Y+7cuVx//fWOnS9+/fVXtm3bxv/+9z+OPfZYTj31VF599VWmTZtGVVXwWQRms++isIkyGTU1NbF///6Qs81iRQ8t5YcjKxTeYHjU0qqhSwQfaJPehjcnvOmzf1yPcaplnXHkGbx7zrvcPNxZ1Hry4Mn0yO7BsM7DFLT3/apcYmV/HtVN1QBkpcrpsEnGJEy2WkO+akMFQk1Tjc++ygb1LyP24FOrpFY0NzkDK8HYR0C76zgO0joEx2NHsjxmfmmTMpUyLUZnLafkLEUWk0/7dy10DtBpgvyZ0gYyejrpJItTdt4P8ufmx+R2gEtKlHKPekj+/L4XrHUuXyS9s10h+dM90wqc9aesfmzEYHDWuHKBmAMiK0vMAYortJBc9RD2H1lZwv71B+EDkZUVSz4gIBAO4qam1OzZs5k8eTL79++nRw95W/THHnuM77//nr/+cv6KXF5eTtu2bVm0aBETJkxQJdteU8rfWshEWUsuIOALieQDEz+fyKJ9izzanz3lWf49/t9ByyutK2Xd4XVMOGKCo0C44UllVoC3Nd1tX2xLeUM5R7Y9kl13yrWuMp/LpNZcy+AOg9ly25agdXnzjze56+e7ADi1z6ks2LvA0bfy+pUc1+M4VXLsNaUyUzI5pvMxLD+4HICmR5pINiUH4I4QDsyCXspC6YqaUkW/Q8lqOOp+ua2pEr7JkY/73QZHPQjrboeT5nrav13O6avg1+PgyH/A6HeV19r5Nqy7A3pOAoww9iOY5bbdcv+7YOcbzlpQAEvPlzOr/n7Z856OvBlGvy8vLZyZDH2ul+VONwAGmGqF3Dnw+8Uw4B4Y8R/vY7PsYjg0R3ldAQE/SISaUgICvpBI70ACAu4QNaUiB1FTSuf46KOPOOOMMxwBKYCCggI6deqkoGvTpg0pKSkUFBT4lNXY2EhVVZXiT0BAQMCOaedNY/LgyR7t9oylYNGuVTvOOPIMxY51Vw29yi+PJEmOulGtU1o72u21quqb1dd/ckWtudZxfPuo2/n3uH977QsE++8dRoMRg8uym2jt6uEV7gEpO1rZanrVHlDucmdyqQNmSpOzkHz9rpMzVP6085et90JkG5eDXyszpVyx8w047nPP9r9fhu4XerbbM6vsy/56XOzsS20nf9bZ/mGy15SSJDmI5Yoq37XFBASig+gv3xMQEBAQEBDQHrqrVvbEE0/w5JNP+qVZu3ato24UwKFDh/jll1+YNWuWB63B4PkSI0mS13Y7nn/+ea86fPnll+Tk5Hjlqaurc3zOmDHDr/6xjMbGRg4dOkT37t1JTfWyvXmc6KGl/HBkhcIbDI9aWjV0ieYDZ3U/i4OtD7K6erWjb+vGrczYo829j20eyxd8AcCA9AGKMa2qr+LV3FexIAcgGisbHf3WJnk76vKq8pCewx8lfziOVyxewUHLQcf5zwt/pviPYlVyKiorADA3mck9mOtonzlzJslGdZlS0bD/y4HaujrmzpjB5ZIcGPz0j7YOumtTYC3XM2r7a2zbvossDvP7jBke9n+5tAmAn39ZwJlAcVkFC9yex5HSOuy/deXmHmDFV18zxYuei1b9TeFqJ+94KY/uQN6h/bjvk7h3z26a9pyNASsDgCVLl5JvqOJ4xpLaWM3iGTOYIt2NAdi1ayfrds9giDSLdCpYY3AuJb1c2gHgYUNiDoisLDEHyBgubacTlfwU5blF2H9kZQn71x+ED0RWViz5gB3xav8W+49+NkTrPvc27G1RPSqblaU6wpXfoXaNOkIpBEyYMEF69NFHQ2ENiOLiYunvv//2+1dfX6/geeqpp6QOHTpITU1NivZHH31UGjp0qKKtrKxMAqRFixb51KGhoUGqrKx0/OXm5kqAdOjQIZ88Xbt2lQCpa9euIdx17KCqqkpavHixVFVVFdd6aCk/HFmh8AbDo5ZWDV0i+sAtP9wi8QSOv+UHlmt2nWZLs0PucR8ep+h7fMHjiuue8tkpjr4j3zhS4gmkti+2Dem69/x0j0Pub9t/k95f977j/L+r/qtaTv83+0s8gZTzfI407D/DHDLqzfWBmW2Iiv1/iSR928V5/NMIJd2XSFJjuST9PlmSdn8kSUvOkyTJi/1/ifxX9pf8+es4TwV2vuukW3K+JFktznPXv4LFSr7F58rta+/wpF15tSQtmCBJi86Sz3PnSlLldkn67SRJWniqUrfVN8nnq2+Uz11hpwljfFsSYg7Qhidm5oC1d0nSvMHayw0Swv4jK0vYv/4gfCCysmLFB2iNBEi0Dim0EBMwW8yKd+9oYW3e2hbVo7CmUL380g2StGCiX5LKvz6QAKmystIvXUiZUn/88Qdjx44NhTUg2rdvT/v27VXTS5LEJ598wtVXX01ysvLX9+OOO45nn32W/Px8unTpAsjFz1NTUxkxYoRPmampqV6jwK1bt/ZCLcOeeeUvAyse0Lp1a04++eRoq9HiemgpPxxZofAGw6OWVg1dIvpAdmq2om9EV9/fK8HCZDSRbEzGbDWzqXCTou/TzZ8qzod2HOo4TktKA7QpdN4ppxPGFOcq72B237NKcsaW0WikTZs2YPvhRQqijGHU7N+mO72vgpGv0zrFjS4lBzqdAmnO5eE+7d++JC+ljRcNXGklMBhhyJOw+XElmdlHgXmX6zvFWOTC6qYMWb7UDPMGyn2dT3MjtirlN1VCSjb+IOaAyMoSc4BDuPYyQ4Cw/8jKEvavPwgfiKysWPIBgfhAMO/p1B2EwoWaXDekmlKDBg1i//79migQLhYtWsS+ffu44YYbPPpOP/10jjrqKK666io2btzIwoUL+b//+z9uuukmv4W2fEHsOCCPQV5eXtTHoqX10FJ+OLJC4Q2GRy2tXp67HuA6FkM7OYNB1x9zvSMgpBXs8mrNtbyz9h1He7v0dgq6y46+zIOnobkhpF2AaszOoFSKIYVUkzNA32RR//zt1zZipKnRyRdMTamo2b8jRVsCjEq6s23F4w1GZ/DKG47/Uv402n77MXj5DaipzHlsr+l09KOedA1uSyabbXUOvdWgkqy23f5M8rVdr+Fek8euf8eT7Ep4ynN75k1NTeQdOkRTo5eg56proWa/Z3sLQMwB2vDEzBygkz15oj4OEdJD2H/4esQr9DIWwge04RE+IKAXhBSUuvPOO5k7dy7btkW/EOpHH33E8ccfz6BBgzz6TCYTP/74I2lpaZxwwglMnjyZCy+8kFdeeSWka5WVlfnss1qtis94RWlpKR9++CGlpaVxrYeW8sORFQpvMDxqadXQJaIPTB0ylS8v/pJXT3+Vt85+S/NrVTdVO45vn3+743hA9gAFXUZyhuM4PUkuxm2VrJit5qCvWdvkLGbeVNOkKL4eTFDKniklSRL5+fmO9mACZVGzf3uwRrKCwaCkyxks9xmMuAZxPOy/1+UwqdolcOTFL1xraxX8ZpPr5Vf2ZLcsXUsD9L3RMyh14ndyQK18oxwcsprhjxud/Qa3Kd9+n0bbM949zfPakrIAemlpKWtn3QG/jfek3fcZ1Oz2bFeLwz9Bgbpf3MQcoA2PmAOCg3gHiqwsYf/6g/CByMqKJR8QEAgHBimEn9KXLVvGSy+9xLJly7jlllsYNWoUnTp18pqyeuKJJ2qiaDRRVVVFdnY2JSUltGvXzitNomwFazabKSsro23bth7LJeNJDy3lhyMrFN5geNTSqqETPqA9Or7ckeI6Z5aMfVvWM784k1/2/uJo33PXHvq06QPA6V+czm975QBH5YOVjh0B1+StYen+pdw84may03wv0Trls1NYvH8xABX3V7C/aj/HvH8MALeMuIX3zn1Ple5HvH4E+yv20ymjEwNyBrAsbxkAVQ9W0TrV91JoV0TF/jc9Afm/wBmrYMVUGP0+ZtI86fZ8Ii/j2/sJnDTXt/3X7IO5faDb+XDS90oFLE3w+yVweJ58PtU2HU93m0tP+Eq5U+BPI6DdaGg3Cv6wZQn3vhLGfAgrr4Dc2ZAzDCq3yIEoe3Cyy1kwYb5T/hFXw3Gfwa73YO2t3nWYVA3JmfLxwomYT/yZho1Pk3ngDQyTKpR6TjfAid9D9/P9jrtPLDoNUtrCuK8Ckoo5QBuemJkD1t0tLxE4Z4u2coOEeAeKrCxh//qD8IHIyooVHzBkGaAaaA1SlT4yW7VGs7WZ5Ked925/J4801uatZfSHo1tMj8KaQjq/2lmd/EPfw7ILne+OXlC1aRrZw26msrLS70q1kGpKnXzyyRgMBiRJ4tVXX/W7ftpisfjsizVE88tXL0hOTqZTJy91TOJMDy3lhyMrFN5geNTS6uW56wGRHIt+7fopglIA5fXlioAUOLOjAMUSwtHTRvPTFT/RtXVXzvjfGVQ0VLDm8Bq+nvS1g+ZQ1SFqm2oZ0F7OvrIHpACy0rNIqXVmSs3+ezbje45n6pCpAetm2DOlDAaDokZfMMv3omL/Q5+QM43mD4XswWAwkpzkhS7Q8j0HnW2a9UZrSvHMglL0p4Ol3rNdsshZUqku9RetjXJbha3+WKdTIKMXtO4HFZuh4FffmVJWZTYUAN3Og7wfUGR4FS4iOTmZ5Kw28vW8Yd0doQelJCseSwx9QMwB2vDE1hwQ/Vo9+hgHYf9a8cSW/esDehkL4QPa8AgfENALQlq+99hjj/HYY4/x+OOP8/jjjzvOvf3FE6qqqnz22RPOQqnhEkuoqqpiwYIFfsciHvTQUn44skLhDYZHLa0aOuED2sPkpWaQa9DIjlbJrRzHrkGpHaU7uPeXeymqLaKioQKAb7Z94+jPrcyl7xt9Gfj2QJYdWMaWImUWQnV1tWL5XkldCVfOuZIvN38ZUHe7HRgkg2LpczD2EVX7r9jsCJJ4pzPgGrDxaf8m2/PocaF3JbwFq06xLeVrfaT8mTXQjafZVqvK5Z90g0kOOlXvstFY5GtLFjkg5dAZuUD6oP9zWabo9uNRtcsSPLf7qaqqYsfO3fISQm9orvXergqSZ+DMB8QcoA1PbM0B0Z9bxDtQZGUJ+9cfhA9EVpZfXrN3edHyAQGBcBBSUOqJJ55wBKQC/cUTGht9/DJM4kxGDQ0NbNu2jYaG0Hb2ihU9tJQfjqxQeIPhUUurhk74gPYwGT2DUrtKdynOpxw9RbEcz73Y+vc7vqfWrAwU/LbnNyZ/PZnxn4x31Im6es7V7Cnbo6BraGhQBKXsuGrOVewu201js+/vRKtLsKW2xnn9YDKlomb/pasd2mIweqdzy5Tyaf/2Xff6em7GIcNLUCrJnt5sgP53QJuhyn6pWc7Acs1W6zVFGdCx1ENShrImlJ2+yxnQ/y7ntV1pag/AD/3k43ZjnDTr7wGgqXI/ufm+6ytiMKnLIPOGwsVQ/qcqUjEHaMMj5oDgIN6BIitL2L/+IHwgsrL88n7tvRRDtHxAQCAchFRTKtFgrynlby1koqwlFxDwBeED2uPUz09l4T5n4WfpcYlHFz3KM78/42jLuy+Prq27Os5v+eEWPtjwgeM8OzWbu8bcxdPLng54vY/O/4gb5srBk6cnPM0jJz5CcW0xHV/p6JX++B7H8/t1v2P0kt3S7bVuHK4+TI+sHgzuOJifd/8MQNkDZbRJbxNQl6jCtabTZQ3gsgOhA/unA0Y4MN1/TSm7PF/r7bc+B4VL5WwmO01tLqy8HIpXQKvucGGukmd2B7mQepfTYel5cpt7Laiek6BVDzk4tetdua3tSDhjjVx3asTr8lK7cV/Btpfgz38pr9H1XEhtB8NflT/nHgk1tqBl9wvkOgLu92S/dmYfOHOdMyCnFtMNkNoBLikKjk9AF2j5mlKL4JzN2soVENAI4h1IIOLw924RYYiaUpFDvNaUCilTyo6NGzfywAMPcP7553Pqqac62g8cOMCsWbP87lYnICAgIOAfVwy5QnF+6axLFQEpAINbnRX3TKlac62qgBRAdaNztz974XR/RdFX5q7kr4K/vPa51pRy1TGYTKmo4ch/uJz4qGNjaYCGwvCvNfjfcOyLyraMHnDactvlvdQybCyBnW86l9Z1OcOTprkOkjKVS/PK1kHVdrA2yUv7LA3yS23V3578BoMtG8x2DXOlsy85x/f9dDwJavbCN21904SaSSWQ4IiB7w4BAQEBAYEYRrTe00MOSj3wwAOMHDmSV155hXnz5rF4sbPOiSRJTJ06lS+++EITJfWC4uJin32JshVsUVERb731FkVF0f0lu6X10FJ+OLJC4Q2GRy2tGjrhA9rjmmOuUZzP/nu24jw9KZ3OmZ0Vbe5BqWZvRax9oLLRGXhY9OsiioqKSDGlkGT0vSdGfk2+13bHUgarxMEDBz3a1SBq9t/tHOexweidrrkOSlY6Tv3a/9kBdgwzesnEAjlbKedo/7wAE35W6CsrYpYzvNzrRSHJQSljivwJsPdT73INRhzL91x03LDNLQtg13suRdPNzvaGEk+ZFZthhueyVAeSfQdBXSHmAG14xBwQHMQ7UGRlCfvXH4QPRFZWLPmAQAJCwwV3IQWlPvnkE1555RXOPfdcNm3axEMPPaTo7927N6NHj2bu3LmaKKkXuO4g5Q77TlSBdqSKdaSlpdG/f3/S0tICE8ewHlrKD0dWKLzB8KilVUMnfEB7GA1GJh01yWf/0qlLPcbbPSgVDB5f4qwD2LNbT8c9+gtsnTP9HK+BJnumlNFgJDMz06NdDaJm/51PdzkxeKdrP1benc9O5c/+cwZ7trnC5EPXjF5yUfJgkNpB/pTMtsCTl2dXtV2u/WQPSvmEwRlscglMtm3jFjhae6ucHQVy4VV7YKxqu6dIf4XQU9rAEVcF0EmGmAO04YmtOSD6c4t4B4qsLGH/+oPwgcjKiiUfEBAIB75//vaDd955h0GDBjF79mySkpJISfEshDtw4EAWLFgQtoJ6gr91kIkyGWVlZXH66acHJoxxPbSUH46sUHiD4VFLq4ZO+EDLwF8Qp1v7bh5t4QSlXDFm5Bi/33mumL9rPuf0P0fRZk//NZlMdOzQEcqV7WoQNfs3uiyZMxi805nSwVLnQhaG/fvKlBrxOj6XLCX7eja261vNslz3TClLvbxDn8EIVt+F6mVRRuf1aw84mnv36AK73GgtNlmVLllhqV6W8KV5r08G2MZB3fiJOUAbntiZA/SxdE+8A0VWlrB//UH4QGRlxZIPCAiEg5AypbZt28Zpp51GUpLvmFanTp3iLsXPbDYHJopzmM1mioqKoj4WLa2HlvLDkRUKbzA8amn18tz1gEiPhbcd+OzIMGV4tHnbLS8U1FbXqr7HPeXKXfvMFjPl9XIUymgw0tTkzMgJtHzPNSsravav+KfC4J3OmATb3GpBhQpfmVJGkyJDyYHRH0DvK/H6j3pDgfxptWVKuQelHEFOg1xI3S9cMqVcipbX11Z4klqbUBVQ8vv8rfI9q4CYA7ThEXNAcNDLOAj714ZH2H/w0MtYCB/Qhkf4gIBeEFJQKikpSfFPhjccPnxYsWQjHlBaWuqzL1HWkpeUlPDuu+9SUuKlVkgc6aGl/HBkhcIbDI9aWjV0wgdaBiaD93/SJzGJuso6j/a86jxNrjtv7jzHPc66dJZfWvflffsr9mOxBUP6tu7L/v37HX0SEluLtmJ40oDhSQNr8tY4+l5e8TIpT6cwdfZUQCf2bzB4p8voJX+W/gGEaf/edvfzhyNvglFve+9LbSd/WptsNaXclu9ZbNs5q/k13zVTqqnc0bxzu20HtPxfYfvr8rFkcS7b6zTRpoOXpYP+lm9KVtS+lqh6drunQf5vquSFJD8CsnThAyrpWnYO0Ef2iXgHiqwsYf/6g/CByMqKJR8QEAgHIQWlhgwZwuLFi31+8dbV1bFgwQJGjBgRlnJ6Q9u2vncTMhqNis94Rbt27bj++utp165dXOuhpfxwZIXCGwyPWlo1dMIHWga+MqVevf7VFtXhovMucsifNHgSlscs3DbyNq+0P+3+SXFeUFPgOB7YaSC9e/Z2nEuSxND3hjrOz5txnuP4ueXPISExY8sMSupKomv/SZn+6Uxp8l+DnBEclv37Wr4XCuyy7Mv3LA3Q42Jn/4IT1cmRJMAoB4rqlbsMDmm7Xz449D3smSYfNxTgCBzYg1OSt19U/WRKSRa51pUKqHrOO9+EvHmq5IUkPwKyxBxghz6W74l3oMjKEvavPwgfiKysWPIBAYFwENI35/XXX8+OHTu49dZbPTKmqqqquPbaaykoKOCmm27SREm9wFvtrERDSkoKPXr0iPpYtLQeWsoPR1YovMHwqKXVy3PXAyI9FkaD59d0u/R2PnW4e8zdpCelh33dHl2V8o0GI5kp3rNfd5buVJwv2rfIcdwmvQ2tWrVynP9Z8KeiTlZRrRzUmbllJhUNFY72n3b9FF37Hz0Nzt3pny6InQ39ws/uhv7h5R91ez0se6Hzmn2Q1Dp40QaD/CdZ4e+XlJdorpIPzNVOHba96AxG1eyTP0PJlPJi796g6jlX74HmalXyQpIfAVliDtAX9DIO4h1IGx5h/8FDL2MhfEAbHuEDAnpByEGpyy+/nGnTptG+fXs++ugjAEaPHk23bt345ptvuOaaa7j00ks1VTbaqK72/XLr2P5cw60R9Yjq6mqWLVvmdyziQQ8t5YcjKxTeYHjU0qqhEz7QMnBfvtcpoxPbbtzmU4deOb04eO9B7h17ryr5753zntf2TRs3echvaG7wSntUh6Mcx5Ik8cTSJxznSVISZaVljvOzp5/twb9432Iun325ou32+bdH1/57T4Gsfv7pXJbGhW3/Z28JTKMKRmg3BixNclCqcgsULQ3MltlX/uw0Qf40JMmykGD7a955rI3OGlHtx+LIlKrZbev3kimV/5Nnmx0Go/+glQtUPWdLHez9RJW8kORHQJaYA/QF8Q4UWVnC/vUH4QORlRVLPiAgEA5CzjH98ssvef/99zniiCPIy8tDkiTWrVtHz549effdd/n444+11FMXqK+v99mXKJNRXV0da9eupa7Os5ZNPOmhpfxwZIXCGwyPWlo1dMIHWgb3H3+/43jWpbPI/2c+klnyq0P7Vu3pkdXDp8ys1CxmXjKT9899nxuG3+CV5uDWg6rvMSPZWXC9yaLMnk2Skigvc9Yj8pb5dfr/PHd0abQ0Jpb95wwOnqfNcDjGrdi6wSBnS9Xudy6Fs/ieuwBofzyc8Qd0vwDHa4HB5BkkyjhCyXdwFmDrzznGs06Vez0rgA33yZ+Hvoe6w266m2wF0wNDzAHa8OjKBwJBB7uaiXegyMoS9q8/CB+IrKxY8gGB+EC0vsMMkgZXrq+vp7y8nKysrLgrbg7yksTs7GwqKyt9bpHevXt38vLy6NatG4cOHYqwhgIC0YfwgZbDsgPLKK0r5YKBF3gN6njDNd9dw+d/fe44b5fejiuGXMGXm7/k3XPeZdLgSY6+Z5Y9w6OLH1XwWx+zemxtffdPd/PGmje8Xk96XJ5KyurLaPeSs+bA5xd+zg87f+DrbV8DcEbfM/hlzy8B9T+j7xn8fOXPjvPi2mJunnczXTK78NbZb6kehxbFdNv4TJX0Y/9zj4SmMrkw+ck/w5IzoVV3qHPTaark1N9+vvJKma5oKfS8DNK7Qr9bYV5/mab3FbD/S6WczCPlzKjxc2DlFXJ2kh0TfoUup0HtQcjoKbe5XnPsJ9DnWue5y3h6QJKgoRDSO6sfC7/yrPIYpbbz7BMICS3qA+vugsLFcM5mbeUKCGgE3cwBAomD6Qbv81sUYMgyQDXQGqQqfeikNZqtzSQ/new4t7/3Rhpr89Yy+sPRLaZHfnU+XV/rqk5+7nfw+0V+7bBq0zSyh93sN44CYWRKuSI9PZ2uXbvGZUBKQEBAINo4sdeJXDTooqACMdcMu0Zx/tc//uL1s16n+P5iRUAK5DpUrlhx/QqPgJQ/GDA4MqTqzMpf0dKT0xWyGi2NqmTWNyuzex5c8CDfbf+Od9e9y/TN01XrlngwQPvj5EN7raq6Q3DONifJiDeVLCd8JX9KVudSP2OSnClldXle3oqQ25fqYfWeKWVphO97+dA1iFeQGUaY0wX2T4dNj6vn84W/X4XZ7cOXIyAgICAgICCQiNAwgzmkoNTgwYO58847mT17dkJtDSm2goXi4mLef/99iouL41oPLeWHIysU3mB41NKqoRM+oC8dJvSe4Di+4dgb6JbVDcBrsCnZlKw475fWz6t8yaWwtmutKwmJerMcRKptqlXwVFVVsXfPXsd5s8ri4HXmOsV9zto2y9G3eN9in3wJb/8Gg7POk2sQKXsQHPuyk8aOCb9Ar8nysdmlVoR9+d78Ic62tI6+rytZ8XilsJrxu2taKC8zJavg0Jzw/bAu12+3mAOCp2txH9DB8j09fP9HQg9h/8HT6WYOaGEIH4isrFjyAYH4QDA/SqPhUr+QglKlpaW8/fbbTJ48mU6dOjF06FDuvvtuvvvuO8rLywMLiFEkJyf77LM/wKAeZAwiJSWF7t27R333hZbWQ0v54cgKhTcYHrW0auiED+hLB4PBgPUxK/vv3s+086b5lZfktvub2ns8t/+5jmOzrah1rVkZlDqy3ZGK3ffMFs/i123S2ni01ZvrFXrUNNU4+5p910gS9m9wZki5ZzZ5y3QyeNn5r1UPG63bvRz9qCetHcsneQYNrGb/hctd9ana6ZvOnUeyauCH/l+kxBwQPF2L+4AOavXo4fs/EnoI+w+eTj9zQMtC+EBkZcWSDwgIhIOQa0pt376dxYsXs2jRIpYtW0ZxcTEGgwGDwcCQIUOYMGECJ598Mueff77WOkccoqaUgEBgCB+IXUiShPEp528UvtaPbyvexuB35ILcH53/EfN2zmPO9jkA5N2XR9fWXVl+cDnjPxmvkDV19lRmbJnh8/oD2g1gR+kORdsROUew9245w8p9ffvkwZP56tKvgrzLFoAea0rNGwhdz5F3zDttJfx2vENHfh4NZWth5FvQ/3ZZ/1OXQscTZZol58LhH+XjXlMgozdse8Epe3INzPKzTD85G8yV0PEkeRnguFnQ5Sz4urWz3oBrTakTvnJmaRUuhYUnwxHXwHGfesq28w28Dw7/BOdu86TxxWO/tqUBVl0D476Cff+DVVfpph5HPKDFfKDybzljL2uQqCkloFvoZg4QSByImlIRRczXlCrbCJufgJO+90tWUFNAl1e7qJOvh5pSAwcO5NZbb+Xrr7+msLCQTZs28frrr3PBBRdw4MABXn/9dS6++OJQxesSzc3qlp3EM5qbm6moqIj6WLS0HlrKD0dWKLzB8Kil1ctz1wP0MBZa6+D+y64v+Ud1OIqFVy9k+sXTuXrY1Yplf/YMKNfle4+d+BjNzc3M2znP7/Vds6DsqG+ud+hx67xbFX0ldb6XUgv797F8D6DHRfJnlUsA0JjmPHbNajowE49MKVM61n53+bm07ZVCsjh37mt0eVbFq5T0qbaaTnWH5ICUuw5er2ECyRLaMzFX23YMRN6h0A/EHBC+HpqhaKnNpqKfgaKX7wLxDqQNT0zYv86gl7EQPqANj/AB9Yj5nTVr9kDe3Ghr4ROaFDpvamqipKSE4uJiCgsLqa2tRZIkv8vdYhGippS8pvj111+P+priltZDS/nhyAqFNxgetbRq6IQPxI8O/uSfcsQpXD7kcpKMSaSYnGnc3gqdZ6RkUFxcTOum1l6vYy/cXtVY5dFXUFPAxTMu5j+v/4fvdyp/1WlobghJ91BpY8v+DTiWphndglKDH5I/XXfIM7kEpfJ/chNl9DgvzT47wLWRA0uGJPlz51u2Ngny3H6dswcZXGtZBVhWx56PoHqn5zMxV0H5n/55XWUHeLkMy8esFoV8MQeECW/LTqMEPXz/R0IP8Q4UPJ1+5oCWhfCByMqKJR8QiAykQO9JMYqQglLNzc2sWLGCZ555hlNOOYWcnBwmTpzICy+8gMFg4F//+hcLFy6koqJCY3WjizZtPOue2GE0GhWf8Yq2bdty1VVX0bZt27jWQ0v54cgKhTcYHrW0auiED8S2DmcdeRYAd4y6Q7X8ZJdsE281pVolt6Jt27a8dvprXvnTkuSASHVTtdf+H/b+QI8JPeiVrdy9bWXuSp86Jbz9G1yCUr7+mXfNRjKl+pa19VmPpuxs3/MgTfaakpKj9pMDFX/5CQS5ZMBIVnnHvpI/vJO2HSF/uD+T3Dnw07G+dbPLdp74JQ3Lx34aBrnfaCJLzAHgkbEXRejh+z8Seoh3oODpdDMHtDCED0RWli/etXlrOTsPPv/r87Cup6UPCMQHopUR5qXCaWC0adOGuro6TCYTw4cP5+6772bChAmMGzdOUdA23pCa6uflPUGQmppKnz59oq1Gi+uhpfxwZIXCGwyPWlq9PHc9QA9j0RI6fDflOzYVbmJ4l+EYDUZV8r1lSrku38tIziA1NZXJYycz5dcpHvxpSWmKzCpvaExr5Lgex3Gg8oCifUfJDga0H0CTpYl//fYvjAYjL572YuTtv8sZqq4VORhdlu/ZpvjkHDcSl7nMNVPKH3KGAZCSmu6HyHZdyRaUwups++lYGPSAktwRxHKFFfZ9Dmtu9l6jwBb89HwmKgIX3oJS5X9CShvIUAY+w/Kxyq2wfLJDfzEHxA/0Mg7iHUgbHmH/wUMvY5HoPmCvKfTTd9cwdchUxYY1wgcEvEPfGVYhhfPty/PGjx/P1KlTmTp1KqeffnpcB6QAamo8657YYY8qxvx60wCoqalh1apVfsciHvTQUn44skLhDYZHLa0aOuEDsa1DiimFkV1HYjQYVctXZErZakoV1hY62lolt6KmpobVq1d75U/1l6Vjw669u6htqPVoL6svA+CtNW/x3z/+y2urX+P9de9TU1PDTf+7ieHvDWdV7ioPPldoYv9H/QvQkf27Z0oNuBs5OGRD9lHK7Cijyh9bTl0MQF2d76WTTrhkSrmOR+0++TPFlm31+yUuOttZrXL9oADweCb+6g0VLrF9Lna5jk2vP26CLc8Elh8GxBwQLvQzp+jh+z8Segj7D55ON3NAC0P4QGRlqeFttirrPEXLBwQEwkFIQalZs2Zx2223UVBQwD333MMxxxxDx44dmTRpEu+++y7bt2/XWk9doLbW8x8jOxJpMlqyZEnUv5RaWg8t5YcjKxTeYHjU0qqhEz4QPzqole+aKWVfvvf4kscdbUe2PdIhyxvsy/f8YcfuHdQ31Xu024uzf7n5S0fbV1u/YlfhLj7c8yEbCzcy8fOJfmWHbf/n74EO8k6D+rJ/l6BU17Ohx6XOLkMSuL7Auhb87n6BUozr8j9bIKm23vNZeGYpeVm+B3Dwa9t1LnS2fd8Hml3nVkkpr2AB1LpkyXU4AfD2TPwEpRZOkD/rXLPtbLolZ7vVtMKH/NAh5oD4gR6+/yOhh7D/4OkSwf5B+ECkZcWSDwgIhAODFOa3Z1FREYsWLWLx4sUsXbqUnTt3YjAY6NSpExMmTODLL78MLETnqKqqIjs72+9WhmIrWIFEh/CBxMODCx7kxRUvArD4msUc2fZIevynh6Pf/KjZkVJueNIzaDCw/UC2l/j/EeP5ic/z0MKHPNoXXLWAiX0mMnraaNYeXgvA8T2O57XTX2PsR2MddJHaslc39j9/mBwo2/U2nLcLWh+p7P9pBLQbBaPfg1mt4eJCSLJlOa+YCgdmyMcdToDStWCVl2U6ltJV7YB5A5276wG06gF1uc5rtB0FtfvhmOehYgvs+K9Sh6Megm3PQ7uxULoaTl8Nv9qeWY9LoPNpsPYf8jWnG6D/XbDzDbn/mBfhz395Lu3b9yWsulLZ/n0fZ3bWVAnmdIf6PPl476ew+jrI7AuWBrhIw2c23eC8ZgKhxXxg9zR5OWfOEDh7k3ZyBQQ0hG7mAIGEgOs7Vf3D9ap+5GtJGLIMUA20BqkqPuc+s8VMyjPOH2Mj9X7pjjV5axjz4Zjg9Tj4taK0gC/kV+fT9bWu6uTnfge/X+RXZtWmaWQPu9lvHAU02H2vY8eOTJkyhffff5+lS5fyyiuv0L59ewoKCpg5c2a44gUEBAQEdArX5Xv/9+v/cahK+SLuWuPAG9Qs3yuv91Z3CE794lSqG6sdASkAq2Slpim4X/EeW/wYJ396MtuKtwXFp1+4LN9zz1QCOTNKsmVKTa52BqQcvICpFfScDL0u9yLelj2V0s7Z1v9ONyKXTCn3gBQ4l9p1PUt5XbvO7kvxFHbk1lex2VbDyq3d2uwMSNnRqoeyH+S6VvV5njoK6BD6KXguICAgICAQU2iRLE7tZIYVlCorK+Pbb7/lzjvv5Oijj6Zr167cf//9FBcX06lTJyZPnqyVnrpAaWmpz75E2Qq2pKSEjz/+mJKSkrjWQ0v54cgKhTcYHrW0auiED8SPDmrl59fkO47X569nf8V+x/lJvU5SyPrnyH8qeE0GE8mmZAJh3aZ1PvveXPOm4rywppC8EvUBhlW7VvH0sqdZemApp31xmk+6mLJ/15pS3mBMchQL94qOJ9tqOhmh/x0e3WXlFQBYrS51n9K7uFH5WL7nVNJGZpMhudbDkKDZrfi9wehxbP7pBL7+5AWYPxQai/EIWHirS9XpZM/+jN7Q6RQPUjEHBE/X8j4Q/V/f9fD9Hwk9hP0HT6ebOaCFIXwgsrJiyQcEBMJBSLvv3XfffSxevJjNmzcjSRKSJNGhQwcuueQSTj75ZCZMmMCgQYO01jXqMJl8bK+Ns76JwV+x1ThAUlISbdu2JSkpJNOJGT20lB+OrFB4g+FRS6uGTvhA/OigVv6c7XMU57tKdzmOT+hxgkLW0R2PVtCajKaAmVQAJfh+AdqQv0FxXt9cT73VW80jGZIkOezzQMUBLv7+Ykff4erDPvliy/4NAX4NU6OfFYwmZTDIhqQke+q6BEOegM1PKOtSAZStd8rxp4M9GGWvNQVyICu1vZLcHtxK6+jgTS5fSaesc6ARyJsHtQe9X8OOmv3K3f7s15aa8RbsCPjMa/ZCbS50GCcHxdI7e6dTI8sPxBygL+jh+z8Seoh3oODpEsH+QfhApGXFkg8ICISDkCzrv//9L23btuWCCy5wBKGOPvrowIwxjpycHJ99iTIZ5eTkcOGFF0ZbjRbXQ0v54cgKhTcYHrW0auiED8SPDmrlH5FzhGMXPICCmgLHsdEW0LDLmvO3MoCVZExSFZTaVOO7hszsv2crzkd3G82SvCWKNnsgatLXk/hm2zeM6jqKNTetYeq3UymoLUANYsr+DUZAgkH/51lPCiC1g3P3Ow9em+7j50CbYdBg20mxz3UOkqzsHACMBsCUbuMzQdZAqHKrD+YrU8rglimlWOInwf7pSvqqnZDRC7IGKYqvn9i3CrYB6+6E5Nber2XH3CPcdPOWpeVEwGe+5xPY97lcm2vJ2X7rKfiV9cfNsGeaT34xB4AzaBj9uUUP3/+R0EO8AwVPp5s5oIUhfCCysmLJBwQEwkFIy/c2btxISUkJs2fPdizdSwRYLIG3qY53WCwWamtroz4WLa2HlvLDkRUKbzA8amn18tz1AD2MhV7s3+oWdKhucu5iZjKaFLIMbv9QmgwmRU0qLVDbVMvMLcpahvZdAb/Z9g0Aaw+vJa8qj5W5K1XL1cMzVw/b8r1jX/aa6cQJ0+GYl/yL6HYOtOruzLga+7Gjy2J75NYR70C3822XNEG3cz3luAel2hxrO7DpZfUSEJKskP+Tsq2hAHKGQf7P0Fwt17wC2PaiTU4jGN3rkwVY6mW/tiR5zSwL/Mwl2/gG/gfUryz3ew1aj/B4YmsOiP7yPX2Mg37mgJaWJexff9DLWAgf0IZH+EAiQd0cKkVprg0pKDVs2DCt9YgJFBcX++xLlLXkRUVFvPLKKxQVFcW1HlrKD0dWKLzB8KilVUMnfCB+dFAr/82zlDWdmixNjmN7ppRdVm1VrYLWV6aU+zK/YOAaFLOjsbkRs0VZQ+nXPb8GJTe27D/A8j1TGphSfPcr4CmnpFTOjCtMOwmyB8qNxmTvWVH1+crzjN42Fd0ypVzhWpzcfh+WBmdbU7lnUXPJosig8kAP2zLNpEwXHntAzPtYBXzmklUOSuXN831dNbK8BeaC0SNMnliZAyQJrC1SpDU46OH7PxJ6iHeg4On0Mwe0LIQPRFaWGl73H/2i5QMCAuEgrELnBw4c4LnnnmPy5MmcccYZTJo0ieeee479+/drpJ6+IJbvQZs2bZgyZQpt2vhY/hEnemgpPxxZofAGw6OWVg2d8IH40UGt/ON7HM/UIVMd565BKZMtSGCXlZOVo+D1VVNqeJfhPq93et/T/epzsNK9rhAc8/4xPLTwIUXb9XOv9yvHHTFl/22GQeu+ofG2GwMdx/slyc6Rx0AxFqZWnnWlALY9rzx3BILcakrZcc5WqHOp7WUPdGXblu216uk7+GQPZv1oC2pam1w6vVzPHhCzNrvUwHIi8DO3ynLzf/bRr1KWt8BcUHqExxMLc0C1uYGhB+HIzTvJrczVVHaw0MP3fyT0EO9AwdPpZg5oYQgfiKysWPIBgcjAPQgZLwi5Wtlbb73F//3f/2E2m5Fcfr2aPXs2Tz75JC+99BJ33323JkrqBWlpaT77EmUySktLY8CAAdFWo8X10FJ+OLJC4Q2GRy2tGjrhA/Gjg1r5BoOBU3qfwvTNcg0gb5lSdlmH9ykLiTdZmrwGpdJMvr9n/zHiH36znFxrWtmxt3wvr6561f+N2OBaCF2hUyzZ/5hpofMOuFN57iUzJS2tle3T5TklZcjBoqTW8o597sEoD9jGyNsugKntwVwhHxculD9T2sDuD6DfrX529LOhcqv8edh1WZxbZlZ9gTP7qma3VzEBn7k9U0rFElS/snpf4VZTK0g9wuSJhTngmS0/sqUJoImbfriJn68MHAhsKejh+z8Seoh3oODpdDMHtDCED0RWViz5gIDOoYNsY38IKVNq/vz53HXXXeTk5PDcc8+xatUq9u3bx+rVq3nhhRdo06YN9913Hz/++KPW+kYVtbW1PvvsgTlJ5w88XNTW1rJu3Tq/YxEPemgpPxxZofAGw6OWVg2d8IH40SEY+a6BJUWmlK2mlF2WuUkZgKhqrHIErlyRnpzu81pZqVkB9QkHx75/LCtzV3rUygo0HnP+nuMIiMW9/dfLwRzHWFx0GNqNhp3vyPWejnkugASDc/mdIpvJBtfMocVnOANeABgDB6UArBao3uml3ZYpNacLHFIW3sei1CWwD9hqSpl826sqWeldIDknNF4NeGJhDthb7dyBc2vxVk1lBws9fP9HQg/xDhQ8nXgHii89hA+Er4dAIkC7IHxIQalXXnmFdu3asWHDBv71r38xZswYevXqxejRo3nggQdYv349bdu25bXXXtNMUT2gutqzXokdiTIZVVVVMX/+fKqqquJaDy3lhyMrFN5geNTSqqETPhA/OgQj31dQyh5wsstqqvcMQHy/43uPtlSTe8FqJ5JN2hZGd8dfhX9xwscncN331ynaA43HxbMuxmKVgylxVU+kdV8Y8qSiqbpafiF1jEV6FznIZM9u8ofmWphqW/aGAfZ+4kZgUNaUAjAkA0Y5A8tglINWAQNTEmx61Hu7PRDaXK/sctPF8cwriqFmvxdRVlkv+wuZuzxvstztp6HYFnDzfT9VVVX8NH8ehtXXeCeY67lUU8wBLQc9fP9HQg/xDhQ8XSLYPwgfiLSsWPIBgcTDI+u/5Nw82F+xP2xZBimEb8+cnByuuOIK3n77bZ80t99+O19++SUVFRXh6KcLVFVVkZ2dTWVlJVlZ3n+p7969O3l5eXTr1o1Dhw5FWEMBgehD+EBiYuaWmVw++3IAjut+HKsOrQLgtdNf497j7nXQrTu8jlHTRgWU9/D4h3n292e99i2/bjnjPhmngdaBIT2ufmo0PGmAV4Fq4t/+G8tgdjuY6jY+O96APx+Ey+pguo9fzlr1gAsPwtbn4K+HPfvP+Rt+HKRsS20PhiR5B74B98D+/0FjiSevKy5rhK9cgps9J8HBr+VjY7K8bDCjF9QecNKMeB0G3CXfX/VuaHssFC6GhkJYdbXyfr/OAXOlfNx2FJSthZFvQf/b5Tb7/buP0cFvoMclzkyx6QYY/h85gDbZ949eWM0wM8VTnl2Gt/YooKXmgEkfj+Cb3A0AdGvdjUP3xbF/CcQsxDuQQCRheNI5zzY83EBqku8f9CIBQ5YBqoHWIFXpY07SGmaLmZRnnBvFBPOeqCXW5q1l9Iejg9dj/0xYeXnAd4bD1Yfp9lq3gPJX5q7khI9PAGB0t9H8ceMfXumqNk0je9jNfuMoEGKmVFNTExkZGX5pMjIyaGrykpovICAgIBA3CJQp5Y3OH24cfqPPPvuSQD0jWlvpRgwpOYFpelzivd1s+4W1vlD99RpL5IAUyFlOgQJSgOeOei5BMnsdK6sZelwKqR3k8/xf5M/Z7eDXMVCxRV4+6K0QuT0gBVC5Rf60NAZWa/kkeYlj7ndQuMSmmhGaa+DQXPm8Ygvk/xZYVpWX5YkCAgICAgICAl6h7fvptuJtjuM1eWu80ry++nWyZ9ysSl5IQan+/fvzww8/0NzsfSvj5uZm5s2bR//+/UMRr1uUlZX57EuUrWBLS0v53//+R2lpaVzroaX8cGSFwhsMj1paNXTCB+JHh2Dkm1x2Q1uf79zFzB5AssuqqapR8G29zXttmHbp7Xxey1sNqpaCaxKxv/FwTzY2N3sp3h1HKC0rlz+92oYt+NN2OHQ4wdmc0Uv+tAdzXAOUqW7P2+jn115fO++5w2N5n5fMLasZrI3QWCyfH56v6K7d+x0ANTV+MpgAcobJnxv/6ZPEbj8AfJ0N216QM75cdV12gfy550PYcJ+C98vpX3oKnee74KyYA1oOevj+j4Qe4h0oeLpEsH8QPhBpWbHkAwLxAS2XIP9rwb9U04b0hn/NNdewY8cOzjjjDNavV26lvG7dOs466yx27NjBNdf4qIEQo4j3HTXUwGg0kpqaitEYuX8Oo6GHlvLDkRUKbzA8amn18tz1AD2MhZ7s31cGlD2AZJflXg/qqA5HefB0z+pOalKqz+CTSW1QQgMcqHQu7fI3Hu5F0Yvri1tct2jCPgZ+bWPwv+XlcADHvACtvfxAldFb/uww3tlmMHjPTHL0G1UGptQUQzdD3g8+u9Py5B0lPWZ9j4CX28tbky3w5nLPdvtxwFzl/T7KN0H5RufyPjtvio0391uf+roi3uYAPb166eH7PxJ6iHeg8PWIV+hlLIQPOOH+/6nwAQG9oFFNFrkNIdWUslgsTJ48mTlz5mAwGEhPT6dTp04UFhZSX1+PJElccMEFzJ49Oy6MV9SUEhAIDOEDiYkfd/7IuTPO9Wh/95x3+cfIfzjOd5ftpt+b/Rzn0uOSoiYCQOfMzuT/M5/XV7/OrG2zWJm7UtGfe28uPf7TQ+M78A53/X2hsbmRtGfTHDWl4rmeggPe6hjteAP+fAgus+3MU/4n/HQsXFwkB5P+uEne8W6qBBv+Dw59BzV7lDIua4Cv0vGZYn7UQ1D6BxQu8q/fBQfg+17O815T4MBMJU1Shlx43RVTJWc9qPRuUJ8Ho6fBmpuc92tpUtarajcaStc4+X86Vr737MFwzhalfNdaW93Oh7y5cNzncs0qgB4Xy4GnnKFw9l9OWtdr2vWwPwPXZ7FwIpyyIGpRnBaZA6p3M/nryXyduxEQNaUE9AvxDiQQSbi+PzU+0kiKKcUPdctD1JSKHNbkrWHMh2OC12P/DFg5NWBNqbyqPLr/p3tA+R9u+JCbfrjJL53hSQM0AC/QMjWlTCYTs2fP5rPPPuPkk08mNTWVgwcPkpqayoQJE/jss8+YM2dOXASkXBHvKblqYLVaaWpqivpYtLQeWsoPR1YovMHwqKXVy3PXA/QwFnqyf9c6Uq74cdePClkmPDNDHh6vLHZdUCPXDrp77N2suH4F5/ZTBru6Z3XnhB4nEAnc+uOtVDbIWS/+xsPiL7MnANbmrWX+rvke2VZ6hs8lKpYGUOycaJv/JYu8RC8lW0nvninUdoSN38/LksEEkveyAQq4BqR8wT0gBbD9P45DyVZ7ytpUYW+QM5y+clte6Pq7XuFiOSAFYKmHxlKo2uGwHwXybDWkXHf9c4yJ858NmVflL42Fi8BgiK854Id+0OQsnRDtmm16+P6PhB7iHSh8PeIVehkL4QPa8AgfSCToO1gYVtToqquuYuHChZSWlmI2myktLWXBggVcddVVWumnKxQVFfnsS5S15IWFhTz//PMUFgZRqDYG9dBSfjiyQuENhkctrRo64QPxo0Mw8rPTsr22l9aVKmSV22oRueLf4//tV/Z9w+7zaPvhct9LrrTGc78/B/gfj2arZ5BEkiQ2F2722mfHnrI9jP5wNOdMP4fZ22Zrp3QLwz4GHmNhaQRTmvPcHkgwpcufkqSsM+WO/ncFvrjBCH7G1CdMrdTRuWRT1bU7EwDjn/fLDZIF6vM9eXpc6DxeeIrzuGYv7HgT5g2kKG8vxlk+dChc7Dz2sqSvsLCQl15+SZ3+LjxiDmgZ6OH7PxJ6iHeg4OkSwf5B+ECkZcWSDwgIhIOgglKrV69m4sSJZGVlkZWVxamnnsqaNd6rrccjsrO9//MFzvW88V53Kicnh4svvpicnJy41kNL+eHICoU3GB61tGrohA/Ejw7ByB/fc7zX9sdOekwhq21OWw+aVsmtOLe/59I/O3p26OnR1ia9TUCdtEJhrfzy5W88LFbPTKl//vpPhr43lEtm+diFDnht1WuO46nfTg1f2QjBPgYeY2FtAoNr3TDbL3KODCkJRwaQwYDHL3a9LvNzVQOM+VgOSpWs9EPnruwwl+vZ0Pk0ZfDMFRXO5XbJncYo+3xlxKV3994OsOVJ+ZK/9yPJqCKjzr6zoIu+OTk5XHjBBf75muucx00VcTgH6OfXXT18/0dCD/EOFDydeAeKLz2ED4Svh0AAVO2E4lXR1kI3UB2U2rx5M6eccgqLFy+mpqaGmpoaFi1axIQJE9i61fsuSvGG9PR0n32JMhmlp6czZMgQv2MRD3poKT8cWaHwBsOjllYNnfCB+NEhGPnJpmQ+veBTj/beOb0Vslq3au2V/4NzP3Acz7hkhqIvO9P3DwF2nNbntBZb0mfPdPI3Ht6yof6zWl4GNnfHXKZvnu6V3tVP/GVUuaOhuYHzZ5zPyA9GkluZq5pPK6Snp8NljZ5jIZnB6BKUcl+SKLkEpdzLh08xuy39c4ckB5KCLXR/xhqXa9tgTPVSrNyGDuMchymZXZR91ma87uK3WsMNXYp+tx04r5Oens7RRx/tnd5+X7MynG21B0KbAw5+BF4CrB50CT4H6OH7PxJ6iHeg4OkSwf5B+ECkZcWSDwgEiZ1vwdpboq2FbqA6KPXCCy/Q0NDAww8/TEFBAYWFhfz73/+mvr6eF198sSV11A3q6+t99tnrxWu5jaIeUV9fz6ZNm/yORTzooaX8cGSFwhsMj1paNXTCB+JHh2Dld8jo4NFmL7ppl2VuMnvl7dK6CzUP1VD1YBVTjp6i6GtsCFxL5+crf2ZF7gpVenrDhC4TfPbZg0X+xiNQTakrvr3CcXzejPNIfjqZm+bexO6y3SHp+8nGT/hh5w+sz1/PO2vfCUlGOKivr2fT1u2eY2FpUgalUjvIBbsdkFwygAxugSLvOzgq5dfLmVLBwFH41eVa3rK0HPTOwFhjY4OyL4zaYaphH4fyjc626Qb2r/TxnOcP9Wwr+p2mzS+xfe28oOYA1t8JlrqAdB4ypxscSxA1nQO+dsmI1NGUoofv/0joId6BgqcT70DxpYfwgfD1ENAZNP5uMnj7oS4MqH7D+/333xk3bhxPP/00HTt2pEOHDjzzzDOccMIJLF26VFOl9IrKykqffYkyGVVUVDBnzhwqKiriWg8t5YcjKxTeYHjU0qqhEz4QPzoEKz/JS1Ah1fYPvl1WY43vAFNGSgatUz0zqRprvfO8ceYbmAwmbh5+M0aDkWTXYIgXXD3sakfmlivO6n0Wo/JHMf/C+V757AEnf+OhJsvJKlmxSlbm7ZwHwIcbP+SXPb8oaNT6zdZiZ2byBxs+8EPZMvA5FtYmMLrs/tPGbQc51+V7atDneuX5gZmKTClzq/7srO2HKnjN2vKCPGe9srraamVf/i+w91NlW46XoFBYsL2SZR+laO2d+0/v5JVbPNuMSaRs/hfbfv8kqDlAhm8b9Prc/7DtumN77prOAWbndbwmnvwyxktjy0MP3/+R0EO8AwVPJ96B4ksP4QPh6yGgN+j7u8kgqfz2TE1N5e677+all5QFN++//37efPNNGhoafHDGPqqqqsjOzqaiosJnXalE2QpWkiQsFgsmkymqKcotrYeW8sORFQpvMDxqadXQCR+IHx2Clb9g7wJO++I0RVvuvbl0z+qukDXmwzGsPbyW0/uezi9X/uJDmlKPt/54i9nbZ/PCqS8wtvtYR1+duY5WyXLx6BeXv8iDCx/0Lce2Ta3rFsoAy65dxnHdjsNkMrEhfwNvrnmTz/76zNF/4cALmXPZHL/jsb9iP0e8fgS8imM7ZNxiCGUPlNEquRVpz/qoZQTMnzqfs/qd5Wc0ZNw5/07eWvsWACaDiebHQij8HQZ8jkXpWnm3ua5nemdccQXU58GpS2DjvyD3W6ixZYu5bk883QCdJsiFz3+/yNne4QTodgH8+YCsxxHXYNjnfFZeMVWS5RlT5KBZMPd5/AwMKy9XNmb2hZo9zvOcoZDcGopDz9RTIKk1NFdDuzFwxmq5bbqb/9nHyr39+OnyVs+j3oW1t2IZ+wXGI65QNwcU/0HSguNgUiUke9+u2etzt+tw+ipoPzb0OaC+EFLbg9FleeZ0g+P5XVbVg1mF8lLVrq27kndfnrPfjoJF0FAEvacQMtbcAqPf90uih+//SOgh3oGCpxPvQPGlh959wPV9pumRJpJNyQF5wtEtEJ0hy+B4B5Kq9B38CBVmi5mUZ5w/vtnfLUPGurugaAmcvSkotjV5axjzofOHGdV67PsfrLpKOXd6waGqQ/T4T4+A8j/a8BE3/nCjXzrDkwZoAF6Qk3uysry/Y0AQmVJms5nMzEyP9szMTMxm78sy4g3xvk5cDQwGA0lJSVEfi5bWQ0v54cgKhTcYHrW0ennueoAexiIW7L9telsPWd9N+Y6Pzv+I/130P9V63Dn2TpZcu0QRkAIcASmAK4Ze4c5Kr+xeADw07iGf8s1Ws0O3EV1HMHWIsuC4a/0nX+NR2eA7g9aOhuYG6szKpVFn9ztbcT5n+xzHsSRJLD+4nH3l+/zKDbR0sCXgcyzajfIdkHJy24Xg9xe7gf907mp34nfyZ5/rFMv3DMH84qc2IOWyO6BXy0/vrDyv2AStPIvxh4xw/HmlzXZtNmGy1qufAxYcJ5+Ya/zT+fpOCDLg54E5neHwPFWkPn9HPTADtr/mvc8b9k+HomXKtt2BMw/18P0fCT3EO1D4esQr9DIWwge04RE+EGXEeWZlMAiyQENio7zcc0tzOxJlK9jy8nK++uorv2MRD3poKT8cWaHwBsOjllYNnfCB+NEhWPnu/yguuGqBI2jkKqtr665cf+z1XmtQhaNH9yzPHdBeP+V18v+Zz3MTn/PJV1tTq5CfYkpR9NvrPvnTY2Vu4N3gas21zNwyU9E2f5dyyeC0DdMcx19t/Yrxn4zn6HePpqy+LKD8SCJ025PUB11cC5p3O1/+bHOMot2j5pMWcAkw1bgv3wPIGuTZ5qtoerRglX8k/GvtEtVzgAM1e/3S+X7u8qtkWHOAv2Wwqt7Zg/xHadsLcPAb3/3r7vLarIfv/0joId6BgqcT70DxpYfwgfD1EAiESAf49B0AU1Fd1In//e9/rF69WtG2e7f80n722Wd70BsMBn788ccw1NMX4n2duBrY0zejPRYtrYeW8sORFQpvMDxqafXy3PUAPYyF3uxfcpvoJvaZGLKsUPXo26Yve8qdS6tMBhOdMzv74YCxXcby2+bfHPJT3XaA216y3UMPSZIUvxR6q1Xlji1FWzwypfzh8tnysrE6cx0fbviQB054QDVvSyP05xlETSnXoJR9rC2NykLnkpUCBtOZFtr911sW2p4PPduaSrW7prlKeV620TudP0hycMcigWQJnMWufI6+n6nf577jdeg4zrM9GKgNWEpW7wEse/bdwolw9CPyElC/cgLY7843YeQbXtii//0fCT3EO1D4esQr9DIWwge04RE+IKAXBBWU2r17tyMI5Y6ff/7Zoy3eUvzatm3rs89oNCo+4xVt27Zl6tSpgQljXA8t5YcjKxTeYHjU0qqhEz4QPzrEov2nJikDSm2y23jQPHvKszy86GEAtt++nQ7tOyjkH6ryXgekbdu2XH755Vwy6xKWH1zO7MmzGd9rPAD1zYF3opm2YRo3HHuDX5qTep1Es7XZo2j88oPLFUGppQe031ikobkBSZJITw681XPIz1NyDUoFWL7nGpSyw9qkaE9Ny6Dz6Hsg9xu5CLkvjHhT3lnOGzL7yNlBJ82DpefiGjTLPPSxb5muKFigji4YlP4hf665OXheWzBtONOh/hLgYr/kyvca38/E73PPlTOOwpsD/L0vuujVUOgjw8lmU4WL4IirVVxPCn43R/Tx/R8JPWJxDgiFR7wDBQ/hA5GVFUs+IBAf0HpXPbVQHZTat89/bQsBAQEBAYFoYX/FfsW5yegZ2LhrzF2kJ6UzpNMQBrQf4NF/VIejPNoeXPAglw2+jOqmakfdpxM/PZED9xygZ3ZP6s2Bg1JTBk8hLcl3kXOAVYdWkf1CNv8Y8Q9F+w87f+DtNW9z++jbAdhctFnR71rwPRQcrj7M0HeHIiHx5y1/0iO7R2CmkOAj4JHi5cceb0Epe6aUIUnOBjImwZE3QnpX/0Gp/rf5DkqNeB2Wngdth3v2la11HtsLkPvCkf+A3e/57g8VZeu8tx/82jePit0gHajZKwfm7NDbUkRf0KSWWhCZe2tuhdHvBqZbfDZM8L6Tp4CAgICAgCdE5pkdqsP5vXr1CukvnlBQUOCzL1HWkufn5/Pkk0+Sn58f13poKT8cWaHwBsOjllYNnfCB+NEhWPn+0rkjZf/uy+PqKz2DRZkpmdx73L2c2udUr/IHdxzswfPiihcZ/sFwHv30UUX7rT/e6vW63mAymmiy+C8G3WRpos5cx2urPYs13/HTHSzet9grn5qgmD/c+8u9lNaXUlZfxp0/ycGbe3++F8OTBi6ceaEHfVi2Z3DNlAL+n73zDnOi6uLwL2V778AuvSMdaVKk9957kSYqiiiioiCIivgpKDZEeu+9S5EivXdYyi4L23vftO+P2SSTZGYyk0w22eS+z7PPJjPnnDm5c+7M5OTec2t+AHiVNZXTTolrR/uCL5UBkOoSErn5SsybNw9p6WZqbnGNhonsRf03l4zhSkgBgIw74cgb+sp3So64OjuEfR8tYZORxF4jCqpCYG9Vw/PoWwXYZjrCECgF94Dkc8IKxvKVVSsNEo6c7RB/iP/xrcTR7gG2skWegRwPR3gGKgk/SB+w3g9nw7hUhdWU9Iwykadeij0jzrnHmIoM1zKG2hPjbFMWjQkICEDv3r0REBDg1H6Iad8aW5boCtHhK8tHjvQB5/FBqP0I3wjda+O6TCUd/1rKh5of8cNkf+hrQxllT8Nwpa77yfcBANcTzNf9UagUZpNS5tj/iHl1skJVoVV2X2a91L1+lf0KALDk4hIAwJ6He3QrEGqx+Jyo8qlEiBauhyNtkqhcd/22iI7FI6goPXdPb/Tu3Rve3paPEtOhTSrFbLRMX+puXoYP9OTY2cEW2tCfLy9v2orJl99jPFZIwjLD7YoMRrMG5z2deflq6+4B/KbvSagDmIpk3uE2v1ECqOkjrIpHSqVdBxQcSUeVYdLXEa7/JeEHeQYSLkeegZzLD9IHrPeDQBACSUoJgOvh11VuRt7e3mjcuLE4XwQc2A8x7VtjyxJdITp8ZfnIkT7gPD4Itd+wTENMbjwZNUJq4N9xhjWPSir+m0c2N3gfGRxpkf31A9bz8s1D7gGNRoM/rpif1qNUKxGTEcPLLhtsSa1CpXVJKXO//Bnbt/h8vtwHJJ9h9IAXEonBqCc3N3c0btwYnh4eHEo8CKwHuDOPDuKN1M06fS3KHP3rVxZOA6MlET2CaVNUH/9mKLeVOn/u9+fpt9GTYk/XGogbnPdDDRgPLfo9IKe4bATvX3eL5YrSAGWueVmJBDjcGIjby9slR7j+l4Qf5BlIuBx5BnIuP0pTHzCOOXv1AYJzIPqIMJ6QpJQA8vPZp0lop684+6oE+fn5uH//PmdbOIMfYtq3xpYlukJ0+MrykSN9wHl8sMT+st7L8PC9h2geZZgcKqn4rxte13ADj9I6TPaNC42z6irycfHlRV6yE/dNxCf/WLeCnpplipm1I6Xo/fXyq8sm+1VG9XtEiT3tSmnsXrHoFdea8q8FpVKN+/fvo7DIus+PHrcMp/h5lRNuQ6yklBjQRkoVFhido3s/mFPWv7wwVv9akYP89Ofc5z12u+k9IP0GP58B4NwwIPOB4TZdYs4oHugxmfUYKMqkXquLE7fXZgBbfWEC/YsbvfA+ZxLB8NiOcP0vCT/IM5BwOfIM5Fx+iGlfcWWmS/QBAsEaSFJKAJmZmaz7XOVmlJGRga1btyIjI8Op/RDTvjW2LNEVosNXlo8c6QPO40NpjH/jZJKY8c9EniIP/zy1wcprAKoEVTHZpi2yHulnOALM2pFS5+POG7x/lPrI4L1KbZiUKpH4Z7uGaJNHGjUKioqwdetW5OaYGxEjEKklI68caGQEbaRUTk42oCqi/gDghpnEKNOIIUU2sM0PbifbcZ/3R79BUxwrunvAoUbm/dWOaFIXAgdqU68LUqj/bNMiE0/pX++vAWwPpF5n3uU+lkYD7KkMpFygjmdc48yYzPs0P6kaX45w/S8JP0rjPcASHfIMJBzSB4Tj9uh/LtEHCEIx9wOd2Dj2tYn36nsEIDw8nHWfqywFGxERgU8++QQe1k6ZcHA/xLRvjS1LdIXo8JXlI0f6gPP4UBrjX2a0YltERASLpDi+da7aGX9escGKa2AeFRWfQxUXDfEOwctsfR2omMwYNCjDPJ3KEm4m3DR4bzxSSpzY0D6IsVwrWAuPa+U18PHxpfyQS4CKzYH9xVPVwtpQtagKkixzzZJRT4osy45lC2jnKygoELg8hb9uOkN9NLUCACAresV93iUSy+4BxiOaCpIBVXGR9+IkpMljdEQH4OlK/segk/scONqy+I2ZpNTpvkC34hUQlbnAkWaI6H7L7td/gNwDxNIhz0DCcYRnoJLwQ2z7rtAHCARrIEkpATj7jYYPUqkUXl5e9nbD5n6Iad8aW5boCtHhK+so590RcIS2IPFvivFIKT7Xa2t823jbwqLYPOAa/ZRTlGPwvu/mvvi2w7f4rM1nohz7SfoTg/fGCTJRYuPVQSA3Bqg3F6j9MYMAS1IqJ5r6r9FAIqH54VZDL9N6G+BlPiHJilFykxdGiTubEn+Me/+jX3QvpRIJUJhquF+RA7gxTG0DdAkoHYebAo0XAwAkaoWZ826U2Ek+R/2/+QUQ2kK/0qE51IWcKw9KJDAz3c6IonSOmmE0O5fe5t6fdBrIvOsQ13+A3APE0iHPQMJxlLYoTX0AAOkDBIIZSJZFAOnp6az7XGUp2PT0dOzcuZOzLZzBDzHtW2PLEl0hOnxl+ciRPuA8PpTG+JdJDZMJYsZ/SaMdFcXE0/SnJts+P/G5aMf+7Lhhcst4+p4obZZVXDvIPQDwZqjhFNaaWS+wfvELDQoKCln8sHJ4uiUr6flWtu6YQjjZhbdodnZxyQH6dKJtfiwJGABJJw3fp10B/mmje8t53jUqaFQFAIrvATnPqe3P1lLT5XgjAU71NDRt6XSojRJgezDHoWg1paJpqxBqjyeR6qcXnh0EgCP+lSVbZ4XcA8TRIc9AwnGU+2Zp6gOAmeunyH7Yqw8QSgZnnSJMklICcNYgEIJarUZWVpbdb7q29kNM+9bYskRXiA5fWUc5746AI7QFiX9TjKfviRn/fHCXW5DMEED/Wv2Rp2AfQQIAm25vQsM/G2LDrQ2iHdd4+p4obVauO+BXnX2/TwXm7bpzTK0NY5Efrbdx78+4yb2fTkBdw/8OBlXjSQLkvzTcQU/A0MlnT4YCgCTrAXt7J/1rOO1SW/8r74VhIXlzFCQBuc+4ZbKLR/OpeaxmAADnRhb/H2K4XVebijYiah9t1J1ECuwyTJoaxP/DX4CX+6kaWFtLdkUqcg8QR4c8AwnHUdqiNPUBwML7lYV+kD5QiijR3IK4x5KIXE9ToiGZFrNkZWUhICAAmZmZ8Pf3Z5SJiorCy5cvERkZibi4uBL2kECwP6QPEOxJ3819sfehvlCzZq7lt7byi8sjLktYDHv94oX8tHzAD8BHFh+alUF1BmFio4notqEb437NXA0k8yQG7/lA12Hi+QfPUTGwIn9H2dhYfJwRGuDMQGoESvvDzHIjNMzbXu4H/u1NJZZ8qwDBjU3tD0gGPEOZj609Pt0XJhk++FYFZF5A5h1gWBGw2bZJSYt4cx8QvZyaKikk2UZvIzrdrgDBTVjbKmpGIF4mZlD3gLP/A/4bTu2o9xU1VZMJY1tvbNLrNf8buDgRQ1KDsS0tDQAQKQfiKjPIWkOrLcC5ofr3w1XAJhkQ8Jpp8fRhCkA7VXijBKjxHvDa5/rklXHsElwG8gxEYIXpvmYl9Hu34ksF75WDbYXEXwJkA/ADNFnOeR0sUhXBY4G+ppY1z5kAgKszgPjDQK97gtQuxl1EixUthPvxdDVwYbzZWIzLikP5xeXN2l99YzXG7xnPKSeZJwEKACwEZx4FICOlCAQCgeAEiLkS3v7h+wXrSITUubGAnKIchHiH2PQYTDAVXbeIqpOASqOo1xqVZbWbtL/KVRhkmJDSMijDNCHFRL35FhzbiKZ/AG7sD1cOgUZdPEVNpC8ISWe599NrUhmMjjLqG7HbgRMs0xC1dcMA3S/ImqI0ZtmL45m3C4Wt7zKN8PpPG8PO+aWLQCAQCAR7QJJSAkhMTGTd5ypzyRMSEvDtt98iISHBqf0Q0741tizRFaLDV5aPHOkDzuNDaYx/N6NV06yJf4tWs7Pxd9TD0YfFSxAJwHj6nsXns/lfwBvrqNdqC5NStCQBox8yT352Ko0QfmwTNEDKf1rHhKtH9RfBB27S01Mh5pLTl05tRVLsHXaB4vpLapUCKKCdF4kUeLqWmm6XcQc4OxhIOEYVITdGQv+1n+FXV/qb4hpWVhO7g3l7xm2TTarE03a//gPkHiCWDnkGEo4jPAOVhB9i23eFPkBwcHj+mGKvSXQkKSUAX1+WFWug/5Xc1r+W2xs/Pz907NgRfn5+Tu2HmPatsWWJrhAdvrJ85EgfcB4fSmP8GyeSxIx/PpTE0HnjouMlgfExRWmzSiP1o6b40F/7EKy/tjD7IdK1R8axwpB/Teq/QYLQguPKbL+stjdSQSV2BPp39zvGzc38/0P42Xpm1aWFScDVD/QbJDLgwlhAmW1Yt+rSVFNleiKopJKwsVsM33M8kMsK44vjjv15kJP7P1qmZwS5B4ijQ56BhOMIz0Al4YfY9l2hDxAEIuZIZifAvhNQSxk+Pj6s+1zlZuTj44PmzZvb2w2b+yGmfWtsWaIrRIevLB850gecx4fSGP9S2iiaBhENOK/XYvhmcnyp4W88HSt3xPFnx0WxrcV41BKd8y/Oi3ostmOK0maVhgmT94qg/tPOMaMfXNee/gnArjLFbxgeAun7A+oAaVf1+zxCgMJU6nVoSyDroVFRb4bjhrcFkk5Trz3DqQLedEog4eJxeybgX1v4ioI3xVvNkaK4fTQao7ZiaIOYjbQ3jvmw3rxhNcDd/PWFkesfA7WtLzpH7gHi6JBnIOE4wjNQSfghtn1X6AMEoZCkFB0yUkoAhYWF9nbB7hQWFiI6OtrubWFrP8S0b40tS3SF6PCVdZTz7gg4QluQ+DeFPty4qKhI1PjnhdFzRY2QGsxyFuLv4Q8lx2pjb6x8Q9TjaTEeKWXf+Nd/2RPsh2cY0KN4FA7TSBj6F0lFlu6lOuQNoO0e/T7dKCozSaVO/+peKqtNZxAooQfRrPslcxwutMlEiQSWPHYWlPgzO/cBs05NQmGhSFMHLYTcA8TRIc9AwnGUtihNfQAA6QMEghlIUkoA6ekM9Q+KcZW55GlpadiwYQPS0lgKjzqJH2Lat8aWJbpCdPjK8pEjfcB5fCiN8e8m09eUSk9PFzX++WA8B39Wq1lW26Qjk8gETd8zrj91K/EWfjj3AxJz9LUR8xX5gu3YPP7DWnPs1Lcxsx8cIxQkUiCwroGdGwk3sOLaCuQW5cLgcSj7se5lgXtFIJSW8Gv0Q/ELKRDcVH9c9yDWQ+fl0xIYLVYVu1CCmRZ7j9zQJqXufgec6ChAUYMiDbA/l2ZKVMcs4/mzaKSlptrVB3IPEEeHPAMJxxGegUrCD7Htu0IfIDg6jj0qS6KxVzWrUkRWVhYCAgKQlpaGoCDmB09XWQpWpVIhNzcXPj4+kMksWT2pdPghpn1rbFmiK0SHrywfOdIHnMeH0hj/Sy4swYdHPgQATGwwEX/2/tOq+Kcvt2wOqUSKiGURiH8VD/gB+AjI/TwXPt+an+Ijl8o5R0BpCfAIwNbBW9F1fVdePl2dfBWNy1Ir1Kk1asjmU5+vfaX2ODH2BAAgT5Fn1scrk66gSbkmuvdcbXbp5SUM2z4MrSu0xtr+a3n5KYiXB4B/ewEjNKZ+bJQAw5SAlOGcGy/HnfUIWXtqIuAp9faD5h9gSfs5wA7T1Q1VXa9BFtKIsgFQdg41ApqvAC6/C6ReoLal3wIO0eqajdDodFQ9H0N2oDq1/c391GcoPwB4sVOMVjFPYAMg46bNDxP1HvAyHYgMAuJ+pe3wjgLyGO4J4e2ApFPsBl//DetPvIvRtDVmysuB2MoiOczG0HxgC0ddMQCqwQWQbSsurN83BthTkXpNjzON2nQFP5GWhif3AHF0yDOQcBzhGagk/BDLfkpeCvavDUOrvo9QJbyKaH2A/oyi+FJhUNfSHn1A4i8BsgH4AZos50wtFKmK4LFAXw9SM9fKz3ntY+DVfqDXA0FqF+MuosWKFsL9eLISuDjB7D3oReYLVFhSwaz91TdWY/ye8ZxyknkSoADAQiAzMxP+/uyrFpORUgKw58XXUZDJZPD397d7W9jaDzHtW2PLEl0hOnxlHeW8OwKO0BYk/k0Z8toQNC7bGG+UfwPfdv5W1Pg3x8WJFw1qWgGAp5zfSnAePAteqzQqQSOlNt3epHutUCl0r08+P4lLLy8BMB0FxXZcOkxtduzJMTT/uzma/90czzKeYd2tdbgYd5HVpkKlsKxoe8I/nH4wjQhSqBRIMTmUBhdog5d+vvgz/n1xHoUMzSGTuZlu7H4dCG4M+FTUb/MqYyqntRFQzXRj1UlAuV6sOuJi55EbTAkpgDshBQAv99th6h6Aq9PNishktP6+hxYHO0Kp/3lxwCbb3SPIPUAcHfIMJBxHaYvS0gf6be6H8YlAv139SB8gGCKRlOyoaZGRiDx2mSSlBJCZmcm6TzvgzNkHnmVmZmLfvn2cbeEMfohp3xpblugK0eEry0eO9AHn8aE0xn85v3K4OvkqDg48iAsnLlgd/wdHHDRJNDHxaatP8Xq51w3i3l3mzksXAHIVueaFQCWQuAqdG5NVqK+LpDEast1qZSudTXPkKfIM3jO1WZf1XXSJLi3n45gLr8dmxqLCkgqo+ktVpOULnAag0vvCfO4MH5CKVEWo/VttlHsK/PNUn9CChpoWRqfdhl4Yrl3kz0c/FCc7h+P8vLGe9dh0MjMzccLnd+qN3BeQeQPlugHt9rHbFpOSWsVObDLv2OchtcD8kue5jzYx7yhMBRTZgLJ4amwhQ4xvtP5BntwDxNEhz0DCcYRnoJLwQyz7516cAwDcS77n9H2AIAyNRgN1iV4vHPvaRJJSAlAq2adYuMrNSKFQICEhAQqFwrxwKfZDTPvW2LJEV4gOX1k+cqQPOI8PJP6B7tW748WHLxj1Olam6uJUCqyEz9p8BkAf977uvrgy6QoAYHLjybz9NodKLWykVMMyDXWvjZNPSrUSp2NO87L343nDJez5tu+sf5hrar29/20k5CQgJjMGs4/PNnt8AyT6X2gZ/TAaKbXx9kY8SX8CBYDO6zrrd2hUSGPI0+zS5p9odpQqjoQObboEV+JHoVAgNqnYz/C2wCCGekReZdmPYy2Zd21n25Zo1JDao4gUnyQeV5tu8wcKi1db1E4J3VMJUORY7ZoWcg8QR4c8AwnHEZ6BSsIPW9h39j5A4E9uUS4a/bsWNe49x4tM5mdN0eF5bTL+IbOkIDWleKCtKcU1F9JV5pITCGyQPkBwRphqS2nmalCoLIRcKoesuIYRU/wfjj6M7hu6l6i/WobVHYZNA6nRHLlFufD9ztdE5uOWH+N/5//HaSfMOwxJM5MMtk3cOxErrq9AwzINcX3Kddb6W0z1BWosrYHHaVQh8W7VuuHQyEO8Pg8A4Mo04NGvzPUQGGr1/HzhZ0w/Mt3Un4zbWLyhPmakMPhcHYBvNSAnmtrQ6yHgX8OwphSdPZWBvs+A3BfAHn0NBnpNKYzQUKNntvmb6m+UAP1eUCNsDjXk/PiODmtNKStYlwWModWUqiAHYmxdU6psdyDeTFzWnQvcmce+v9ky4NIU6jU9FrSIUFeK4FiQZyACE/T7o9U1iFjsGteUsgekppQwPj/+Ob47+x0AoGvVrjg86jBvXYtrSkX/DVyaZPb+E5sZi4pL9NPS2eyvubEG4/aM45QjNaUIBAKBQLABB0ccBAB4yD10CSk2OlTuUBIuMbL5zmZI5klwLvYc6zQ9cwkpACgfUN7gfXRaNFZcXwGAWr2uSFXEqMdUa+Be8j1dQgqgknZCUHpG4sNkYOr+qRatHKjDswwKA+sz7/OtYjjiytw0zL7Pil+YeSjksuMdBUjs+4XCUbH0ITVGAYxKAH7L4K+TrB0Mby4hBcD8NAhHWCeQQCAQCI5IdFq07vWdpDt29MRxIEkpASQlJbHuc5WlYBMTE/HDDz8gMTHRvHAp9kNM+9bYskRXiA5fWT5ypA84jw8k/vV80+Ebg/fdqzOPfGKKf3eZO1I/ScWFCReQMSsD0dOiBReG5FswnY3Wq1pbNRR7YqOJBu8bL2ts8H7uybm87EzZNwWv/f6awTY3KUMRcQ6WxdzGkgzgz6t/4osjX7CeuwcpD/D58c9xKJolueAZhoLI/sz7ej8GPMJ0b1NSGKbaMUJr42qG0zYTExOxeMkSbnVa0oqMX9cjZPqeRgNEF1H/h8QDG7KB95KBx8x5UwOmJgHhz4AveZ7unJxs/o7ZAHIPEEeHPAMJxxGegUrCD1vYd/Y+QCBYA0lKCcDb25t1n6T4l1UJw+o/zoSPjw9atGgBHx/zS52XZj/EtG+NLUt0hejwleUjR/qA8/hA4l9PkGcQr+OyxX+wVzCaRzVHgGcAqgZX5WVLS6RfJBqVaSRIh4n9j/ZbbUNLdpHhl/GF5xYyyhknwv669peJzOvlXhd07L0vb+heH3h2wPDcDdb71fzv5vju7Hc49vQYq60CZQHzDokU6HBU99aL475vCO1xqvFPBnt8fHzQrGlTbvXiellxCqBODNDiBZDn3N9teSFknad3koHqMcDbScClQv32BzySUn8W1+5dwLP2vru7mYTqS9sWsSf3AHF0yDOQcBzhGagk/LCFfWfvAwRHx7F/8SLjxQXg62tak0OLq9yMfH190aZNG3u7YXM/xLRvjS1LdIXo8JXlI0f6gPP4QOJfj7kpelpsEf9hPmG8V/HjYuTOkRbrKtXsC3xYy/m485h5dCZ+6PIDL3kVbQjRw7SHhufOTX9/pq88yAbn9D+5/qGb9wO4D32ao+E58/X1Ras3uwC5Mez6xUmpyUnAAwUABfC/dGBOCL/D24PHRcCAeKCqG7DTRnXajaOfq3dpE0t/mT/9glBqgGuFQGMPQF7sgLvcTD83l5TKewV4lwMeLAZqfSjYJ3IPEEeHPAMJxxGegUrCD1vY5/oeKaYf9uoDBII1kJFSAigq4vFzm5NTVFSE2NhYu7eFrf0Q0741tizRFaLDV9ZRzrsj4AhtQeJfHB0+smIkheiMbjCat2yRqkj04wvFlkkpgF9dKy3nkqMN3lsSV9mF2dBoNMhT5PGSZ7L/438/4q09byExx3AaQ6Ea2JYNPKTVzdLaiI2NRZFbGQBUba3VN1YjtyhXL1SclLpMG+Hz2MEXORoQD9wpAvbkAhtLaDabPX7nHZMANH8BjKedbvWro+wKxmQ/Md22O5L6f22GRT6Re4A4OuQZSDiO0halqQ/QbZaEH6QPEEoCsRPwJCklgLQ09nHdrjKXPDU1FatWrUJqKt86G6XTDzHtW2PLEl0hOnxl+ciRPuA8PpD418M3KcQ3/n/q8hPnfjqFykKciT3DW94W2DoppUWtUbMXJi+mQGWYpREaG5J5Evgv9Id0vtRkGiKd7MJsfJUKrM8CMjLS9TvcAnEx7iI+PvYxVt1YhbcPvG2g9306MCQBqLusCXKKcoDGiwEYxlmBsgCv/f4axu8Zj5nHZtKco+JMTcu6OPoD2h3ad5O/Mu3nh63ZlEP9X08LGZWCZfonE/uqce+3oI+Re4A4OuQZSDiO8AxUEn7Ywr6t+oBxrUp79QECwRoc/ZnHoQgNDWXdJ5VKDf47K2FhYXj33XcRFhZmXrgU+yGmfWtsWaIrRIevLB850gecxwcS/3pkEn7T9/jGf4h3CN5v9j4AINQ7FFsHbWWVZVvZriRRqG0/XCcxJxHVl1ZHrV9rITWP/wOvNTG65e4W1n1fnvwS89KA0YlAjDKB2thwISCR4ELcBZ3c7ge7DfTmFv9upVQrcSbmDFBrOgDDOHuQ8kAn/8eVP/TKxXGmotkzdyV9pjCqOxXU0IyG7TgjIEcjBL6/wyo4hlDZYnSVW+598Yw9XQU8+g14ssK8bM5zYHd5cg8QSYc8AwnHEZ6BSsIPW9h39j5A4I81C9BYc1RHxrmvnCIjl5MSXHK5HKGhoXZvC1v7IaZ9a2xZoitEh6+so5x3R8AR2oLEvzg6fGR93YXXgDDHz91/Ru7nuUiemYzBrw1G5qeZyJ+db/JrZ6g3+w8hDcs0FN0vJiwdKRXuE657TV/6mIkPDn+Ap+lP8TjtMT459gkA4G7SXYPaUJdeXjLRs1Uf+Pniz7rX/7w4R73QaMA/RWI4wo4eZ6yrLxYnpeg5Jq6V53bmAFWeAzVjgCLtc6ZXFG//SitMTbI8E/BnmCFXalDmAXG7gXgeUwKL0oG8OHIPEEmHPAMJx1HaojT1AbrNkvCD9IHShdBpcNYltMwfS2OnJYBJUkoAWVns1TO1J9BeJ7KkyMrKwpEjRzjbwhn8ENO+NbYs0RWiw1eWjxzpA87jA4l/PS3Lt9QlGD5u9jGrnND493bTr+rm7+EPT7mnyYPGqr6rWPWrBVfD9sHbeR3LGh6kPMDll5cF9+uyvvrK1+turuOUvZd8T/f6cdpjrLu5DnX/qIs6v9XRjRZr/ndzE73tB7abnDuxrz9PU2O1lgGGB8fmfzfHsivLTLbrklLDlAZxxvrwqU1K0dwv1ACbsoGnDIPVBsZT/+OUwI4crQ3nLrDMxuQkoKC033Y0akCZCxTyW/6P3APE0SHPQMJxhGegkvDDFvadvQ8QCNZAklIC4Cru5io3o8LCQjx58gSFhYXmhUuxH2Lat8aWJbpCdPjK8pEjfcB5fCDxr6ecXzls6bUFw3yHYUZj9qLEYsf/Ww3fQoMyDVj3y6VytKlo+5VwNt3ZhGZ/N8Oeh3sstmFuCuDtpNu61+kF6RizewwA4GX2Sxx6fIhVb/CVwSbnzlxdKqH8fX9b8SsNAKlJUunSy0t4+8DbJuddJyeVGcSZkJFSG7KBEQlA3RgZ5/Q03UipENPEnbOyNwfYkm2YxCt1nBlU/EIDaFTAqwPA6X68VMk9wAiNBihIEnw88gwkHEd4BioJP2xhv7Q+B1nqB4EgBInG2a+eIpCVlYWAgABkZmbC39+fUSYqKgovX75EZGQk4uLiSthDAsH+kD5AcGXEiP/uG7rjcPRhAMD6/usxsv5ISOYxJzEuTryIKkFVEPZDydR3qBZcDY+nPWb1x5gGEQ1w4+0bAIDInyLxKvuVRcfdMWQHBtQewHrc5JnJBtMcC5WF8PzG06JjAYBmrsbkWJq5GiA/HsiLwy/R5/HB4Q9M9PJn58PrGy/d++NjjqND5Q4mcveT76PO73X0tqsDGKGhpmVtD4ZnNDVCypiHFYEa7vr3EtoCf2sigDH+AJr+CVx+20SXC40GuF4IVHcH/AT+TCkxXGQQkT8DL9OByCAg7ldhttj4MhVYQBs8VFEOrI4A2r+k3m8tQxWX52J3WaCvmVm49M+iqc6+T1kNyFYDgfxKzfEjrDWgyAYybgIhLYCu59ll064DhxtTMUPQ4wDtQp6BCEzQ7yeaueLFJ92u8kslZFIxL0rCkfhLgGwAfoAmyzmvT0WqIngs8NC9t+Z8Dt42GNvvUaPdo/yj8OLDF7x1L8RdQMsVLYX78XgZcHkqMIL7x7uYjBhU+rmSWftrb67F2N1jOeUk8yRAAYCF4MyjAGSkFIFAIBAIDsHy3svRvlJ7jGkwBsPrDQcAfNDcNAECAK+Xe533yoBiEJ0WjfcOvsdbnj4V0dKEFGC6qpAx+Yp8g/c2Wy3QqywQ0pS3H+b8NoWSV7E8W/J65PSpKPCYwG+ZQJMXQMNY9mPbmt8ygF4vgTsMP8CvY5gpsoi2IOIXFiwElaQEtmcDORYMqmsQCwQ9pRJVe3LMy/Mi+SyVkAKA1AtAQbIwfYVYjpRiNCWzSiiBQCCUakSc5i/8OYcbkpQSQHIy+4OCqywFm5SUhCVLliApKcmp/RDTvjW2LNEVosNXlo8c6QPO4wOJf+FyYsR/lH8UTow9gTX91ugSTi2iWjDKSiXSEk1KAcBvl3/jLSv2wwobv//3O2osrYEV16iVy1QalRkN62D7XBH/izB4T//Vmh4/5gqUavis9jgonXl7YF3zukZMK36seaoALtFW0CupMfSJSuC9ZOBAnn70Ex2m1taY2W+O9i+BwQnAFAsub3dpVRz6xZvu/y+fmlpo1bTCvDjgeEcg/SariDamUp+eAbb5WXEwbvvkHsBfjjwDOZcftrDv7H2AwB9nmKgmtEC7OUhSSgCenuxTArQnRuwT5Gh4eXmhfv368PLyMi9civ0Q0741tizRFaLDV5aPHOkDzuMDiX/hcraKf67EU0knpYQgl1Ir9Fj74CWRSDjrRC28tBCP0x5j4r6JAGwzUuphykOzMsZ1s2S05BJX/NR4DsRnx8PcWKiikLb6N+6Bhjv9a0KjAZJU5hJa3LGprU31fhIQ9lTEkUAcJNByiCkM+USmVrE2KXWvOLG0MdsCZQ7uFwGt4oC+8cAWa9su8QSVnGJBG1Oebrb5YkPuAcLlyDOQc/lhC/vO3gcIllFSP+LxxV7XMLKuowD8/Nh/jXKVm5Gfnx86dDCtk+Fsfohp3xpblugK0eEry0eO9AHn8YHEv3A5kpQyRJtIOv7suFV2Fl9YzHv6342EGyjjW8aq4zHRYW0HvJzBMIyHA/qILXr85GXnGcg9VgCT90/GvgFrkKliH+klr/4WcO00AOCXi78Y7nztcwz+Zyx2/FQOP4UCHwaxOOXmB7TZCZzoxLj7SB5Q3wNYmkm97xdvWl9JbMz1lhiGHKNBUsqBbjdLaAPYJiYCw8UfwESt0AdaTKVeNq+jyAHczBTVMqLU3QNoyW9nuwc4Go7wDFQSftjCPtf3SDH9sFcfcHZK/+gmx/bfcZ9oHRCFgnsFIVdAoVAgPj7e7m1haz/EtG+NLUt0hejwlXWU8+4IOEJbkPgXR6c0xD/XL2iO9usaHW1S6lHqI6vsnI45jXcPvstLttGyRhi+Y7hVx2MalWVJTaw/r/ype62Nn2svr6HpctO6VPsf7YdKpcCcNJNdOpQqKlmVqYJJoXWNRoMdxSNzZqRwOKXRAO7Burd3jWo41fMA8kv4mXVvrnAdoSOlzH2kxSyzIddmmRZzt+Y4FvFPe+p/+k3gyjTgdB8A+phSKthXhdaxzU+3Mh1fyD3Aej+cFUdpi9L0HES3WRJ+kD5AYMf8XdPi5JtaYdXcf5KUEkBqKntFTVeZS56SkoK//voLKSlcT76l3w8x7VtjyxJdITp8ZfnIkT7gPD6Q+BcuZ6v4L80jpeKy4ngnlMTi1PNTVulX+bkK536+oyCepj/VvdbGT5O/m7DKf3hiNtYwFPXWkp1NzTXLZggvc3WqACBGARRp1KCnTvYZJYReKa1MrEjdBKt8aUGhcvozL5+zkaUGducwtx3AnMhLVQFjE83b/jgZiGcYzWVVupgeY0mnqP8Zt4BHv1KrNEIfUxkZHJlMOmphXyTJPUC4HHkGci4/bGHf2fsAwcU52ACI3WaxuuM+0TogISEhrPukUqnBf2clNDQUkydPRmhoqHnhUuyHmPatsWWJrhAdvrJ85EgfcB4fSPwLl7NV/JfmpFRJJ6TEICYzRhQ7F19e1I0S2/h0I/aG7+WUX3p1BTI5vsv6+FLTPiyZGbQuC6j0HGjyLA9q2vRAY1Mfp1hZ4FxgPFp6LLraXR4DhcYmAv3jgVEJpvsmMCSeFBpgJ8+aUD9mMNsVB/aTHaa6icmTJyMwIMBwh1qlT0BtpOsLa2xyDxAuR56BnMsPW9h39j5AcDA46nHahOyHQJEFvzQV49xXTpFxcxP+K6Cz4ebmhrJly9q9LWzth5j2rbFlia4QHb6yjnLeHQFHaAsS/+LolIb4L6mk1MYBG0WzBQB3k+/iSdoTUW06Ail5/H8l7rS2E3KLcvHxPx/jWtI1q46rADUch+mMGw+1N072jClOvNwp1OBi/G3ddkH5LZ9K5mVUheZlaJhLk5zNt0yPjb25pm2zkmF0mv8T4H32xZZNOMHipxA0GkBp/MH+7ckqLz/TE2XLloVcRosItRI41go4O5jhALQvJ/e+B65/wukPuQdY74ez4ihtUZqeg+g2S8IP0frA9VnA880W+2E30m+IZ0uRA7w6LJ49LSWRMNpkvPiJhXfP+KNWu8IHkpQSgHb4PBPah8LSXwSNm+zsbJw4cYKzLZzBDzHtW2PLEl0hOnxl+ciRPuA8PpD4Fy5nq/jnmi4mZlJqaN2hotnScjf5rug27c2zjGe8ZV9kvUCBsoC3PFeNsKY7puBREXMiybgO1rJM9mM8yYpjncYGADdY8kqKwGbsShbwuAgYamaEURuWxecKrehifFQLNNSfLWwzodJQn7XcM+BqAYCHv5jV0Wg0OHX8IPLyaEO6cmOA1ItAfjy3d+m3gLSrnPYd5h6QmY4Tx4/z0NV/Pme7BzgaVsdGbqyVQzJF8sMO9kvdc9DLPUDaFYv9sBk5T7n3H2ok3rFSLwKnujPvUyt0STuhaFLO6V6LtjjC1Q95CEmA0/2E2T3ZlaegdZ+DJKUEUFDA/nDpKjej/Px83Lp1C/n5Ivw06MB+iGnfGluW6ArR4SvLR470AefxgcS/cDmbJaU4bvJiJqUceSqgI7H25lpB8kIeNqsEcdez6vMK6M1Qc924ptRUjlE+o4/NRZXnQK6aeSpgb6Z8BgCl2oL4cGdbBhDo9grYznOKHB0VgHP883wm2PLuJLQAu5Yt2dRnSlYBXV8CeLqKl167xJ4oLKBfk7QeMJwr7XXp3iIGb02x2z1gVyQ1MqEYr1NvoPDR6tJ9D8h5BjxYbN7xUoLVsbGnIlBofV2i0vQcRLdZEn6UeB9Q8ZhHLRYpF4G9VfXvi1hWqigJCpKB/zgWV8l5yjwiKu8VNAX6PiDaojUPl5huOz3AdFvcHmb9okyggH/fFHuxHbmo1pycsLAw1n2uMpc8PDwc06dPt7cbNvdDTPvW2LJEV4gOX1k+cqQPOI8PJP6Fy9kq/rmSGmL9umYuGUKwnJ8v/CyarYcCalWPTACeKYBNZUz3paio0VQ5AmYPePkaJphO5vFQkrqz7npq4QJOcQxFxYVgj59MCtTA7SKgiQeQpwG2ZgPNPIEycip9lKgv84VUpnOS8xTINlwGUNvzgwJpNaW0X36kxlM2AKB4341ZQKWRZkeq2O0ekP8KUBUAbr4AAHn+M3Tv8C4QHm6T45XIPSDlAnBtBlCLzygGx4dXm2VHA37VOASsv3eVpucgus2S8EO0PkC7TnDKaRdkKAmKihd3SPgHKNMJ2B4MjDBzZU86DWTeB6pPYd6vVgAaFSDzZNhpxV1jb1Wg21UguLHh9rvfck/fe7Gbqs1UdQLjbkHJoLhd1P/ov4DL7wASjtTP9kDqf4/n/O2LiHN/eyQQCAQCwcn4ruN3otr7uOXHotoj6FlxfQVvWeNpeHxJyDGdB7cxGzhfwF6EO08D/Mvnh3efiobvfasBMk90eMkgK/dmNKHQAN+kAQvTRJm1YxXXhJW94s0nKWAsVL82C/B6AjR7AXyaCvg9ASYkAfVigbCnQNQzIMZcou1IC+DO1yw7aQfVxQ/HSCmASvyU5JdIq7BTwAhcrbDUc3UG8IT/tcos+6qLZ4tgX/j8+BXHvZAHACDrMZUYMseLXcClt6lV3NQMF0fttey/0cz7mXh5ALj/P/b9Nz4Dzg7hZ4sPGo11NaPidgFPV1OvNzK0fx7L3HY2VIX6qX3081mQAqReFu6fWsWyQwLkvgBid1DnW2AbkKSUAMhSsEBycjJ+//13JCcLqAJaCv0Q0741tizRFaLDV5aPHOkDzuMDiX/hcraK/3yFYebg5NiTmNVqlqjHaBYpbr0gZ2ZU/VGC5IVMizSehseXo0/Yi5CeZZnqptIAXnx+bK0yAQhuqpuyodRIAf9ajKJquX7UDr1o90/pwBepwGepwNw084e8VAB0Z0p6iUDzF7ax+0O64XTEHA3QPo5a+Y8uY0y+Bvg5w4zxQtPrjrZ5sxLvm26lx5yyeEibRkmNFgCAQvMnQex7QMLaKkhOYljqkBF98Gg0Gvx75iwPP/TBLMo9YLO7QSIvOTkZ6/+cb+E9oBSUNEj8h3dxaFFiQyJhqX3GH0Y/HizWfxFOu05NnWTjSHPqy7MQ++bYFgDksV+87PoclPeSMZnAbV8fuxkPtmHTn18wyz3+zbxTt2YDVz8wL5dxC3i5j0oSmZvmefNz/eu064BGg3Ox5zA7BXiRaXyx11AJLxXDTbEojT1hpr0O7AgHnpmZvn/0Dep/9J8MRcZpmEv0qQrBed04O8h0G1dtqy2egMpoeLMiB4jZCPzzJrcvTGyWU1MXYXSt0yiBe99R/p3pBxTwveZTkKSUANzd2Yeia6dRiFaszEHx8PBA1apV4eHh4dR+iGnfGluW6ArR4SvLR470AefxgcS/cDlbxf+Z2DMG79tVaifqMT5v/TmalGtisr11hdaiHcMZyCnKwZILS/A847kgvRdZ/LMglo6UMo4RXscC0MeHh2DlUUDXC0BQA2SogH5P4zEs+jmjqDYuE1RAwBNgbxb18P8pbYXor83kQzJUVOLoMJ/pgQ7OKRuWHZQUf2HxzLml36iNH/oqiOk3qf95cbQvH8VyBUmmhmO3AUUZ5q95xzvw9tXDwwNl5M/g4cH+DG2IxuB1WFgYj+u5XofV97SrwAXD6TAeHh4YFLYGnmBYHYB2nfXw8MAo/7mcfkiV2cVqpfUZiJ/fHh4e6B++zbLng8Lii4EyF9hVznQ/06gQDj9MzvO1Gfp+cHECcKgxe1H/9OucX5oDb45G1apV4alKBB4uBRQMS3Uao8iiFhxgwSfztHkbRmg/Z9gxM1P/lLm60W6MbbM7Ckg8zmrf5HzmF7eNWgVoNPB7OBstwh/wO++qQkCRzZ6gS7kAFGUw77v/IzWaE4BBTG6UAKd6Af+N1G+jX8MON4ayKB2tV7XGt+lAn8199PskEiDnCXBmADW1FKDOlS7eNEBONHBrDvB8IzVSy5jCZOCamVHlKeep//lmVvEw6Wsa4OaX1MqoABC7BUg+Z6LFykYJd20rg0MVXyvP9Ndvy3oE3NaPxmX8gezFbkCZr+8HO8PNr7grcEVekpQSgL+/P+s+V/lC7u/vj65du3K2hTP4IaZ9a2xZoitEh68sHznSB5zHBxL/wuVsFf+9avQS1R6do6OO4puO3zDuqxtW12bHLY34feeHD498iLOxZ212jJJcJEINwI1vqEqk8Kj7PkYnAgeysrElLYNRLKe4QLVKQ00P7BvDsQwgC1WfC1ZxGXLUwKwUYDFtxJW7lF5guPjLeOoF4FRvI21abGnjbGeE6UHODgHSrpq/5iWe5O231oa/n/B7gAQa1KlTx9APMyNsWH3PuAs8XWkiG664BD837ur5us/Ada9QUvFvl2eg5PP8pzIxIeDa4y/PQtmiU5Y9H5wfpz2g6b7nG7l1d0YA//bV+8EVo4riFeIUGUDMVn2iSqMGdlekRomwfebnG4Hk83BLOoKuXbvC7/IA4Or7QOY9bv+i/6L+H2vFKuId+ye3DQa0n5MTtYIaJXZxIvB0jb5tPDWGn1OjohIQl98zsW/QjnkvgV3FBQkfLgY2SSHLfYzKlSrxO++X36ESLMZtkfWQmt51tCU1GooJJW11P+O+9OoAdU6NKf6MuYX64ao3Em4w28+4Q/1nSpjc+ZoaqZXwD904sx0A2B1ZLKLWF1xP+Id7KuxGCfBoqeE2RQ513U67xq4HAK+OcO+n83wT83aNUu+nlqcrgdtzuO2d6Q9k3KZGA2rR1vdiQq0UPCWSJKUEoFRaWWHTCVAqlUhJSbF7W9jaDzHtW2PLEl0hOnxlHeW8OwKO0BYk/sXRcfX471y1M+s+uZSsg1LSJOUyjFyxERoNz3ER3uUBAJ3WdsL+XG7RrALTkQS5tT4V5Feac8/+too5qcCidGBGCnCk+Fxokot/mS9IAtS0BNWr/YbK9FF4PKZU8L7mqZXA7fn6GicMtZi0NpSFtPh49LtZH5D4L6BRIScn19CPXeVMVojKPNQCVwuoxK6J7/TREMa+5VEjd5Sq4mlNeS8Zl1VXKooMPosgmJIfGyXU1DEFjyUomUa0KXP121VFwLE3gLxY4b7pnQRQPKXO3CiP3dQ1wbK2YKtFA8MRMEwUJAEv91JfplWF+vOsYFj5bRstcXJ/EfCweMGJE12odlIXJyS0SQ+NRj+17c4C4AU1rS8lJYVfvu75JuASSxFtOgn/APd+YN+fH0/VSgKoYtig2jkt7ja1Lec5i93jwK0vqdeJJ6FUKJB96w+qcHW6UaIj857BdDulUon05+cMz+fuKOq/8Yd/8CNUr0xHW5kQt4ta4c1AX0K1/YE6pvLa/myc+IvbC+S90o/4NNBJ0E/F005xPjuYxSHa3c54RNG97/X1m7TkPGGe5sc2Wm6rjz7Jf6IzkE8fIcYcQCZbE/6hRpDR+/sT2kqsT9cAp7ox+2ViXAP8N8K8nFoBqBiG9LKN0jra3PD9dY5SEtmPgDRh9apIUkoApKYUNff4t99+c4iaUrb0Q0z71tiyRFeIDl9ZPnKkDziPDyT+hcvZKv6FTOn6qOVHoh2XJKVKnkKBQ92tQVPjHX6CUjliM2Nx8jn/kTF0RlzeaZEewZQlGfrX44rzSpKc4lX5dpcHYjhqitCvIww1qozhvOZpv7AknqJWBbw9l6rVApjUYtLaAgDlGdqXwSvvmtrVfjHU6h9vBwA4depfBj/0n0epVqJ+LPD6C2DZ1WXmr9e5sUD0cgBA1hMqeZeeXjzKIfuRfln1gw10KqmvHhh8Fi7UajU1TU2Zz10w/ewg8zV2FNnUl90Co+Pe/U4/HTPlv+KNLGnmzPvUVKnEf7mPJZEAFycBF8YDD38pPn4WNaVJC61Gk1XPB+m3zMuwcaIzkP0YmY/2YvWfCyHf5qGvl2YArT20ddRyomn7aXH66hBjcfbffvsNKm3Ckm7P+Es7nwSAFm18MZEXBzxfT72+ORsAkP7sFIJP16e2/dOGWe9f2ojqZ2uQGb0ffneKr/GqIiD+GPX65T4Yp0PkW90Q9F9r5vNp0F4UslOd2P3XUpQOZN6hklAZd6m+oOSYk70zjEpIHXjNcPulSdRopDMDmfVit1D/jxWXG0i9ZORHBvXfOJGTcVf/Ot6oJqN2Ch3HNEwtq7OAB0XF9vksjsBSt003ICwv1nAE68W3qP9PVgAXxlGvj7Y0nyhNOGbeFwC4XjwdMeuh4fb/hNXOFAuSlBJAcHAw6z5bLQfuaISEhGD8+PEICQlxaj/EtG+NLUt0hejwleUjR/qA8/hA4l+4nK3iX8iUrq/bf41rk80M/y6mbcW2nPtLMkFCKHnUcn/ei0orrZgWtDfhkek2HoNDXJkzLLWo6FeCBOMBJ+oi6ssnG2zJbeNkR/GROK952i+Ax9sz2zSacqO14S4pNBnhZIBuSqDhNa9lq1YIVRqNlKBN4TsTcwaxxSE69cBUhAQHs/hebDfpX+DSZACAv4QaFRQQGFQsQjt2RnHiJOshgjXRBp/FBNoID6kyE9gRChxuDNyexyyvxWg6oQm6ET9G9wGNimG6nlGPzo+nRmQdqEN90S5O8jFDs1+YrE+W5b4wXPlxbxXdy5DgIGq/Jav2ne7Dvb8oE3jBndAOuTEQH1f5sVieNqf14kTqP68iy8VtVpQG5GoTbvq2GD9+PGTy4h9ojragRjFp1FQfONQISDjBPW2S6f5NH9GYeplK2Dz+0zBxQtMLyqVNGee56pq/r6fhhpNdqP+P/4Du8ylzqVpZxehi++xQ8wcoSKJia7O7vk4YG49+Ba5NNx29afyMwbUKXM4T7mNkP2bevr24XxsnAvnEbMoF4PQAzhUDxycCtWOAQq7fDg+/Tp1jjQa4NJVZRs1x7QaAuwv1r80tSHBuBHCSebqnRgPkMfkat5vbJgtiT1R27m+PIsNV6NxVcHd3R4UKFezeFrb2Q0z71tiyRFeIDl9ZRznvjoAjtAWJf3F0SkP8C1mRTSqRolHZRpjfbj5aRrXEpoGmNQX+7v03JjSagI0DuOt3CE1EbBiwAT2q9xCkQ7AfGmigrvcVL1mJyI+efa1bdMvpaRun/06aqgI6xAG9X3HrAAAe/WK6Lfd58QuW64gqD8h5argt4zZ1zTtbUbR7AABI855TIyIEEhIcDLcz3Q03Hmqoe6k0mm7nnnyY+3qtbdzEfyG/RU0vdZdovxQytNODxXD7jxqpYWJTu8LWg8X6bdoRIVkPir/sFdtkWx2LV3FvJhmN4T7j+jv0QuL3FoITtaLYjkTfPkxTpmi4Z98A9lSgkkBbildNKEylEkoA8HQt9dnyOKYyxW5nNp52hX10DAAcrMe+79ka6r/BFCo1sNVP/7YoQ+/LzS/10/m0FLdlhfRlkGTTEuvP1+uTR+k3qJFEm93YfWEawUVfUe5IM2BfNeDyVGrapLbtk05R/zdKIJcxrOLGNo2vGLci2hRM47jQtmvOc6pWVjHu7u5UIjN2K6dtAPrRPGoFlYDlRKOv48SFdiSQ2GhrfdF5SOuviSeY9S6Mo6Yhpl4we4gn5gZJbfUGNknZbZmbxsswYo2VGOZaUioN0OQFEPEUOGvDRTisgSSlBJCTwx402l+zS7JQqT3IycnBmTNnONvCGfwQ0741tizRFaLDV5aPHOkDzuMDiX/hcraKf3cZ/y+F0uKl4L9880v8N+E/9KvVz2D/3mF7MaHxBPzd529E+keKdlwAGFFvBA6MOCBIh2A/vj/3PSYd/8rebhDM8GEycDIfZut5saKdVsQ2UkqjBvZWpV6f7kf9vzZDd63LTTA38pK9XpMWrS21caL79tf6lbCerqYtt25o6/Fj7i9kGqPkSdGrU8jfUs70eq29Nmuntjz6Vb9Lu5Q7fcQNQPkXvczks+gVi9uVbSRHJm2a0H/DqQL0+2uxfhZWlLlGyR1aokGXdJBQI3nSrguzrcgqHmkiKU5iFrcTLfGHR7+ZqOXl0gpSa5eb3xFK1TECgAtjqf9c09VYawAVk/WQWvVrW5DJLpUGKNKGirn77r1FxYXoi9tqX7XiHRLg7gL9ed8ooZKJ2rYurutkCO1Y5upIsY1Oe7xMX9hdu9KcNhEFGNT1KiwyGkWjKgD2VuY8bFE6y8ghDnJycphXRLSWJ8tpU0yhWxAAz9YAF94StOKiRbCdI7pPXHBNiy5FbMsBrhcCORqgHb8BdyUOSUoJIC+PfT6sq3whz83NxYULF5Cba+kTUunwQ0z71tiyRFeIDl9ZPnKkDziPDyT+hcvZKv7frPgmaoTUAACs67+OU1ablNLiKffElUlX8GOXH5H6SSp61zRekYudhBzuYrd9qpqZfkFwGjbfcY6H8tKE9ipyUrRftM3Uprv2EVWYuBiPE80AAD4nmnDr5bMM4TpYX/dSe93UqI2ujbfn6Ov4aGtSMfDkKW0k19O1JvuNr7iq3ES8yo/H40SWL+YMq/dJNEoqEaEwWjHSqK6M4vku0+Xizw03qLVkgrauDQAknzGt3wJQo4u0iZAHi6npXMW8VAKjN3fH4vW0ejv3FwHQGE0dk1AjedimMmnJT6CSAQA1rU9bC+fhYqoOEN3fpOI6VFfegzHSRz8bbmCbPnr/f9T/1Mvs8cI2XfzBEqqujtGKa9lqoGYMEPUMeFwE4MnfzPpaNAwjfzVqvT/XZxruYxltAsCwiDob974HMh9AxfY4ELMZeHXQcNuF8dBFM61GlcfDBYZyW7zMHl5RmG1WBpcNp5LZ7JmWLSGefBZ4uop5H0/uFwFD4oG1LPXHOdEm4V2EdNqUb47lBkShQA1syS7umwIglUwFEB4ezrrPVerpREREYObMmeYFS7kfYtq3xpYlukJ0+MrykSN9wHl8IPEvXM5W8S+TynDz7ZuIz45H5SDuX0eNk1IA0KRcEzQpZ+aLJQM77u9g3de0XFMs6LwAe5/sFWyXULr4+t+vMeeUmaWiCTaD9UutEZcLgKcKYIAv4MY08MDc9BCjpcjdcljqqBgndE50NJV5volaOjz+GFC2MyIiqKk+ssKXprJMGCX2u3XtBlwqvh5pCxtzcC/5Il6PAeQvmiF6WjQqAlRySVs0OJFl9bBLk4HyAzhtByGWmtLT7E9gqy+1MWYz4FuVXenqNP1r46SXlrvfAPd/AMr1oqaSuQUAVcYBAEYnACfzH2A9gPYJN9CwTEOqplTOU2pUUrtDlA3t9d/c4hi5sVQyoMVK4ManQNWJhvvp096YCtIX45lsNDLWXA2n4+2pEV9MPNLXNsKz9fokUfSfjOLfpumnTI1KAC66WzhK98584Tp8Fh+58Slw41OsZEuW0EdF2QCfVFrC62hLZqHkMwZvIzi+4zoq7eKAJBU1Cqivj2mCOk4BfJAM1PUA5tmwDKyz/RRv/Hny1ECyihqZWJ3HIPo5acAP6QDDxFNOnPvbI4FAIBAIpRxPuafZhBQASIxrR1iBm5S9TsalSZfg6+4r2KaYqwMSSgaSkLIPv2cCC9KAPB7fduIUQLMXwLAE4NcMFqGnbIV9i68ZXF+SVYX6kSx7OZIvWrSjPLTFlY3JMxoto8wFXtIT3EYf+tIk6r9aaZiwKq6FNcxoUOeoZ9TcFKVaiU/++YTayJSUe2FUz4htFI+B73FUkecHiw0TLOYKMfPl1X4AGsq34hEx9NFytxKNVq1T5lKj3AB9YvG/4ew1h+5+a1pjyLgmEFvRZaWVw/bYlrLXaAxHKp0fDRRwj9R9RRv4FK2t58O4Ap8RPFZUE5M/WXKQrBgliizGuE4cH7SrObJwsQBoHwf8nmHeVKqth+IUk0Q7TjpDrnB0IrAzF5if5nh1lOhXuQIN8EUKsCjN/ExUMY4nlH7xQOXnQI0YoPULYJeZ3zh+KJ4NKzQMSFJKAKmp7CsM2Go5cEcjJSUFy5cvR0oKxwoqTuCHmPatsWWJrhAdvrJ85EgfcB4fSPwLl3OG+F/QnpomUC24GtYPWM8oU96vPJYvX46M9AzB9n/o/APqhte1xkUCwSWYlgx8mQpk8ricbKZ9QZjBdonSrWxnBJ+RIls8qak+h18HVBzf7I4zjJpK/g+qXZUMtxkXlY7nuXz5iU5A/CH9++IEWYZRG+Ur9UkVhbI4EXKyM79jmEM7cufaDHHs6aAlijRmvsoZr46WVrxqGX1Fu2OtGFUfXZ6NuP3U1ExsFljEfqs39/49Fbj3s32uixOE+cGGmaRKsRPiHMtWGE8jLEnMJMRavABO5QPvJgO5ampa6awU4CjD4LcEgQu23ikE+r0CVmQCag1wLBd4InDqFxOnaJermywzRDUaYF0W8Fcm/5GpYpOgAr5JB2alAttFKBWbrQZ+SgdOsFcdEsSxPH3POVcADIgHTucDlq/LywxJSglALmef7aj9hVrMX6odETc3N5QpUwZubhyrTTiBH2Lat8aWJbpCdPjK8pEjfcB5fCDxL1zOGeL/szaf4dTYU7g48SL83P1M9ret2BYHBx9EmTJl4OHuIdi+RCLBhQnmV7IhEAj8seZ71O37qzA8HthupgSN5skqZCVf5RZiWsUq+i/I8o1Gp1yZZvj+TH/D97ujgN3lTW1p6xvR2VfD1Ffaa8mr4mldDHWkTBU1MFnlTuAqpEykqoBTedSXbVYe0wqJsyUQAWplPz6rozGM+rpYQNVhqvwceKGAvpZUScA2bQ+wuq6QIyNGjkOhATZmOdZIn1w10OoFsCgd6PqKSoJYQ9s4YE8uMDEJqB4DdHkFVIsBHnEkpozrSJl78lqRRdUgMx5NeigPGJMITEkC5NFArAXdQsxc1k4LklKHcoEl6dQ0OwCYmQx8lAJ0fEmNKjyXD9wWIclH59cMYBnDSMBbLMk/PpCaUgIICAhg3ecMX0j4EBAQgN69+RfLLa1+iGnfGluW6ArR4SvLR470AefxgcS/cDlniH+pRIo3K1G/NmsYHrMmN56MuuXrom75uniVzWeNelN83H2s8pFAIOhRaIA4K/Imb7ygVmPanAMU+gLuLJevAfHUCoArIoAxTHWeM24xbAS1wpYx2kQRF3k8l4diKOptkJQyN+rIBKMG4FHDiosbhUCjWOr1NyHA58EsglxJGxqSy1MBHnW2mRhWnJdTApidCqwtY5kdLlQa4H/pVCt+FATItM25i3u1V6E4yngnjcZ0NqTY/JFJ1UUCgOiKQFWBA9yshWk62Yl8IIZ23an+3Lpj0KfePaUlhWrGAKpqgFRCJXUloNr7hQIYa6aEmTHXi5Ml05KB9wL1242nI45MAM6Up0YC/ZwO9PYFxpnpc88VVN0qsdBogLMFgK8EaORpXr5H8eNYvAr4PhRYRkvYfZICbOBR955+7CQel00NgP8YZuROEHhe6JCRUgJQqUpokqwDo1KpkJWVZfe2sLUfYtq3xpYlukJ0+Mo6ynl3BByhLUj8i6PjDPE/rRk16uDdpuwFacVCIpHo2sLcYl4EAsG2qDRAw1jglwzLbeTQvnBGs/ySnqAEdudSyQzWL4JP2GpWUcVxFSWYRTBISjHs/zePqteVbJzMk0hgku4wGsVzLh/4I4MaKWIOpUafkAKoRNAfGdQf56gpG1FAO+aVQsqPLJFvaSuygE9TqWlIq+gjWdgKvJcgD4uASwXi1ez5LQMIeUol4Swlg6H91RpgejIwLgG4XahPSAHAWgHJBWOUPD638ai+RCVQOwaoH2soN9yo5Fei0ecw7ne7cqh2yqP1m/tFQIwCSDMTgxnFUwVrxlA1jfq+Apq/MJUr1AD3eI4G4hrZdbaAKp7/ZhxVj2p8IpBpxsfe8cBWjnPDpL+HIw99PJ8aPdb4BdVO/+TpR41xxe8ihlhkS0hpNMUjJmnEKKjRYi0Y2tcYpmmGlwuoa4ullOqk1KNHj9C3b1+EhobC398frVq1wsmThsNeY2Nj0bt3b/j4+CA0NBTvv/8+ioosG8OWnJzMus8Z6onwISkpCYsXL0ZSUpJT+yGmfWtsWaIrRIevLB850gecxwcS/8Ll7BX/P3f7GS8+fIGl3ZeaFxaAhuHJJ9AzUNcWaalpoh6vjK8NfrYnEJyYgCfsX8LUGmBwPJUUYUs2GfNaLFCoNkyYxCmAfCu+xL9SAhWeUX/0OjNzU4HOcVSiQAipKvMJHa6kVJYKaPeSqtc1ninBxrGyWqISaB0HvFNc78scTPXA3kmm/jaZmy6pob7gPTf60ijWoJz7RZQf09i/1ghCo6GSC3/Tck+r2FaeE0CaChiTAHyaQh1Do6GmBwlNcsYogDoxVDLjJM9pcL9lAG8nAkksIxHfS6ZG+My0sPTmLxlA8FNgrFGCZ3UW8HMGsCbbNBkEMCc4GsdyJ1reTwICn1C1k9h4WATUfA60fwl8X5zceC8ZeKgA7lgx9et2ITXScmYK8HXxY8P5fOp8VHpOJfa4eKEE3k6iCtpHK4C9udSIIGNqxgCteA6w7GxmIVDjRM6eXCq5PpnjUXFoAvB9GvBVKiWrZXE6EPQUaBADNIulrts/ciQyN+dQMa+lTgzlb80YoNZzKjH3jGN07AyefVoaDVR4TvUtLZWeW/d7YzMeySxOn6xTty89e/aEUqnEiRMncPXqVTRs2BC9evVCQgJ1NlUqFXr27Inc3FycPXsWmzdvxo4dO/DRR5atABQUFMS6z1bLgTsawcHBGDlyJIKD2cYgO4cfYtq3xpYlukJ0+MrykSN9wHl8IPEvXM5e8S+RSBDlHyX6tEHj6XsNIhqga9WuurYICRZ3feVe1XuJao9AcHZyOb6Yb8uhfsm+UQgMZlnIjOkXd88nVE2XVBWwNAMo/9z8FzgupiVRoygSVMCHydQX309TqNWw/skHegmYBbwhCwh/CnR4yT1agGvfI1qS54BxEeD8V/qV/higJzMWZ7AfI0ttflTKb2YGDh3Ko77g1TQqxyX0Kv9KCezPMfySTMeakTdaNBrqnIQ/BS7zHCWh0QCPi5jPVayCGsl2u5Cq87Mum0qSrM0G5qYBDWINi/vzYU6q/sv2IB7lxd5JohIyy7L4yRuvNvdcARSoqYQKGx8kUwlU+jk4m8+dKJyfBgQ+NU2K3iruVyoNEG90TJUGWJpJXS/GsIx03JsD1IoBUosb6fNU4HgecNeKZFSKiqqFtZKWCFuYTrXtUO7FFQ1oGEtNHRaTi8XTztQa5gSXMWMTAY9o8/3l01RgXpp+9OqP6dTiExpQ5+hyIXV9+NhMIpPNp4fFibkRHO3HdW1i4vt0qo7VCB5xbmtKbU2plJQUREdHY+XKlahfvz4AYOHChfj9999x9+5dlClTBkePHsW9e/fw4sULlCtXDgDw448/Yty4cfjmm2/g7y9sYraHh4gTRkspHh4eqFatmr3dsLkfYtq3xpYlukJ0+Mo6ynl3BByhLUj8i6ND4p8/VydfhUwqg8xDhmrVqiGjIEOQ/vbB+uXX32/2Pn659IvBfm83Mys7EQgE3kTTki83BE6neKqg6pBov0w+saIediztC/JjBfXFl060ANujir9Q/5sPPFAAtVlq67CNlIpXAk25fskvMBwGcaUA2JoDTPAHavKo46NNEmargeWZwBDTtSJ407M4WceUTIpVULVc+vgA3hy/gSg1QJNYKiE4m/03dVbO5FOJzXcCDD//3UJqmt5IP6CJJzVa7xSP0Ucqjb7G1PhEaiTQtACgvy+wJguYFkjZ6/KS+vJtnHgZZ2GtmgdF1MgwLVyJPYUGuFZI1XHScoahbo4x4U8BVXXq9aZsKmlQ3Y1KzNDZlwN08AZ8jM6bQkMlbNvwHOmzgGGg8u+Z1PTSW0XA2ghgVPFX3NFmEkD/5gF9GRISnV4CURZmCf4rACaxjCr6w/4zOXV0fEmdb7GZmQIESc0nnxyFgQ6QkAJK8UipkJAQ1K5dG2vXrkVubi6USiWWLVuGiIgINGnSBABw/vx51K1bV5eQAoCuXbuisLAQV6+aWUWEgdxc9lStdqoD05QHZyI3NxcXL17kbAtn8ENM+9bYskRXiA5fWT5ypA84jw8k/oXLOXv8y6QyAPq2KMjn8aQOIHZ6LDRzNRhYZ6Bu249df8SpsacM5OTSUvsbGYHgcLB98dZoqCXcD+dyF4t+ZoOF2YQmx7hI5BiBQh9lIAFVx+ZEHjXqRghNXwA/pFPF4PlArzO1jscIpLuFVDImT8B8GRWoKZnDE9in6ezIBr5IAc4XUAkpgFpuXiht46gRH62MPn/DWGo0xuvF2wt53PL+l07VqulVPMptTXH7LM2kRlmtydbbeygw9uixrtEUrzRWSE3z+zePqolEH8Fl7C79lj0gnl89HWO0p7BIox/F8pjhc/SJp6bVqoyc+CsTqMcwVU8oN4uozzc6Eej/ilpVcxPHqLIiDTWdlQ1LF1FgS0g5ErcL+SVTLWViKWgDR6PUJqUkEgmOHTuG69evw8/PD56enli8eDEOHz6MwMBAAEBCQgIiIiIM9IKCguDu7q6b4sdEYWEhsrKyDP4AICeHvWc7+xcSLdnZ2Th+/Diys0UY8+vAfohp3xpblugK0eEry0eO9AHn8YHEv3A5Z4t/HzfmVfK0bZGXYzz3hZnyAaZLu8ulct0qf1q0SS++9KvaT5A8nQAP9pV0CQRngC0pdTqfWsK9+yvgGEcX5lN354WCKggsf0ytuPRlKlDtOXCEJXcv5pVxSAJVo8pcbafT+dT0q44vgX0MfqWrgK9TqSRdmopabcs4eZZmQZEVc6PLzhcAdWOp0T8+T4CWLyhfzDE2Ue+PdoWtHDVVCLlATU2JG5RAJaHMjZDRkq2mphkdYzlvqUafn2+eQrsyV3SRvu7SgTyqkLSYpKqp86zRUO3QOo6qxdQglj3hsjmbit1OcUCZZ8DBXOCndPZpYs8VVK2gm8Wx8YBlWttnPEbGHMqjEnR05vCoUSaU3bnsU3e1ZDl3CVhOmOp1EeyLRONgT9BfffUV5s2bxylz+fJlNGnSBP369YNCocDs2bPh5eWFv//+G3v37sXly5dRtmxZTJ48GTExMThy5IiBvru7O9auXYthw4YJ8uHvv/+GtzfzFIP33nsPaWlpCA4Oxq+//srz0xIIzgPpAwRXxtniX61RY07sHMQUxmB6uelo4tvEYH+Rugjjosfp3m+ssREAcCXnCn569ZPJdiZGPBqhe90nqA/2pu/l7V+keyReFgkvdjO//HxU8ayCTFUmLmZfxNrktYJtEFj4EUA2AD8AlpXuJIjAhfKmoz1yq1JTvdq+0E9HCpWZTi/ig6Z4mlKjWPbRT/9FAS29gKax5ldjKqwGuPMoliR5bPi+nZf1Ix2G+errE73hqU+knI8CWtKmUn0WRCX6vqWNONK2gxb5VECVBV3836tIFSnmy2g/YG3xeg/Gn5UNTXWgXRw1pdEcZWT6kVN0pgbop1S9E0AVaH9QBFylnbfHFYFq7qa+aaoD1wqAJiyjizTVgY+SgZ8y9Nt2lwX6sUwX0lTn/9mN2VbGfBIGAGSgRpxZCpuP6VWogtaOTlE1aoRUqoq6JoSJ5TO5/hPYKACwEMjMzOQsneRwSamUlBSkpHCnmitVqoRz586hS5cuSE9PN/iA1atXx4QJE/Dpp59izpw52LNnD27evKnbn56ejuDgYJw4cQLt27dntF9YWIjCQv3VOCsrC+XLl+dszKioKLx8+RKRkZGIi+M5KZhAcCJIHyC4Ms4Y/2qNGpkFmQjyMi1IUqQqgscCfZ1FzVz9o4RknoRxuzF0udltZuObM9+wyjYp2wRX44VPu6cT/1G8wSp/Go0G0vmldsC440G+lDgsYTLgSSWg50t+NXK40CZjzCUP4ioD/V6ZT0oFSIED5YBWXsCWbGr61afBQDmjGb2WJitsxXsBwC9hgERCjdKRToVB/DfzAC4JnLLIt221jPID1pfAoG05gNjKQFm5aVJqYRrwGctIn8vlqRpL9KTUV8HAVyyLt+ZUBXyfiOW1bXCXsBeOL21IYd1qawaQ6z+BDZ5JKYd7GgsNDUWtWrU4/zw9PZGXR407Nl7pSCqV6pbkbtmyJe7cuYP4eH1K/ujRo/Dw8NDVnWLCw8MD/v7+Bn8AkJbGvgS2vZYDL2lSU1OxevVqpKbaYKypA/khpn1rbFmiK0SHrywfOdIHnMcHEv/C5Zwx/qUSqUlCStsWGWkZoh5LJmGfvvfsg2f4s9efVh8jxEvcFQMJhNJCsgrwf2J9QgqgCqHzYW8OvxEpmWpqytWURGBYAlVnaJSA1bnsxa+ZwOHiKZC7GaZ9CU1IaTGuN8RFSSSkAGrK3uxUYLJRsfHAJ+wJKYC5sDxbQgpw/IQU4DwJKUDEhBSBIAIOl5TiS8uWLREUFISxY8fi5s2bePToEWbOnIlnz56hZ8+eAIAuXbqgTp06GD16NK5fv47jx4/j448/xqRJkwSvvAdA9CW3SyNSqRT+/v4lvux5Sfshpn1rbFmiK0SHr6yjnHdHwBHagsS/ODok/oWjbQu5TNzC5H1q9tG9/rDFhwb7KgVWsroQ+smxJ+EmczPYRu7pBIJwqj4Her/iJ3tdQGLmL9rS8dqaVukq4Gw+tXS7IzI1iSpcPUCk1av+yjStN+QorMoClmcZbsvkkdWgj5IiEAgENhxu+p4Qrly5gtmzZ+PKlStQKBR47bXXMGfOHHTv3l0nExsbi3feeQcnTpyAl5cXRowYgf/973/w8PDgsGxIVlYWAgICyPQ9AoED0gcIrowrxj/bND1Lpu8pvlRg1/1diE6LxrTm0+D3nX49dc1cDe4m3UXdP+pa7CubH3Qf6PSs3hMHHh+w+HguCZm+QaDxexjwDssKcXyYEahPaIz0AzbYd30d85D4J7gyJP4JbPCcvleq12B+/fXXTYqYG1OhQgXs379flOM507QMS1Gr1SgsLISHh4ddRw3Y2g8x7VtjyxJdITp8ZR3lvDsCjtAWJP7F0SHxLxx6W4iJTCLD4NcG6963r9QeJ5+fxMRGEwFA8EgpT7knCpTUXKWBtQcK0u1UpRP2DN0D+YJS/YhEINiVeGuqScNwhI3DJ6QIBAKBYBWu/XQtkKSkJNZ9zlhPhInExEQsWrQIiYmJ5oVLsR9i2rfGliW6QnT4yvKRI33AeXwg8S9cjsS/dRhPpds3fB+OjzmO33r+BsA0KVUnuA6nvSpBVXBwxEHMfXMulvVaxip37q1zJttalW/Feb8nEAjm+ZqjdhCBQCAQCHTIz4ACCAgIYN2nfaB29hoVgYGBGDJkCAIDA53aDzHtW2PLEl0hOnxl+ciRPuA8PpD4Fy5H4l/PpYmX8MulXzC+4XiLj+Pj7oMOlTvo3hsnpTzcuEdqqdQqdK/eHd2rd+eUe6P8GybbJJDY/R5HIBAIBAKB4CqQpJQAvLy8WPe5yhcSLy8v1K5d295u2NwPMe1bY8sSXSE6fGX5yJE+4Dw+kPgXLkfiX0/TyKZY13+dqMeVSQ1X5wvzDQM4BmupNZaPWNv3aB/mtptrsT6BQCAQCAQCgT9k+p4A8vLyWPdp68WX4rrxvMjLy8O1a9c428IZ/BDTvjW2LNEVosNXlo8c6QPO4wOJf+FyJP6FM7/dfADAqPqjzMr6exgWx/ypw09wk7qxSAMqjeUFba7GX0VeXh4iPCMstkEgEAgEAoFA4AdJSgkgKyuLdZ+rfCHJzMzEvn37kJmZ6dR+iGnfGluW6ArR4SvLR470AefxgcS/cDlXjn93mbtFtr5880vEfxSPtf3WmpU1TkoFS4IxXT0d37f+nlFeyEipgyMOmmzLzMzEwIKBaBDWgLcdAoFAIBAIBIJwJBpnf4IWgaysLAQEBHAuZeiKy4ETCHRIHyC4Mq4Y/2djz2LDrQ14p+k7qBdRz+bHm//vfCw4vQBz3pyDL9p+AQDYdX8XBmwdYCJbIaACYqbH8LYtmWc47VIzV8O6TywUXyrg9jX7aK9SB1kSnODKkPgnuDIk/glsFABYCM48CkBGShEIBAKBQLCA1hVa449ef5RIQgoA5rw5B9mfZesSUgCQmMtcWKpr1a6iHbd1hdZW6Q+rO4xxu1wqR93wulbZJhAIBAKBQCjtkKSUANLS2Ne3dZXlwNPS0rBx40bOtnAGP8S0b40tS3SF6PCV5SNH+oDz+EDiX7gcif+SwUPuYeCHTCljlPu+E/O0Pj64y9wNPmf/Wv0ttgUAiiIF6z4JnLswPoFAIBAIBII5SFJKAM6+qhIfJBIJZDKZ3dvC1n6Iad8aW5boCtHhK+so590RcIS2IPEvjg6Jf+E4Slto/YjyizLZ93O3nxHkFWSx7TX91hh8TmtW8gOAiv4VWfdJJeQxjEAgEAgEgmtDakrxgNSUIhDMQ/oAwZUh8W8fzsaeRZtVbXTvp74+Fb90/wVyqVyQHXrdqMMjD6NrNf30v5sJN9FwWUOL/KsbXhcXJlyA73e+Jvs0czVo8lcTXIu/ZpFth4PUFCG4MiT+Ca4MiX8CG6SmlPiQ/B3VBkql0u5tYWs/xLRvjS1LdIXo8JV1lPPuCDhCW5D4F0eHxL9wHKUttH4YT5f8vefvghNSxkglUoPP2aBMA6zrvw4j6o1glC/jW4bV1q23b8HbzZt1P5m+RyAQCAQCwdUhSSkBJCYyF1QFXKeeSEJCAr755hskJCQ4tR9i2rfGliW6QnT4yvKRI33AeXwg8S9cjsS/ffywRW0rqURq8jlH1R+FDQM2YOYbM03k/dz9WG1JJBLOtiLT9wgEAoFAILg65GlIAAEBAaz7tPU17F1nw9YEBgaif//+CAwMdGo/xLRvjS1LdIXo8JXlI0f6gPP4QOJfuByJf/v44ePrI7ptiUTC+jkXdV6EG1NuGGz7udvPnPb4xA2BQCAQCASCq2LdGHcXw8vLi3Wfq3wh8fLyQv369e3ths39ENO+NbYs0RWiw1eWjxzpA87jA4l/4XIk/u3jx+mY06LbfpDyAB0qd2D9nMbnuFu1boxyIV4hAMw8O5DpewQCgUAgEFwcMlJKAPn5+az7tPU17F1nw9bk5+fj9u3bnG3hDH6Iad8aW5boCtHhK8tHjvQB5/GBxL9wORL/9vGjoKBAfNuKfM7PaTzlTiKRwF3mbiLn7+Gv85UNZ09iEggEAoFAIJiDJKUEkJmZybrPVb6QZGRkYOfOncjIyHBqP8S0b40tS3SF6PCV5SNH+oDz+EDiX7gciX/7+JGdky26bZVGxfk5mUY3MW3TQKPzlY3PW39usZ8EAoFAIBAIzoBE4+xP0CKQlZWFgIAApKens9aGcJXlwNVqNZRKJeRyOaRS++U0be2HmPatsWWJrhAdvrJ85EgfcB4fSPwLlyPxbx8/zsSdQad1nXTbNXMte6SRzNMnlb7t8C1mtZrF+jnvJt1F3T/qGhzT6xsvFCgNR21VCKiAmOkxUKvVWPDvAsw9Pddgv2auBhqNBj7f+iBfad+RZ6Lg5EuCh/uEIyk3yd5uEBwVJ49/AoETEv8ENgoALKQG9/j7+7OKkZFSArDnA7ijIJVK4e7ubve2sLUfYtq3xpYlukJ0+Mo6ynl3BByhLUj8i6ND4l84jtIWWj9sMf1NqVZyfs7kvGSTbYwjpYp/85NKpfi07afYMGCDbt+MFjMoPYkEuZ/nIn1WOma1moXGZRuz+tW1alfBn4UgHk3KNrG3CwQCgUAgOCXkCVsA6enprPtcZTnw9PR0bNu2jbMtnMEPMe1bY8sSXSE6fGX5yJE+4Dw+kPgXLkfi3z5+ZGeLP33P282b83NmF5oe84fOP5hsa12htc7XPTv3oHtUd8RMj8H2wdvxTcdvdHISiQSBnoFY2Gkhrk6+yurXpMaTLPk4BAKBQCAQCA4NWX1PAGSmI/WFq7Cw0O5fvGzth5j2rbFlia4QHb6yjnLeHQFHaAsS/+LokPgXjqO0hdYPuVr8x5gwnzDOzymTyky2TW4yGZ5yT/h5+GH1jdXILsrGz91+NvBVrVajQlAFVAioYJFf2sLpxnjIPFCoKrTIJkEYQ2sOxZaHW+ztBoFAIBAITgWpKcUDbU0prrmQrlJPhEBgg/QBgitD4t8+3E68jfp/1te9t7SmlPvX7lCoFQCA/cP3o2eNnqyyp2NO483Vb1p9TDbo9a3onBp7Cu3WtDPZ7in3NKlnZRecvKZIt2rd8HfvvxG1OMrerhAcESePfwKBExL/BDZITSkCgUAgEAjOTL2IepjceDKqBlXFf2/9Z7GdU+NOIcgzCG0qtEH36t05ZeXSkhtkXjWoqu517bDaJXZcAjPl/MrZ2wUCgUAgEJwOkpQSQEJCAus+V6knEh8fj/nz5yM+Pt6p/RDTvjW2LNEVosNXlo8c6QPO4wOJf+FyJP7t58ey3ssQ/X40WpZvabG9N8q/gcSPE/HvuH8hlUgdpg/8r/X/0BqtsabrGoT7hFvtCxvhXqa2D444aLPjCWVio4n2dgHtK7VHQkICJmMyRtYaaW93CAQCgUBwGkhSSgB+fn6s+7QrANliJSBHwt/fHz169OAcfucMfohp3xpblugK0eEry0eO9AHn8YHEv3A5Ev+l3w83mZvu/HHZZ1ppjwtrfK0QWgGLey7GwHoDBevypUlwE8xrO89ke7XgajY7Jl8+bvkxUj9JxfI+yxEzPcYuPgyrOwzjGo7D9BbT4e/vj0k9J2FZr2V28YVAIBAIBGeE1JTiAakpRSCYh/QBgitD4t91yCjIQND3QQCAfrX6YdfQXaLap9eUuvfOPYNpe0z1przkXshX5jPaivCJQGJuIufxNHM12H5vOwZvG6zbdn7CeQR5BqHWb7U4dWOmx6DikorUG5Frinza6lPMbjsbvu6+um3Hnx7HveR7eP/w+9YfgIEBtQdg5/2dBtvYaoax1f4iuCikpg7BlSHxT2CD1JQSn4IC9kKi2tyes+f4CgoK8PDhQ862cAY/xLRvjS1LdIXo8JXlI0f6gPP4QOJfuByJf+fyg8t+oGcgTow5ga/bf43lvZdbZcscMo3MQHdGixkmMl+1+4pV/9S4Uxhedzjr/kUdFuHhw4dQKBQG21tEtYAG3LG8rv86i1cS5MN3nb4zSEgBQMcqHTGt+TRG+SuTrlh9TA+ZB+d+R4l/AoFAIBCcCZKUEkBGRgbrPlf5QpKeno7NmzcjPT3dqf0Q0741tizRFaLDV5aPHOkDzuMDiX/hciT+ncsPc/bbV26PL9p+gVDvUKttGbNv+D4EeQZhfMPx8FP5GejObz8fvWv0NpD/oPkHWNx1Mdb3X29iq1ZoLWwcuJH1WEOrDMXmzZuRm5Nrsk+t4a6P9mbFNzn3lxQftfwIqjkqRPlbvyreHz3/4NxPP5d9avax+ngEAoFAIBDI9D1eaKfvpaWlISgoiFHGVaZuqFQqFBQUwNPTEzKZzGn9ENO+NbYs0RWiw1eWjxzpA87jA4l/4XIk/p3LD3v3AbVGDalEyqgbnx2Pcj/pV4GjTy8znlKm3cc21Uz5hRIFBQU4+OwghuwYYqB3J+kO6v1Rj9XH2OmxKB9QXm9bxOkbt96+hXoR7Memf54v236J+e3nIzEnEWV+LGPVcTVzNaxtCBiey2/OfoO5p+ZadTyCE0GmLxFcGRL/BDbI9D3xsecDuKMgk8ng4+Nj97awtR9i2rfGliW6QnT4yjrKeXcEHKEtSPyLo0PiXziO0hbO3gekEimrbqBnoO51xYCKBnqdq3S2yDep1PRxMMw7jFPXVkX9JzeezJmQYoNrumHNkJq87Xzyxies++jng/ymSyAQCASCOJCklADI9D2qDXbv3s3ZFs7gh5j2rbFlia4QHb6yfORIH3AeH0j8C5cj8e9cfjhyH/By88LuobsxsdFEHBt9zED+tbDXeNuWQKKzn5eXZ7I/wjcCS7ouYdWXS+Wc9j9s8SEmNprI2x8A+K7jd/ip60+CdPjg4+7DuP29pu+ZbGsa2ZTVjqPEP4FAIBAIzgRJSglApVKx7nOVLyRKpRJpaWlQKpVO7YeY9q2xZYmuEB2+snzkSB9wHh9I/AuXI/HvXH44eh/oW6svlvdZjuoh1Q22y6T8R2NpoNHZZ3u++aDFB4zbO1fpjDK+3FPlPGQe6Fern8n2u+/cRcMyDQFQNa/aVWoHAOhWrRs+bf0pawKJTsuolrrXtUKpFQK5+l7VoKqM24e8NoRxOxv082GuEDyBQCAQCAR+kJpSPNDWlOKaC+kq9UQIBDZIHyC4MiT+CY7AT+d/wkdH9QU9uGpKLeu1DJObTAYA7Ly/EwO3DjTRM9btU7MPlvVahnCfcN0UQ7aaUp+1/gxvlH8DvTfpC7Mv7roY01tMR3x2PPY83IPeNXrDx90H/zz9B52rdEaAZwCvz/ks/RmG7RiGyoGVsXHgRkglUrzKfoXInyIZ5a9MuoKJ+yYisyATB0YcwLGnx1AjpAYalmmIsj+WNfjc2+9tx+Btgxnbgs7ck3Mx//R8Xv7KpXIo1fZN5BJsDKmpQ3BlSPwT2OBZU4p77DWBQCAQCAQCoVTwTtN3DJJSTJwcexIJOQkYVGeQbhvf3ydlEpnJCKlNAzdhwt4JgDuQB/00wE5VOiGnKMdAdnqL6QCAsn5l8fbrb+u2033hQ+Wgyrg48aLBNq7P4OPug2uTr0EDDaQSKWqH1QYAJOUmCTquwfHISCkCgUAgEESBTN8TQGJiIus+tVpt8N9ZSUhIwHfffYeEhASn9kNM+9bYskRXiA5fWT5ypA84jw8k/oXLkfh3Lj9Kax/wlHvi9YjXAQBtI9syyrSr1A7D6g6DXCrX2U/PSOdlv6iwyGTbsLrDkDErAwHu1Cgnbzdv/NjlR3So3AFqTcn1B283b9Z9EkggkUh0o7u0GL83B/18kIkGBAKBQCCIA0lKCcDHh73OgXYVGlutRuMo+Pr6ol27dvD19XVqP8S0b40tS3SF6PCV5SNH+oDz+EDiX7gciX/n8qM094EdA3dgfv352NBvA2/7Xl5evGy7u7kzbneTueliP9AzEDNazgAAvF7udZ2M0NFQQgnyCsKXbb9E9eDqODrqqME+tjpVHjIPk22VAivpXpfzK2ewj34+jEdKhXiFsPq2d9heANQ0vmuTr3F+DgKBQCAQXA1SU4oHpKYUgWAe0gcIrgyJf4IjQ68LxVQjiW9NqSGvDcGWQVsYj8HWB/Y+3Isrr67gg+YfIMSbPXEjNvsf7ceYXWMwoPYA/N3nb1a58XvGY9PtTVjeezlGNxgNAPjw8If4L+4/rOizAnXD6zLqzT4+G9+e/Vb3PtQ7FCl5KYyy6jlqXIi7gBDvEAR4BKDMj9xF4gmlEFJTh+DKkPgnsMGzphQZKSWAwsJCe7tgdwoLC/H06VO7t4Wt/RDTvjW2LNEVosNX1lHOuyPgCG1B4l8cHRL/wnGUtiB9QBwdraxCoeBn3IKfMfvU7IP57eeXaEIKAHrV6IWUT1I4E1IAsKrvKmR+mqlLSAHA4m6LcXHiRZOEFL1thdSUkkgkaFm+JWqE1ICfh5+wD0IgEAgEgpNDklICSE9nr7ngKvVE0tLSsG7dOqSlpTm1H2Lat8aWJbpCdPjK8pEjfcB5fCDxL1yOxL9z+eFqfSAnJ8esLAA0C23Gus8R+wDfmlEectNpfEzQ29Z4ooEE/Kbuert5Y9PATbxkCQQCgUBwBcj0PR5op++lpqYiODiYUcZVpm4olUrk5OTA19cXcrn9Fm+0tR9i2rfGliW6QnT4yvKRI33AeXwg8S9cjsS/c/nhbH2AbfqeVvafuH8weMdgRhm6bvasbPh6Mte3coU+QG/bL059ge/Pfa/bF+4TzrqaH9OUSXq7EpwAMn2J4MqQ+CewQabviY89H8AdBblcjsDAQLu3ha39ENO+NbYs0RWiw1fWUc67I+AIbUHiXxwdEv/CcZS2IH1AmM7bTd4GALSp0IZRViaT8bLtJnfj7YczQm9brpFSLaNa6l7XCKlRYv4RCAQCgVAaIUkpAWRmZrLu0z6cOPvAs8zMTBw4cICzLZzBDzHtW2PLEl0hOnxl+ciRPuA8PpD4Fy5H4t+5/HC2PvBz959xbPQxHBhxgFE2Ny+Xl+2MzAzWfa7QB+hta1xTalXfVbrXK/qswNLuSzGg9gDsH76/pN0kEAgEAqFUQX72FQBXIVBXeBgDgKKiIsTFxaGoqMip/RDTvjW2LNEVosNXlo8c6QPO4wOJf+FyJP6dyw9n6wPuMnd0qtKJVdYjlL2m0sw3ZuKH/35ARbeKkKrZf8t0hT7AdT66VeuGE2NOwM/DD7XDaqN2WG281+w9O3hJIBAIBELpgtSU4oG2phTXXEhXqKVAIHBB+gDBlSHxTyjN7H6wG/239Ne9p9dAUqlV+O/Ff2hUthF83ZnrSQGu1wdeZL5AhSUVAACbB27G0LpDBemTmlJOBqmpQ3BlSPwT2OBZU4qMlCIQCAQCgUAgMCKTytCmYhvzgi5G+YDyuPX2LSTkJKBjlY72dodAIBAIhFILqSklgKQk5lVVAMdcCtkWJCYm4scff0RiYqJT+yGmfWtsWaIrRIevLB850gecxwcS/8LlSPw7lx+u1gfSM9KttukKfcC4HepF1EPnqp0hlZDHaQKBQCAQLIXcRQXg5eXFuk8ikRj8d1a8vb3RtGlTeHt7O7UfYtq3xpYlukJ0+MrykSN9wHl8IPEvXI7Ev3P54Wp9wMOdvaYUX5uu0AccJf4JBAKBQHAmSE0pHpCaUgSCeUgfILgyJP4JpZld93dhwNYBuvf0mlJ8IX1AGOZqSu0euhvLry3HgccHOOUIDgKpqUNwZUj8E9jgWVOKjJQSgL1XG3IEioqK8OLFC7u3ha39ENO+NbYs0RWiw1fWUc67I+AIbUHiXxwdEv/CcZS2IH1AHB2trFKlFN0PZ6Qk26FmaE3sH7GfdX/dkLo294FAIBAIhJKAJKUEkJaWxrrPFWopAEBqaipWrlyJ1NRUp/ZDTPvW2LJEV4gOX1k+cqQPOI8PJP6Fy5H4dy4/XK0PZGdnW23TFfqAo8Q/AHRO7YyRtUba2w0CgUAgEKyGTN/jgXb6XkpKCkJCQhhlXGXYukKhQHp6OoKCguDm5ua0fohp3xpblugK0eEry0eO9AHn8YHEv3A5Ev/O5Yer9YHTSacxeMdg3Xbj6XukD1CIGRfmpu89ePcBaobWZJVLnJqIoKAguH/rbpUfBJEg05cIrgyJfwIbPKfvyUvOo9KPPR/AHQU3NzeEh4fb2w2b+yGmfWtsWaIrRIevrKOcd0fAEdqCxL84OiT+heMobUH6gDg6Wll5GvfjoKOcd3tjq3aoE1YH95LvGWyrEVKDU4fJj3CfcCTlmq4U3SKqBS7EXbDOSQKBQCAQbASZvieArKws1n3aAWfOPvAsKysLR48e5WwLZ/BDTPvW2LJEV4gOX1k+cqQPOI8PJP6Fy5H4dy4/XK0P5OXlWW3TFfqAreLuztQ7Bu9fC3vN7CqGTH70r9WfUdbX3dc6BwkEAoFAsCEkKSWAwsJC1n2u8DAGAAUFBXj06BEKCgqc2g8x7VtjyxJdITp8ZfnIkT7gPD6Q+BcuR+LfufxwtT6gUCistukKfUDMuGhToQ0AwN/D3yQB5eXmZVafyY+FnRYyykrAneAiEAgEAsGekJpSPNDWlOKaC+kKtRQIBC5IHyC4MiT+CaWZPQ/2oN+Wfrr3xjWl+ED6gDCSc5Ox7d42dK3aFVWDqxrUjmpStgmuTL4CAPjr6l+Ysn+Kib72HNH1NHM1iMmIQaWfKxnInh53Gm1Xt7XBpyDoIDV1CK4MiX8CGzxrSpGRUgQCgUAgEAgEQgkS5hOGd5q+g6rBVU32aaBPCk5qPAkXJlzAmn5reNmtGFjR4P3/Ov8PbSq2MZG7NvmaQI8JBAKBQLANJCklgOTkZNZ9rrAUMgAkJSXhl19+QVKSaSFNZ/JDTPvW2LJEV4gOX1k+cqQPOI8PJP6Fy5H4dy4/XK0PZGRmWG3TFfpAScW/WqNvQ4lEguZRzRHqHWogw9ePbtW6mWyrH1Efjco2wr/j/rXeWQKBQCAQrIQkpQTg4eHBuk9bD8BcYcrSjqenJ+rUqQNPT0+n9kNM+9bYskRXiA5fWT5ypA84jw8k/oXLkfh3Lj9crQ+4u7tbbdMV+kBJxT9TZQ3jbVo/rky6gomNJuLcW+cYbTGdj46VOwIAWka1RFnfsiJ4TCAQCASC5ZCaUjwgNaUIBPOQPkBwZUj8E0ozpKaU/aHXhqofUR83375psP/AowPotamX7j3XOaLbuvvOXdQJq2Ow7cMWH+Knrj8BAOKz41Hup3JW++/ykJo6BFeGxD+BDVJTSnzMrU7jCigUCiQmJtq9LWzth5j2rbFlia4QHb6yjnLeHQFHaAsS/+LokPgXjqO0BekD4uhoZdtE6WsOzW83XxQ/nJGSagc+vxfz9YNp5T36trJ+ZKQUgUAgEOwLSUoJIDU1lXWfK9RSAICUlBT8+eefSElJcWo/xLRvjS1LdIXo8JXlI0f6gPP4QOJfuByJf+fyw9X6QGF2Ie69cw/bBm/DrNazLLLpCn2gpOK/UdlGZmX4+hHgGQAAaFepnW5brdBaFvtGIBAIBILYkOl7PNBO30tOTkZoaCijjKsMWy8qKkJycjLCwsLM1qAozX6Iad8aW5boCtHhK8tHjvQB5/GBxL9wORL/zuUH6QPC5VyhD9gy7ujT6/7s+SemvD7FYL/x9L24iXGsfpyJOYMp+6egb82++K7TdwCA2MxYDNo6CJH+kdg+eDtkUhnjsems7r0a4/eNN1gNkMACmb5EcGVI/BPY4Dl9T15yHpV+7PkA7ii4u7sjMjLS3m7Y3A8x7VtjyxJdITp8ZR3lvDsCjtAWJP7F0SHxLxxHaQvSB8TRIX1AGCXVDnySQFx+tKnYBvfevWewrUJABVyadEmQH2Mbj8XYxmNZk1YEAoFAIIgBmb4ngOzsbNZ92gFnzj7wLDs7G6dOneJsC2fwQ0z71tiyRFeIDl9ZPnKkDziPDyT+hcuR+HcuP0gfEC7nCn2gpOJfJpGZlRHTjwsTLqBXjV4G2ySQ2ORzTgsQ3SSBQCAQSjkkKSWA/Px81n2u8DAGAHl5ebh27Rry8vKc2g8x7VtjyxJdITp8ZfnIkT7gPD6Q+BcuR+LfufwgfUC4nCv0AVvG3bbB2wAAwV7BGFl/pMn+ioEVda8jvCNE9aN5VHPsG74Plydd1m3r6dHTJp+zmjvw8L2H+F/n/4lum0AgEAilE1JTigfamlJccyFdoZYCgcAF6QMEV4bEP8HVIX3Aeu4k3UE5v3II9gpm3D/7+Gycjj2NP3r+gbrhdW3iw677u5CQk4AJjSfAXUaVreAzfa97te44FH3IrNzPYcD772hw9MlRdF3f1SIfG5VphOsJ1y3StRmkpg7BlSHxT2CDZ00pMlKKQCAQCAQCgUCwM3XD67ImpADgm47f4Mz4MzZLSAFA/9r9MbXpVF1Cio3pzacbvP+xy4+87AupTsVk8/bU25jeYrqpsIMQ6sO8IBKBQCAQ2CFJKQG4+lLIAJCcnIw//vgDycnJTu2HmPatsWWJrhAdvrJ85EgfcB4fSPwLlyPx71x+kD4gXM4V+gCJfz3l/MoZvJdKxP9KMbraaJNtdcPrYlT9UaIdo7K8ssm2E2NOYHab2YLsuMncqP8SN5smDQkEAsEZIUkpAbi5ubHuk0gkBv+dFXd3d1SqVMnuKxHa2g8x7VtjyxJdITp8ZfnIkT7gPD6Q+BcuR+LfufwgfUC4nCv0ARL/huwdtheNyzbGij4rUCOkBuqF1+N9DAmPMVNsxxcrAXZv4j0sbbTUZHv7yu0xv/18g22VvCrpXk9qPAkP3n2Adf3XYVqzaTg7/izCvMMAUPHP57MRCAQCQQ+pKcUDUlOKQDAP6QMEV4bEP8HVIX3AeWGqKbWo0yLMbDXTYFu+Ih/e33rr3kf6ReJl9ksDGW1NqWNPjqHL+i6cx9XM1ZgcWzNXw+oTAHSr1g2How9z2tWi+FIBuVSOtqva4kzsGQBAkGcQ0malmRxDNUeFt/a8BaVaiV97/IpAz0ADW/T4j/wqEpdeXjJ7/L97/42aoTXRZlUbXv4CwNLuSzHt0DTe8gRCiUBqShHYIDWlxEepVNrbBbujVCqRlpZm97awtR9i2rfGliW6QnT4yjrKeXcEHKEtSPyLo0PiXziO0hakD4ijQ/qAMBylHRw1/r3cvPBTl5/g4+aDbzt8i0MjzRc+N+dHqJewGk0NwxsKsp+WlmYwsom+yiGdjPQM/N3rb6wfsN4kIWXM0NeG8jr+hMYT0LpCa97+AsB7zd4TJG8tIV4hJXo8AoHgmpCklABITSmqzsDSpUsdop6CLf0Q0741tizRFaLDV5aPHOkDzuMDiX/hciT+ncsP0geEy7lCHyDxb54PW36IzE8z8Vmbz1AvwnQ6nzb9w1XQne7H4PzBgo7fpVwX1EZtXrLaz6lQKMzKCol/D5kHP2dLARMaTbC3CwQCwQUgSSkBBAUFse6TSqUG/52V4OBgjB07FsHB5h8mSrMfYtq3xpYlukJ0+MrykSN9wHl8IPEvXI7Ev3P5QfqAcDlX6AMk/vkhk8rMyjQp1wRDXhuiq8XE5scnYz8RdOygwCAcHHsQf/X4y6xsSHAIxo4dy1kzVouQ+Ld1XbVaobU496fMTMGSrksMto1rOM6iY/E5lwQCgWAtzvvkYAM8PJznlw9L8fDwQKVKlezeFrb2Q0z71tiyRFeIDl9ZRznvjoAjtAWJf3F0SPwLx1HagvQBcXRIHxCGo7RDScd/x8odbXKcLYO2IOHjBLN+VA6kVsjrVKWTWZvaIu1hfuzJLp2sByXLJ5EqpL2NC533qdkHYxqMYZUfXMdwNFj9iPoo61uWVX730N2s+3I+y0GIdwg+aPGBwfZVfVdxeOw6dKjcwd4uEAgEBkhSSgA5OTms+7T14p29bnxOTg7OnTvH2RbO4IeY9q2xZYmuEB2+snzkSB9wHh9I/AuXI/HvXH6QPiBczhX6gKvG/97he7Go0yKbHItrJT2tH4eHHMaqvquwZdAWs/by8vJw7tw5tC/XHk3KNuGU1dpXqVRm7VoT/3uG7cGafmtYdX/r8Rv61OyDSY0nQTVHhZtv30Td8LoGMp5yTxwccRAAUDO0Jn7u9jOjLR93H7OfBeA/csrYDz5E+ERw7ucaHWdrKgYw1wwjEAj2RW5vB0oTubm5rPu0NyFPT08UFBSUlEslTnp6Oq5du4YKFSpALrdf+NjaDzHtW2PLEl0hOnxl+chFRkbCzc0N4eHhpA+Uch9I/AuXc9T4d3Nzg0wm3vSLnJwcnD17FlWrVoWvr69odh3NDzHtW2PLEl0hOnxl+ci5SlLKFePf280bM1vNxJqba3A3+S4AoHJQZV62Zr4+Ez9c+UH3XhNYX7AfY6uO5Z1Eyc3LxYWzF1C1alVcnnQZb65+U7eyHpt9VbD5pJSQ+Oczfe/z1p/rXof5hGHPsD0G++k2aofWxqVJl+Drrj/2+83fxweHDUdDCcF4NJcxod6heK/pe7xGpxlzdPRR7HmwB77uvphxdIbJ/pjpMQarNDobmwduxrAdw3jLp89Kx73ke2i1spUNvSIQHBuJxpmfHkQiKysLAQEBnEsZli9fHl26dMGAAQNQpUqVEvaQQLA/cXFxUKlUkMlkiIqKsrc7BEKJ4sjxHxgYiDJlyti8zgnBtYmKisLLly8RGRmJuLg4e7tDsAGPUh9hyLYhqBFSA1sGbeF9TZn/73zMPTUXPm4+eDnjJQI8Awz2S+Yx29HMZf+KwqZz9527qBNWR/e+x4YeOBTNvAqg8kslZFIZ2q9pj1PPTwEAGpZpiOtTrpscg8sXwDD+v9z9Jd4+8LaJbptVbXA29iwAapod16imbuu74ciTIwCopNS9d++ZyDC1Ad1PY//p7z9r/Rl2PdiFBykPqONV64bD0Yd1+/8d9y/aVmwLAPjw8IdYcnGJwXGOjDqCvQ/3onZobbx3yHBFwMIvCuEuc8eDlAeo/Ztp0XljX0qStxq+hZU3VlqsP6vVLHx/7ntOmQMjDqDnxp68bWrPWbvV7fBvzL8W+2ZXfgSQDcAPwEd29oXgWBQAWAjOPApARkqJxqBBg9CzZ0+EhISgUqVK5OGf4HIUFhZCqVRCLpejcmV+v6ASCM6CI8a/RqNBXl4ekpKSAABly7LXKCEQCARz1AipgRtv3xCs92XbL9G+UntUCKhgkpACgE0DN2H4juEI8AhAjZAauJ5wHRsGbOC0uaLPCkzYa7oynPFv7Xyex4M89QsZ8VkV0FK2DtqKP678gc5VOvOeZgcAGpgfPzCs7jC82/Rd3jYlkODs+LO6UWQdK3eE/0LmL4yLuy3GxMYTUfcP/VS+LlW7oEvVLgaJLIBKVrnL3AFQBdlnt5mN48+O40LcBd6+OTILOy1EhE8E4wiwQXUG4dsO3yI6Ldoi26fGnQLAnnAlEJwZkpQSQGpqKmOGT6VSoVOnTggMDIRUKoWXl5cdvCsZFAoFMjIyEBgYyGu1ktLqh5j2rbFlia4QHb6yfOS0D34SiQSenp68fC2NOEIfIPEvjo4rxL/2fpSUlITw8HCrp/KlpKRgz5496Nu3L0JDQ8Vw0SH9ENO+NbYs0RWiw1eWj5xarTb474yQ+LfSViCzraGvDUX14OqI8o9CuE84MgszEegZyOnHuIbjGJNS6enpWLFvBS/fU1NTsW/vPsztMBdHnxyFWqPGsl7LGGVXrOC2SY9/tkRYWb+ymN9+PqdPWui1tvhMatk0cBMvu3RCvEPQr1Y/3ft+tfph94PdAGAw2gwwTe6lpKQgNDTUZBpgl6pdDN4v6LAAC7AAex7swfrb6zGr1SxGX3pU74GDjw8K/gxCqRpc1WobZXzLMG7fNngbAOBJ+hOrjyEW1YKrWZwkIxBKElLoXABsD/MKhcKuCZqSRCKRwM3Nze4jwWzth5j2rbFlia4QHb6yjnLeHQFHaAsS/+LouEr8e3tTtTsUCoXVtuRyOcLCwuxaU7Ak/BDTvjW2LNEVosNXlo8cPTHrrJD4t40tiUSCJuWaIMI3AhKJBIGegWZ12QqkG+uw1U6a3WY23N3cERYWhopBFfFyxku8nPES1YKrMcoLif+qQfrEB5s9c9D7EZ+RUnzwdvNmfK1lee/l+OrNr3B01FGEehsm38r7l9e9ru1TW3Bs9K3VF9sGb8Pr5V432VfWtyzW9V8nyB4TA2oPMCsT4hXCuZ9PMX1zGMdcsGcwuoZ0tdquGL4QCI4KGSklgMDAQNZ9zvwQRkcul3O2g7P4IaZ9a2xZoitEh6+so5x3R8AR2oLEvzg6rhL/Yt6fAgMD0adPH9HsOaofYtq3xpYlukJ0+MrykXOFpBSJ/5K1ZYmun58fWvRpwSnzZsU3saDDAgDgbV9I/Heo3AGTGk/C9YTroiRbLC3/26lKJ/zz9B/MfGMmAODQyEPosKYDAj0D8X7z903kQ71DMbfdXEZbfh5++Gf0Pzj+7Djea/YeAv0CAQBBXkGM8kI4OfakRdMmf+n2C94/rP8cCzsuxKDagzBi5wiLfRny2hDkK/Ixbs84k30ftbSsWNLdd++ijG8ZVF9a3WTUUq3QWhbZ5IszX48JzgUZKSUAPkvGOjsajQYqlcruq+vY2g8x7VtjyxJdITp8ZR3lvDsCjtAWJP7F0SHxLxyVSoXs7Gy73w9t7YeY9q2xZYmuEB2+so5y3u2No7QDiX8OHbWhzpdtv9Tt2ztsL55/8BzHxxwXbF+IHxKJBH/1/guXJ122OOkgxgiXAyMO4Nrka/i+E1WYu23Ftoj9MBbPpz+Hn4efYHsdq3TE1+2+hh/8dG3RtFxT9K3ZF0GeQbp2FUrN0JoAgJH1RgIwnQKo5fiY43CXuaN6cHXkf5aPcXXGmcgMrzccyTOTsXHARot8YeLuO3exrv86fN3+a17yxomgMK8wZGdngz7gLco/Cl+9+RWOjDoimp9MvFnxTZvaFwuZRLxVggmlE5KUEkBycrK9XbA7CoUCiYmJokwDcWQ/xLRvjS1LdIXo8JV1lPPuCDhCW5D4F0eHxL9wkpKS8NNPP+mKpzurH2Lat8aWJbpCdPjK8pFzhZpSJP5L1pYlummpaQY6zaOa4/iY49g3fB961eiFioEVIZPKBNsv6finT/urHWa6gh0f3GXuaFS2kUGSpJxfOfi6+1rsl3GbSSQS7B62G0kzk9ChcgeL7QLAyr4rcXLsSdYpdB0qd0D8R/G49+49pKem46effjLYr/2cod6hGF5vOKONPjXZR7yV8yvHuL1OWB2Mqj8KXm78aga3iNKP1JvRYoauzWY2manbvmHABsxtNxcVAirwsmkpbzV6C8PrMrcFW2H8+hH1AQC3p94WfDw3mXOWs+lYuaO9XXB6SFJKAKV5+oYY/PLLL/Dw8EDnzp0dop5CcHAwDh8+jDFjxqBevXq8a740btwYH3zwAQBg3LhxkEgkuj8PDw/UrFkTCxYsgLe3t+5zfvXVV5BIJEhJSdHZMdb18fFBpUqV0KdPH6xatQqFhYUGvvJps9WrV0MikeDKlSuCdY3bhm89ETbZjRs3YsmSJYxyEokEX331FW+fbIFCocCyZcvQtGlTBAcHw9vbGxUrVkTfvn2xa9cundzz588NzpNUKkVISAh69OiB8+fPCzpmpUqV4OHhgcjISHh4eBjY1Ra33rNnDyQSCf78809WO8eOHYNEIjF5oGLj1KlTuuOsXr2a8bx16NABEokElSpVEvSZmKDbr1SpEsaNGydIf//+/bp+6ePjg8jISMHXjM2bN6NZs2aoUqUKKlWqhOnTpyMnJ0eQ7wCwdu1aDBs2DDVr1oRUKjVoH2PZnJwcTJ8+HeXKlYOnpycaNmyIzZs3M7b3tWvX0KlTJ/j6+iIwMBAzZsxAXFycgS/a87Z9+3ZOn5muL45KUFAQhg8fjqAg66dsOLIfYtq3xpYlukJ0+MrykXOF6Xsk/kvWliW6/v7+JjodKndArxq9TGLTnP1vO3yLKP8orO+7vsTjf377+agTVgdVgqrg9x6/i2JTDNjaTC61/nuBu8wd7Sq1g78H+7LxwV7BkEvlOj/48mGLD3FhwgWU9bP9KrT+Hv64+fZNrOq7Cl93+Frn66jGo7B10FbsG74PbSu2ZdUf33C8xcf+oPkHBu9lEhl+6/GbwbYKARWwtPtS/NrjV4Ptb/r54PqU67j59k1o5mpQN7wuhOJo138xRhxKIME/Y/4RwRt2dg7ZaVP7pQGSlBKAI62oZA9WrlwJALh37x4uX75sV1+kUik8PT2xZ88eXLhwAXXq1EGDBg3M6j179gzXr1/HwIEDddu8vLxw/vx5nD9/Hrt370bz5s3x9ddfY8qUKZBKubsIXXf//v2YP38+fHx8MGnSJDRp0gRxcXE6X83Z4vqcQnSF6HDJ0pNSxnLnz5/HxIkTeftkC0aPHo1p06ahffv2WL9+Pfbt24cvvvgCcrkcR46YDoeeNm0azp8/jzNnzuC7777DzZs30b59e1y/fp33MXft2qU739q/LVuoX/T69+8PAOjZsyfKlCmj6y9MrFq1Cm5ubhg9erSgz+zn54cVK1aYnI9nz57h1KlTjKuDWoI1MQtQ7WTcL4XY2rBhA4YPH46mTZvi0KFDmDt3LlavXo0BA8wXMTX2fd26dbh79y6aNWuGqlWrcsoOGDAAa9aswdy5c3Ho0CE0bdoUw4cPx+bNmw3kHjx4gHbt2qGoqAhbt27FypUrERMTg8mTJyMtLY335yyNeHp6okaNGna/H9raDzHtW2PLEl0hOnxl+ci5QlKKxH/J2jKny/SFs3p4ddHi/7M2n+HFhy8wsuHIEo9/fw9/3Jl6B4+nPUakfySjjDZ5MbjOYFGOyYeS6ANSiRS3p97G/zr/z6wfUf5Rum1h3mGs8qPrj0bzqOaMx9LSPNJ0v6XUj6iPcQ3HwdvNW+ert5c3Br82GL1q9OLUXdp9KTYM2GCwrV54PXSq0gkbBmwwmJJKZ3nv5fi247cG25jiMWZ6DN5r9p7J9sbeXmhYpiGrX5+3/hxjGoxh3MenttjkxpNR1lefFNROLRz62lCzupayf8R+i3U3DdyE7zp+h7vv3LVIf3HXxUiZyf5jY97nefi1+684Pe40+tfub6mbTgNJSgkgNzfX3i7YjStXruDmzZvo0aMHAODvv//mpadSqXQjhsREpVIhNzcXf/75Jx49eoQtW7agRQvuwpYAsH37doSHh6N169a6bVKpFC1atECLFi3QvXt3rF27Fq1bt8bWrVsRGxvLaY+u2759e4wZMwabNm3CwYMH8ejRIwwaNEjnq6X1FITqCtHhK2ss16JFC0RFRXHq2JJnz55hy5Yt+Oyzz7Bo0SL06NEDHTt2xKRJk7Bjxw78/rvpr4oVKlRAixYt0KpVK0yePBnr1q1DYWEhoywbjRo1QtOmTVGvXj00bdoULVq0wP379wFAl6STy+UYM2YMLl++jDt37pjYyMjIwK5du9CnTx+EhbE/QDExdOhQnD17Fg8ePDA4HytXrkRkZCRatWolyB4b1sQsACxfvlzXL5s3b66zyffYM2fORJcuXfDnn3+iWbNmmDhxIn7//XccO3YMhw4dEuT7kSNHcPv2baxbtw41a9ZklT148CCOHTuG33//HVOmTEH79u2xfPlydO7cGTNnzkRWVpbO5pw5c+Dh4YH9+/ejR48eGDBgAJYuXYr09HSsXbtWaHOVKnJzc3Hp0iW73w9t7YeY9q2xZYmuEB2+snzktDXXnLn2Gon/krVlTvfcW+dQMaAiulXrhrlvzsXJsSchVUqdJv4lEgnrKoMAlYS4NPESNg4Ur36SOcSKjWOjj6Fj5Y7YOmgr4/664XXx0RvshcW1fuwdtBcj643EhgEbEOAZINiPT974BB0qd8Dr5V7H7z2p50Ht9E6xENpmPu4+GFFvBD5v/Tl83XzxWd3PcH7MeRwbfQwj6o1gjbGJjScyrqrIlShtGNFQ97qSN/cPm0kJSfi9s+kz85gGY+Alp6Y2+rrpp4b+0PkHjG0wFgDwRZsvsKz3Mjz74BkWdlyIP3v+iZNjTyL+o3hsGrgJkxpP4jw2E+ZWSjw/4Ty6V+suyObeYXvRIKIBpjWbhmF1h+HT1p9aPH22rG9Z3UqiTHi5eeHdZu+iTcU2Ftm3lH61+vGWHVdvnM38MIYkpQSQnZ1tbxfsxooVKwAACxYswOuvv44tW7YgLy/PQEY7TWrRokVYsGABKleuDA8PD5w8eVI3PeXWrVsYPHgwAgICEBwcjBkzZkCpVOLhw4fo1q0b/Pz8UKlSJSxatIjTH5VKhczMTME3/x07dqB///5mR200a9YMAJX8sIQuXbpg0qRJuHjxIk6dOoXMzEyLk1Ljx49HQEAAoqOj0aNHD/j6+qJ8+fL46KOPTBJ+8+bNQ8uWLREVFYWgoCA0btwYK1asYGynjRs3olWrVggPD0dAQAAaNmyoO8/t2rXDgQMHEBMTA4lEArlcDl9fX91noE/fu3nzJiQSicGUOS2HDh2CRCLB3r17ddseP36MESNGIDw8HB4eHqhduzZ+++03E10uUlNTAQBlyzIPw+YzKkebxIyJiRF0bG3saQtfr1q1ClWqVEGHDvpaChMmTABAjYgyZtOmTSgoKMBbb70l6LgA0LlzZ5QvXx4rV67U+aBWq7FmzRqMHTuW8XMXFBTgs88+Q+XKleHu7o7IyEi8++67yMjIMJBTKBT45JNPUKZMGfj5+aF9+/a4cOGCYB8Bw/bX1tfgG/8XLlxAfHw8xo8fb9DWgwcPhq+vL2Oc0aHrGPvCJbtr1y74+vpi8GDDX5zHjx+PV69e4eTJk1CpVFAqldi/fz8GDhxoMDKtXLlyeP3113HixAlO/7KystC1a1dERETg0qVLBvsSExMxfPhwBAQEICIiAm+99RYyMzN1+7XXUaY/oVMsLSUrKwtHjx5FVlZWiRzPXn6Iad8aW5boCtHhK8tHzhWSUiT+S9aWOd2W5Vvi2QfPcGjkIXzV7iu0q9TOpeJfJpWhaWRTUabO8UWs2OhUpRP+GfMPBr/GPcpLW/eoWWQzRj/KyMtg/YD1GFGPe8U9ttX9POWeOD7mOC5PuowyvmUAAIPqDEKwJyX/a/tfGfWMaVquKes+S9vsm47f4P7Y+/C+721W15KkDgD82u5XBCMYzcs0xdQh3LNgnjx5gqysLHSq0km37acuP+H3Hr/r4t5d6o61/dZiZZ+VmNFyBlb1XYW4D+PwdQeqSLyH3AOzWs/ClNenQCKRoIxvGUgkEizstFCQ3y2iWmDIa0PMyvAduSiXynHurXPoXbM3brx9A790/0WQP0xooBE9wSkGVYOqmhcCEIpQvFm25Arl27cwUCmjTJky9nbBLuTn52PTpk1o2rQpGjVqhLfffhsTJ07Etm3bMHbsWBP5X375BTVq1MD//vc/+Pv7o3r16rovt0OGDMGoUaMwZcoUHDt2DIsWLYJCocA///yDd955Bx9//DE2btyIWbNmoVq1aqzTddzd3VGuHHNBQjbi4uJw6dIlfP21+dUztMkooceg06dPH/z+++84f/48Ona0rECeu7s7vL29oVAo0KdPH0yYMAEfffQRTp8+ja+//hoBAQGYM2eOTv758+d4++23UaECVTjxwoULmDZtGl6+fGkgN2fOHHz99dcYMGAAPv74YwQEBODOnTu6BM3vv/+OyZMn48mTJwZJAHd3dxMfGzRogEaNGmHPnj3o1ctwSPLq1asRHh6uG2F37949vPHGG6hQoQJ+/PFHlClTBkeOHMH777+PlJQUzJ3LvBSxMbVr10ZgYCDmzZsHqVSKLl26CK6lFB1NLcsrdLQSPfaOHTuGmJgYLFiwwODGV6NGDbRu3Rrr16/HwoUL4eamL/y4atUqREZGomvXroKOC1AJlnHjxmHFihX47rvvIJPJcPjwYcTFxWH8+PG6WmlaNBoN+vXrh+PHj+Ozzz5DmzZtcOvWLcydO1c3/dDDwwMAMGnSJKxduxYff/wxOnfujDt37mDo0KFWJ+NlMuqGzBQ7TGhHl9WvX9+kn9eqVYtx9BkdIdcGuuydO3dQu3Ztk9pX9etTBT8TExPh7u6Ohw8fIj8/X7edTrVq1XDx4kUUFBQwTm2Ii4tDjx49UFRUhPPnz6NKlSoG+wcOHIihQ4diwoQJuH37Nj777DMA+qnTEydORLdu3Qx0du7ciR9++AGvvfYar89sLWXLlsUXX3xRIseypx9i2rfGliW6QnT4yvKR0yaALZ32Wxog8V+ytvjoGn/pJPFvW0q6D/zU9Sf0qtELLaNaCvbj7PizmLRvkq7APRNMSQtPuSceTXuE2MxYNCrbyKyPn7X+jLVoOF9f2YiKjDLR1cAw8flG+TewtPtSRn1zNZVa1WqFlDkpvJI3bdu2RdmyZbFp4CZsur0Jnap00o0i0sa9TCbD6AaGpSnYpp/SCfAMwK6hu9B/i/lpbJcmXtLVu5rQaAJWXF9hIvNHzz/M2tHy/IPn8JR7IsI3grcOE9ObT8eSi0t077WJumuTr2HTnU1oEdUCA7dS5WOM63wB1KqTR58c5XUsd5k7ilRFgn2c03YO+tXqhx/P/2hWNjQ0FMHBzMlcW0CSUgSzbN++HZmZmbrRH0OHDsX06dOxYsUKxqSUp6cnjhw5YvBFXMvkyZMxY8YMAECnTp1w9OhR/Prrr9i5c6euJk+7du2wf/9+bNiwgVcNGb7s2LEDgYGBaN++vck+pVIJgJpatXHjRuzevRtNmzZF9erVLT5exYrUDfDVq1cW29BSVFSEefPm6UZxdOzYEVeuXMHGjRsNkk30kTlqtRrt2rWDRqPBzz//jC+//BISiQTPnj3Dt99+i5EjR2L9+vU6+c6dO+te16lTB4GBgfDw8OA1LXL8+PF4//33ERMTg2rVqBVj0tPTsWfPHrz33nu6L/ozZsyAn58fzp49qxtl0rlzZxQWFmLhwoV4//33eRU09fHxwYYNGzB27FhMmTIFABASEoIOHTpg9OjR6N27t4mOWq2GUqmESqXC3bt38fbbbwMARo4cafZ4bKxYsQIymYxxlMqECRMwfvx47N+/Xxfbd+/exeXLlzF79mxdskYo48ePx4IFC3D48GH07NkTK1euxJtvvmlSLwkAjh49iiNHjmDRokWYOZNa9UU72mro0KFYu3YtJk2ahAcPHmDNmjX48MMPdaMUO3fujIiICKvaxxK0o+CYboTBwcF4/vy5zY5rnCSi+6H1i8s/f39/aDQapKenm4ziu3HjBnr27ImqVati9+7djPoTJkzQnadOnTohOjoaK1euxIoVKyCRSBAVFWUwbfbs2bNYunQpRo4ciY8//tjCT04gEAgEgmPiLnNHt2rdzAsy0KpCK9x7955FuiHeIQjxDuEla1zHqaQ599Y5q/SF1kEL9Q7FtObTrDomox9GCbTxDcfjQcoDpOan4lHqI932ppH6UWk/d/sZHSt3xMWXF/HzxZ91299+/W3ex2VLWArh+pTraBDRwCAppaVR2Ua65ObxMccRnx2PoXVN62it678OC88uxOILi3XbdgzZgReZLzD9yHQD2c9bf46v/v2Kt39BnkHYOngr2lVqxziy0t/DH1mFpqPxxCgUzxfnTueLjMUFbC9NBf7tY9+/S1Mt/twrVqyAl5cXhg0bBqVSiYKCAgwcOBBnzpzB48ePTeT79OnDmJACYDKSpnbt2pBIJOjeXT/nVy6Xo1q1apzTqpRKJVJSUnTJJD7s2LEDffv2NRkJkZubCzc3N7i5uSEsLAzTp09Ht27dsGLFCkH2jdFmyNVqtWBftWjbWyKRmCRa6tevb9JGJ06cQMeOHeHv7w+ZTAY3NzfMmTMHqampuuV7jx07BpVKhXfffZd3O5qTGzlyJNzd3bF/v76g4KZNm1BYWIjx46lCnAUFBTh+/Dj69+8Pb29vKJVK3V+PHj1QUFAgaLpYjx49EBsbi127duHjjz/Ga6+9ht27d6NPnz547z3TAo6zZs2Cm5sbPD090aRJE8TGxmLZsmW6UVx80bZFUlISdu/ejW7duiEy0vRXoCFDhsDPz8+g4PnKlSshkUh0bWIJlStXxptvvok//vgDiYmJ2LNnD+tUQO1UMuOk2eDBg+Hj44Pjx48DAE6ePAlAn6DTfsYBAwZYvdKmdvqe0PiXSCSMcWfu4UnItcFYlst2Xl4ebz+M9x05cgRt2rRB27ZtcezYMdZfnvr0MVyqun79+igoKGBchvz+/fvo06cP3njjDV1clQSpqalYu3atLjlnL2zth5j2rbFlia4QHb6yfOS0fV373xkh8V+ytkj8Ox7O1gfYvnQ7ch8I9wnXva4QUMGsDW29J2t9u3nzJqucLeJ/Zd+V+G/Cf/is9WesMj7uPhhebzjqhdfTbXOTMn8HtRUDag9AwzINTZ7DjEe0AdRKoCPrj2RMDIX7hOOnroarctcOrY0PWnyAtf0M65VOqD0Bg4IGsfq0os8KjK6vH7E2qM4gdKrSifG4WwZtwV+9/jLZnpmZWaKli8hIKQFY/NDfjP8QQkcjOjoap0+fxsCBA6HRaJCRkYGcnBwMHDgQa9aswcqVK/Hdd98Z6LDV+QFMRxdop6cZT3Vxd3c3O39ayEiThIQEnDt3Dp988onJPi8vL5w+fRoA4OHhgYoVK8Lb29vqjqhNGJUrV87iUTEANSSWqY08PDxQUFCge3/p0iV06dIFb775JpYsWYJq1arB29sbu3fvxjfffIP8/HwAQHJyMgDoRlzw9Y1LLjg4GG+++SYOHjyIadOoX09Wr16NZs2a6aYVpaamQqlUYunSpVi6lHmYcUoK+yoVTHh5eaFfv37o168fACA2Nhbdu3fHb7/9hqlTpxpMafrggw8watQoSKVSBAYGonLlyhb3aZlMpiuUzrYKobe3N4YNG4ZVq1YhISEBoaGhWL9+PeuoJiGMHz8eEydOxJIlS+Dl5YVBg5hvTKmpqZDL5SZTFCUSCcqUKWMy+oc+RVkmk0EulyMkhN8vhWKhPV5qaipCQkIM4i4tLY3XUGIh/U0rGxISwviwpf0xQntcun/GZGVlQSKRIDAw0GD77t27kZ+fj6lTp+qmSzJh3NZaWW3f1fLq1St069YNUVFR2LlzJ++pkWIglUrh4+Nj9ykqtvZDTPvW2LJEV4gOX1lHOe/2xlHagcS/ODok/oXjKG1hzz5Ar6nElTDhY8sS3SlNpuCvq38hPicee4ft5dCm8JB7YFXfVdh6dyvmt59vsW9ubm52P+9sjG4wGov+W4TYzFgcHcVvCpxYLO+9nHG7mPXlXgs3LNHg4+6DYZHDsD19u25bg4gGSC9Ix8mxJ1ElqAr61eqHm4k3IYEE33f6ntX2oDqDsO/hPpPtUqmU9ygyzVwNJPOs+3GUJKUEwGdakbOxcuVKaDQabN++Hdu3bzfZv2bNGixYsMDgS2BJ/GIvl8sFnY9du3bBx8fHYIqaFqlUitdff91ku7XnW1vcu0OHDhbbksvlvL9wbt68GW5ubjhw4IBBAmv37t0GctoERVxcHMqXL8/LNz7t3bdvXxw7dgwXLlyAp6cnLl++jD/+0Cdkg4KCqLnmo0fj3XeZ595XrlzZrC9cVKhQAZMnT8b06dNx9+5dg6RUVFQU43kWirYtVq9ejYiICJPRf3QmTJiA5cuXY+3atahRowaSkpLw44/m53GbY/DgwXj//fexaNEiTJo0CV5ezL+ChYSEQKlUIjk52SAxpdFokJCQgKZNm+rkACp5GxkZqfuMSqXS6l8JtQ8wfEdc1atH/dp1+/Zt1KlTRxd3SqUSDx48wPDhwzn1hVwb6LL16tXDpk2boFQqDXy9ffs2AKB58+aQy+WoWrUqvLy8dNvpREdHo3z58iYJ5MWLF2PLli3o3r07du3ahS5duvDyj4msrCz06NEDarUaBw8eRECA8NWGrCEoKAgDBw4s0WPaww8x7VtjyxJdITp8ZfnIuUJNHRL/JWuLxL/j4Wx9gO07C5f9MJ8wXJx4EXeT7mJY3WFmjyF2H/CQe+DW1FtQqBTwkLP/0AXoP9+4huMwruE4q3yrXbs26/OVGPFPX+WOXtjeU25ao9MYd5k77r1zDzlFOZyrMI6sNxIbbm+wyL/fe/yOdw6+AzepG9b2X4svTnyBMQ3GsBbRZxopJRTt+TMe0ac7b7Qyq9enXIdao9YVVw/2CsaNKTcM7Gj5763/MPfUXIysNxJSiZTRVz8/P7Sq1gqz28zG6ZjTuJV4C5mFmSZyHjLuGOSLc185RcbZh+Qao1KpsGbNGlStWhUnT57EyZMnceLECRw/fhwnTpzARx99hPj4eLNLtNsCjUYDtVrNOwu9Y8cO9OrVi3OUgjX2jTl27Bj+/vtvvPHGG2jVqpXFtjQaDW897Sp5UqlUd7z8/HysW7fOQK5Lly6QyWT4448/OD+nh4eHboQGn/Zo2bIlwsPDsWfPHqxatQqenp4GCQRvb2+0b98e169fR/369fH666+b/PEdlZOdnY2cnBzGfffv3wdgXZF6LjQaDS5duoRbt25h7NixnMmW5s2bo27duli1ahVWrVqFgIAAUR6iPD098eWXX6J3796YOpV9aq62wD69dhhA9Yfc3Fzd/nbt2gEANmygbtTa871lyxarprBqbdH/m6N58+YoW7YsVq9ebRB327dvR05Ojtk6c0L6Ll22f//+yMnJwY4dOwxk1qxZg3LlyqFp06bQaDSQy+Xo3bs3du7caTCaMj4+HlevXmVc1MDT0xM7d+5Er1690KdPH+zZs4dXWxhTVFSE/v374/nz5zh06JBBfamSQq1Wo7Cw0O73Q1v7IaZ9a2xZoitEh6+so5x3e+Mo7UDiXxwdEv/CcZS2sHcfaBbZDOMbjYeXG/vUOL62LNGVSqRmE1LW2GdCqVLa9LzXCKmBX7v/ihH1RmDroK267QNqD0B5//IAgJ1DdrLqy6QyzoQUAHzS6hPcmHID3ap1Q6BnII6NPsbbv8lNJuPgiIO4MekGhtQZguj3ozHnzTnmFUXAOKmkPW/GMsar/WlXaDamZfmWODr6KMY2NK0NrUX7jLygwwKcHn8aT95/gvX91yNlZgpip8fq5PaP2M9qQwgkKSUAproezsyhQ4fw6tUrTJ48Ge3atUO7du3QqlUr1KpVC61atcKnn34KDw8PrFhhuuqBrVEoFEhISEB0dLRuFNeTJ08AQPf+ypUrAKhpNv/++6+gZIDWvkKh4JRTq9W4cOECLly4gH///Rfr1q3DiBEj0L17d9SsWRNbt27lbYvND+OpO2z07NkTOTk5GD58OLZu3YoNGzagTZs2Jom4SpUq4fPPP8e6deswaNAgrFy5EkeOHMHSpUsNVr+rV68ekpKS8Mcff+C///7DkSNHOD+DTCZDjx49cOrUKaxZswYDBgwwGcXx888/IzY2Fm3atMHq1atx6tQp7Nu3D4sXL0aHDh14t8vDhw9RsWJFvPvuu9i6dSvOnDmDvXv3YsqUKVi2bBnatWuHN954g7c9ISgUCvz6K7VEsLb4PxdvvfUWHjx4gH379mH48OGso5qE+qA9zw0aNGCV69y5M7p27YpZs2Zh3rx5+Oeff/DTTz9h/PjxaNSoEUaPpuab165dG6NGjcKSJUswa9YsHDp0CPPnz8cnn3yiK0gvhJiYGF0/1K5yuGXLFoN+qZWTy+UG7SiTybBo0SIcPnwYkyZNws6dO/Hnn39i6tSp6Ny5s8nqc0xtQ+9v9+7d0/mSkJCAvLw83ftbt27pZLt3747OnTtj6tSpWL58OU6ePInJkyfj8OHD+Pbbb5GcnKyzOW/ePOTl5aFXr144dOgQdu3ahWnTpiEwMFDXpsa4ublh06ZNGDFiBAYNGoRNmzYJbtcPP/wQJ06cwKxZs5CTk6O79ly4cEF3/bM1iYmJWLhwIRITE0vkePbyQ0z71tiyRFeIDl9ZPnKuUFOHxH/J2iLx73g4Wx9gqylVmvuAreyfO3eOVU6s+H+32bvYMGCDwbQxd5k7Hrz3AM8+eIb+tc2vzseFBBI0KNMAh0YeQvLMZIOpmOaQSWVo6NsQ25Zt49VeYk7fM0Z73sSinJ/pD/mpqakGnzPEOwQj649EiHcIygeUx8P3HuLSxEuC2pALMn1PACU9TcLerFixAu7u7gZFmbXTXeRyOUJDQ9G/f39s3769xG9OWj8OHz5skhjQrlA3duxYrF69Grt374a7u7tBMXW+9s1NOcrPz0fLltQytV5eXggLC0ODBg2wfPlyXfFvtVrNyxabH3xHd3Xo0AErV67E999/jwMHDiAyMhKTJk1CeHi4SRvNnz8f1atXx9KlSzFt2jTI5XJUr14d77//vk7mgw8+wN27d/H5558jMzMTGo0GKpWK04fevXtj9erVSE5OZizmXadOHVy7dg1ff/01vvjiCyQlJSEwMBDVq1cXVHC8WrVqmDFjBk6cOIE9e/YgOTkZbm5uqF69OhYsWIAZM2bYbAi9QqHA3r170bZtW9SoUcOs/OjRo/Hpp5+iqKiItSC5UPjGp0Qiwe7du/HVV19h1apV+OabbxAaGorRo0fj22+/NYitFStWICIiAqtXr8Yvv/yC+vXrY9u2bRgxYoRg/06ePGly/rWj5rT9EoAupozjatSoUZDJZFi4cCHWrVuH4OBgjBkzBt98843ZYxu3zdatWzFv3jwDGe01Ys6cOfj00091sjt37sTs2bMxZ84cpKWloVatWti0aROGDBmCwsJCnVytWrVw6tQpzJo1C4MGDYJcLkeTJk3www8/cNa8kkqlWLFiBfz8/DBq1Cjk5uay1iRj4u7duwCAzz//3GQfvV1tSWBgIAYNGmRSN6uksbUfYtq3xpYlukJ0+MrykdNNMyihovv2gMR/ydoi8e94kD5Qsras9cPc6mlC7NeuXZtVztbx7+3mjUqBlSzS7VatGw5HHwYAAxtMRb/NYa/4Nz6PWj++2v6VKPabRTbDiHojsPH2Rt02Pz8/zs9ZI8T8dyAhSDS2TOM5CVlZWQgICEBmZibjqIGCggKcOXMGQUFBcHNz4xy5QCh5evToAS8vL5NpOQRxuXnzJhQKBekDBJfEkeO/oKAAz549Q+XKlU3qXREIYhEVFYWXL18iMjIScXFx9naHQChRSPyXHugFmb/p8A0+b2P6Q09phv75rk2+hkZlG1lsy+sbLxQoqUWVvu/0PT5pZbpgFODY8Z+cm4xlV5ehbcW2aFuxrU2PRW/7Nf3WYEyDMVbZePDuA9QMrYmbCTfRcFlD3XbNXI2JrHabNbT4uwUuvrwIAKgVWgv3373PW3fj7Y0YuXOk7v2Xbb/E16e/BgoALARrHkULmb4ngLy8PHu7YHdUKhXy8vLMjphxJD8OHjwoOCEl5ue0xpYlukJ0+Mo6ynl3BByhLWztA4l/6/1wVvLy8nDjxg273w9t7YeY9q2xZYmuEB2+snzkhNaPK42Q+C9ZWyT+HQ/SB0rWlr0/55FRRyCXyhHhE4E2Hm1Y5Rw5/sN8wvBF2y9ESUjZK/6NR6Bp/RCbIC99IfvCgkJBn3NY3WH4Z/Q/ePDuAxTMLjBZ6dEcJCklgKysLHu7YHdUKhUyMjLs/uXM1n6IaV+lUiEtLQ2FhYVQKpWsf2L5IUSHr2xJnneVSsXZTrbwQcgxxWwLjUbDeVylUsl4g7dX/JvzlamWgDW+cumy+VBYWIiUlBReNdwcMf4dnczMTOzZsweZmaYrsDiTH2Lat8aWJbpCdPjK8pFz5C8lYkHiv2Rtkfh3PEgfKFlbluiOraMvXl0rtJZV9ttWbIu4D+Pw39D/cPTAUVY5Ev8UZX3L6l5H+Yu3GI3x9D2tH1rcZfxWahdCdk62oLiTSqToWKUjaobWtKgIP5m+xwPt9L2MjAzGulKuNH2PHi72nDdvaz/EtK/RaPDVV19h/nzujPGzZ89QqVIlq/0QosNXlo+cWNOX/t/encdVVa3/A/8c5kEEAUUEcyiHcMBUNOcxZ01Ns1sqgqLdm93KbLiVqA1a2Zx6bXBKzQxxwkq0RExLxXK2vFqQijgyCTJ4OOv3R79zvhzPAfY+Z7PP9Hm/XrzKfdZ69rP3fhboYu+1mzZtir/++qvKz/v06YM9e/ZYHN+cvn37Ij09vcrPmzRpgqysLADK1saqVavMrr1VWVpamuHteHq2qv+a9mVuXSNrcq2qb1ZWFpo1a1Zt38TERJO1pKTGt6Sdqzy+p38jaFVvdFFLbeehZHxrYlnSV04fqW2ltLPnxzeUwvpXNxbr3/44wxio/MjTgv4L8J9e/1E0vpKxLOlbVFaEpNNJ6BrRFVENohSJX1M71v/fjl85jkeTH0XH8I5YPXq1RbVTuT7PzDyDliEtceLKCbRf1t6wXZf495ujvzv3HTac2oDnuj+HdmHtLDuoSoauG2pYf6t1SGucfuK0VfWvma+R/PgeFzqXwdkXL5TCXs5BbeehZHyNRoMZM2Zg5MiR1bZr1Mj0zQcWfTOT0UdqWzWve0pKislrTisLCAhQfJ+ffPIJbt68WeXnlRcEV/JcjBw5EhkZGdW2adWqlck2W9V/TbmGhoZKjmVNHo0aNaoxF3PjSWp8S9u5Alv/Q0StPJSMb00si/7BJaOP1Lb2ct1tzV7OA+tfmT6sf/ns5VxwDFStjncdxN1X/S885ca3l+tuazWdh/Zh7XHyXydVy2N4y+EY3nJ4Le1E3b//clJKhtzcXItej+5MtFotCgoKEBgYaNHb5BwlDyXja7VaeHt7o0OHDrJjWZKHnD5S26p53du1s36mXy5zEz9VUfJchISEICQkRHY/W9V/586dFYtlTV8vL68qc6ncR6nc7OX7nj3Izc1FamoqBg8eXO2bBh09DyXjWxPLkr5y+khtK6WdUq8Et2esf3Vjsf7tj7ONgar+0c0xIK8d67923VmnauRRWFiI3Nxc1Y6Ta0oRERERERGR0xt6z1DD/3cK72TDTIiqp18r6s41pWp7fwDgofK9S1xTSgL9mlJVPQvpSmtKEVXFntfUIapt9lz/Sq4pRVQVV1lThMgc1r/jyLmZg3/v+DdaBrfEGwPesHU6ToH1r5w1x9YgbmscBjYfiB0T/17f6dTVU2j737aGNmJu7Uzf/Jn3J1p+3BI6ocOvM35Fh4YdrIrHNaVqCefvuNC52rEcaaFzV2EP54L1r0wf1r98zrDIrdrxXWWhZ1dgL+eB9a9MH9a/fPZyLqzJIzwgHEnjk2otvpKxOAbsixrnYVL0JIxoOQJBPkGGbXfuq7byaF6vOTKfykSZtgzN6zU37EMNfHxPhitXrtg6BZu7ffs2cnJyJL1u3ZHzUDK+NbEs6Sunj9S29nLd7YE9nAvWvzJ9WP/yXb58Ga+99houX77s1HkoGd+aWJb0ldNHalsp7VxhTRHWv7qxWP/2h2NA3ViOMgZY/8qq51uv2smg2syjcWBj+Jf7KxK/aVBTyW05KSWDqy9yDgDu7u4ICgqCu7u7U+ehZHxrYlnSV04fqW3t5brbA3s4F6x/Zfqw/uULDAzEgw8+KGkheUfOQ8n41sSypK+cPlLbSmmn/wu0M/8WnfWvbizWv/3hGFA3lqOMAdZ/7Qr2NV5s3FHq//tJ32N6p+mS2nJNKQm4phRRzex5TR2i2mbP9c81pUgNXFOEXBnrn1wZ67/2vZb+Grae2YqPh36Mbo272TodyWqaR9HjnVIylJSU2DoFm/roo4+g0WjQpk0bm9+eqdPpUFJSgm3btmHy5Mlo164dPD09Jc3Qd+zYEU899RQAYMqUKYbncTUaDby9vdGqVSskJiYiLy/PcJzz5s2DRqPB9evXDXHu7Ovv74+mTZti1KhRWLlyJcrKyoxylXvOLD3flfd36dIlzJs3D0ePHjVppz8mKblZegxS/Pbbb5g0aRKaN28OHx8fhIaGomPHjpg5cyYKCwsN7aq6VnPnzkVpaank/a1atcoozp1fb775JgDgvvvuQ0REBCoqKoz6Vz4XPXr0QGhoKMrLyyXtu2/fvtBoNGjevLnZNer27t1ryGPVqlVVxpF7PfTHnJWVJam9TqfD1atX8dxzz2HQoEGoX78+NBoN5s2bJ6m/3tWrVxEbG4vQ0FD4+fmhW7du+OGHHyT31x/n+fPn8fTTT6NPnz4ICgqq9vzodDp888036NatG/z8/BAaGoopU6bg6tWrJm3LysrwyiuvoGnTpvD29kbr1q3x8ccfm7Tr27evpHEYExODhQsXSj4+R1RSUoJTp07Z/OdhbeehZHxrYlnSV04fqW2ltNN/T3Pm33Wy/tWNxfq3PxwD6sZylDHA+q99c/rMweHph9GtcTeHqn+pOCklQ0FBga1TsKkVK1YAAE6fPo2ffvrJprlotVrk5eVh8+bNOHDgAKKioiTdnZCZmYkjR47goYceMmzz9fXFzz//jJ9//hlbtmxB165d8dprryE2NhZarbbaeJX7bt++Ha+++ir8/f2RkJCATp064eLFi4Zca4p1J0vPd+X9Xbp0CfPnzzc7KTVt2jTs3btXUm6WHkNNjhw5gk6dOuH06dNITEzEjh07sGzZMgwfPhypqanIzc01am/uWr366quIjY2VvM/hw4cbYlT+euCBBwAAY8aMAQBMnToVly5dQmpqqlF//bnQX5dJkybBy8vLZD9VCQgIQGZmJnbv3m3y2YoVKyQ9Jlxb16Ny/MzMTHz22WcoKyvD6NGjZccoKyvDgAEDsHv3bsybNw8bN25EWFgYhgwZgvT0dMl55OXl4cyZM1i3bh28vLwwbNiwavvs3r0bo0ePRv369bF161Z8+OGH+P777zFgwADDRLHev/71L7zzzjuYMWMGUlNTMWbMGDz11FNYsGCBUTshBCoqKmrtfDuS/Px8bNy4Efn5+U6dh5LxrYllSV85faS2ldLOFf5RwvpXNxbr3/5wDKgby1HGAOvfufKwyXEKqlFBQYEAIPLy8sx+XlJSInbu3CkyMjLE0aNH1U1OJRkZGQKAGD58uAAgpk2bJqmfVo9OsiwAADHkSURBVKsVpaWliuej0+lERUWF0Gq1hm1PPPGEqKmk3377bdGgQQNRUVEhhBAiNjZW+Pv7m7Tr1auXACAuXLgghBBi7ty5AoC4du2aoU1VfYUQIjU1VXh6eoquXbsactXpdJKPz9LzLYQw2p8+zsqVK2tsKzVmVY4ePSp7DEyePFn4+/uLwsLCKverV9O1unjxouT93qmoqEjUqVNH9OzZ07AtNzdX+Pj4iIceesgkp4qKCvH8888LAOL48eOS99OnTx/Rpk0bcf/994tHH33U6LPCwkLh5+cnEhISqr1mlXOQWlMrV64UAERmZqak9jqdTmi1WsM4uXbtmgAg5s6dK6m/EEIsWbJEABD79+835Hr79m0RFRUlunTpIjmPO8d5TTUdExMjoqKiRHl5uWHb/v37BQCxdOlSw7aTJ08KjUYj3njjDaPzmJCQIHx9fcWNGzcM2/TXrab6ByAmTJgg6djUVFJSIk6fPi1KSkqsjlVRUSFKS0sNtWErtZ2HkvGtiWVJXzl9pLaV0i4iIkIAEBEREZJzdTSsf3Vjsf7tD8eAurEcZQyw/p0rDyXj6+dRCgoKqm3HO6VkcHNz3dO1fPlyAMCbb76J7t27Y8OGDbh165ZRm6ysLGg0Grz99tt4/fXX0axZM3h7eyMtLc3wqNjx48cxfvx4BAYGIjg4GLNmzYJWq8WZM2cwZMgQBAQEoGnTpnj77berzUej0cDNzU32wsPJyckYM2ZMjdfy/vvvBwCcP39eVny9QYMGISEhAQcPHsSPP/4INzc3WYv/STnfAJCdnY3p06ejcePG8PLyQqNGjTB+/Hhcu3YN6enpiImJAQDExcUZHgvTP4I1b948uLm5GXIbPXo0mjRpYvYRpfvvvx+dO3c2HIMQAkuXLkWHDh3g6+uLevXqYfbs2bKfI79x4wbq1q2LOnXqmP1cyjnTX6u//vpL1r4r27BhA4qKijBt2jTDtnr16mHMmDFISUnBjRs3jHISQmDt2rWIiYlBu3btZO8vPj4emzZtMvoNxFdffQUAeOSRR8z22bdvHwYMGICAgAD4+/ujZ8+e+Pbbb03aHThwAD169ICPjw8aNWqE//znP7LfGqfRaODu7m7V97zNmzejVatW6N69u6HGPDw8MHHiRBw6dAjZ2dmS8pAzzrOzs5GRkYFJkybB09PTsL179+5o2bIlNm/ebNi2ZcsWCCEQHx9vVGdxcXEoKSnBjh07zOZT+fj8/Pwwbdo0kzuo1qxZg3vvvRd+fn6Ijo7G9u3bTeJU9SX1EUtbcXNzg7e3t81/HtZ2HkrGtyaWJX3l9JHa1l6uu63Zy3lg/SvTh/Uvn72cC44BZfpwDMhjL+fBkepf8j5V25MTyMvLs3UKNlFSUoL169cjJiYGrVu3xoQJE3Dz5k0kJSWZbf/RRx9h9+7deOedd/Ddd9+hdevWhs8efvhhREdHIzk5GQkJCXj//ffxzDPPYPTo0Rg+fDg2b96M/v3744UXXsCmTZuqzMmSx5cuXryIQ4cOGT26V5WzZ88C+HtiwlKjRo0CAOzZs0dWrlLPd3Z2NmJiYrB582bMmjUL3333HT744AMEBAQgKysL7du3x8qVKwEAr7zyiuExtcoTLwAMucXHx+P8+fMmj5X9/vvvOHToECZMmGA4hhkzZuDpp5/GwIEDsWXLFixduhR//PEHpk6dajSBU5Nu3bohJycHjz32GNLT0y16dvncuXMAgPr168vuq7d8+XLUrVsX48ePN9o+depUlJeXY+3atYZtWq0WycnJuHTpEqZOnWrR/h555BG4u7tj/fr1RjmMGzfO7ON76enp6N+/PwoKCrB8+XKsXbsWPj4+GDlyJDZs2GBod/r0aQwYMAD5+flYtWoVli1bhiNHjuD111+XlZ8SjweePHkS7du3N4nVvn17AMCpU6cUz+PkyZMAgObNm5v0ad++veFzfdv69evD29vbqK0+v8ptxR2P773//vsYP348XnrpJXz++efw8PAwtP3xxx+xePFivPrqq0hOTkZwcDDGjBmDP//809DmzkdHd+/ejYiICDRs2BDBwcZvWLE3eXl5SE5OtvnPw9rOQ8n41sSypK+cPlLbSmnnCq8EZ/2rG4v1b384BtSN5ShjgPXvXHnY4jg9am5CesKC52Q7f9oZl4su10I28jWs0xCHpx+W3W/jxo0oKCgw/AN81KhRePnll7F8+XKza/n4+PggNTXV6E4FvenTp2PWrFkAgIEDB2Lnzp1YvHgxNm3aZFjLp2/fvti+fTvWrVuHsWPHVpnXnQtQ1yQ5ORlBQUHo16+fyWf6f2zm5+fjyy+/xNatW3HfffehRYsWsvZRWZMmTQAAly5dkpWr1POdmJiI69ev49ixY7j33nsN28eOHYv8/HzUrVsXbdu2BQDcfffdhjuK7qTPbdiwYQgLC8PKlSsxcOBAw+crV66El5eX4focOHAAn332Gd59913DtQSAkJAQjBo1CmvWrEH//v0lHevs2bNx+PBhrF+/HuvXr4e7uzvat2+PYcOG4amnnjI70XTntdqyZQtiYmIsvla///47fvrpJ8yYMQN+fn5Gn/Xv3x/NmjXDihUrDIvjA3/fCePn54d//OMfFu0zICAA48aNw4oVK/DPf/4Tp0+fxsGDB/HWW2+Zbf/iiy+iXr162LNnD+rUqQOtVosePXpgwIABmD17Nh5++GFoNBq8+uqrEEJg9+7dCAsLA/D3Glr6OpBD7vi6040bNwwTLJVj6bdJnbyUk4c+prmJveDgYKN96vO7M76/vz+8vLzM5qfT6fDkk0/i008/xerVq/HYY4+ZtCkrK8P333+PgIAAAH+/WKFRo0b4+uuv8eKLLwKA0VisqKjAQw89hIKCAqSnp0taU8yWdDodiouLbf4Xz9rOQ8n41sSypK+cPlLb2st1tzV7OQ+sf2X6sP7ls5dzwTGgTB+OAXns5Tw4Uv1LxUkpGSz5DfblosvIvlnzYyr2bPny5fD19cUjjzwCDw8PNG3aFOPHj8fKlStx9uxZk8mAUaNGmZ2QAoARI0YY/fnee+/FsWPHMHToUMM2Dw8P3HPPPdU+juXh4YHQ0FBZx5GcnIwHH3zQ6K4GACguLjbKV6PRYOjQofj0009N2sqhn8R0c3OTlavU8/3dd9+hX79+RhNSgPxzU7ntxIkTsWTJEhQUFCAwMBAVFRVYs2YNHnzwQbRs2RIAsH37dmg0GkycONHoDpOQkBC0bNkShw9Ln/j09vbG5s2b8dtvvyE1NRWHDx9Geno63njjDSxbtgz79+9Hq1atDO2ru1aW0j8qeecdZPr4cXFxSExMxC+//IJOnTqhoKAAO3fuxIQJE6yaQIiPj0efPn1w4sQJrFq1CnfffTd69+6NX375xahdcXExDh48iH/+85+Gxxw9PDwQFhaGyZMn44UXXsCZM2fQunVrpKWlYcCAAYYJKQBwd3fHhAkTMH/+fMm5WTK+zNE/smculpRHMy3No169embH7p371Gg0Vcav3Faj0eD27dsYN24c9u3bh507d6JPnz5m+8XExBgmpAAgLCwMDRo0qPL72cyZM/HNN98gJSUFHTt2rPHYbC0kJASTJ0+2dRq1noeS8a2JZUlfOX2ktpXSTn+bv60fa6hNrH91Y7H+7Q/HgLqxHGUMsP6dKw9bHKdDV86vv/6KBx54AEFBQQgJCcH06dNRVFRk1Ob8+fMYOXIk/P39ERoain//+9+SX9+uhIZ1GiIiIMIuvhrWaSg7/3PnzmHv3r0YPnw4hBDIz89Hfn4+xo0bB+D/3hBXWXh4eJXx7pzY8/Lygp+fH3x8fEy2l5aWys63KpcvX8b+/fvNPrrn6+uLjIwMZGRk4Pjx48jPz8c333yDiIgIq/ap/0doo0aNJPeRc76vXbuGyMhIq3K8U3x8PEpLSw3rG6WmpiInJwdxcXGGNleuXIEQAmFhYfD09DR8de7cGSdOnLDoTQ333nsvnn76aaxduxbnz5/He++9hxs3bmDOnDlG7ZS+Vrdv38YXX3yB6OhodO7c2WybuLg4uLm5GR6FXLduHcrLyy1+dE+vd+/eaNGiBT755BOsWbPGZG0jvby8PAghzI4rfW3p7+q5ceMGGjY0HefmttW2kJAQs3cb6d+oWBuPqYWEhAAwfxdWbm6u0T6ryq+4uBjl5eUm+V29ehWpqano1q0bunfvXmUOgYGBJtu8vb3NPpr6+uuvY9myZfjkk08wZMiQqg+MiIiIiMhJOeyk1KVLlzBw4EDcc889OHjwIHbs2IFTp05hypQphjYVFRUYPnw4iouLsW/fPnz11VdITk7Gs88+a9E+L1+W/xje4emHcXHWRbv4suTRvRUrVkAIgY0bN6JevXqGr+HDhwMAVq9ebfL4i5wFvS1VXl6OS5cuSZ5g3Lx5M/z9/fHAAw+YfObm5obOnTujc+fOaNeuHerWrSs7vjnbtm0DAPTo0UNyLDnnu379+mYXFpebe+W2UVFR6NKli2ECZuXKlWjUqBH69u1raBcaGgqNRoN9+/YZJogyMjKwbt06rF69Gu+//76k/VZFo9HgmWeeQVBQkNG6PoD5a2WN7du34+rVq2bvktKLjIzEoEGD8OWXX6KsrAwrVqxA06ZNq3wcUo64uDj897//RW5urtlHYYG/7/pxc3NDTk6OYZv+GusX4tff7RMSEmL2+5Tc711K1H+7du1w4sQJk1gnTpwAAEmPFMrNQx9z//79Jn1OnDhhtM927drh2rVrOHr0qFFbc/kJIdCoUSNs2rQJe/bswdixY62eNF+1ahXmzJmDefPmIT4+3qpYasrJycHrr79uVI/OmIeS8a2JZUlfOX2ktpXSzhXWFGH9qxuL9W9/OAbUjeUoY4D171x52OI4HXZSavv27fD09MSSJUvQqlUrxMTEYMmSJUhOTjYsfLxz506cPn0aa9euxX333YeBAwfi3XffxWeffYbCwkLZ+6z8SIYrqKiowOrVq3H33XcjLS0NaWlp+P777/Htt9/i+++/x7PPPoucnBx89913qufm7u6OwMBAyW/lSk5OxogRI+Dt7V0r8e+0a9cufP755+jevTt69+4tKZbc8z106FCkpaXhzJkzVeauP97qFhC/M7e4uDgcPHgQ+/btQ0pKCmJjY+Hl5WVoN2LECAghkJ2dbZgg6ty5M9q0aYOoqChZaztV9c3u0qVLKCwslHWXmSWWL18OHx8fs2sDVTZ16lTk5eUhMTERx44dQ2xsrFWPdurFxsZi5MiReO6556q828vf3x9du3bFpk2bDNfR3d0dAQEB+OqrrxAZGWl4tLJfv3744YcfcOXKFUP/iooKo8XQpbC2/gFgzJgx+P3333H48GFDLK1Wi7Vr16Jr166Srq3cPCIiIhATE4MtW7YYbT9w4ADOnDljtEbdgw8+CI1Gg5SUFKP4q1atgq+vr8mdS25ubhgyZAhSU1Oxd+9ejBgxAsXFxZLyutOOHTuQkJCA+Ph4zJ0716IYtlK3bl0MGjTI5mtf1XYeSsa3JpYlfeX0kdpWSjv9L6TU+MWUrbD+1Y3F+rc/HAPqxnKUMcD6d648bHKcwkF99NFHIjIy0mjb77//LgCIlStXCiGEmDNnjmjfvr1Rm9zcXAFA7N69u8rYpaWloqCgwPB14cIFAUAUFBSYbV9SUiJ27twpMjIyxNGjR607MDuSkpIiAIi33nrL7OfXrl0T3t7eYvTo0UIIITIzMwUAsWjRIpO2c+fOFQDEtWvXjLbHxsYKf39/k/Z9+vQRbdq0qTHHrKwskZSUJJKSksSQIUMEAMOfMzIyhBBCXL9+XXh4eIiNGzea9K9q/1Lyj42NFb6+vuLnn38WP//8s9izZ4/44osvxD/+8Q/h7u4u2rZtKy5evFhjbD255/vixYsiPDxcNGjQQHzwwQfihx9+EMnJySIhIUH89ttvQgghiouLha+vr+jRo4dIS0sTGRkZIjs72+iY7pSfny98fX1FZGSkACDOnDlj0mb69OnCz89PPPfccyIlJUXs3r1bLFiwQDz00EPipZdeknzMI0aMED179hTvv/++2LVrl9i9e7dYunSpaNGihfDw8BA7d+40tJV6raTKzs4W7u7u4tFHH62xbVlZmQgNDRUajUa4u7vLuq6VSanrjIwMo+9jQgixZ88e4enpKbp27SqSkpLE1q1bxeDBg4VGoxFfffWVod2JEyeEr6+viIqKEl999ZXYtm2bGDx4sGjcuLEAIDIzM2Xl++2334qkpCSxYsUKAUCMHz/eML6Ki4sN7eLj44W7u7vIysoybCstLRVt2rQRjRs3FuvWrRO7du0SY8aMER4eHmLPnj2y8hBCGPb71ltvCQDiiSeeMGyrLC0tTXh4eIgxY8aIXbt2iXXr1onGjRuLtm3bitLSUqO206ZNE97e3mLRokViz5494qWXXhIajUa88cYbRu3uvG4ZGRkiJCREdO/eXeTn5wshhDh69KgAICZMmGCSe5MmTURsbKwQQog///xT1KlTR7Rs2VL8+OOPhu8f+q87c1RCSUmJOH36tCgpKVE8NpFeRESEACAiIiJsnQqR6lj/5MpY/1SVgoKCaudR9Bx2ofP+/ftj1qxZWLRoEZ566ikUFxfjpZdeAvB/d19cvnzZaMFf4O9HYby8vKp9nGXhwoVmFwXesGGDYaHhyjw9PQ0ziTqdTvJbpezdf//7X3h5eeHBBx80OiadTgc3NzdoNBoMGzYMKSkp+O233wyPsxQXF5ucg1u3bgH4e12XyrPoZWVlAEzXgLl9+zYqKiqqPZc6nQ4pKSl48sknjbaPHz8eAPDII49g8eLFWLt2Lby8vNClSxeTeFXtv/JxVpV/WVkZSkpK0K1bNwB/r3cUEhKCNm3a4P3338e4ceMMb/GqHKsqcs93gwYNkJqairfeegsLFixAXl4eQkJC0LVrV6M6/PDDD7Fo0SIMGjQIt2/fxnPPPYcXXnjBcEzXrl0zyW3YsGFITk5G165dDWvvVD6GBQsWoG3btli9ejWWLl0KnU6HkJAQREdHIyoqSvIYiI2NxZYtW7Bs2TLk5OTg1q1bCAkJQUxMDD7++GN07NjREKu6a2WJpUuXoqKiAuPHj5cUc9y4cVi2bBn69etX5dvZaiKlrvVrchUVFRnatW3bFps3b8Zbb72FKVOmQKfTISoqCmvXrsXAgQMN7cLDw5GcnIzExETExsYiMDAQDz/8MAYPHoxZs2YhLy9P8h2fOp0OM2bMwIULFwzbkpKSkJSUBODvNf3uuusuAH+Pj4qKCuTm5hp9j0xKSsL8+fMxc+ZMlJSUoG3bttiwYQPatm0r+fzp604/rvWWLFmCJUuWAACuX79u2N6uXTt8+eWXePvttzFy5Ej4+vpi0KBBmDdvHoqKiozWHXzttdcQFBSEDz/8EFevXkXjxo2xYMECJCQkGOV353Vr1qwZtm7dirFjx6J3795ISkoy3LIuhDA5Np1Oh7KyMty4cQPHjx9HUVER/ve//6FXr14mx1v5vCqlvLwcxcXF2L59O27fvm1VLJ1Oh5KSEvj6+tp0QdPazkPJ+NbEsqSvnD5S20ppp/+ZcuvWLaxfv15Sro6G9a9uLNa//eEYUDeWo4wB1r9z5aFkfH1t1EidOTLp9HdvVPelvwNm3bp1IiwsTLi7uwsvLy8xe/ZsERYWZrjTJCEhQQwaNMhkH56enmL9+vVV5lDVnVLm7hgRwnnvlDKnrKxMZGdni7KyMofJY+jQoWLs2LG1Fr82Y1nSV04fqW2ltDt69CjHgJPkwPqX386e61/JO6UuXbok5s2bJy5duqRAZvabh5LxrYllSV85faS2ldIuPDxcABDh4eGSc3U0rH91Y7H+7Q/HgLqxHGUMsP6dKw8l40u9U0ojxP9/b72duH79utFvvc1p2rSp0dvarly5An9/f2g0GtStWxdfffUVxo8fj8TERGzduhXHjh0ztM3Ly0NwcDB2796Nfv36ScqpsLAQgYGByM3NRb169Uw+Ly0txY8//oh69erB09MT0dHREo/W8QghjO7ccdY8lIxvTSxL+srpI7WtlHbHjh3D7du3OQacIAfWv/x29lz/paWlyMzMRLNmzUzedCpXRUUFbt26BT8/P6vWHLNWbeehZHxrYlnSV04fqW2ltIuMjER2djYiIiLMvoTDGbD+1Y3F+rc/HAPqxnKUMcD6d648lIyvn0cpKCiodo0qu3t8LzQ01PAmKan0j+itWLECPj4+hjesdevWDW+88QZycnIMr1PfuXMnvL290alTJ9m52bL47IVGo7GL81DbeSgZX6PRQKPRmLyl8E7mFs62JA85faS2lZuHEKLG43V3d1d0QkWtfZo7FxUVFahufl/perUmnk6nq/HtKB4eHorWf1WxpOai1P4sbWsv3/fsgX6RfVur7TyUjG9NLEv6yukjta29XHdbs5fzwPpXpg/rXz57ORccA8r04RiQx17OgyPVv1QO+/Y9AFi8eDF+/fVX/O9//8OSJUswc+ZMLFy4EEFBQQCAQYMGISoqCpMmTcKRI0fwww8/YPbs2UhISLBoNXn9Wi+uTKvVIj8/H1qt1qnzUDK+VqvFSy+9BE9Pz2q/srKyFMlDTh+pbeXmsXr16hqPNz09XVIsqdLT02vc5+rVq63ej7lzcffdd1e73wEDBli935pykOrVV1+t8TydO3dO0fqvKlZ8fHyNuThi/Tuz/Px8bNu2zeY/D2s7DyXjWxPLkr5y+khtK6WdfmLezm7AVxTrX91YrH/7wzGgbixHGQOsf+fKwxbHaXd3Sslx6NAhzJ07F0VFRWjdujU++eQTTJo0yfC5u7s7vvnmG/zrX/9Cjx494Ovri0cffRTvvPOORfur6S4MVyCEwO3bt23+Tae281AyvhACjz32GEaPHl3tXR+NGjVSJA85faS2lZvHyJEjkZGRUW2bVq1aSYolVadOnWrcZ7Nmzazej7lzkZKSYliI3Rylf9tgTX1Onz4dI0aMqLZNeHg4bt26pVj9V5XrvHnzMHPmzCr7arVah6x/Z6bVanHt2jWbT9DVdh5KxrcmliV95fSR2lZKO1f4RwnrX91YrH/7wzGgbixHGQOsf+fKwxbHaXdrStmjmp6FdKU1pYiqYs9r6hDVNnuufyXXlCKqiqusKUJkDuufXBnrn6oidU0ph358j4iIiIiIiIiIHBMnpWS4cuVKlZ+5yg1nt2/fRk5ODm7fvu3UeSgZ35pYlvSV00dqW3u57vbAHs4F61+ZPq5S/0r+fLp8+TLeeustXL58WbGY9piHkvGtiWVJXzl9pLaV0k7/0oKaXl7gyFj/6sZi/dsfjgF1YznKGGD9O1cetjhOTkrJ4O/vb3a7h4eHy6w35ebmhoCAALi52bZ0ajsPJeNbE8uSvnL6SG1rL9fdHtjDuWD9K9PHVepfvyaA3DcZmlOnTh307NkTderUsTqWPeehZHxrYlnSV04fqW2ltNO/2VTJt6raG9a/urFY//aHY0DdWI4yBlj/zpWHLY6Ta0pJUNOzkEIIfPnll2jZsiW8vLzsbj0RIjXY85o6RLXNnus/OzsbxcXFaNGihdP/hZFsh2uKkCtj/ZMrY/1TVaSuKeXQb99TW1Vv19JoNNi0aRMef/xxhIaGoqSkxGn/4q/T6aDVauHh4WHTuwZqOw8l41sTy5K+cvpIbSulXeU3b5SWlkrK1RHZwxhg/SvTx9nrXwiB4uJiFBYWIjw8XJGfS2VlZcjJyUF4eDi8vb0VyNI+81AyvjWxLOkrp4/UtvZy3W3NXs4D61+ZPqx/+ezlXHAMKNOHY0AeezkPjlT/UnFSSoa8vDzUr1/f7GcHDhxAUFAQRo0a5dRvN6qoqMDNmzcREBAAd3d3p81DyfjWxLKkr5w+UttKaXft2jVUVFTA3d3dqX9g2cMYYP0r08cV6l+j0SAoKAiBgYGKxMvNzcXq1asxffp0hIeHKxLTHvNQMr41sSzpK6eP1LZS2rnCmiKsf3Vjsf7tD8eAurEcZQyw/p0rD1scJx/fk0B/29mNGzcQHBxsto3+tsV77rkHJ06cUDlD9Wi1WhQVFaFOnTqKrE9ir3koGd+aWJb0ldNHalsp7fr06YMrV64gLCwM6enpknJ1RPYwBlj/yvRxhfr39PRUdOJSq9WisLAQdevWtfnPgNrMQ8n41sSypK+cPlLbSmnnCo9vsP7VjcX6tz8cA+rGcpQxwPp3rjyUjC/18T1OSkkg5WS6ymAkqgrHALky1j+5Oo4BcmWsf3JlrH+qitRJKcd8lZCNFBQUVPlZ5fVEnFlBQQG+++67as+FM+ShZHxrYlnSV04fqW2ltOMYcJ4cWP/y27H+nSsPjgH57VxhDLD+1Y3F+rc/HAPqxnKUMcD6d648bHGcnJSS4fbt21V+5iqDsby8HFlZWSgvL3fqPJSMb00sS/rK6SO1rZR2HAPOkwPrX3471r9z5cExIL+dK4wB1r+6sVj/9odjQN1YjjIGWP/OlYctjpOP70nAx/eIasYxQK6M9U+ujmOAXBnrn1wZ65+qwsf3iIiIiIiIiIjIbtlu2XgHor+Z7I8//sDdd99tto1WqzX8t7CwULXc1Hb16lV8/fXXePjhh9GgQQOnzUPJ+NbEsqSvnD5S20ppxzHgPDmw/uW3Y/07Vx4cA/LbucIYYP2rG4v1b384BtSN5ShjgPXvXHkoGV9fDzU9nMfH9yS4ePEiGjdubOs0iIiIiIiIiIgcxoULFxAZGVnl55yUkkCn06Fly5b45ZdfoNFozLYpLCxE48aNceHChWqfl3QGMTExyMjIsHUatZ6HkvGtiWVJXzl9pLatqR3HgHPlwPqX147173x5cAzIa+cqY4D1r24s1r/94RhQN5YjjAHWv/PloVR8IQRu3ryJRo0awc2t6pWj+PieBG5ubvDy8kJgYGCNbevWrev0g9Hd3d0ujrG281AyvjWxLOkrp4/UtlLbcQw4Rw6sf8vasf6dJw+OAcvaOfsYYP2rG4v1b384BtSN5UhjgPXvPHkoGV/KHAoXOpfoiSeesHUKdsNezkVt56FkfGtiWdJXTh+pbe3lutsDezgXrH9l+rD+5bOXc8ExoEwfjgF57OU8sP6V6cP6l89ezgXHgDJ9OAbksZfz4Ej1LwUf31OI1NcdEjkrjgFyZax/cnUcA+TKWP/kylj/ZC3eKaUQb29vzJ07F97e3rZOhcgmOAbIlbH+ydVxDJArY/2TK2P9k7V4pxQREREREREREamOd0oREREREREREZHqOClFRERERERERESq46QUERERERERERGpjpNSRERERERERESkOk5KqWD79u1o1aoVWrRogc8//9zW6RCpbsyYMahXrx7GjRtn61SIVHfhwgX07dsXUVFRaN++PZKSkmydEpFqbt68iZiYGHTo0AHt2rXDZ599ZuuUiFR369YtNGnSBLNnz7Z1KkSq8/DwQIcOHdChQwdMmzbN1umQHeLb92qZVqtFVFQU0tLSULduXXTs2BEHDx5EcHCwrVMjUk1aWhqKioqwevVqbNy40dbpEKkqJycHV65cQYcOHXD16lV07NgRZ86cgb+/v61TI6p1FRUVKCsrg5+fH27duoW2bdsiIyMDISEhtk6NSDUvv/wyzp49i7vuugvvvPOOrdMhUlVoaCiuX79u6zTIjvFOqVp26NAhtGnTBhEREQgICMCwYcOQmppq67SIVNWvXz8EBATYOg0imwgPD0eHDh0AAA0aNEBwcDByc3NtmxSRStzd3eHn5wcAKC0tRUVFBfj7UHIlZ8+exe+//45hw4bZOhUiIrvESaka7N27FyNHjkSjRo2g0WiwZcsWkzZLly5Fs2bN4OPjg06dOuHHH380fHbp0iVEREQY/hwZGYns7Gw1UidShLVjgMjRKTkGDh8+DJ1Oh8aNG9dy1kTKUKL+8/PzER0djcjISDz//PMIDQ1VKXsi6yhR/7Nnz8bChQtVyphIWUqMgcLCQnTq1Ak9e/ZEenq6SpmTI+GkVA2Ki4sRHR2NxYsXm/18w4YNePrpp/Hyyy/jyJEj6NWrF4YOHYrz588DgNnfBmo0mlrNmUhJ1o4BIken1Bi4ceMGJk+ejE8//VSNtIkUoUT9BwUF4dixY8jMzMSXX36JK1euqJU+kVWsrf+tW7eiZcuWaNmypZppEylGiZ8BWVlZ+OWXX7Bs2TJMnjwZhYWFaqVPjkKQZADE5s2bjbZ16dJFPP7440bbWrduLV588UUhhBD79+8Xo0ePNnz273//W6xbt67WcyWqDZaMAb20tDTx0EMP1XaKRLXK0jFQWloqevXqJb744gs10iSqFdb8DNB7/PHHxddff11bKRLVGkvq/8UXXxSRkZGiSZMmIiQkRNStW1fMnz9frZSJFKXEz4AhQ4aIjIyM2kqRHBTvlLJCeXk5fvnlFwwaNMho+6BBg/DTTz8BALp06YKTJ08iOzsbN2/exLfffovBgwfbIl0ixUkZA0TOTMoYEEJgypQp6N+/PyZNmmSLNIlqhZT6v3LliuG34oWFhdi7dy9atWqleq5ESpNS/wsXLsSFCxeQlZWFd955BwkJCUhMTLRFukSKkzIG8vLyUFZWBgC4ePEiTp8+jebNm6ueK9k3D1sn4MiuX7+OiooKhIWFGW0PCwvD5cuXAfz9Csx3330X/fr1g06nw/PPP883zpDTkDIGAGDw4MH49ddfUVxcjMjISGzevBkxMTFqp0ukOCljYP/+/diwYQPat29vWIthzZo1aNeundrpEilKSv1fvHgRU6dOhRACQgjMnDkT7du3t0W6RIqS+ncgImclZQz89ttvmDFjBtzc3KDRaPDhhx/yLfRkgpNSCrhzjSghhNG2UaNGYdSoUWqnRaSamsYA3zhJzq66MdCzZ0/odDpbpEWkiurqv1OnTjh69KgNsiJSR01/B9KbMmWKShkRqau6MdC9e3ecOHHCFmmRA+Hje1YIDQ2Fu7u7yW9Drl69ajJjTOSMOAbI1XEMkCtj/ZMrY/2Tq+MYIKVwUsoKXl5e6NSpE3bt2mW0fdeuXejevbuNsiJSD8cAuTqOAXJlrH9yZax/cnUcA6QUPr5Xg6KiIpw7d87w58zMTBw9ehTBwcG46667MGvWLEyaNAmdO3dGt27d8Omnn+L8+fN4/PHHbZg1kXI4BsjVcQyQK2P9kytj/ZOr4xggVdjsvX8OIi0tTQAw+YqNjTW0WbJkiWjSpInw8vISHTt2FOnp6bZLmEhhHAPk6jgGyJWx/smVsf7J1XEMkBo0QgihxuQXERERERERERGRHteUIiIiIiIiIiIi1XFSioiIiIiIiIiIVMdJKSIiIiIiIiIiUh0npYiIiIiIiIiISHWclCIiIiIiIiIiItVxUoqIiIiIiIiIiFTHSSkiIiIiIiIiIlIdJ6WIiIiIiIiIiEh1nJQiIiIiIiIiIiLVcVKKiIiIiBQxZcoUaDQaw9eyZctU3f+5c+eM9t+0aVNV909ERETyeNg6ASIiIqLqZGVloVmzZtW2EUKolA1J8dRTTyEoKAidO3c22t60aVNcvnwZpaWlVfb18fFBw4YNkZWVJXu/wcHBmDt3LgDggw8+kN2fiIiI1MVJKSIiInIId999NyZOnGjrNEiCp59+2iZ3KQUHB2PevHkAgFWrVqm+fyIiIpKHk1JERETkEO655x7DhAMREREROT6uKUVEREROYd68edBoNNizZw9Wr16NTp06wc/PD3379jW0uXnzJubOnYs2bdrA19cXQUFBGDJkCPbt22c25qlTpzBixAgEBAQgMDAQw4YNw8mTJw1rJ1V+xKzy/u+0atUqaDQas3fvHD9+HI888gjCw8Ph5eWFJk2a4Mknn8SNGzeM2mVlZUGj0WDKlCn4888/MW7cONSrVw/+/v4YOHAgjh07ZvYYrl69itmzZ6NVq1bw8fFBcHAw7r//frz77rsAgD///BNubm4YPny42f55eXnw8fFBdHS02c9rm/64q/uy5FE/IiIisj3eKUVEREROZdGiRUhLS8OoUaPwwAMPwMPj77/u5Obmonfv3jh16hR69eqFwYMHo6CgAFu3bkW/fv2QlJSE0aNHG+KcPHkSPXr0QFFREcaOHYsWLVrg0KFD6NGjh2ITNNu2bcPDDz8Md3d3jBo1Co0bN8bp06exePFipKam4uDBg6hXr55Rn6ysLHTt2hVRUVGIj4/HH3/8YTiG3377DWFhYYa2Z8+eRb9+/ZCdnY2ePXti9OjRKC4uxsmTJ/HGG2/g2WefRfPmzTFw4EDs2LEDFy9eRGRkpNH+1qxZg7KyMiQkJChyzHIFBQUZ1omqrKSkBO+99x50Oh18fHxskBkRERFZi5NSRERE5BDOnTtn9vG9IUOG4P777zf8OT09HQcPHkS7du2M2j355JM4deoUVqxYgbi4OMP2BQsWICYmBtOnT8eQIUMMExwzZ85EYWEh1q5di8cee8zQ/qWXXsLChQutPp4bN25g0qRJqF+/Pvbv34+77rrL8Nn69evx6KOPIjExER9//LFRv/T0dLz55pt44YUXDNvmzJmD119/HStXrsSLL75o2D5x4kRkZ2fj008/NZlUunjxouH/p0+fjl27dmHFihVITEw0ard8+XL4+Pgotp6XVqut9jFMrVZr9OegoCCT9kIIPPLII9BqtVi0aBEaNmyoSG5ERESkMkFERERkxzIzMwWAKr/ef/99IYQQc+fOFQDEM888YxLj2rVrwt3dXQwYMMDsPj766CMBQKSkpAghhPjrr78EANG+fXuTtjdv3hRBQUECgMjMzDRs1+8/LS3NpM/KlSsFALFy5UrDtvfee08AEGvWrDGbU8eOHUVoaKjJeWjWrJmoqKgwe47Gjh1r2Hbo0CEBQPTu3dts/MrKy8tFWFiYaNq0qdDpdCYxJk6cWGMMIYSIjY01OS+VNWnSpNprqf9q0qRJtfuZM2eOACDi4uKqbNOkSZMa4xAREZFt8U4pIiIicgiDBw/Gjh07amzXpUsXk20ZGRmoqKhAaWmp2bt0zp49CwD4/fffMWLECMP6TD179jRpW6dOHXTo0MHs2lFyHDhwwPDfc+fOmXxeWlqK69ev4/r16wgNDTVsj46Ohpub8bKg+kfu8vPzDdsOHToEABg0aFCNuXh6eiI+Ph4LFy7Erl27DH2WL18OAJg2bZqMI6uet7c3SktLq/y8pkfx1q9fj9deew29evXCsmXLFMuLiIiI1MdJKSIiInIqlddU0svNzQUA7N+/H/v376+yb3FxMQCgoKAAANCgQQPJ+5BLn9OSJUuqbVdcXGw0KRUYGGjSRr9uVkVFhWGbfoIqIiJCUj4JCQl488038fnnn2PQoEG4desW1q9fj5YtW6JPnz6SYtS2AwcOID4+Hs2bN8emTZvg5eVl65SIiIjICnz7HhERETkVjUZjsq1u3boAgGeffRZCiCq/9Atq6yd+rl69anYfV65cMdmmv3vpzjWRgP+b5DKX04kTJ6rNqUmTJlIO20RQUBAAIDs7W1L7Zs2a4YEHHsDWrVtx/fp1fP311ygsLFT0LilrnD9/HqNHj4aXlxdSUlKMJuqIiIjIMXFSioiIiJxeTEwMNBoNfv75Z0nt9W/X27dvn8lnRUVFOHr0qMl2/VvyzE0CHTlyxGRb165dAUByTnLpH2PcuXOn5D7Tp09HeXk5vvjiCyxfvhyenp6IjY2tlfzkKCoqwsiRI3H9+nVs2LABUVFRtk6JiIiIFMBJKSIiInJ6DRs2xMMPP4yffvoJixYtghDCpM3Bgwdx69YtAMBdd92F3r174/jx41i3bp1RuwULFhit3aTXuXNnAMAXX3wBnU5n2P7zzz+bxACAuLg4BAQE4OWXX8apU6dMPr9165Zh3SlLxMTEoEuXLti7dy8+++wzk8/NTZ49+OCDaNiwId59913s27cPo0aNqvIRRrXodDo8+uijOH78ON577z0MGTLEpvkQERGRcrimFBEREbmEpUuX4syZM3j++eexZs0adOvWDYGBgbhw4QJ++eUXnD17Fjk5OfDz8wPw91pPPXr0wOTJk7Flyxa0aNECGRkZOHToEHr16oUff/zRKP7999+Pbt26Yffu3ejWrRt69+6Nv/76C9u2bcPIkSOxefNmo/b169fH+vXrMX78eERHR2PIkCFo3bo1SktL8ddffyE9PR3du3eXtLh7VdauXYu+ffti+vTphmMuLS3FqVOncOTIEdy4ccOovYeHB+Lj47FgwQIAyi5wbqmNGzciJSUF4eHhyM3NNbtQ/dNPP214XJGIiIgcByeliIiIyCUEBwfjp59+wuLFi7FhwwasW7cOOp0ODRs2RHR0NObMmWO0TlHbtm2xf/9+vPDCC9ixYwdSU1PRs2dP7N+/H++8847JpJRGo8G2bdswa9YsfPPNNzhx4gSio6Oxbds2XLp0yWRSCgCGDx+OI0eOYNGiRfj++++xa9cu+Pv7IzIyEnFxcZg4caJVx9yiRQv8+uuvWLhwIVJSUvDBBx+gTp06aNGiBV555RWzfWJjY7FgwQLcddddkt7cV9v0d6/l5ORg/vz5ZttMmTKFk1JEREQOSCPM3b9ORERERFWaMmUKVq9ejczMTDRt2tTW6Sjq66+/xoQJEzB//nwkJibK6mtP50W//6ysLJvmQURERFXjmlJEREREBAAQQuC9996Dh4cHpk6danGcZs2aQaPRYNmyZQpmV7Nz585Bo9FAo9Hgr7/+UnXfREREJB8f3yMiIiJycSdOnMD27dvx008/4eDBg3j88ccREREhO87o0aON7pDSL/6uluDgYMydO9fwZz7SR0REZN/4+B4RERGRTPb0mJoSVq1ahbi4OAQFBWHUqFFYsmQJ6tSpY+u0iIiIyMlxUoqIiIiIiIiIiFTHNaWIiIiIiIiIiEh1nJQiIiIiIiIiIiLVcVKKiIiIiIiIiIhUx0kpIiIiIiIiIiJSHSeliIiIiIiIiIhIdZyUIiIiIiIiIiIi1XFSioiIiIiIiIiIVMdJKSIiIiIiIiIiUh0npYiIiIiIiIiISHX/D6mUh8wtIvAbAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_analysis(processed_data_bkg, processed_data, Sxx_bkg, Sxx, filename_bkg, filename_data, peak_find_threshold=-60)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "d58a4d17", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "960c77bc", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "27ef8df7", + "metadata": {}, + "outputs": [], + "source": [ + "\"\"\"Synthetic data to validate analysis\"\"\"\n", + "# # Generate time series data with values against time in seconds\n", + "# num_seconds = 10 # Total number of seconds\n", + "# time = np.arange(0, num_seconds, 1/30) # Create timestamp index\n", + "# voltage = np.sin(2*np.pi*4*time) + np.sin(2*np.pi*7*time) + np.random.randn(len(time))*0.2 # Generate 4 Hz and 7 Hz sine wave\n", + "# data = np.column_stack((time, voltage))\n", + "\n", + "\"\"\"Real data\"\"\" \n", + "dir = str(globals()['_dh'][0]).replace('\\\\','/') + \"/Time Series Data/\"\n", + "filename_bkg = \"Arm 1/PID_Active_SP_7V_Mod_0.5\"\n", + "filepath_bkg = dir + filename_bkg + \".csv\"\n", + "\n", + "background_data = extract_data(filepath_bkg)\n", + "\n", + "dir = str(globals()['_dh'][0]).replace('\\\\','/') + \"/Time Series Data/\"\n", + "filename_data = \"Arm 1/PID_Inactive_SP_7V_Mod_0.5\"\n", + "filepath_data = dir + filename_data + \".csv\"\n", + "\n", + "data = extract_data(filepath_data)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "716046fb", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Calculating power spectrum...\n" + ] + } + ], + "source": [ + "# Extract the first and second columns from data_array\n", + "time_bkg = background_data[:, 0]\n", + "voltage_bkg = background_data[:, 1]\n", + " \n", + "processed_data_bkg, Sxx_bkg = compute_psd(background_data, new_sampling_rate = 1000000)" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "dec099f0", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Calculating power spectrum...\n" + ] + } + ], + "source": [ + "# Extract the first and second columns from data_array\n", + "time = data[:, 0]\n", + "voltages = data[:, 1]\n", + "\n", + "processed_data, Sxx = compute_psd(data, new_sampling_rate = 1000000)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "c6317732", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAMWCAYAAAAgRDUeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gVVfrHvzcdEkjohI6oFBFB7CiICNgQREAsiA3Xio1dd91dBJW1gVgRFXuhCSqiIiqgYkWaCgoqIi29k3LT5vdHfrkmkpucM3OmZM738zx5Qu687zvvPff7zTw5zDkTMAzDACGEEEIIIYQQQgghDhLhdgOEEEIIIYQQQgghRD84KUUIIYQQQgghhBBCHIeTUoQQQgghhBBCCCHEcTgpRQghhBBCCCGEEEIch5NShBBCCCGEEEIIIcRxOClFCCGEEEIIIYQQQhyHk1KEEEIIIYQQQgghxHE4KUUIIYQQQgghhBBCHCfK7QYaA5WVlThw4ACaNWuGQCDgdjuEEEIIIYQQQgghnsUwDBQUFKBDhw6IiAh/PxQnpQQ4cOAAOnfu7HYbhBBCCCGEEEIIIY2GvXv3olOnTmGPc1JKgGbNmgGoGszmzZvXGdOrVy+kpKQgOTkZP//8s5PtEeIJ6AGiM9Q/0R16gOgM9U90hvon4cjPz0fnzp1D8ylhMUiD5OXlGQCMX375JWxMcnKyAcBITk52sDPnSU1NNR566CEjNTXV132orG+llplcmRzRWJE4esA/PVD/8nHUv7/6oAfk43TwAPXvbC3q33vQA87WaiweoP791YfK+tXzKHl5efXGcaNzCZo2bRr2WPVeU37fcyo+Ph4nnXQS4uPjfd2HyvpWapnJlckRjRWJowf80wP1Lx9H/furD3pAPk4HD1D/ztai/r0HPeBsrcbiAerfX3248T4DhmEYjp2tkZKfn4/ExETk5eWFXb7XqVMn7N+/Hx07dsS+ffsc7pAQ96EHiM5Q/0R36AGiM9Q/0Rnqn4RDZB4FAHinlASlpaVut+A6paWl2LNnj+tjYXcfKutbqWUmVyZHNNYrn7sX8MJYUP9qcqh/ebwyFvSAmhx6QA6vjAP1ryaH+pfHK2NBD6jJoQfk8Mo4NCb9i8JJKQmys7PDHqusrKz13a9kZWXhxRdfRFZWlq/7UFnfSi0zuTI5orEicfSAf3qg/uXjqH9/9UEPyMfp4AHq39la1L/3oAecrdVYPED9+6sPN94nl+8JUH3bWVZWFlq2bFlnjC63LZaXlyM3NxdJSUmIinLv4Y1296GyvpVaZnJlckRjReLoAf/0QP3Lx1H//uqDHpCP08ED1L+ztah/70EPOFursXiA+vdXHyrriy7f46SUANxTipCGoQeIzlD/RHfoAaIz1D/RGeqfhIN7StlAfn5+2GPVc3t+n+PLz8/Hhx9+WO9Y+KEPlfWt1DKTK5MjGisSRw/4pwfqXz6O+vdXH/SAfJwOHqD+na1F/XsPesDZWo3FA9S/v/pw431yUkqC+jb70sWMwWAQv/32G4LBoK/7UFnfSi0zuTI5orEicfSAf3qg/uXjqH9/9UEPyMfp4AHq39la1L/3oAecrdVYPED9+6sPN94nl+8JwOV7hDQMPUB0hvonukMPEJ2h/onOUP8kHFy+RwghhBBCCCGEEEI8CyelJMjIyAh7TJdHYaanp+PRRx9Fenq6r/tQWd9KLTO5MjmisSJx9IB/eqD+5eOof3/1QQ/Ix+ngAerf2VrUv/egB5yt1Vg8QP37qw833icnpSSIi4sLeywQCNT67leaNGmCfv36oUmTJr7uQ2V9K7XM5MrkiMaKxNED/umB+pePo/791Qc9IB+ngweof2drUf/egx5wtlZj8QD1768+3Hif3FNKAO4pRUjD0ANEZ6h/ojv0ANEZ6p/oDPVPwsE9pWygrKzM7RZcp6ysDCkpKa6Phd19qKxvpZaZXJkc0VivfO5ewAtjQf2ryaH+5fHKWNADanLoATm8Mg7Uv5oc6l8er4wFPaAmhx6Qwyvj0Jj0LwonpSTIysoKe0yXtbSZmZl49tlnkZmZ6es+VNa3UstMrkyOaKxIHD3gnx6of/k46t9ffdAD8nE6eID6d7YW9e896AFnazUWD1D//urDjffJ5XsCVN92lpmZiVatWtUZo8tti2VlZcjMzETr1q0RHR3t2z5U1rdSy0yuTI5orEgcPeCfHqh/+Tjq31990APycTp4gPp3thb17z3oAWdrNRYPUP/+6kNlfdHle5yUEoB7ShHSMPQA0Rnqn+gOPUB0hvonOkP9k3BwTykbKCgoCHusem7P73N8BQUFWLNmTb1j4Yc+VNa3UstMrkyOaKxIHD3gnx6of/k46t9ffdAD8nE6eID6d7YW9e896AFnazUWD1D//urDjffJSSkJSkpKwh7TxYzFxcX4/vvvUVxc7Os+VNa3UstMrkyOaKxIHD3gnx6of/k46t9ffdAD8nE6eID6d7YW9e896AFnazUWD1D//urDjffJ5XsCcPkeIQ1DDxCdof6J7tADRGeof6Iz1D8JB5fvEUIIIYQQQgghhBDPwkkpCfgoWCAjIwPz5s1DRkaGr/tQWd9KLTO5MjmisSJx9IB/eqD+5eOof3/1QQ/Ix+ngAerf2VrUv/egB5yt1Vg8QP37qw833icnpSSIiYkJeywQCNT67ldiY2PRo0cPxMbG+roPlfWt1DKTK5MjGisSRw/4pwfqXz6O+vdXH/SAfJwOHqD+na1F/XsPesDZWo3FA9S/v/pw431yTykBuKcUIQ1DDxCdof6J7tADRGeof6Iz1D8JB/eUsoHy8nK3W3Cd8vJyZGZmuj4Wdvehsr6VWmZyZXJEY73yuXsBL4wF9a8mh/qXxytjQQ+oyaEH5PDKOFD/anKof3m8Mhb0gJocekAOr4xDY9K/KJyUkoB7SlWtMX3qqac8sZbWzj5U1rdSy0yuTI5orEgcPeCfHqh/+Tjq31990APycTp4gPp3thb17z3oAWdrNRYPUP/+6sON98nlewJU33aWkZGB1q1b1xmjy22LpaWlSE1NRfv27evdY6ux96GyvpVaZnJlckRjReLoAf/0QP3Lx1H//uqDHpCP08ED1L+ztah/70EPOFursXiA+vdXHyrriy7f46SUANxTipCGoQeIzlD/RHfoAaIz1D/RGeqfhIN7StnAwYMHwx6rntvz+xzfwYMH8fnnn9c7Fn7oQ2V9K7XM5MrkiMaKxNED/umB+pePo/791Qc9IB+ngweof2drUf/egx5wtlZj8QD1768+3HifnJSSoKioKOwxXcxYWFiIr7/+GoWFhb7uQ2V9K7XM5MrkiMaKxNED/umB+pePo/791Qc9IB+ngweof2drUf/eo/Lnx5C++UV6wKFajcUDuuif1wD74PI9Abh8j5CGoQeIzlD/RHfoAaIz2uj//WOAtoOB455wuxPiIbTRP5GGy/cIIYQQQgghhBBCiGfhpJQEWVlZYY/p8ijMzMxMPPfcc8jMzPR1HyrrW6llJlcmRzRWJI4e8E8P1L98HPXvrz7oAfk4HTxA/Ttbi/r3HuXlFdi2bRs94FCtxuIBXfTPa4B9cFJKgqioqLDHAoFAre9+JTo6Gu3bt0d0dLSv+1BZ30otM7kyOaKxInH0gH96oP7l46h/f/VBD8jH6eAB6t/ZWtS/9wgEgKZNm9IDDtVqLB7QRf+8BtgH95QSgHtKEdIw9ADRGeqf6A49QHRGG/1zTylSB9ron0jDPaVsoKKiwu0WXKeiogL5+fmuj4Xdfaisb6WWmVyZHNFYr3zuXsALY0H9q8mh/uXxyljQA2py6AE5vDIO1L+aHOpfHsMASktLXR8LekBNDj0gh1fGoTHpXxROSkmQkZER9pgua2nT09Mxd+5cpKen+7oPlfWt1DKTK5MjGisSRw/4pwfqXz6O+vdXH/SAfJwOHqD+na1F/XuP8vJybNmyhR5wqFZj8YAu+uc1wD64fE+A6tvO0tPT0aZNmzpjdLltMRgMYu/evejcuTNiY2N924fK+lZqmcmVyRGNFYmjB/zTA/UvH0f9+6sPekA+TgcPUP/O1qL+vUfle/2QH9sfTU57jh5woFZj8YAu+uc1QB7R5XuclBKAe0oR0jD0ANEZ6p/oDj1AGhP3338/li9fjp9//hlNmjTBKaecggcffBA9e/YMxRiGgZkzZ+LZZ59FTk4OTjzxRDz11FM46qijQjHBYBDTpk3DvHnzUFlZibi4OPzyyy/o1KlTKCYnJwdTp07FihUrAADnn38+nnjiCSQlJYVi9uzZgxtvvBFr1qxBkyZNcMkll2D27NmIiYkJ+x6qz71w4UIUFxdj2LBhmDdvXq1z/5UrrrgCubm5ePvtt2u9vm7dOgwdOhQ5OTm1+joE7ilF6oC//0k4uKeUDRQWFoY9Vj235/c5vsLCQnzzzTf1joUf+lBZ30otM7kyOaKxInH0gH96oP7l46h/f/VBD8jH6eAB6t/ZWnbq/9NPP8U111yDZ599FitWrEB5eTlGjBhRK++hhx7CI488gtmzZ+P5559H69atMXz4cBQUFIRibr31Vrz11lto0aIFgKrlS+edd16tvVguueQSbNmyBatWrcKqVauwZcsWTJo0KXS8oqIC5557LgoLC7F+/XosWrQIy5Ytwx133FHve6g+96JFi7B+/XocPHjwkHOrpqKyEqmpqfSAQ7UayzVAh9//AK8BdsJJKQkOHjwY9pguZiwoKMAnn3xS64Lsxz5U1rdSy0yuTI5orEgcPeCfHqh/+Tjq31990APycTp4gPp3tpad+l+1ahVGjx6N33//Hd26dcOLL76IPXv2YOPGjQCqdPzoo4/i3//+N8444wzs3r0bc+bMQVFREd544w0AQF5eHp5//nnMmTMndEdTUlISfvjhB3z88ccAgJ9++gmrVq3CggULcPLJJ+Pkk0/Gc889h5UrV2LHjh0AgNWrV2P79u147bXXMGDAAJx55pmYM2cOnnvuOeTn59fZf81zn3nmmRgwYABee+21Wue2wumnn45AIHDI166UEuzbt48ecKhWY7kG6PD7H+A1wE64fE8ALt8jpGHoAaIz1D/RHXqANGZ+/fVXHHHEEfjhhx/Qt29f7Nq1Cz169MCmTZswYMCAUNzo0aORlJSEl19+GWvWrMGwYcOQnZ2No48+OqT/Vq1aYcyYMZg5cyZeeOEF3H777cjNza11vqSkJMydOxdXXnklpk+fjnfeeQdbt24NHc/JyUHLli2xZs0aDB069JB+a567+i4tADjmmGNC564L0eV72dnZKC0tDR2/8cYbsW3bNmy+PxpNOp/O5XukFvz9T8KhxfK9888/H126dEFcXBySk5MxadIkHDhwoFbMnj17MGrUKMTHx6N169aYOnVqrV+yhBBCCCGEED0xDAO33347Tj31VPTt2xcAkJqaCgBo165drdh27dqFjqWmpiImJqbWpFBdMW3btj3knG3btq0V89fztGjRAjExMaGYvyJy7nCsXLkSCQkJtb7OPvvsWjEtW7ZE+/bt0b59eyxcuBBr1qzBihUr0CS2Uf/pSAjxKI36N8vQoUOxZMkS7NixA8uWLcNvv/2GcePGhY6bXaMdjuzs7LDHdHkUZlZWFl566SVkZWX5ug+V9a3UMpMrkyMaKxJHD/inB+pfPo7691cf9IB8nA4eoP6dreWU/q+55hp8//33WLhw4SExgUCgVk3DMBAIBA6Jq6n/v8bUFW8mRgSRnKFDh2LLli21vhYsWFBn7AcffIB//vOfWLx4MY484giUZwfx62ebkL1zJ+DiYht6QE2OqmuADr//AV4D7CTKsTPZwG233Rb6d9euXfHPf/4TY8aMQVlZGaKjo0NrtPfu3YsOHToAAObMmYMrrrgCs2bNqvcWsrqQvTD4kYiICDRv3hwREe7OZ9rdh8r6VmqZyZXJEY31yufuBbwwFtS/mhzqXx6vjAU9oCaHHpDDK+NA/avJiYiIwJIlS7B161asX7++1lPr2rdvD6DqjqRu3bqFaqanp4fuamrfvj1KS0uRk5NTq256ejpOOeWUUExaWtoh587IyKhV55tvvql1PCcnB2VlZYfcQVWzv+pz17xbqua5wxEfH4/DDz+81mt1Lbnavn07Jk6ciAfuvhsjfvoJmDoVUTt24HAAuKMn0LMncP31wOTJQH1P7LMBekBNDq8BcnhlHBqT/oUxfEJWVpYxYcIEY9CgQaHX/vvf/xr9+vWrFZednW0AMNasWRO2VklJiZGXlxf62rt3rwHAyMvLC5vTsWNHA4DRsWNH62+GkEYIPUB0hvonukMPkMZEZWWlceONNxodOnQwdu7cWefx9u3bGw8++GDotWAwaCQmJhrz5883DMMwcnNzjejoaGPx4sUh/bdv396IiIgwVq1aZRiGYWzfvt0AYHzzzTehOl9//bUBwPj5558NwzCM999/34iIiDAOHDgQilm0aJERGxsb9m+Pmueu5sCBA7XOXReTJ082Ro8efcjra9euNQAYOTk5hmEYRmZmpnHYYYcZVwwfbhjNmxtGVJRhXHSRYfyzi2E8Odowliyp+jkqqup4Peck/oe//0k48vLyGpxHMQzDaNR3SgHAnXfeiSeffBJFRUU46aSTsHLlytAxM2u0AeD++++vc4PAJUuWID4+vs6coqKi0Pe6bv/1C4ZhoLKyEhEREa7eOWZ3HyrrW6llJlcmRzRWJI4e8E8P1L98HPXvrz7oAfk4HTxA/Ttby079v/DCC/jyyy9x66234qOPPgo9sa5p06ahJ+mdfvrpmDlzJlJSUtC2bVu8++67CAQCiI6ODml88ODBuP7660P71WZmZqJz587IzMwMxRxzzDEYP348rr76agDAggULMGDAAGzatAmbNm1CZWUlOnbsiOHDh+PSSy/FwYMHMX/+fAwZMgTvvfcegKotRGbNmoXrr78+dJdT9bm3bt2KhIQEvP7664ec+6/8/vvvKCwsPOT49u3bAQBvvvkm4uPjcc8996AyPx/TP/kEm/v0weZLL0UwMRHjm32JzEARNpWVITB6NOKGDMEJzz2H5HPPxafTpiH1mGOEPier0ANqclRdA3T4/Q/wGmCGam2InNRT3H333QaAer82bNgQis/IyDB27NhhrF692hg0aJBxzjnnGJWVlYZhGMaUKVOMESNGHHKO6OhoY+HChWF7CHen1I4dO8LmJCcnGwCM5ORkC+/e+xw4cMCYMWNGrf/N8WMfKutbqWUmVyZHNFYkjh7wTw/Uv3wc9e+vPugB+TgdPED9O1vLTv2H+xvjxRdfDMVUVlYad999t9G2bVsjMjLSOOmkk4wffvihVp3i4mLjpptuMgKBgAHAiI2NNfbs2VMrJisry7j00kuNZs2aGc2aNTMuvfTS0B1J1fzxxx/GueeeazRp0sRo2bKlcdNNNxklJSWh47///rsBwFi7du0h527ZsqXRpEkT47zzzjvk3H9F9E6pcOOz85nDjW+eOqH2+JaVGca551bdMfWX92UX9ICaHFXXAB1+/xsGrwFmEL1TKmAYLu5SVweZmZnIzMysN6Zbt26Ii4s75PV9+/ahc+fO+PLLL3HyySebesRqXVQ/yrCuO6+q6dixIw4cOIAOHTpg//79QnUbI8XFxdi9eze6deuGJk2a+LYPlfWt1DKTK5MjGisSRw/4pwfqXz6O+vdXH/SAfJwOHqD+na1F/bvIY48B06YBe/cC/7+/FgBUruyH3Jij0eS0BbXHIiUF6NIFmDMHmDrV9vboATU5qjzgO/2HgdcAearnUfLy8urdz9tzk1JW2Lt3L7p06YK1a9fi9NNPxwcffIDzzjsP+/btQ3JyMgBg8eLFmDx5MtLT04U3OhcZzE6dOmH//v3o2LFjnZsFEuJ36AGiM9Q/0R16gOiMr/RvGEDv3kD//sCiRaGXSytK8dhLXdE8qReuHbvm0GU9F10EbN0K/PQTwIdDaYWv9E+UIjop1Wi30P/222/x5JNPYsuWLfjjjz+wdu1aXHLJJejRowdOPvlkAMCIESPQp08fTJo0CZs3b8Ynn3yCadOmYcqUKdJP3gPqXxNZPbfnozm+OikqKsKmTZvE14c20j5U1rdSy0yuTI5orEgcPeCfHqh/+Tjq31990APycTp4gPp3thb17xJZWcCOHcCFF9Z6+YlvnsA/9qXiuh/X4a0f3zo078ILq/Kys21vkR5Qk6PKA77Sfz3wGmAfjXZSqkmTJli+fDmGDRuGnj174qqrrkLfvn3x6aefIjY2FgAQGRmJ9957D3FxcRg0aBAmTJiAMWPGYPbs2abOmZ+fH/aYLmbMy8vDu+++i7y8PF/3obK+lVpmcmVyRGNF4ugB//RA/cvHUf/+6oMekI/TwQPUv7O1qH+XOHiw6nuLFrVenv3Vn38/vbL1lUPzquMLCuzqLAQ9oCZHlQd8pf964DXAPny1fM8uuHyPkIahB4jOUP9Ed+gBojO+0n9mJtCmDbBkCTB+fOjl5DnJSD1Y9fTyiX0nYuGFf3nK2pIlVUv4MjOBVq2c7Ji4jK/0T5Ti++V7hBBCCCGEEEIU0qoV0LMnsGyZXN6yZVV5LVva0xchxLdwUkqC7HrWSFdWVtb67leys7Pxxhtv1DsWfuhDZX0rtczkyuSIxorE0QP+6YH6l4+j/v3VBz0gH6eDB6h/Z2tR/y4RCADXX181yZSaWmdIabC09gspKcDy5cANNziyyTk9oCZHlQd8pf964DXAPjgpJcEhT5nQkEAggMjISNfHwu4+VNa3UstMrkyOaKxXPncv4IWxoP7V5FD/8nhlLOgBNTn0gBxeGQfqX00O9V8PkycDTZsC11wDlJcferzmUJSXA1OmVMVffrkj7dEDanLoATm8Mg6NSf/C5+SeUg3DPaUIaRh6gOgM9U90hx4gOuNL/X/4IXDeecDIkcBzzyH5jWMP3VMqJaVqQurDD4H33gNGjHC5aeIGvtQ/UQL3lLIBzt9VjUF5ebnrY2F3HyrrW6llJlcmRzTWK5+7F/DCWFD/anKof3m8Mhb0gJocekAOr4wD9a8mh/pvgJEjgZUrgc8/B7p0wfxXczH+R+DM34CTvthTtal5ly5Vxx2ekKIH1OTQA3J4ZRwak/5F4aSUBGlpaWGP6bKWNjU1FbNmzUJqmDXmfulDZX0rtczkyuSIxorE0QP+6YH6l4+j/v3VBz0gH6eDB6h/Z2tR/x5g5Ejgjz+AOXNw1IEyLHkT+OhV4Ja5XwJbtwJz5gB79jh+hxQ9oCZHlQd8q/+/wGuAjRikQfLy8gwARmpqatiYDh06GACMDh06ONiZ8xQVFRlbt241ioqKfN2HyvpWapnJlckRjRWJowf80wP1Lx9H/furD3pAPk4HD1D/ztai/r1F+4fbGS3/AaPrLTCufO58w6isdK0XekBNjioP6KB/w+A1wAzV8yh5eXn1xnFPKQG4pxQhDUMPEJ2h/onu0ANEZ3TQf/Kc5EP3lCIEeuifmIN7StlAcXFx2GPVc3t+n+MrLi7GDz/8UO9Y+KEPlfWt1DKTK5MjGisSRw/4pwfqXz6O+vdXH/SAfJwOHqD+na1F/XuXivIKV89PD6jJUeUBXfTPa4B9cFJKgry8vLDHdDFjbm4uli9fjtzcXF/3obK+lVpmcmVyRGNF4ugB//RA/cvHUf/+6oMekI/TwQPUv7O1qH/vUlpW6ur56QE1Oao8oIv+eQ2wDy7fE6D6trOcnBwkJSXVGaPLbYuVlZUoLy9HVFQUIiLcm9O0uw+V9a3UMpMrkyMaKxJHD/inB+pfPo7691cf9IB8nA4eoP6drUX9e4uay/cuOuoiLBq3yLVe6AE1Oao8oIP+AV4DzCC6fC/K0lk0w03xeYWIiAjExMS43Ybtfaisb6WWmVyZHNFYr3zuXsALY0H9q8mh/uXxyljQA2py6AE5vDIO1L+aHOrfPIFAwNXz0wNqcugBObwyDo1J/8LndPRsjZycnJywx3R5FGZOTg6WLl1a71j4oQ+V9a3UMpMrkyMaKxJHD/inB+pfPo7691cf9IB8nA4eoP6drUX9e5fSUneX79EDanJUeUAX/fMaYB+clJKAKx2rftkEg0HXf+nY3YfK+lZqmcmVyRGN9crn7gW8MBbUv5oc6l8er4wFPaAmhx6QwyvjQP2ryaH+zeP230T0gJocekAOr4xDY9K/KNxTSgCRtZC6rKUlJBz0ANEZ6p/oDj1AdEYH/dfcU2pi34lYeOFClzsiXkEH/RNziO4pxTulCCGEEEIIIYQQQojjcFJKgtTU1LDHdFlLm5KSgnvuuQcpKSm+7kNlfSu1zOTK5IjGisTRA/7pgfqXj6P+/dUHPSAfp4MHqH9na1H/3qW4uNjV89MDanJUeUAX/fMaYB+clJKgWbNmYY9VP4XC7adR2E3z5s1xzjnn1Hv7nR/6UFnfSi0zuTI5orEicfSAf3qg/uXjqH9/9UEPyMfp4AHq39la1L93iY6OdvX89ICaHFUe0EX/vAbYB/eUEoB7ShHSMPQA0Rnqn+gOPUB0Rgf9c08pEg4d9E/MwT2lbKCkpCTsseq5Pb/P8ZWUlGDHjh31joUf+lBZ30otM7kyOaKxInH0gH96oP7l46h/f/VBD8jH6eAB6t/ZWtS/d6moqHD1/PSAmhxVHtBF/7wG2AcnpSTIzc0Ne0wXM+bk5GDRokXIycnxdR8q61upZSZXJkc0ViSOHvBPD9S/fBz1768+6AH5OB08QP07W4v69y6lpaWunp8eUJOjygO66J/XAPvg8j0Bqm87y87ORosWLeqM0eW2xYqKCpSUlCAuLg6RkZG+7UNlfSu1zOTK5IjGisTRA/7pgfqXj6P+/dUHPSAfp4MHqH9na1H/3qLm8r2L+lyEReMXudYLPaAmR5UHdNA/wGuAGUSX70VZOotmuCk+rxAZGYn4+Hi327C9D5X1rdQykyuTIxrrlc/dC3hhLKh/NTnUvzxeGQt6QE0OPSCHV8aB+leTQ/2bJxDh7obW9ICaHHpADq+MQ2PSvyhcvicBl+9VjcHbb79d71j4oQ+V9a3UMpMrkyMaKxJHD/inB+pfPo7691cf9IB8nA4eoP6drUX9exe3l+/RA2pyVHlAF/3zGmAfnJSSoL5N/XQxY3l5ObKzs1FeXu7rPlTWt1LLTK5MjmisSBw94J8eqH/5OOrfX33QA/JxOniA+ne2FvXvXdx+n/SAmhxVHtBF/7wG2Af3lBJAZC2kLmtpCQkHPUB0hvonukMPEJ3RQf8195Sa2HciFl640OWOiFfQQf/EHKJ7SvFOKUIIIYQQQgghhBDiOJyUkiAtLS3sscrKylrf/Upqairuv/9+pKam+roPlfWt1DKTK5MjGisSRw/4pwfqXz6O+vdXH/SAfJwOHqD+na1F/XuX4uJiV89PD6jJUeUBXfTPa4B9cFJKgvp2oQ8EArW++5WEhAScfvrpSEhI8HUfKutbqWUmVyZHNFYkjh7wTw/Uv3wc9e+vPugB+TgdPED9O1uL+vcWAfz53qKi3H2AOz2gJkeVB3TQP8BrgJ1wTykBuKcUIQ1DDxCdof6J7tADRGd00H+HOR2QcjAFAHDRURdh0bhFLndEvIIO+ifm4J5SNhAMBt1uwXWCwSB27drl+ljY3YfK+lZqmcmVyRGN9crn7gW8MBbUv5oc6l8er4wFPaAmhx6QwyvjQP2ryaH+zeP2Mi16QE0OPSCHV8ahMelfFE5KSZCTkxP2mC5rabOzs/Hqq68iOzvb132orG+llplcmRzRWJE4esA/PVD/8nHUv7/6oAfk43TwAPXvbC3q37u4/Uc5PaAmR5UHdNE/rwH2weV7AlTfdpaVlYWWLVvWGaPLbYvl5eU4ePAgEhISXF1PbncfKutbqWUmVyZHNFYkjh7wTw/Uv3wc9e+vPugB+TgdPED9O1uL+vcWNZfvTegzAYvHL3atF3pATY4qD+igf4DXADOILt9zd5e6Robbm/p5gaioKCQlJbndhu19qKxvpZaZXJkc0VivfO5ewAtjQf2ryaH+5fHKWNADanLoATm8Mg7Uv5oc6t88bm9oTQ+oyaEH5PDKODQm/YvC5XsS5OXlhT1WfcOZ3288y8vLw3vvvVfvWPihD5X1rdQykyuTIxorEkcP+KcH6l8+jvr3Vx/0gHycDh6g/p2tRf17l7KyMlfPTw+oyVHlAV30z2uAfXBSSoL6fgHrYsbS0lLs27cPpaWlvu5DZX0rtczkyuSIxorE0QP+6YH6l4+j/v3VBz0gH6eDB6h/Z2tR/97F7b2D6AE1Oao8oIv+eQ2wD+4pJYDIWkhd1tISEg56gOgM9U90hx4gOqOD/mvuKXXRURdh0bhFLndEvIIO+ifmEN1TindKEUIIIYQQQgghhBDH4aSUBOnp6WGP6fIozLS0NMyZMwdpaWm+7kNlfSu1zOTK5IjGisTRA/7pgfqXj6P+/dUHPSAfp4MHqH9na1H/3qWkpMTV89MDanJUeUAX/fMaYB+clJKgSZMmYY9VP4XC7adR2E3Tpk1x/PHHo2nTpr7uQ2V9K7XM5MrkiMaKxNED/umB+pePo/791Qc9IB+ngweof2drUf/eJTIq0tXz0wNqclR5QBf98xpgH9xTSgDuKUVIw9ADRGeof6I79ADRGR30zz2lSDh00D8xB/eUsgG3d9r3AqWlpdi7d6/rY2F3HyrrW6llJlcmRzTWK5+7F/DCWFD/anKof3m8Mhb0gJocekAOr4wD9a8mh/o3j9vLtOgBNTn0gBxeGYfGpH9ROCklQXZ2dthjuqylzcrKwgsvvICsrCxf96GyvpVaZnJlckRjReLoAf/0QP3Lx1H//uqDHpCP08ED1L+ztah/7xIMBl09Pz2gJkeVB3TRP68B9sHlewJU33aWmZmJVq1a1Rmjy22LZWVlyMnJQYsWLRAdHe3bPlTWt1LLTK5MjmisSBw94J8eqH/5OOrfX33QA/JxOniA+ne2FvXvLWou3xvfezyWTFjiWi/0gJocVR7QQf8ArwFmEF2+x0kpAbinFCENQw8QnaH+ie7QA0RndNA/95Qi4dBB/8Qc3FPKBvLz88Meq57b8/scX35+PlavXl3vWPihD5X1rdQykyuTIxorEkcP+KcH6l8+jvr3Vx/0gHycDh6g/p2tRf17l7KyMlfPTw+oyVHlAV30z2uAfXBSSoL61k/rYsaSkhLs3LkTJSUlvu5DZX0rtczkyuSIxorE0QP+6YH6l4+j/v3VBz0gH6eDB6h/Z2tR/96lorLC1fPTA2pyVHlAF/3zGmAfXL4nAJfvEdIw9ADRGeqf6A49QHRGB/1z+R4Jhw76J+bg8j1CCCGEEEIIIYQQ4lk4KSVBRkZG2GO6PAozPT0djz/+ONLT033dh8r6VmqZyZXJEY0ViaMH/NMD9S8fR/37qw96QD5OBw9Q/87Wov69S0nQ3eVL9ICaHFUe0EX/vAbYByelJIiNjQ17LBAI1PruV+Li4tCnTx/ExcX5ug+V9a3UMpMrkyMaKxJHD/inB+pfPo7691cf9IB8nA4eoP6drUX9e5fIiEhXz08PqMlR5QFd9M9rgH1wTykBuKcUIQ1DDxCdof6J7tADRGd00D/3lCLh0EH/xBzcU8oG3H78qRcoKytDWlqa62Nhdx8q61upZSZXJkc01iufuxfwwlhQ/2pyqH95vDIW9ICaHHpADq+MA/WvJof6N4/by7ToATU59IAcXhmHxqR/UTgpJUFWVlbYY7qspc3MzMT8+fORmZnp6z5U1rdSy0yuTI5orEgcPeCfHqh/+Tjq31990APycTp4gPp3thb1712CwaCr56cH1OSo8oAu+uc1wD64fE+A6tvOMjIy0Lp16zpjdLltsbS0FBkZGWjTpg1iYmJ824fK+lZqmcmVyRGNFYmjB/zTA/UvH0f9+6sPekA+TgcPUP/O1qL+vUXN5Xvje4/HkglLXOuFHlCTo8oDOugf4DXADKLL9zgpJQD3lCKkYegBojPUP9EdeoDojA76555SJBw66J+Yg3tK2UBBQUHYY9Vze36f4ysoKMC6devqHQs/9KGyvpVaZnJlckRjReLoAf/0QP3Lx1H//uqDHpCP08ED1L+ztah/71JW7u6eOvSAmhxVHtBF/7wG2AcnpSQoLi4Oe0wXMxYVFWHTpk0oKirydR8q61upZSZXJkc0ViSOHvBPD9S/fBz1768+6AH5OB08QP07W4v69y7l5eWunp8eUJOjygO66J/XAPvg8j0BuHyPkIahB4jOUP9Ed+gBojM66L/jIx1xoOAAAGDCUROweNxilzsiXkEH/RNzcPkeIYQQQgghhBBCCPEsnJSSgI+CBTIyMvD0008jIyPD132orG+llplcmRzRWJE4esA/PVD/8nHUv7/6oAfk43TwAPXvbC3q37sES4Kunp8eUJOjygO66J/XAPvgpJQE0dHRYY8FAoFa3/1KTEwMunXr5upjMJ3oQ2V9K7XM5MrkiMaKxNED/umB+pePo/791Qc9IB+ngweof2drUf/eJSLC3T8h6QE1Oao8oIv+eQ2wD+4pJQD3lCKkYegBojPUP9EdeoDojA76555SJBw66J+Yg3tK2YDbT5rwAuXl5cjOznZ9LOzuQ2V9K7XM5MrkiMZ65XP3Al4YC+pfTQ71L49XxoIeUJNDD8jhlXGg/tXkUP/mMSrdvaeBHlCTQw/I4ZVxaEz6F4WTUhJwT6mqNaZPPPGEJ9bS2tmHyvpWapnJlckRjRWJowf80wP1Lx9H/furD3pAPk4HD1D/ztai/r1LSbDE1fPTA2pyVHlAF/3zGmAfXL4nQPVtZ+np6WjTpk2dMbrcthgMBpGSkoLk5GTExsb6tg+V9a3UMpMrkyMaKxJHD/inB+pfPo7691cf9IB8nA4eoP6drUX9e4uay/fG9RqHpRctda0XekBNjioP6KB/gNcAM4gu3+OklADcU4qQhqEHiM5Q/0R36AGiMzron3tKkXDooH9iDu4pZQMHDx4Me6x6bs/vc3wHDx7EF198Ue9Y+KEPlfWt1DKTK5MjGisSRw/4pwfqXz6O+vdXH/SAfJwOHqD+na1F/XuX8jJ399ShB9TkqPKALvrnNcA+OCklQWFhYdhjOplx/fr1njCjnX2orG+llplcmRzRWJE4esA/PVD/8nHUv7/6oAfk43TwAPXvbC3q37u4vdEzPaAmR5UHdNE/rwH2weV7AnD5HiENQw8QnaH+ie7QA0RndNB/hzkdkHIwBQCX75Ha6KB/Yg4u3yOEEEIIIYQQopQAAm63QAjxEZyUkiArKyvsMV0ehZmZmYnnn38emZmZvu5DZX0rtczkyuSIxorE0QP+6YH6l4+j/v3VBz0gH6eDB6h/Z2tR/94lGAy6en56QE2OKg/oon9eA+yDk1ISREZGhj0WCARqffcrUVFRaNOmDaKionzdh8r6VmqZyZXJEY0ViaMH/NMD9S8fR/37qw96QD5OBw9Q/87Wov69SyDC3fdJD6jJUeUBXfTPa4B9cE8pAbinFCENQw8QnaH+ie7QA0RndNB/zT2lLjrqIiwat8jljohX0EH/xBzcU8oGKioq3G7BdSoqKlBQUOD6WNjdh8r6VmqZyZXJEY31yufuBbwwFtS/mhzqXx6vjAU9oCaHHpDDK+NA/avJof7N4/Y9DfSAmhx6QA6vjENj0r8onJSSICMjI+wxXdbSpqen45FHHkF6erqv+1BZ30otM7kyOaKxInH0gH96oP7l46h/f/VBD8jH6eAB6t/ZWtS/dykpKXH1/PSAmhxVHtBF/7wG2AeX7wlQfdtZWloa2rZtW2dMx44dceDAAXTo0AH79+93uEPnKCkpwZ49e9ClSxfExcX5tg+V9a3UMpMrkyMaKxJHD/inB+pfPo7691cf9IB8nA4eoP6drUX9e4uay/fG9RqHpRctda0XekBNjioP6KB/gNcAM4gu3+OklADcU4qQhqEHiM5Q/0R36AGiMzron3tKkXDooH9iDu4pZQOFhYVhj1XP7fl9jq+wsBDffvttvWPhhz5U1rdSy0yuTI5orEgcPeCfHqh/+Tjq31990APycTp4gPp3thb1713Ky8tdPT89oCZHlQd00T+vAfbBSSkJCgoKwh7TxYz5+flYvXo18vPzfd2HyvpWapnJlckRjRWJowf80wP1Lx9H/furD3pAPk4HD1D/ztai/r1LWVmZq+enB9TkqPKALvrnNcA+uHxPAC7fI6Rh6AGiM9Q/0R16gOiMDvrn8j0SDh30T8zB5XuEEEIIIYQQQgghxLNwUkqC7OzssMd0eRRmVlYWXnnlFWRlZfm6D5X1rdQykyuTIxorEkcP+KcH6l8+jvr3Vx/0gHycDh6g/p2tRf17l2Bp0NXz0wNqclR5QBf98xpgH5yUkiAQCLjdgutEREQgPj4eERHuSsfuPlTWt1LLTK5MjmisVz53L+CFsaD+1eRQ//J4ZSzoATU59IAcXhkH6l9NDvVvngDc/ZuIHlCTQw/I4ZVxaEz6F4V7SgnAPaUIaRh6gOgM9U90hx4gOqOD/rmnFAmHDvon5uCeUjbg91sSRaisrEQwGHR9LOzuQ2V9K7XM5MrkiMZ65XP3Al4YC+pfTQ71L49XxoIeUJNDD8jhlXGg/tXkUP/mcfueBnpATQ49IIdXxqEx6V8UTkpJkJ6eHvaYLmtp09LS8MADDyAtLc3Xfaisb6WWmVyZHNFYkTh6wD89UP/ycdS/v/qgB+TjdPAA9e9sLerfuxSXFLt6fnpATY4qD+iif14D7IPL9wSovu0sNTUV7dq1qzOmY8eOOHDgADp06ID9+/c73KFzFBcXY9euXTjssMPQpEkT3/ahsr6VWmZyZXJEY0Xi6AH/9ED9y8dR//7qgx6Qj9PBA9S/s7Wof2/R8ZGOOFBwAABwYc8L8ebEN13rhR5Qk6PKAzroH+A1wAyiy/c4KSUA95QipGHoAaIz1D/RHXqA6IwO+q85KTXhqAlYPG6xyx0Rr6CD/ok5uKeUDRQVFYU9Vj235/c5vqKiImzZsqXesfBDHyrrW6llJlcmRzRWJI4e8E8P1L98HPXvrz7oAfk4HTxA/Ttbi/r3LhXlFa6enx5Qk6PKA7ron9cA++CklAT5+flhj+lixry8PLzzzjvIy8vzdR8q61upZSZXJkc0ViSOHvBPD9S/fBz1768+6AH5OB08QP07W4v69y6lZaWunp8eUJOjygO66J/XAPvg8j0Bqm87y83NRWJiYp0xuty2aBgGDMNAIBBAIBDwbR8q61upZSZXJkc0ViSOHvBPD9S/fBz1768+6AH5OB08QP07W4v69xa1lu/1mYDF491bvkcPqMlR5QEd9A/wGmAG0eV7UZbOohluis8ruG1Cp/pQWd9KLTO5MjmisV753L2AF8aC+leTQ/3L45WxoAfU5NADcnhlHKh/NTnUvwVcHg56QE0OPSCHV8ahMelfFC7fkyA7OzvsMV0ehZmdnY2FCxfWOxZ+6ENlfSu1zOTK5IjGisTRA/7pgfqXj6P+/dUHPSAfp4MHqH9na1H/3qU06O7yPXpATY4qD+iif14D7IOTUoQQQgghhBBCCCHEcbinlAAiayF1WUtLSDjoAaIz1D/RHXqA6IwO+q+1p9RRE7B4nHt7ShFvoYP+iTlE95TinVIScP6uagwqKytdHwu7+1BZ30otM7kyOaKxXvncvYAXxoL6V5ND/cvjlbGgB9Tk0ANyeGUcqH81OdS/BVweCnpATQ49IIdXxqEx6V8UTkpJkJaWFvaYLmtpU1NTce+99yI1NdXXfaisb6WWmVyZHNFYkTh6wD89UP/ycdS/v/qgB+TjdPAA9e9sLerfuxSXFLt6fnpATY4qD+iif14D7MMXk1LBYBD9+/dHIBDAli1bah3bs2cPRo0ahfj4eLRu3RpTp05Faam5zfnqu+Wseod6L+zIbyeJiYkYPXo0EhMTfd2HyvpWapnJlckRjRWJowf80wP1Lx9H/furD3pAPk4HD1D/ztai/r1LTHSMq+enB9TkqPKALvrnNcA+fLGn1C233IJffvkFH3zwATZv3oz+/fsDACoqKtC/f3+0adMGc+bMQVZWFiZPnoyxY8fiiSeeEK7PPaUIaRh6gOgM9U90hx4gOqOD/rmnFAmHDvon5tBmT6kPPvgAq1evxuzZsw85tnr1amzfvh2vvfYaBgwYgDPPPBNz5szBc889h/z8fOlzFReHv1W1em7PB3N89VJcXIxt27bVOxZ+6ENlfSu1zOTK5IjGisTRA/7pgfqXj6P+/dUHPSAfp4MHqH9na1H/3qWivMLV89MDanJUeUAX/fMaYB+NelIqLS0NU6ZMwauvvoqmTZsecvyrr75C37590aFDh9BrI0eORDAYxMaNG6XPl5eXF/aYLmbMzc3Fm2++idzcXF/3obK+lVpmcmVyRGNF4ugB//RA/cvHUf/+6oMekI/TwQPUv7O1qH/vUlpmbisUVdADanJUeUAX/fMaYB+NdvmeYRg455xzMGjQIPznP//B7t270b1791rL96699lrs3r0bq1evrpUbGxuLl156CRdffHGdtYPBIILBYOjn/Px8dO7cGTk5OUhKSqozR5fbFisrK1FWVobo6GhERLg3p2l3HyrrW6llJlcmRzRWJI4e8E8P1L98HPXvrz7oAfk4HTxA/Ttbi/r3FjWX743vMx5Lxi9xrRd6QE2OKg/ooH+A1wAziC7fi7J0FhuYMWMGZs6cWW/Mhg0b8OWXXyI/Px//+te/6o2ta8M1wzDq3Yjt/vvvr7OHZcuW1XlHFvDn0r7i4mIsXLiw3p4I8SP0ANEZ6p/oDj1AdEYH/RcX/bmUZ++evb59n0QeHfRPzFFUVCQWaHiMjIwM46effqr3q7i42Bg9erQRERFhREZGhr4AGJGRkcbll19uGIZh/Pe//zX69etXq352drYBwFizZk3YHkpKSoy8vLzQ1969ew0Axu7du8PmJCcnGwCM5ORkNQPhUbKzs40333zTyM7O9nUfKutbqWUmVyZHNFYkjh7wTw/Uv3wc9e+vPugB+TgdPED9O1uL+vcWHeZ0MDADBmbAGPP6GFd7oQfU5KjygA76NwxeA8yQl5dnADDy8vLqjfPcnVKtW7dG69atG4x7/PHHcd9994V+PnDgAEaOHInFixfjxBNPBACcfPLJmDVrFlJSUpCcnAygavPz2NhYDBw4MGzt2NhYxMbGHvK60ThXOiqlsrIShYWFqKys9HUfKutbqWUmVyZHNNYrn7sX8MJYUP9qcqh/ebwyFvSAmhx6QA6vjAP1ryaH+jeP238T0QNqcugBObwyDo1J/6I02j2l/kpde0pVVFSgf//+aNeuHR5++GFkZ2fjiiuuwJgxY/DEE08I1xZZC6nLWlpCwkEPEJ2h/onu0ANEZ3TQf809pSYcNQGLxy12uSPiFXTQPzGH6J5Sjfrpew0RGRmJ9957D3FxcRg0aBAmTJiAMWPGYPbs2W63RgghhBBCCCGEEKI1vpmU6tatGwzDCN0lVU2XLl2wcuVKFBUVISsrC0888USdS/NESE1NDXus+vY2t2/ns5uUlBTcd999SElJ8XUfKutbqWUmVyZHNFYkjh7wTw/Uv3wc9e+vPugB+TgdPED9O1uL+vcu1RtbuwU9oCZHlQd00T+vAfbhm0kpJ2jWrFnYY9VP86vvqX5+oHnz5hgxYkS9t9/5oQ+V9a3UMpMrkyMaKxJHD/inB+pfPo7691cf9IB8nA4eoP6drUX9e5fo6GhXz08PqMlR5QFd9M9rgH34Zk8pO+GeUoQ0DD1AdIb6J7pDDxCd0UH/3FOKhEMH/RNzcE8pGygpKQl7rHpuz+9zfCUlJdi5c2e9Y+GHPlTWt1LLTK5MjmisSBw94J8eqH/5OOrfX33QA/JxOniA+ne2FvXvXSoqKlw9Pz2gJkeVB3TRP68B9sFJKQlyc3PDHtPFjDk5OVi4cCFycnJ83YfK+lZqmcmVyRGNFYmjB/zTA/UvH0f9+6sPekA+TgcPUP/O1qL+vUtpaamr56cH1OSo8oAu+uc1wD64fE+A6tvOsrOz0aJFizpjdLltsaKiAkVFRWjatCkiIyN924fK+lZqmcmVyRGNFYmjB/zTA/UvH0f9+6sPekA+TgcPUP/O1qL+vUXN5Xvj+4zHkvFLXOuFHlCTo8oDOugf4DXADKLL96IsnUUz3BSfV4iMjKx3w3e/9KGyvpVaZnJlckRjvfK5ewEvjAX1ryaH+pfHK2NBD6jJoQfk8Mo4UP9qcqh/87i9oTU9oCaHHpDDK+PQmPQvCpfvScDle1VjsGLFinrHwg99qKxvpZaZXJkc0ViROHrAPz1Q//Jx1L+/+qAH5ON08AD172wt6t+7lJWWuXp+ekBNjioP6KJ/XgPsg5NSEtS3qZ8uZiwvL0dGRgbKy8t93YfK+lZqmcmVyRGNFYmjB/zTA/UvH0f9+6sPekA+TgcPUP/O1qL+vUtFpbsbndMDanJUeUAX/fMaYB/cU0oAkbWQuqylJSQc9ADRGeqf6A49QHRGB/13eqQT9hfsB+D+nlLEW+igf2IO0T2leKcUIYQQQgghhBBCCHEcTkpJkJaWFvZYZWVlre9+JTU1FQ8++CBSU1N93YfK+lZqmcmVyRGNFYmjB/zTA/UvH0f9+6sPekA+TgcPUP/O1qL+vUtJSYmr56cH1OSo8oAu+uc1wD44KSVBfHx82GPVT6Fw+2kUdpOQkIBTTz0VCQkJvu5DZX0rtczkyuSIxorE0QP+6YH6l4+j/v3VBz0gH6eDB6h/Z2tR/94lKsrdB7jb7YFWv0zDeQMj6QHBOF30z2uAfXBPKQG4pxQhDUMPEJ2h/onu0ANEZ3TQv1Z7Si1NBPpOB3rf4XYnjQId9E/MwT2lbCAYDLrdgusEg0Hs3r3b9bGwuw+V9a3UMpMrkyMa65XP3Qt4YSyofzU51L88XhkLekBNDj0gh1fGgfpXk0P9m8ftZVp2fyaGAWRnZ9MDFvrwI14Zh8Z0DRCFk1IS5OTkhD2my1ra7OxsvPzyy8jOzvZ1HyrrW6llJlcmRzRWJI4e8E8P1L98HPXvrz7oAfk4HTxA/Ttbi/r3LqWlpa6e324PGIaB7777jh4QjNNF/7wG2AeX7wlQfdtZVlYWWrZsWWeMLrctlpeXIz8/H82bN3d1Pbndfaisb6WWmVyZHNFYkTh6wD89UP/ycdS/v/qgB+TjdPAA9e9sLerfW9Rcvjeu9zgsnbDUtV7s9oCxNBHFh01DzDH/ogcE4nTQP8BrgBlEl++5u0tdI8PtTf28QFRUVNiJOT/1obK+lVpmcmVyRGO98rl7AS+MBfWvJof6l8crY0EPqMmhB+TwyjhQ/2pyqH/zuL2htd2fSQBA06ZNAQV/+9ED/sEr49CYrgGicPmeBHl5eWGPVd9w5vcbz/Ly8vDBBx/UOxZ+6ENlfSu1zOTK5IjGisTRA/7pgfqXj6P+/dUHPSAfp4MHqH9na1H/3qWsrMzV89vtAcMAfvr5Z3pAME4X/fMaYB+clJKgvl/AupixtLQUu3fvdn0tud19qKxvpZaZXJkc0ViROHrAPz1Q//Jx1L+/+qAH5ON08AD172wt6t+7uL13kN0eMGAgJzubHhCM00X/vAbYB/eUEkBkLaQua2kJCQc9QHSG+ie6Qw8QndFB/zX3lBrfZzyWjF/ickc2sjQR6Dsd6H2H2500CnTQPzGH6J5SvFOKEEIIIYQQQgghhDgOJ6UkSE9PD3tMl0dhpqWl4ZFHHkFaWpqv+1BZ30otM7kyOaKxInH0gH96oP7l46h/f/VBD8jH6eAB6t/ZWtS/dykpKXH1/HZ7oLLSwKeffkoPCMbpon9eA+yDk1ISNGnSJOyx6qdQuP00Crtp2rQpjj322KonUvi4D5X1rdQykyuTIxorEkcP+KcH6l8+jvr3Vx/0gHycDh6g/p2tRf17F7efSG63BwKBADp26kQPCMbpon9eA+yDe0oJwD2lCGkYeoDoDPVPdIceIDqjg/65pxQJhw76J+bgnlI24PZO+16gtLQU+/fvd30s7O5DZX0rtczkyuSIxnrlc/cCXhgL6l9NDvUvj1fGgh5Qk0MPyOGVcaD+1eRQ/+Zxe5mW3Z+JYQB5eXn0gIU+/IhXxqExXQNE4aSUBNnZ2WGP6bKWNisrCwsWLEBWVpav+1BZ30otM7kyOaKxInH0gH96oP7l46h/f/VBD8jH6eAB6t/ZWtS/d3H7j3K7PWAYBr755ht6QDBOF/3zGmAfXL4nQPVtZ5mZmWjVqlWdMbrctlhWVobs7Gy0bNkS0dHRvu1DZX0rtczkyuSIxorE0QP+6YH6l4+j/v3VBz0gH6eDB6h/Z2tR/96i5vK9C3tdiDcvetO1Xuz2gLEkEQe73Ya4Af+mBwTidNA/wGuAGUSX73FSSgDuKUVIw9ADRGeof6I79ADRGR30zz2lSDh00D8xB/eUsoH8/Pywx6rn9vw+x5efn4+PP/643rHwQx8q61upZSZXJkc0ViSOHvBPD9S/fBz1768+6AH5OB08QP07W4v69y5lZWWunt9uDxgGsPOXnfSAYJwu+uc1wD44KSVBMBgMe0wXM5aUlGD79u0oKSnxdR8q61upZSZXJkc0ViSOHvBPD9S/fBz1768+6AH5OB08QP07W4v69y5u7x1ktwcMw0BaWho9IBini/55DbAPLt8TgMv3CGkYeoDoDPVPdIceIDqjg/65fI+EQwf9E3Nw+R4hhBBCCCGEEEII8SyclJIgIyMj7DFdHoWZnp6OJ598Eunp6b7uQ2V9K7XM5MrkiMaKxNED/umB+pePo/791Qc9IB+ngweof2drUf/ewsCfi2vq29LECez2QGWlgfVfrKcHBON00D/Aa4CdcFJKgtjY2LDHAoFAre9+JS4uDkceeSTi4uJ83YfK+lZqmcmVyRGNFYmjB/zTA/UvH0f9+6sPekA+TgcPUP/O1qL+vUtkZKSr57fbA4FAAG1at6EHBON00T+vATZikAbJy8szABh5eXlhYzp27GgAMDp27OhgZ4R4B3qA6Az1T3SHHiA644b+582bZxx99NFGs2bNjJiYGAOAMXr06FoxKSkpxjHHHGNEREQYAIwWLVoY7733Xq2Ybdu2Gd27dzcCgYABwEhOTjY2bdpUK2bt2rVGRLOqGgCMhPYJxt69e2vFvP7660aLFi0MAEYgEDCOPfZYo7CwMGz/v//+e6jeX7+WLFkSitu4caNx5plnGomJiUZkZKQBwPjiiy/qHZvExESjf//+h7x+9dVXG0J//i5pbhjbZzccRwzD4O9/Eh6ReRTDMAzeKSWB248/9QJlZWVIT093fSzs7kNlfSu1zOTK5IjGeuVz9wJeGAvqX00O9S+PV8aCHlCTQw/I4ZVxoP7V5DR2/Xfq1AkPPPAAXnjhBbRp0wZt27bFu+++i23btgGoehLaCSecgB9//BH3338/VqxYgRYtWuD8889HamoqAKCwsBAnnXQSUlJS8Mwzz2Dx4sUoKyvDoEGDQu/3wIEDGD58OIxyA7gQwPlAcXYxjj/++FAvmzdvxmWXXYakpCS8/fbbePjhh/H9999j0KBBYfvv3LkzZs6cibvuugt33XUXAOCf//wn4uPjcfbZZ4fOfeaZZ+Lwww/H+eefjxNOOAEA8N///tfWz8QwgIKDB+kBC334Ea+MQ2O6BojCSSkJsrKywh7TZS1tZmYmnn76aWRmZvq6D5X1rdQykyuTIxorEkcP+KcH6l8+jvr3Vx/0gHycDh6g/p2tRf3Xz6hRozB48GDcddddeOmll9C7d29ER0fj66+/BgDs3LkTe/fuxdSpU/GPf/wDo0aNwg8//IDKykr8/e9/BwCsXr0aBQUFmDdvHqZMmYIJEybg008/RXFxMWbPng0AeO6551BeXo6W17QEjgZwLHD0FUcjNTUVq1evBgA88MADMAwD69evx+jRo3HHHXdg6tSp2LJlC/bv319n/5GRkZg+fTpmzZqF4cOHAwBWrlyJiy66CAkJCaGfo6Ojcd5552HDhg1YsGABAGDNmjW47777LGs0KioKgUDgkC/DMPDVl1/QA4JxOvz+B3gNsBUnbttq7FTfdpaRkRE2RpfbFoPBoLFnzx4jGAz6ug+V9a3UMpMrkyMaKxJHD/inB+pfPo7691cf9IB8nA4eoP6drUX9N8zll19u3HrrrUZ5ebnRu3dvIyIiwti2bZthGIbx/vvvGwCMd955p1ZObGys0aNHD8MwDOPee+81ABgpKSmh40VFRQYAY/DgwYZhGMbFF19sBAIBo+OcjgZmwMAMGCMeGWEAMK666irDMAzjxBNPNJo2bVrrPEuXLjUAGI888kiD72Pt2rWhpXs1l+Y9/vjjRocOHYyOHTsaGzZsqLXkb86cOWE/E9Hle9u3bze2bt1qbN261diwYYORkJBgNG/e3KhckmjkfPlvekAwToff/4bBa4AZRJfvRTk3/dX4iYmJcbsF14mJiUHnzp3dbsP2PlTWt1LLTK5MjmisVz53L+CFsaD+1eRQ//J4ZSzoATU59IAcXhkH6l9NTmPX/6JFi/Dll1/iwIEDeOKJJwBU3T3Vp08fAEB8fDyAqjudTjvtNMTHx+ORRx5BMBhEbm4uAKB169YAqu50+t///gfDMHDnnXcCQOjJW23atIFhGChYWwD0B1AGbHu/aongvn37AAAtW7ZEUVERFi5ciAkTJiA1NRWPPfYYAGDXrl3C7+nII4/EKaecEvp56NChuOWWWzBixAj069cPP/30U+hYMBis92+zLVu2NLjxdu/evUP/7t+/P4qLi/HDDz8g8OPJSEpKAhT87UcP+AevjENjugaIwuV7EhQUFIQ9ZhhGre9+paCgAJ999lm9Y+GHPlTWt1LLTK5MjmisSBw94J8eqH/5OOrfX33QA/JxOniA+ne2FvUfnr179+KWW27BwoULsXXrVnz99dfo0KEDPvzwQ2zfvh1A1dI0oGpSqGXLlmjatCnWrVuHTp06hSZrmjdvjujoaLz77rtISEhAYmIi8vLy0KxZM0REVP2Z2K5dOyQnJ+PgpweBWQBmA03aNEFkZGQoplOnTjjyyCNx3XXXITY2FkceeSTOPfdcAAjF1EcwGAQATJo0qdbra9asweGHH44tW7agadOmoT2lWrZsiT/++KPez+Twww/Hxx9/XOureq+qv3LZZZdh69ateOONN9C7Z08Y+8qx/931OLhpE2BxSZoOHtDh9z/Aa4CdcFJKguLi4rDHdDFjUVERNmzYgKKiIl/3obK+lVpmcmVyRGNF4ugB//RA/cvHUf/+6oMekI/TwQPUv7O1qP/wbNy4Eenp6TjppJPQq1cvnHTSSdi7dy9KSkrQt29fVFRUoH379gCA1157Dbm5uUhJScGqVatw8OBBtGrVCgDQvn17lJWV4bvvvkN6ejoyMzPx6quvori4GB06dAjFFBUVIXlGMnAHgH8AR4w5AhUVFejevXsoJi4uDrm5udizZw8yMzNx+umnAwB69erV4Pv59NNPAQATJ06s9fqaNWvw22+/ITMzE4ZhoLy8HACQnZ2Njz76qN7PJCEhAcOGDav1Vf2eavLoo4/i9ddfx9//9jdMWLQIaNIEgdsL0fHOd5AwcCDQpAkwdizwxx8Nvo+60MEDOvz+B3gNsJOA4Xf1KCA/Pz/0PwfNmzevM6ZTp07Yv38/OnbsGLqVlRCdoAeIzlD/RHfoAaIzTuu/oKAAf/xlkuTKK6/E3r17ceKJJ+Kdd96BYRjo0KEDbrvtNvzjH/8AAGzbtg19+/bF1KlT8dhjjyEvLw9t2rTBa6+9hgkTJgAAli5digkTJuC5557DNddcg59++gl9+vRBm1vaIKNFBgCg19Ze+Pmtn/Htt9/i+OOPxwcffIDzzjsP+/btQ3JyMgDgwgsvxPLly5GdnY0WLVrU+3769++PrVu3Iicnp2rZ3P+zZ88e5Ofnh34+cOAARo4cidjYWGzcuBFHHXVUnfWSkpLQvXt3bN68udbr11xzDZ5//vnQ5Mknn3yC4cOHY0i3blj7++9VQZ07A/3SgJ5nAkZP4M03gb17q47ddx/w73/X+150hL//SThE5lEA3ilFCCGEEEIIIY2GZs2a4Y033kBOTg4SEhJgGAbS09ORlpaGm266CQAQCARwxhln4J577sHTTz+Nxx9/HCeccALi4uJw3333AQASExMxaNAg3HzzzXj11Vdx33334ZJLLkGbNm1w5ZVXAqjad6l3797Ifj0b+BHAh8DPb/+Mo446CscffzwAYMSIEWjbti0uuOACvPnmm7jiiiuwfPlynHPOOaEJqe+++w6xsbF48cUXQ+8jNTUVK1aswNatWwEAP/zwA7Zs2YLs7GwAQJcuXbBu3TqUlpYiJiYm9GTBqVOnhp2QEiU7OxvnnHMOkmJjMff33/F9ixb4fulSfL9yJTC5CXDNUOCRR4A9e4CtW4G2bYH//AeYNcvSeQkhh8JJKQm89ihYN8jIyMAzzzyDjIwMX/ehsr6VWmZyZXJEY0Xi6AH/9ED9y8dR//7qgx6Qj9PBA9S/s7Wo//pJS0vDpEmT0LNnTwwbNgz5+fm44IILMHz48FDMCSecgIiICNxwww245ZZb0Lp1a3z55Zdo1qxZKGbgwIEoKCjA5ZdfjunTp+PII4/Ed999h8jIyFDM0UcfjYqcCuBNAF8DLXq0wPr160PHIyMj0b17d2zcuBHjx4/H66+/jlGjRmH58uWhmJKSEpSWliIvLy/02vz58zF69OjQz4MHD8aAAQOwYsWK0Gvffvsthg8fjqOPPhoLFy4EAJx11lmWNbp9+3aUlpYip6QEAwAck5ODY8aPxzHHHINKw8BXX331Z/1+/aqW71VPTEks5dPBAzr8/gd4DbAToafv1fylZJa7774b06dPt1zHTaKjo8Meq94wsKGnPDR2YmJi0KlTJ9efRGh3HyrrW6llJlcmRzRWJI4e8E8P1L98HPXvrz7oAfk4HTxA/Ttbi/qvn+eff77BmFtuuQW33HJLvTGzZ8/G7Nmz641ZvHgxvnjkC+wv2A8AGHLEkFrL7ADgyy+/rLfGqaeeesieQzNmzMCMGTPqzXvllVcOeS0vLw/FxcVhP5Pqpwv+lQULFmDBggV/9nPBBcBbb1XdCdWvXyjOWJKIpKSk2vXj4oAPPwQGDABuvx1YtqzevqvRwQM6/P4HeA2wE6E9pSIiItC1a1d069ZN+gSGYeCzzz7DjBkzGu2kFPeUIqRh6AGiM9Q/0R16gOiMDvrv9Ein0KTU+D7jsWT8Epc7skhlZdUm5u3aVS3R+3+C5UE8/3wSOvWYiPPPfPHQvC5dgLQ0oLgYEHiyoA7ooH9iDtE9pYTulAKqNs8zO6kk8ijQxkD1Ex90pry8HAcPHkRCQkLoUbN+7ENlfSu1zOTK5IjGeuVz9wJeGAvqX00O9S+PV8aCHlCTQw/I4ZVxoP7V5FD/5nH7OVlKPpNffgFKS4Fx42q9PPfrufhXagmQ+hK+630TBnYcWDvvwguBRx8FfvsNOOIIW3ulB7yFV8ahMV0DRPHHbJFDcE+pqjWmjz32mCfW0trZh8r6VmqZyZXJEY0ViaMH/NMD9S8fR/37qw96QD5OBw9Q/87Wov69SzAYdPX8SjRandu+fa2X//XJv0L/fnFDHXdKtWtX9T0tTfA0/veALvrnNcA+hJbvVVRUICIiwvQ6Uav5blN921l6ejratGlTZ4wuty0Gg8HQ+4yNjfVtHyrrW6llJlcmRzRWJI4e8E8P1L98HPXvrz7oAfk4HTxA/Ttbi/r3FjWX713Y60K8edGbrvWiRKM7dgC9egG33Vb1lL3/JzDzz79Xp500DQ+PfLh23m23Vd0ptXOn0J1SOnhAB/0DvAaYQXT5ntCklO5wTylCGoYeIDpD/RPdoQeIzuigf132lKo5KXXnoDvxwJkP1M7jnlKHoIP+iTlEJ6VMOemzzz7Dd999V2/Mnj178Nlnn5kp71kOHjwY9lj13J7f5/gOHjyIr776qt6x8EMfKutbqWUmVyZHNFYkjh7wTw/Uv3wc9e+vPugB+TgdPED9O1uL+vcubu+zq0SjERHAuecCe/cC339fZ0hpaWntF7ZsqYo/7zzhCSkdPKCL/nkNsA9Tk1Knn346TjzxRNxyyy1h146++OKLGDp0qKXmvEZhYWHYYzqZcd26dZ4wo519qKxvpZaZXJkc0ViROHrAPz1Q//Jx1L+/+qAH5ON08AD172wt6t+7eGFSSolG586t+j58OFBScsjhsrKyP38oKQFGjqz6d43lfg2hgwd00T+vAfZhavleREQEmjVrhoKCAowcORKLFy8+5HasmTNn4p577kFFRYWyZt2Cy/cIaRh6gOgM9U90hx4gOqOD/n23fK+aWbOA//wHaNsW+PBDBN4ZEDoUWr63ZUvVhFR6OvC//wH/+lf4ehqig/6JOUSX75l+xt9tt92GwsJCzJkzByeffDJWrlyJ7t27my1HCCGEEEIIIYQ4x7//XfX9P/8BBgzAH82BZb2B1ATg3O8/Bq7qUrVkD+CEFCE2YXp3toiICDz88MNYsGABfv31V5x44on4/PPPVfbmObKyssIe0+VRmJmZmXjhhReQmZnp6z5U1rdSy0yuTI5orEgcPeCfHqh/+Tjq31990APycTp4gPp3thb1712CwaCr51fugX//G9i9Gxg7Fu0OArd9Azz4CXDa8o1Vm5qPHQv88YepCSkdPKCL/nkNsA/Ljwy46qqr8NFHH6GyshLDhw/HCy+8oKIvTxIZGRn2WCAQqPXdr0RFRaFly5aIijJ9k12j6ENlfSu1zOTK5IjGisTRA/7pgfqXj6P+/dUHPSAfp4MHqH9na1H/3iXC5afO2eKBrl2BZcsQ9x/g8JuBU68E7p1/edVT9pYtq3rqnsO9NhYP6KJ/XgPsw/SeUjNmzMD06dNDr/32228477zzsHPnTtx+++1o2rQp7rvvPu4pRYgm0ANEZ6h/ojv0ANEZHfTv2z2l/kJg5p8TK6E9pUi96KB/Yg7RPaWUTXP36NED33zzDYYNG4Y5c+ZgbvXTDHyEHybYrFJRUYHCwkLXx8LuPlTWt1LLTK5MjmisVz53L+CFsaD+1eRQ//J4ZSzoATU59IAcXhkH6l9NDvVvHrefsubUZ1JpWF+ORg/4B6+MQ2O6Boii9N7L5s2b44MPPsD111/v+qMS7SAjIyPsMV3W0qanp2P27NlIT0/3dR8q61upZSZXJkc0ViSOHvBPD9S/fBz1768+6AH5OB08QP07W4v69y5u7ynllBeLCoss19DBA7ron9cA+zC1fE+EDRs2oKioCEOGDLGjvKNU33aWlpaGtm3b1hnTsWNHHDhwAB06dMD+/fsd7tA5SkpK8Mcff6Br166Ii4vzbR8q61upZSZXJkc0ViSOHvBPD9S/fBz1768+6AH5OB08QP07W4v69xY1l++N7TkWyyYuc60XOz1Qc/neHSfegdlnzbZUTwcP6KB/gNcAM4gu37NtUspPcE8pQhqGHiA6Q/0T3aEHiM7ooH/uKUXCoYP+iTkc31NKBwoLC8Meq57b8/scX2FhIb777rt6x8IPfaisb6WWmVyZHNFYkTh6wD89UP/ycdS/v/qgB+TjdPAA9e9sLerfu5SXl7t6fqe8WFZWZrmGDh7QRf+8BtiH8KRUZGSk9Jfbj0tUTUFBQdhjupgxPz8f77//PvLz833dh8r6VmqZyZXJEY0ViaMH/NMD9S8fR/37qw96QD5OBw9Q/87Wov69i9uTUk55UcXeWTp4QBf98xpgH8LL93r16oVAIFDrtczMTGRlZaFnz55h83766SdrHXoALt8jpGHoAaIz1D/RHXqA6IwO+ufyPRIOHfRPzCG6fE/4Vqaff/75kNdmzJiBe++91xcTT4QQQgghhBBCCCHEOSztKfXXO6f8TnZ2dthjujwKMysrC6+99hqysrJ83YfK+lZqmcmVyRGNFYmjB/zTA/UvH0f9+6sPekA+TgcPUP/O1qL+vUtpaamr53fKi8XFxZZr6OABXfTPa4B9cKNzCXSbhKuLiIgIxMbGIiLCXenY3YfK+lZqmcmVyRGN9crn7gW8MBbUv5oc6l8er4wFPaAmhx6QwyvjQP2ryaH+zWPA3b2DnPpMVPztRw/4B6+MQ2O6BogivKdUXcycORP33HMPKioqVPbkObinFCENQw8QnaH+ie7QA0RndNB/57mdsS+/6r2N6zMOS8cvdbkje+CeUvLooH9iDtE9pfSe7pTE77ckilBZWYnS0lLXx8LuPlTWt1LLTK5MjmisVz53L+CFsaD+1eRQ//J4ZSzoATU59IAcXhkH6l9NDvVvHrefsubUZ0IPmO/Dj3hlHBrTNUAUTkpJkJ6eHvaYLmtp09LScP/99yMtLc3Xfaisb6WWmVyZHNFYkTh6wD89UP/ycdS/v/qgB+TjdPAA9e9sLerfuwRLgq6e3ykvFhYVWq6hgwd00T+vAfYh/PS9uiZkDh48CADIyMgIO2Petm1bk615j8TExLDHqtcc+33fqaSkJIwdOxZJSUm+7kNlfSu1zOTK5IjGisTRA/7pgfqXj6P+/dUHPSAfp4MHqH9na1H/3iU6JtrV8zvlxbjYOMs1dPCALvrnNcA+hPeUioiIqFNohmGEFWAgEEB5ebm1Dj0A95QipGHoAaIz1D/RHXqA6IwO+tdxT6l/nPIPPDj8QRe7aRzooH9iDuV7Sg0ePLjOryFDhoQ9dtpppyl5M16hvseCVs/tub3G2m6Ki4vx/fffK3lEqpf7UFnfSi0zuTI5orEicfSAf3qg/uXjqH9/9UEPyMfp4AHq39la1L93cfshV055UcXNFTp4QBf98xpgH8KTUuvWrcPatWulv/xEXl5e2GO6mDE3NxdvvfUWcnNzfd2HyvpWapnJlckRjRWJowf80wP1Lx9H/furD3pAPk4HD1D/ztai/r1LWWmZq+d3yoslwRLLNXTwgC765zXAPoSX761duxaDBw9GZGSk3T15jurbznJzc8PuK6XLbYuGYaCiogKRkZGurhu2uw+V9a3UMpMrkyMaKxJHD/inB+pfPo7691cf9IB8nA4eoP6drUX9e4tay/d6j8PSCe4t37PTAzWX7/39lL/joeEPWaqngwd00D/Aa4AZlC/fGzZsGNq2bYvLL78cy5YtC21yrhN+37xNhEAggKioKNfHwu4+VNa3UstMrkyOaKxXPncv4IWxoP7V5FD/8nhlLOgBNTn0gBxeGQfqX00O9W8Bl4fCqc8koOCN0gP+wSvj0JiuAaIIT0q98cYbGDFiBN59912MHz8ebdq0wTnnnINnn30WBw4csLNHz5CTkxP2mC6PwszJycHixYvrHQs/9KGyvpVaZnJlckRjReLoAf/0QP3Lx1H//uqDHpCP08ED1L+ztah/71JaWurq+Z3yoorlezp4QBf98xpgH1GigRMnTsTEiRNRXl6OtWvX4p133sG7776LVatWIRAI4LjjjsOYMWNw/vnn46ijjrKzZ9fw+zpZEapv53N7LOzuQ2V9K7XM5MrkiMZ65XP3Al4YC+pfTQ71L49XxoIeUJNDD8jhlXGg/tXkUP+NF6c+E3rAfB9+xCvj0JiuAaII7ykVjs2bN+Ptt9/GihUrsHXrVgQCAXTv3j00QXXqqaciIkL4hixPIrIWUpe1tISEgx4gOkP9E92hB4jO6KD/WntK9RmHpePd21PKTlTvKaUDOuifmEP5nlLhGDBgAGbOnInNmzdj9+7dmDt3Lrp164bHH38cQ4cORbt27XDFFVdYPQ0hhBBCCCGEEEII8RFKb2Hq0qULpk6dio8//hgZGRl45ZVXMHToULz99tsqT+MaqampYY/pspY2JSUFM2fOREpKiq/7UFnfSi0zuTI5orEicfSAf3qg/uXjqH9/9UEPyMfp4AHq39la1L93KSm2vteSFZzyoooHe+ngAV30z2uAfQjvKSVLYmIiLr30Ulx66aUoKyuz6zSOUt8tZ9W707u9G7/dJCYmYtSoUUhMTPR1HyrrW6llJlcmRzRWJI4e8E8P1L98HPXvrz7oAfk4HTxA/Ttbi/r3LtHR0a6e3ykvxsbGWq6hgwd00T+vAfZheU+patavX49NmzahsrISp512GgYOHKiirCfgnlKENAw9QHSG+ie6Qw8QndFB/9xTioRDB/0Tc9iyp9T8+fPRvXt3JCQkYMiQIfjxxx9RWlqKUaNGYciQIbjttttwxx134IQTTsDf/vY3y2/CaxQXF4c9Vj235/Zu/HZTXFyMn376qd6x8EMfKutbqWUmVyZHNFYkjh7wTw/Uv3wc9e+vPugB+TgdPED9O1uL+vcuFRUVrp7fKS+Wl5dbrqGDB3TRP68B9iE8KbVixQrccMMN+OOPPxAXF4fPP/8cF1xwAR588EG89957OPXUU3H77bfjiiuuQGJiIhYsWIBXX33Vzt4dJy8vL+wxXcyYm5uLJUuWIDc319d9qKxvpZaZXJkc0ViROHrAPz1Q//Jx1L+/+qAH5ON08AD172wt6t+7lJW6uzWLU14sKbG+d5YOHtBF/7wG2Ifw8r2RI0di/fr1+PTTT3Hcccdh48aNGDJkCCIiInDVVVfh0UcfDcXu2bMHffv2xbHHHot169bZ1LpzVN92tuX3LYiJj0FxeTGKy4pD3w0YuO6M65ByIMX3ty1WVlYiGAwiNjYWERFK98n3VB8q61upZSZXJkc0ViROl1t3veAB6l9NDvUvjxf070Qf9IB8nA4eoP6drUX9e4uay/cu7H0h3pzwpmu92OmBmsv3pp08DQ+PeNhSPR08oIP+AV4DzCC6fE94o/NNmzbh/PPPx3HHHQcAGDhwIEaNGoUlS5bglltuqRXbpUsXjBkzBitXrjTZvjfp/0x/IK7uY9FF7m745xQRERFo0qSJ223Y3ofK+lZqmcmVyRGN9crn7gW8MBbUv5oc6l8er4wFPaAmhx6QwyvjQP2ryaH+zeP2htZOfSYq3ic94B+8Mg6N6RogfE7RwJycHPTo0aPWa4cddhiAqkmov9K1a1fk5+dbbK/xUFZRdRur3x+FmZOTg+XLlyMnJ8fXfaisb6WWmVyZHNFYkThdHgfrBQ9Q/2pyqH95vKB/J/qgB+TjdPAA9e9sLerfu5SWlrp6fqe8qGL5ng4e0EX/vAbYh/CdUpWVlYiJian1WvXPkZGRhxaOivLdutJze5yLNm3aoElUk6qv6CbYkbUDb2537/ZVp6msrER+fr7rv3Ts7kNlfSu1zOTK5IjGeuVz9wJeGAvqX00O9S+PV8aCHlCTQw/I4ZVxoP7V5FD/FnD5TzynPhMVf8vSA/7BK+PQmK4BogjvKRUREYEZM2Zg+vTpoddmzpyJe+65p84nMNR3rLFR31rI37J/w+FPHA7MAVAA36+lJSQcuqwnJ6QuqH+iO/QA0Rkd9F9zT6lxfcZh6filLndkD6r3lNIBHfRPzKF8TykA+PHHH7FkyZJaPwPA0qVLD5lJrj7md3q07IHDWx6OX/ErAMBw+78OCCGEEEIIIYQQQhoBUtupL1u2DBdffHHoa9myZTAMAxMnTqz1evUxv5GWllbn62f1OCv07+LSYqfacYXU1FT873//Q2pqqq/7UFnfSi0zuTI5orEicbqsJ/eCB6h/NTnUvzxe0L8TfdAD8nE6eID6d7YW9e9dVOy1ZAWnvFhYWGi5hg4e0EX/vAbYh/CdUnfffbedfTQKEhIS6nz9rMPPwpN4EgAQrAw62ZLjNGvWDMOGDUOzZs183YfK+lZqmcmVyRGNFYmrfkKJ209ksRsveID6V5ND/cvjBf070Qc9IB+ngweof2drUf/eJSpKarGNcpzy4l/3UzaDDh7QRf+8BtiH8J5SOtPQWsjC0kIktEkA8oHIxEiU5ZT53pSE/BWuJyc6Q/0T3aEHiM7ooH/uKUXCoYP+iTlE95SSWr6nO8Fg3XdBxcfEIzYyFgBQUVmBHVk7nGzLUYLBIH799dewY+GXPlTWt1LLTK5MjmisVz53L+CFsaD+1eRQ//J4ZSzoATU59IAcXhkH6l9NDvVvnsoKd5dpOfWZqHhgFz3gH7wyDo3pGiAKJ6UkyMnJCXssJvLP2ztX/brKiXZcITs7G6+//jqys7N93YfK+lZqmcmVyRGNFYnTZT25FzxA/avJof7l8YL+neiDHpCP08ED1L+ztah/71JaWurq+Z3yYnGJ9b2CdfCALvrnNcA+hJbvHXbYYeaKBwL47bffTOV6ierbznI2PY6k2CIgmAmUZAClOQAMoLwQ7S77Eemp6UAzYOS8kVh1mT8npioqKlBYWIj4+HhERkb6tg+V9a3UMpMrkyMaKxKny627XvAA9a8mh/qXxwv6d6IPekA+TgcPUP/O1qL+vUXN5Xtje43Fsovce6iVnR6ouXzv9pNux5yRcyzV08EDOugf4DXADKLL94R2qausrDxkj6TS0lKkpKRUFYmKQqtWrZCVlYXy8nIAQHJyspLN4bxERGwroPUAIK4NENsaiE4CIiKB7Q8iOvB9KG7d7nUoKitC0+im7jVrE5GRkfUKyi99qKxvpZaZXJkc0VivfO5ewAtjQf2ryaH+5fHKWNADanLoATm8Mg7Uv5oc6l+OAP78W9DtvXOd+kwiAtYXFdED/sEr49CYrgGiCDlt9+7d+P3330NfmzdvRnJyMgYPHozPP/8cJSUlSElJQUlJCT777DMMHjwYHTp0wJYtW2xu31nymp0GtD0VaN4TiG1VNSEFAO1HwCj/89GowYogPt39qUtd2kteXh7effdd5OXl+boPlfWt1DKTK5MjGisSV33Tpd+fneAFD1D/anKof3m8oH8n+qAH5ON08AD172wt6t+7lJWVuXp+p7wYLLW+p44OHtBF/7wG2Iep6d8777wTJSUl+OSTTzBo0CBERFSViYiIwKmnnoqPP/4YRUVFuPPOO5U2+1e6deuGQCBQ6+uf//xnrZg9e/Zg1KhRiI+PR+vWrTF16lTT66Cr7wI7hBbHIGDU/uXs132lysrKkJqa6vrFyO4+VNa3UstMrkyOaKxInC4XJC94gPpXk0P9y+MF/TvRBz0gH6eDB6h/Z2tR/96l0nB37yCnvKhiQ3cdPKCL/nkNsA+hPaX+Svv27XHFFVfggQceCBtz55134pVXXgkt8bODbt264eqrr8aUKVNCryUkJCAhIQFA1XrI/v37o02bNpgzZw6ysrIwefJkjB07Fk888YTweUTWQnZq2xT7M4qB5gBuB45sdSR23OTfp/AR8ld0WU9OSF1Q/0R36AGiMzrov8vcLtibvxcAcGHvC/HmhDdd7sgeau4pNe3kaXh4xMMudtM40EH/xBxK95Sqq7jIbX5O3PLVrFkztG/fvs5jq1evxvbt27F371506NABADBnzhxcccUVmDVrltq1kpFxAIoRExmDUpRiZ9ZO7MrZhcNamNsknhBCCCGEEEIIIcTPmFq+d9RRR2HRokVhn6z3yy+/YNGiRejbt6+l5kR48MEH0apVK/Tv3x+zZs2qtTTvq6++Qt++fUMTUgAwcuRIBINBbNy4MWzNYDCI/Pz8Wl8AkJ6eHjanEtEAgNiI2NBrH/76oen35VXS0tLw8MMPIy0tzdd9qKxvpZaZXJkc0ViROF0eB+sFD1D/anKof3m8oH8n+qAH5ON08AD172wt6t+7lARLGg6yEae8WFhUaLmGDh7QRf+8BtiHqeV777zzDi644AIkJCTg6quvxqmnnoq2bdsiPT0dn3/+OV544QUUFhbirbfewvnnn29H3wCAuXPn4thjj0WLFi3w7bff4l//+hdGjx6NBQsWAACuvfZa7N69G6tXr66VFxsbi5deegkXX3xxnXVnzJiBmTNnHvL6M888g2bNmtWZc+ONNyInJwfNk5oj/9aqSayB8QNxR8c7rLxFz1FeXo78/Hw0b94cUVGmbrRrFH2orG+llplcmRzRWJG4ag+0aNECTz31lFCvjREveID6V5ND/cvjBf070Qc9IB+ngweof2drUf/e4qZdNyG7PBsAcHz88bit422u9WKnBy7ZeUno32cnno1J7SZZqqeDB3TQP8BrgBmKiopwzTXXNLh8z9SkFAC88soruPnmm1FQUFDrsaCGYaB58+Z4/PHHcfnll0vXDTchVJMNGzbguOOOO+T1ZcuWYdy4ccjMzESrVq1w7bXX4o8//sCHH9a+YykmJgavvPIKJk6cWGf9YDCIYPDPpy3k5+ejc+fO9e8pVb2WNrktym4H0gvTER8dj+w7sxETGdPQ2yak0cP15ERnqH+iO/QA0Rkd9N95bmfsy696b+P6jMPS8Utd7sgeuKeUPDron5hDdE8pU8v3AODyyy/Hvn378PLLL+O2227DVVddhdtuuw0vv/wy9uzZY2pCCgBuuukm/PTTT/V+hVsWeNJJJwEAfv31VwBVG7KnpqbWisnJyUFZWRnatWsXtofY2Fg0b9681hcAsaf2VQQxssdIAEBhWSG+2PNFwzmNiNLSUuzZs8f0EwwbSx8q61upZSZXJkc01iufuxfwwlhQ/2pyqH95vDIW9ICaHHpADq+MA/WvJof6N4+ZZVr79+/HZZddhlatWqFp06bo379/re1UDMPAjBkz0KFDBzRp0gSnn346tm3bVqtGMBjEzTffjNatW6Np06Y477zzDpkEycnJwaRJk5CYmIjExERMmjQJubm5tWJEn85eUVkR+vezzz6L008/Hc2bN0cgEDikZl1cccUVOP/88w/Rz7p164Rq0APewivj0JiuAaKYnpQCqjYZnzRpEmbPno3nnnsOs2fPxqRJkyxtIN66dWv06tWr3q+4uLg6czdv3gwASE5OBgCcfPLJ+PHHH2s9AXD16tWIjY3FwIEDpXvLzs4Oe6z6l7NRWYKzDj8r9PqqX1dJn8fLZGVl4cUXX0RWVpav+1BZ30otM7kyOaKxInG6rCf3ggeofzU51L88XtC/E33QA/JxOniA+ne2FvXvXUqDcn+s5uTkYNCgQYiOjsYHH3yA7du3Y86cOUhKSgrFPPTQQ3jkkUfw5JNPYsOGDWjfvj2GDx+OgoKCUMytt96Kt956C0899RQuv/xy5Obm4rzzzkNFxZ+TR5dccgm2bNmCVatWYdWqVdiyZQsmTfpzCV5FRQXOPfdcFBYWYv369Vi0aBGWLVuGO+44dMuV4uLi0L+Liopw1lln4a677pJ676Wlpb73gC765zXARoxGypdffmk88sgjxubNm41du3YZixcvNjp06GCcf/75oZjy8nKjb9++xrBhw4xNmzYZH3/8sdGpUyfjpptukjpXXl6eAcDIysoKG9OxY0cDgNGxdZyRnrfHCMwIGJgBo9/T/Uy/Ry9SVlZmZGRkGGVlZb7uQ2V9K7XM5MrkiMaKxIU80LGjcK+NES94gPpXk0P9y+MF/TvRBz0gH6eDB6h/Z2tR/96i0yOdDMyAgRkwLlx0oVTunXfeaZx66qlhj1dWVhrt27c3HnjggdBrJSUlRmJiojF//nzDMAwjNzfXiI6ONhYtWhT6TP744w8jIiLCWLVqlWEYhrF9+3YDgPH111+H6nz11VcGAOPnn382DMMw3n//fSMiIsLYv39/KGbhwoVGbGxs1d98//8eMQPG7atuP6TXtWvXGgCMnJycBt/35MmTjfPPP/8Q/fy1xpAhQwwAh3z98ssvjcIDOujfMHgNMEP1PEpeXl69cUJ3Sj377LPYtGmT6Ykvq/l1ERsbi8WLF+P0009Hnz59MH36dEyZMgULFy4MxURGRuK9995DXFwcBg0ahAkTJmDMmDGYPXu2qXMKbfQVGYs2RTtxXIeqPa++T/seBwoOmDqfF4mKikLr1q1d3dzNiT5U1rdSy0yuTI5orFc+dy/ghbGg/tXkUP/yeGUs6AE1OfSAHF4ZB+pfTQ71b55ARKDhoBqsWLECxx13HMaPH4+2bdtiwIABeO6550LHf//9d6SmpmLEiBGh12JjYzFkyBB8+eWXAICNGzeirKwMI0aMCH0mXbp0Qd++fUMxX331FRITE3HiiSeG6px00klITEysFSP6dPaIgKVFRQCAQCDQoH6WL1+OlJSU0NfYsWPRs2dPdOzYkR7wEF4Zh8Z0DRBFyGnXXXcdVq5cafokVvPr4thjj8XXX3+N3NxcFBcX4+eff8aMGTPQtGnTWnFdunTBypUrUVRUhKysLDzxxBOIjY01dc78/Pywx4z/3y/eCMQAKatrLeH78NcPw6U1OvLz8/Hhhx/WOxZ+6ENlfSu1zOTK5IjGisSFPGDu2QmNBi94gPpXk0P9y+MF/TvRBz0gH6eDB6h/Z2tR/96lrKxMKn7Xrl14+umnccQRR+DDDz/Eddddh6lTp+KVV14BgNAewH/d87ddu3ahY6mpqYiJiUGLFi1qfSZ/jWnbtu0h52/btm2tmL+ep0WLFoiJiTlkL+JgaRBWWblyJZo0aYKEhITQ19lnn10rpmXLlmjfvj3at2+PhQsXYs2aNVixYgXKysoahQd00T+vAfYhPP2bm5uLPXv2mPryC/Vt9vXnpFQUkPt97X2lfvPPvlLBYBC//fZbracT+rEPlfWt1DKTK5MjGisSp8sFyQseoP7V5FD/8nhB/070QQ/Ix+ngAerf2VrUv3eR3TuosrISxx57LP73v/9hwIAB+Nvf/oYpU6bg6aefrhVX84nuQNV4/vU1oPZn8teYuuLNxABAeXm52Bush0GDBuHOO+/EJ598gi1btmDLli1YsGBBnbEffPAB/vnPf2Lx4sU48ogjUHrgANK//RalBw4AgtpywwO66J/XABsRWQsYCASMiIgIS18zZ86UWH3oLUTWQtZaS/vFJKPs4D4j6YEkAzNgtHighVFW4e7aU0LsRpf15ITUBfVPdIceIDqjg/5r7ik1bsk4qdwuXboYV199da3X5s2bZ3To0MEwDMP47bffDADGpk2basWcf/75xuWXX24YhmF88sknBgAjOzu7Vky/fv2M6dOnG4ZhGM8//7yRmJh4yPkTExONF154wTAMw/jvf/9r9OtXe8/f7OxsA4CxZs0a5XtKjR49WqjGtm3bjObNmxuPzJplGI8+ahg9expG1VRU1VfPnlWvC5zXaXTQPzGH6J5SQgsFJ0+ebHnyq3///pZrNBqShyMqfR2GHzYcS7cvRU5JDr7Y8wWGdBvidmeEEEIIIYQQ4hiDBg3Cjh07ar22c+dOdO3aFQDQvXt3tG/fHh999BEGDBgAoGqFyqeffooHH3wQADBw4EBER0fjo48+woQJEwAAKSkp+PHHH/HQQw8BqHryel5eHr799luccMIJAIBvvvkGeXl5OOWUU0Ixs2bNQkpKSuiJ7bWezv6ZzYNRB1lZWRg1ahTGnngibnvwQaCoCLjwQuDee4EWLYCcHGDZMmDaNGD6dGDJEmDkSOcbJcQuHJoka9RUz/D9+uuvYWOSk5MNAEZycrJhFB0wjC8nG69tfS00037Z8ssc7Ng+0tLSjLlz5xppaWm+7kNlfSu1zOTK5IjGisTV8oCP8YIHqH81OdS/PF7QvxN90APycTp4gPp3thb17y1q3ik16pVRUrnffvutERUVZcyaNcv45ZdfjNdff91o2rSp8dprr4ViHnjgASMxMdFYvny58cMPPxgXX3yxkZycbOTn54dirrvuOqNTp07G0qVLjTvuuMM49dRTjWOOOcYoLy8PxZx11llGv379jK+++sr46quvjKOPPto477zzQscbejo7ZsDA7TDQCsYFD14QyktJSTE2b95sPPfccwYA47PPPjM2b95c79PZJ0+ebJx11lmH6Oevd0oNHjzYOKprV2N3ZKSRMmyYkbJ1q5GSkmIcOHCgdm5KimGce65hREUZxv8/cfCvuOEBHfRvGLwGmEHp0/dIFXFxcWGPVa9BDgQCQJNkoCQVY3tdgBZxLQAAS7ctRVZRliN92kmTJk3Qr18/NGnSxNd9qKxvpZaZXJkc0ViRuFoe8DFe8AD1ryaH+pfHC/p3og96QD5OBw9Q/87Wov69S2RkpFT88ccfj7feegsLFy5E3759ce+99+LRRx/FpZdeGor5xz/+gVtvvRU33HADjjvuOOzfvx+rV69Gs2bNQjFz587FmDFjcO211+LJJ59EQkIC3n333Vr9vP766zj66KMxYsQIjBgxAv369cOrr75aq/cGn85eASALMCr+3CNp/vz5GDBgAKZMmQIAGDx4MAYMGIAVK1Y0OFYN6eezzz7Dtj/+QLeKCiR/8gmSjzkGycnJyMrKqp3bvj3w9ttVd0lNmADk5h5Syw0P6KJ/XgPsI2AYPt+RTAH5+flITExEXl4emjdvXmdMp06dsH//fnTs2BH79u0DNv8d6H45bv/mRcz9ei4AYM6IObj95NudbJ0QxzjEA4RoBPVPdIceIDqjg/47z+2MfflV721cn3FYOn6pyx3ZQ2DmnxMrt590O+aMnGP/SR97rGpp3t69VRNPDZGSAnTpAsyZA0ydan9/DaCD/ok5ROZRAImn7xHJx5+2HwGkrMa1A68NvfTMxmca/VMJysrKkJKSIv0o2MbWh8r6VmqZyZXJEY31yufuBbwwFtS/mhzqXx6vjAU9oCaHHpDDK+NA/avJof7NI/v0PdU49ZmoeJ8N9moYwNNPV+0hVWNCan/+flz19lWYvWb2obnJycDYscC8eYc8lY8esA+vjENjugaIwkkpCbKywi+/q/6lFfrl1eZUIONz9GrdC6d3Ox0AsDNrJ9btXmdzl/aSmZmJZ599FpmZmb7uQ2V9K7XM5MrkiMaKxB3iAZ/iBQ9Q/2pyqH95vKB/J/qgB+TjdPAA9e9sLerfu5QGS109v1NeLC4utlyjwV6zsoAdO6ompWpw2VuX4cWtL+Lvn/8d3/727aF5F15YlZedLXc+E7ENxemif14D7IPL9wSovu0sMzMTrVq1qjOmztsWPxsDnLIQi35+BxcvuxgAcNFRF2HRuEUOda6esrIyZGZmonXr1oiOjvZtHyrrW6llJlcmRzRWJE6XW3e94AHqX00O9S+PF/TvRB/0gHycDh6g/p2tRf17i5rL98b2GotlFy1zrRc7PVBz+d6tJ9yKuWfPtVSvwV537wa6dwc++gg488w6+1g8djEmHD2hdt5HHwEjRgC//w506yZ+PpneBON00D/Aa4AZRJfvRVk6i2ZIfyhtTgMy1uOCXhegTdM2yCjKwPKfliO9MB1t49va06TNREdHhx6f6uc+VNa3UstMrkyOaKxXPncv4IWxoP7V5FD/8nhlLOgBNTn0gBxeGQfqX00O9W+eiAh3F9s49ZmoeJ8N9pqQUPU9JydsSFRUHX+yV8fX2Ahe6HwmYumBKrwyDo3pGiAKl+9JUFBQEPZY9Q1ntW48Sx4BpK5GbFQsrux/JQCgrLIML25+0dY+7aSgoABr1qypdyz80IfK+lZqmcmVyRGNFYmr0wM+xAseoP7V5FD/8nhB/070QQ/Ix+ngAerf2VrUv3cpLyt39fxOebG0zPoyxQZ7bdUK6NkTWBb+zrM6lxEuW1aV17Kl3PlMxDYUp4v+eQ2wD1OTUgMGDMDTTz+N/Px81f14mpKSkrDH6jRjYl8g9wcAqLXh+bObnkWl0TjX3BYXF+P7779Xssbay32orG+llplcmRzRWJE4XS5IXvAA9a8mh/qXxwv6d6IPekA+TgcPUP/O1qL+vUtFRYWr53fKi+Xl1iffGuw1EACuv75qkik1tc6Q0tK/TI6lpADLlwM33FCVL3M+E7ENxemif14D7MPUnlJxcXEoKytDXFwcxo8fj2uuuQannnqqHf15ApG1kGHX0n51BXDUv4HmR2DEqyPw0a6PAAAfXvYhRvQY4UD3hDiDLuvJCakL6p/oDj1AdEYH/dfcU2pcn3FYOn6pyx3ZQ829nG4/6XbMGTnH/pPm5gJduwKnnQa8/TYQFVWrj2UTlmFs77FVP5SXA2PGAJ9/DvzxB5CUZH9/DaCD/ok5RPeUMnWnVGpqKubOnYvDDz8cr7zyCoYMGYLevXvjkUcecX03es/Rexrw40xg3bn4W/sOoZef2fiMi00RQgghhBBCCHGdpCRgyRLgww+rJpxSUuqOS0mpOv7hh8DSpZ6YkCJEBaYmpZKSkjB16lRs3boV3377LaZMmYKUlBRMmzYNnTp1wkUXXYTVq1er7tV1TD0KNqkvcMprwGnLcX6vsWgf2wQA8M7Pb+PAgc9s69UuMjIyMG/ePGRkZPi6D5X1rdQykyuTIxorEqfL42C94AHqX00O9S+PF/TvRB/0gHycDh6g/p2tRf17l2Aw6Or5nfJiUXGR5RrCvY4cCaxcWXUHVJcuWLQUGP8jcOZvQItlHwEXXQR06VJ1/L33qp68Z+V8ErENxemif14D7MPyRufHHXcc5s+fj5SUFLzwwgs44YQTsHTpUpx99tno3r07Zs2ahZRws72NjJiYmLDHAv+/njfwl3W9ISJjEd35fFx9wu0AgAqjEi98dC2Q+onyPu0kNjYWPXr0QGxsrK/7UFnfSi0zuTI5orEicQ16wCd4wQPUv5oc6l8eL+jfiT7oAfk4HTxA/Ttbi/r3Lm6/T6e8GBVp/UH1Ur2OHFm1JG/OHByTCix5E/joVWDof+cDW7cCc+YAe/aEnZCSPZ8qD+iif14D7MPUnlLhyM7Oxssvv4w5c+bgwIEDodejo6MxZcoUPPTQQ2jatKmq0zmGpT2l/sIfuX+g+2PdYcBA5+ad8Hu/Xog88Rkg4TC72ifEEbienOgM9U90hx4gOqOD/rvM7YK9+XsBABf2vhBvTnjT5Y7swZU9perqY0YALYuBZkHgyYtewnknXX7IpuZeQQf9E3PYuqfUX/n4448xceJEdOzYEdOmTUNlZSXuuusu7NixA4sWLQo9re+mm25ScTrXUPEEhq5JXXH2EWcDAPbm78OqNpcA31wLlB20XNsJysvLkZmZqWQsvNyHyvpWapnJlckRjfXK5+4FvDAW1L+aHOpfHq+MBT2gJocekMMr40D9q8mh/s3j9lPWnPpMVDwt3XSvASC7KfBHC6C4WVPhCSl6wD68Mg6N6RogiulJqQMHDuC+++5Djx49MHLkSCxduhRDhgzB0qVLsXfvXtx333044ogjMGHCBHz99dc455xz8M4776js3XFM7SlVB9cNvC7073k/vgkcfTfwzTWAgl98dpORkYGnnnrKE2tp7exDZX0rtczkyuSIxorE6bSe3G0PUP9qcqh/ebygfyf6oAfk43TwAPXvbC3q37t4YU8pJ7xYXFRsuYaKXvPz8205nyoP6KJ/XgPsw9TyvVGjRmHVqlWoqKhAu3btcNVVV2HKlCno1q1b2Jz7778f//nPf1BRUWGlX1eovu0sIyMDrVu3rjNG5rbFisoKdH+se+gW2PcveR9nYw9QkgYcPV15/yopLS1Famoq2rdvX+8eW429D5X1rdQykyuTIxorEqfLrbte8AD1ryaH+pfHC/p3og96QD5OBw9Q/87Wov69Rc3lexf0vADLJy53rRc7PVBz+d4tJ9yCR89+1FI9s73W7GPx2MWYcPQE5edT5QEd9A/wGmAG0eV7pialIiIiMHz4cFx77bUYPXo0oqIa3gTuxx9/xMaNGzF58mTZ07mOyj2lqnl+0/O45t1rAAAdm3XEthu2IfGHfwHtRwCdx6hsnxBH0OWCREhdUP9Ed+gBojM66J97SrnXx7IJyzC291hX+hBBB/0Tc9i6p9Rvv/2GDz/8EBdeeKHQhBQA9O3bt1FOSNXk4MHw+z5Vz+2JzvFdNeAqDD9sOABgf8F+TFs9DTj2UeC354DcHy33ahcHDx7E559/Xu9Y+KEPlfWt1DKTK5MjGisSJ+uBxooXPED9q8mh/uXxgv6d6IMekI/TwQPUv7O1qH/v4vaeOk55MVhmfZmiil6Li8WXEbrhAV30z2uAfZialLr33nuxYsWKemPef/99XHXVVaaa8ipFRUVhj8maMRAIYMH5C5AQkwAAWLB5AVbvXgec9CLw3c1ASbrlfu2gsLAQX3/9NQoLC33dh8r6VmqZyZXJEY0VidPlguQFD1D/anKof3m8oH8n+qAH5ON08AD172wt6t+7lFe4OynllBfLy6y/TxW9lgRLbDmfKg/oon9eA+zD9PK9GTNmYPr08PsfPfjgg7jrrrsa5R5Sf8WO5XvVPPPdM7juvaqNz7skdsGP1/+IZiV7qyamTnkNaJKs5D0QYje8dZfoDPVPdIceIDqjg/51XL5320m34ZGRj7jex5vj38SFfS50pQ8RdNA/MYety/dEKCkpEV7apzPXDrwWZ3Q/AwCwJ28P/vHRP4DEPsDxTwNfXgoU7nW5Q0IIIYQQQgghhBD1mJ6UCgQCdb5uGAb27t2L999/Hx06dDDdmBfJysoKe8zsozADgQAWjFqA+Oh4AMD8jfOx5vc1QPMjgRMXAF9PBg7+br5pxWRmZuK5555DZmamr/tQWd9KLTO5MjmisSJxujwO1gseoP7V5FD/8nhB/070QQ/Ix+ngAerf2VrUv3cJllrfa8kKTnlRZi+ncKjoNb8g35bzqfKALvrnNcA+hCelIiIiEBkZicjISADAjBkzQj/X/IqKikK3bt2wYcMGTJw40bbG3aC+O7+qJ+nCTdbVR/cW3fHQ8IdCP1+94mocLD0IJBxWtcfUN1cDBb/KNxyO4jRg18vA769Lp0ZHR6N9+/aIjo5W148J7O5DZX0rtczkyuSIxorEWfFAY8ILHqD+1eRQ//J4Qf9O9EEPyMfp4AHq39la1L93iQjYtthGCKe8GBFh/X2q6LX672/V51PlAV30z2uAfQjvKXX66aeHhPbZZ5+hS5cu6Nat2yFxkZGRaNmyJc444wxMmTJFykRexc49paqpNCox7JVhWLd7HQDghuNuwFPnPlV1sGg/8NXlwHFPAYm9zL2J3B+BPUuArA1AbBsgeSSw60Vg6AdAhLvGIv6A68mJzlD/RHfoAaIzOuife0q51wf3lCKNFdE9pYQ3fVq3bl3o3xEREbjyyivr3ejcj9i5aXtEIAILRi1Av/n9UFRWhHnfzUNys2T8+7R/I9C0I3DKG1UTU53HAD2uEZ9IKtwL/DAdCERV5fW9G4j4/4nC4gNA6idAh7OE+6yoqEBhYSHi4+NdnXC0uw+V9a3UMpMrkyMa65XP3Qt4YSyofzU51L88XhkLekBNDj0gh1fGgfpXk0P9m8ftp6w59ZlUGtaXo6noVWZZHD1gH14Zh8Z0DRDF1D2JlZWV2k1IAUBGRkbYYyrW0vZo2QOzh88O/fzftf/FtNXTqn7xN2kHnP4+EBEDrD0L2PcOUN8FoSwf2HIXsHEq0PM24MTngNYn/jkhBQBdJwJ/LJLqMT09HXPnzkV6errs21OK3X2orG+llplcmRzRWJE4XdaTe8ED1L+aHOpfHi/o34k+6AH5OB08QP07W4v69y7BoLt7SjnlxeIi63tKqeg1Ly/PlvOp8oAu+uc1wD6El+/pTPVtZ+np6WjTpk2dMSpvW5zz5RxM+2ha6Ocr+1+JZ0c9i6iI/7+xrbwQ+HkukPk10Hc60HIAcHA3UPDL/3/trPre++9A8vD6T7buPODUpUBUE6HegsEg9u7di86dOyM2NtbkO7SO3X2orG+llplcmRzRWJE4XW7d9YIHqH81OdS/PF7QvxN90APycTp4gPp3thb17y1qLt+7oOcFWD5xuWu92OmBmsvmph4/FY+d85ilemZ7rdnHwjELMfEYsb2a3fCADvoHeA0wg+jyPaFJqauuugqBQAD/+9//0K5dO1x11VVCTQQCATz//PPiXXsUJ/aU+ivPb3oe1668NnTb6NjeY/HG2DcQG1VDGMVpwLb7gKK9QHw3oNmRQLMjqr7iuwAimxD+Mh+IbQ10GWe5Z6I3ulyQCKkL6p/oDj1AdEYH/XNPKff64J5SpLEiOikltHzvpZdewksvvRS6dbD6Z5EvP1FYWBj2WPXcnqobz64+9mosHrcY0f+/d9Tyn5Zj1MJRKCyt0UOTdsBxTwCD3wYGPgoceUPVnVEJ3cQmpACg8zhgz1LhvgoLC/HNN9/UOxZOYHcfKutbqWUmVyZHNFYkTrUHvIoXPED9q8mh/uXxgv6d6IMekI/TwQPUv7O1qH/vUl5e7ur5nfJiaVmp5Roqei0JlthyPlUe0EX/vAbYh9DMxe+//45du3bhsMMOC/0s8rVr1y5bm3eagwcPhj1mhxnH9RmHdy9+F02jmwIAPtr1ES5ccqFaw8e1BoxyoDRXKLygoACffPIJCgoK1PVgArv7UFnfSi0zuTI5orEicbpckLzgAepfTQ71L48X9O9EH/SAfJwOHqD+na1F/XsXtyelnPJiaan1SSkVvRYXi+9t5YYHdNE/rwH2wT2lBHBj+V5Nvtz7Jc55/RzkBavuVFs2YRnG9h6r7gS/vw5UlgI9rlRXk2gHb90lOkP9E92hB4jO6KB/HZfv3XrirZh71lzX++DyPdJYUbp8T4ZgMOj67LnfOKXzKXh5zMuhn6etnoaScvHbOBuk02hg/zvq6hFCCCGEEEIIsYwB3kNC/I2pSan169fjnnvuQW5ubui1rKwsnH322UhISEDz5s3x73//W1WPniE7OzvsMbsfhXl+z/MxrPswAMDvub/jsa+tPQmiFtEJQGQ8UJz652slmcCWu4CvrwS+uqLqa9M0ZGVm4qWXXkJWVpa685sgKyvL1j5U1rdSy0yuTI5orEicLo+DtVt7XuiB+pePo/791Qc9IB+ngweof2drUf/eRcWyNis45cXiEvFlc+FQ0avMMio3PKCL/nkNsA9Tk1Jz5szByy+/jKSkpNBrd9xxBz788EMcdthhSEpKwgMPPIA33/TXbZ2BQKDhIBvP/cjIRxDx/xuYz/p8FlIPpjaQJUHXi6o2PK8oAbY/DHw1CehwFjBgNnDsHODYR4CIaMTkfYPmzZsjIkL5TXZSRERE2NqHyvpWapnJlckRjbV7vBsTXhgL6l9NDvUvj1fGgh5Qk0MPyOGVcaD+1eRQ/40Xpz4TFX/7qehVpg96wD68Mg6N6Rogiqk9pbp3744hQ4aEnq5XVFSE1q1bY/DgwVi1ahUKCgrQr18/dO/eHWvWrFHds+O4vadUTa5beR2e2fgMAODqAVdjwfkL1BSuCAIfnVZ119ThfwO6TAD++guwcA+w9d/AKa+qOSfxFVxPTnSG+ie6Qw8QndFB/9xTyr0+lo5finF9xrnShwg66J+Yw9Y9pdLT09GxY8fQz1999RVKSkpw5ZVVG2U3a9YM5513Hn7++Wcz5T2LF25JvHfovWgeW/WBvrD5BWxO2aymcGQscPw84PT3q+6aqmtGPr4LjPIiFOfudX0sKisrUVxcbFsfKutbqWUmVyZHNNbu8W5MeGEsqH81OdS/PF4ZC3pATQ49IIdXxoH6V5ND/ZvH7edkOfWZqNjLSUWv9IA38Mo4NKZrgCimJqXi4uJqrW399NNPEQgEMGTIkNBrCQkJyMnJsd6hh0hPTw97zKm1tG3i22D64OkAqn5R3vrhreouDK2OAyLj6g3JaTEan798NdLS0tSc0yRpaWl46KGHbOtDZX0rtczkyuSIxorE6bKe3G7teaEH6l8+jvr3Vx/0gHycDh6g/p2tRf17l2Aw6Or5nfJiUWGR5Roqes3Ly7PlfKo8oIv+eQ2wD1OTUocffjhWrVqFYDCIsrIyLF68GH369EH79u1DMXv27EHbtm2VNeoFEhMTwx6rXuvrxL5TN594Mw5veTgA4LM/PsPyn5bXG58fzMd3B75DemH4STVRmvQYi0HdC5CUGP72OydISkrChAkTau1r5tX6VmqZyZXJEY0ViXPSA25it/a80AP1Lx9H/furD3pAPk4HD1D/ztai/r1LdHS0q+d3youxsbGWa6joNT4+3pbzqfKALvrnNcA+TO0ptWDBAlx77bXo1KkTYmJi8Pvvv+Ohhx7CHXfcEYo5/PDDccQRR+CDDz5Q2rAbeGlPqWpW7FiB0YtGAwDaxrfFGd3PQKsmrdC6aWu0atIKWcVZ2Jq2FVtTt+L33N8BAJGBSFzQ+wLcePyNGNJ1iPlfHD/cC7Q5BWg/TNXbIT6A68mJzlD/RHfoAaIzOuhfxz2lbjnxFjx61qOu97Fk3BKMP2q8K32IoIP+iTls3VPq6quvxt///ncUFRUhNzcXf/vb33DrrbeGjq9duxa7du3CsGH+mrQoKgp/C2f13J5Ta6xHHTkKw7pXjW96YToW/bgIT214CjM/nYmpq6Zi5qcz8fbPb4cmpACgwqjAm9vfxNCXh6Lv030xb8M8BMvlbr8tKirCD0UnoHznM0rfjyxFRUXYtGlTvZ+JV+pbqWUmVyZHNFYkzmkPuIXd2vNCD9S/fBz1768+6AH5OB08QP07W4v69y4VFRWunt9ODwTw52RQWXmZ5Xoqeg2Wiv+95oYHdNE/rwH2YWpSKhAI4MEHH0RmZiYyMzMxb948REZGho4PGjQIOTk5tSaq/EB+fn7YY06bMRAIYN6589AlsUu9cfHR8Ti508mY1G8S2sW3C72+PWM7bnz/Rpz8/Mn4NftX4fPm5eVh+aqvUVZaAhS7t542Ly8P7777rtQaa7fqW6llJlcmRzRWJE6XC5Ld2vNCD9S/fBz1768+6AH5OB08QP07W4v69y5lZdYna6zglBdLg6WWa6joVWZywA0P6KJ/XgPsw9TyPd3w4vK9agzDQH4wH1nFWcgsykRWUdX3JtFNcEy7Y9CjZQ9EBKrmHksrSrH8p+V4asNTWL9nfahGs5hmeP785+VuCz2wCtizGOg4GohrA8S2BpodAQRMzXMSH8Bbd4nOUP9Ed+gBojM66L/m8r2xvcdi2YRlLndkDxEzI0JP3ePyPTF00D8xh+jyvSgrJykvL8eOHTuQm5sb9jbOwYMHWzkFaYBAIIDEuEQkxiXisBaH1RsbExmDiX0nYmLfidiwfwMue+sy7MzaiYLSAkx4cwJu2H0D/j3432jTtA2iIxvYwDB5BAADKD4AFOwAilOA3B+B7pcBXS8BImPUvUlCCCGEEEKIa/h9E2tCiHuYuq3FMAz897//RevWrdGvXz8MHjwYQ4cOrfPLT2RnZ4c91tgehXl8x+Px3ZTvcHHfi0OvzftuHjo+0hEx98WgxYMt0PPJnrhu5XX4Mf3HUEx2djbeeOMNZOfkAh3OBnpcDfS5Exj4KHD6e0BlObDubGDb/UDOVsDKjXiVZUBB3UsLQ33U85lYQWV9K7XM5MrkiMaKxDU2D5jFbu15oQfqXz6O+vdXH/SAfJwOHqD+na1F/XuX0lLry9qs4JQXS0pKLNdQ0evBgwdtOZ8qD+iif14D7MPUnVL33nsvZs2ahaSkJFx++eXo1KkToqIs3XTVKPDb/xA0i22G18e+jqHdhuLmD25GsOLPTfRyS3KRW5KLnVk78czGZ3BG9zMw9YSpGNRmECIjI+sei8hY4PBrgMOuBNLXAbtfB3LvBOLaAa1OBFodDyT1q4oTYcu/gOzvgI7nA71urbU0MBAIhO9DASrrW6llJlcmRzTW7vFuTHhhLKh/NTnUvzxeGQt6QE0OPSCHV8aB+leTQ/03Xhz7TBSUV9KrRCo9YB9eGYfGdA0QPqeZPaW6deuGQCCA7777Dq1atbKjL0/h5T2lVPFj+o94esPT2Ju/FxlFGcgozMD+gv0oKa/9PwTj+4zHkvFL5IoXpwFZ3wLZG4C0dUC/e4F2Q+rP2fsWkP4pcOxc4JengdSPgW6XAjFJQHxXoNnhcj0Q22nsHiDECtQ/0R16gOiMDvrv+mhX7MnbA4B7SjlBzT2lFo9bjAlHTXClDxF00D8xh617SqWlpeG6667TYkKqJn7eE75v27546tynar2WH8zHy1texhPfPoFfsn8BACzdvhS7s3eja4uu4rOnTdoBnUZVfZUXAp+NAZp0AJofUXd8wW/Ar88Ag1cAgQBw5A1AuzOArG+Aon3AT7NhHPVvVLQ8qfYsbmUFsGcJ0GkMENXE3ED8P4ZhoKKiQskssZVaZnJlckRjVY5HY8cLY2F3D9S/uvfgN7wyFvSAmhx6QA6vjAP1ryaH+reAy38SOfWZGAreqIpeZf4GpQfswyvj0JiuAaKY2lOqe/fuyM/PV92L50lLSwt7zI9raZvHNsfNJ96Mn2/6GbeddFvo9RueuAGpqanmikbFAye9BGz4GxCssU61vKjqLqofZwFfTwZOeLb2ZumJvYDDJgO9bgFOXYLSjf/Ckw9O+7OPjC+r9rJKXwfsmGuutxqkpqZi1qxZ5t+nolpmcmVyRGNF4vzogbpQqQ2v9kD9y8dR//7qgx6Qj9PBA9S/s7Wof++iYq8lKzjlxaLCIss1VPSam5try/lUeUAX/fMaYB+mJqVuuukmrFy5Eunp6ar78TSJiYlhj1XPIvpx9jgiEIEr+18Z+jmrTRaSkpLMF2zaERgwG/jyUmDjbcDas4EvLwMyvwbaDgaGfgTEdwmfH90MxgkLcHXfr9E64xVg7VnAnqXAoIXA8fOBjC+AYmsmSkpKwgUXXGDtfSqoZSZXJkc0ViTOzx6oiUpteLUH6l8+jvr3Vx/0gHycDh6g/p2tRf17l+iYBp7SbTNOeTE2VnAf3HpQ0Wt8fLwt51PlAV30z2uAfZjaU2rPnj2YNm0aNm3ahOnTp2PAgAFhJ2y6dKlncqGRoMOeUg1hGAaOeOII/JbzGyIDkUidlorWTVtbK5r7IxCIBJr3rLWJuTA53wNFe4D2I2rfVZW1AfjteeCE+db6I1L43QOE1Af1T3SHHiA6o4P+uaeUs3BPKeIHRPeUMnWnVLdu3bBs2TLs2rULV155Jfr374/u3bsf8nXYYYeZfgNepLi4OOyx6rk9v+47FQgEMLb3WABAhVGBZT8quBAl9QUSe5uakCouLsYP+wIobjms9oQUUPWUv4riqjuvTFJcXIwffvih3s/ciVpmcmVyRGNF4vzugWpUasOrPVD/8nHUv7/6oAfk43TwAPXvbC3q37tUVFS4en6nvFheXm65hopeS0tLbTmfKg/oon9eA+zD1KTU5ZdfjssvvxyTJ08O/buur0mTJqnu11Xy8vLCHtPBjBf0uiD072Xb3P3fkdzcXCxfvjz8GusBs4EdjwFb7gLK5Q3VYH2HapnJlckRjRWJ08EDgFpteLUH6l8+jvr3Vx/0gHycDh6g/p2tRf17l7LSMlfP75QXg8Gg5Roqei0sLLTlfKo8oIv+eQ2wD1PL93Sj+raznJycsGsrdbhtsdKoRKdHOiHlYApiI2OR8fcMNItt5k4vlZUoLy9HVFQUIiLqmVvd927V5NRJLwLxndXXt7mWmVyZHNFYkTgdPACo1YZXe6D+5eOof3/1QQ/Ix+ngAerf2VrUv7eouXzvgl4XYPlFy13rxU4P1Fy+N/WEqXjs7Mcs1TPba83lewvHLsTEoycqP58qD+igf4DXADPYunxPV9wUnxeICERgTK8xAIBgRRCrfl3lXi8REYiJiWn4M+k0Cjjhmaon+uVsVV/f5lpmcmVyRGNVjkdjxwtjYXcP1L/1PvyKV8aCHlCTQw/I4ZVxoP7V5FD/5nF7Q2unPhMV71NFr/SAN/DKODSma4DwOa0kp6amYt68eZg6dSquvvrq0OsZGRn49ttvXV9vqZqcnJywx3R5FObwTsND/17+s3v/Q5KTk4OlS5fW+5mEaNYDGLQE2HQbUJqrvr6NtczkyuSIxorE6eIBldrwag/Uv3wc9e+vPugB+TgdPED9O1uL+vcuMnsc2YFTXiwJlliuoaLXgwcP2nI+VR7QRf+8BtiH6UmpefPmoXv37rjpppvw5JNP4qWXXgodS09Px8knn4zXXntNRY+egSsdgZOTT0Z8RNVjSd/b+R6C5dbXWpuhsrISwWBQ/JdfXGvg6BnA9/+1p75NtczkyuSIxqocj8aOF8bC7h6of+t9+BWvjAU9oCaHHpDDK+NA/avJof4t4PKfRI59Jgrep4peZf4GpQfswyvj0JiuAaKY2lPq3XffxejRo3Hcccdh+vTp+OCDDzB//vxaT2IYMGAAOnTogPfee09pw24gshZSl7W0ADD57cl4ZesrAICFFy7ExL5ia5w9wddXAUfeCLQc6HYnvkMnDxDyV6h/ojv0ANEZHfRfc0+psb3HYtkEdx96ZBc195S65cRb8OhZj7rSR809pRaPW4wJR01wpQ8RdNA/MYete0o9/PDD6NKlC9auXYvzzjsPbdu2PSTm6KOPxvbt282UJx6n5lP4Ll52MY5++mjM+mwWfs/53cWuBOn/ALD5TqBM/DZYQgghhBBCCCGEqMfUpNSWLVtw7rnnIj4+PmxMx44dkZaWZroxL5Kamhr2mC5raVNSUrBx8UZ0iO8Qeu3H9B/xn7X/QY/He2D0otH4ZNcnti91TElJwT333IOUlBS5xLi2Vcv4vrgIKCtQX19xLTO5MjmisSJxOnlAlTa82gP1Lx9H/furD3pAPk4HD1D/ztai/r1LSbH1vZas4JQXCwsLLddQ0avM3j5ueEAX/fMaYB+mJqUqKysRHR1db0xGRgZiY2NNNeVVmjVrFvZY9dMZ3H4ahd00b94co88dja+u+AqPjnwUJ3c6OXTMgIEVO1bgzFfPxDHzj8FPGT/Z2sc555xT722AYWl7KnDUXcAXlwBhJs8s1VdYy0yuTI5orEicTh5QpQ2v9kD9y8dR//7qgx6Qj9PBA9S/s7Wof+8SFR3l6vmd8mJMTIzlGip6bdKkiS3nU+UBXfTPa4B9mNpTauDAgQgEAvjuu+8AADNnzsQ999wT2lOqvLwcvXv3RnJyMj777DO1HbsA95Sqnz9y/8DrP7yOp797Gvvy/3zvk/pNwisXvOJiZw2w+e9At8uAFse43Ykv0NkDhFD/RHfoAaIzOuhflz2lIu+JRKVRdcfP1BOm4rGzH3Olj5p7Si26cBEu6nuRK32IoIP+iTls3VPq0ksvxaZNm3DfffcdcqyiogLTpk3Drl27cPnll5sp71lKSsLfqlo9t+f3J/SVlJRgx44dtcaia1JX3HXaXdg1dRcWj1uMmMiq/1X4dv+3jvYhTacxwL637auvoJaZXJkc0ViROJ094LceqH/5OOrfX33QA/JxOniA+ne2FvXvLWq+t5oPt3IDOz0QwJ+TQWUVZZbrqei1tKzUlvOp8oAO+gd4DbATU5NSN998M4YMGYK7774bPXv2xLJlVTPlEyZMwBFHHIHHH38cw4cPx9VXX620WbfJzc0Ne0wXM+bk5GDRokV1rm2OjozGhKMmoF+7fgCAHVk7kB/Md7wPYVqdBGR8aV99BbXM5MrkiMaKxNED/umB+pePo/791Qc9IB+ngweof2drUf/epbys3NXzO+XFYEnQcg0VvcrsbeWGB3TRP68B9mFq+R4AlJaWYubMmZg/f36thps3b47rr78eM2fOVLIO1wtU33aWnZ2NFi1a1Bmjy22LFRUVKCkpQVxcHCIjI+uMuX7l9Zi/cT4AYN3kdRjSbYgrfQjxzTXAUf8BErrZU99iLTO5MjmisSJx9IB/eqD+5eOof3/1QQ/Ix+ngAerf2VrUv7foMrcL9ubvBQCM7TUWyy5yb/menR6IuicKFUbVnWA3HX8TnjjnCUv1zPZac/neGxe8gYv7Xaz8fKo8oIP+AV4DzCC6fM/0LnUxMTGYNWsW7rvvPuzYsQPZ2dlo3rw5evfu7eqHZCd+fV8yREZG1vvURQAY2GEgsLHq3xtTNtoyKSXShxCdxgD73gF63WJPfYu1zOTK5IjGqhyPxo4XxsLuHqh/6334Fa+MBT2gJocekMMr40D9q8mh/s3j9obWTn0mKt6nil4jIsQXN0l5oCIf8U0TgUD99emBKrwyDo3pGiCKqeV7NQkEAujVqxdOOeUU9O3b19cTN1y+VzUGb7/9dr1jMTB5YOjf3x34zrU+hGg3DEj9yL76FmuZyZXJEY0ViaMH/NMD9S8fR/37qw96QD5OBw9Q/87Wov69S1mZ9b2WrOCUF4NB68v3VPRaWCS+fE/mfMaytvh62X8te0AX/fMaYB+m75Tatm0bNmzYgMzMTABAmzZtcPzxx6NPnz7KmvMa9W3qp4sZy8vLkZ2djfLy8GvJj2p7FGIjYxGsCGJjykbX+hAiqgnQ7gxgzQig4yjgyBuBQIS6+hZ7NZMrkyMaKxJHD/inB+pfPo7691cf9IB8nA4eoP6drUX9e5fqp9O5hVNerKy0/j5V9CqzsbzM+QJGOYoO5lj2gC765zXAPqT3lPr4449x++23Y9u2bXUe79evHx555BEMHTpUSYNeQGQtpC5raUU54bkTsOHABgBA3j/z0Dw2/BpST1BZBvz6LJD7A3D8vAZvYyWHQg8QnaH+ie7QA0RndNB/zT2lLux9Id6c8KbLHdlDzT2lbj7hZjx+9uOu9FFzT6lFFy7CRX0vUn+SNwLAqUuBLuMsldFB/8Qctuwp9eabb+KSSy5BeXk5unXrhtNOOw0dOnSAYRhISUnBZ599hq1bt2LkyJFYsmQJxowZY/V9kEbKwOSBoUmpTSmbcHq3091tqCEioqvukvrteWDDjcDxT9WemKoIAnnbgNJcoO1gIML0TYaEEEIIIYQQQgiBxJ5SOTk5+Nvf/obo6Gi8/PLL+O233/Dyyy/j/vvvxwMPPICXX34Zu3btwosvvojo6Ghce+21yMvLs7N3x0lLSwt7rPr2ThW3eXqZ1NRU3H///UhNTa037rgOx4X+vfGA+iV8on1I0+NqoOVAFH12Je6/f1ZV/fJiYP14YO8yYM9S4LcFjvVqJlcmRzRWJI4e8E8PKutT//7CC/p3og96QD5OBw9Q/87Wov69S0lJiavnd8qLRUVFlmuo6FVmbx/Z8y1/a7llD+iif14D7EP4do/XX38dOTk5eP755zFp0qQ6YwKBACZPnoyKigpcc801eOONN3D99dcra9Zt6tuFvvrpDG4/jcJuEhIScPrppyMhIaHeuIEd/tzs3I59pUT7MMXh1yAiWIxrey9HfEY8sPNToOctQPthQGU5sHYk0H0SECX2VAIrvZrJlckRjRWJowf804PK+tS/v/CC/p3ogx6Qj9PBA9S/s7Wof+8SFeXuigGnvBgdHW25hope4+LibDvfUUcdZdkDuuif1wD7EN5TasyYMdi4cSP27NnToOAqKyvRtWtXDBw4EG+//baKPl2Fe0rJU1ZRhmb3N0OwIogjWh6BnTfvdLsleQ7+XrVkL7Yt0PqEP1/f+zaQvx046i7XWvMi9ADRGeqf6A49QHRGB/3X3FNqbO+xWDZhmcsd2QP3lJJHB/0Tc4juKSW8fO/777/HaaedJjQDGhERgcGDB+OHH34QLd8oUPFY0MZOMBjErl27GhyL6MhoHNP+GADAL9m/IK9E7VJO0T4s1U83EGw9vPaEFAB0Gg1kbQAyvxWvZbJXM7kyOaKxdo93Y8ILY+GI/hXVp/79hVfGgh5Qk0MPyOGVcaD+1eRQ/3LU/BuwssLdZVpOfSYyT70Lh4pey8rLbDtfWloaPSCIV8ahMV0DRBGelMrKykKnTp2EC3fq1AmZmZmmmvIqOTk5YY/pspY2Ozsbr776KrKzsxuMHZj85xK+zambXetDef1AADjpJWDrXUD+L9Zq2ZArkyMaKxJHD/inB5X1qX9/4QX9O9EHPSAfp4MHqH9na1H/3qW0tNTV8zvlRRV7Z6notaCgwLbzffrZp5Y9oIv+eQ2wD+Hle5GRkbj77rsxffp0ocIzZ87Evffei/LycksNeoHq286ysrLQsmXLOmN0uW2xvLwcBw8eREJCQoPryV/Y/AKuXnE1AODh4Q9j2inTXOnDtvpF+4GvrwJOfx+IiLSlVzO5MjmisSJx9IB/elBZn/r3F17QvxN90APycTp4gPp3thb17y26PtoVe/L2AAAu6HkBlk9c7lovdnqg5vK9G4+7EU+e+6SlemZ7rbl879Uxr+KyYy5Tf743Aigc8BJij7jUkgd00D/Aa4AZRJfvCZ9FcO7Kco6XcXtTPy8QFRWFpKQkodiad0p9ve9rGIahbAM8mT5sq9+0I9BlPPDLU0DPqdZqKcyVyRGNtXu8GxNeGAtP6N+BWtS/9/DKWNADanLoATm8Mg7Uv5oc6t88gQh3N7R26jOJiBBeVBQWFb1G1vOf31bPFx8fDzTwNy49UIVXxqExXQNEkXLa+vXr8dBDDwl9rV+/3q6eXSMvL/y+SNUTcH6biPsreXl5eO+99+odi2r6tOmD2MhYAMCyn5ah91O9cc+n9yClIMXRPmyt3+MqIOVDoDjNei1FuTI5orEicfSAf3pQWZ/69xde0L8TfdAD8nE6eID6d7YW9e9dysrE9ziyA6e8GCy1vqeOil6LiopsO9/GTRste0AX/fMaYB9St/58/PHH+Pjjj4Xj/fZYyPp+AetixtLSUuzbt09oLXl0ZDTOPfJcLP+p6vbeHVk7cPe6u/H4N4/jo0kfYUDyAEf6sLV+IALochGQtgbodrG1WopyZXJEY0Xi6AH/9KCyPvXvL7ygfyf6oAfk43TwAPXvbC3q37u4vXeQU15UsaG7il7LK8S3w5E9X1ZWFrpY9IAu+uc1wD6E95R6+eWXTZ1g8uTJpvK8hMhaSF3W0spSUl6CV7e+itd/eB2f/vFp6PXE2ESsumwVTup0kovdKaLgV2DHY8BxT7jdiavQA0RnqH+iO/QA0Rkd9F9zT6mxvcdi2YRlLndkDzX3lLr5hJvx+NmPu9JHzT2l3hj7Bi4+uu7//LbEGwHg1KVAl3GWyuigf2IO5XtK+WFyiThPXFQcpgycgikDp2BP3h5csuwSfLH3C+QF8zD81eG48fgbkVOcg6ziLLRp2gZHtjoSvdv0xhndz0BMZIzb7YuR0AMo+K32a19cApTmAkf8Deg02pW2CCGEEEIIISQ8/r67iTQOrO/ephHp6elhj+nyKMy0tDTMmTMHaWnh91AKR5fELvjwsg8xrPswAMDB0oN48IsH8eymZ7Hsp2WYv3E+bl99O85+/Wwc+8yx+CnjJ1v6EEGqfiAARDUBygurfg5mA0YlcNqbwO+vWOrVTK5MjmisSBw94J8eVNan/v2FF/TvRB/0gHycDh6g/p2tRf17l2CJ9b2WrOCUF2X2cgqHil5l9vaRPd+7775r2QO66J/XAPvgpJQETZo0CXusev8sv+2j9VeaNm2K448/Hk2bNjWVHx8Tj5WXrMS5R5xbb9y2jG04/rnj8cYPb0j1UV4pvua6PqTfZ8vjgKzvqv6dshpIHgFENQXKi9G0SZzpMTMz3jI5orEicfSAf3pQWd9KLerfe3hB/070QQ/Ix+ngAerf2VrUv3eJjBR/GpwdOOXFyCjr71NFrzGx4qtHZM/Xo0cPyx7QRf+8BtiH8J5SOsM9pdRTUVmB1b+tBgC0S2iHVk1a4UDBAezM2onZX83Gj+k/hmIvOuoiPHbWYygoLcDfP/o71vy+Boe1OAxDuw3F2YefjTO6n4HyynLMWDcDj33zGIZ2H4oVE1dIPT7VMmnrgMyvgaP+CXx1BXDM/4CmHYBN04DDrgCS+jrXi0vQA0RnqH+iO/QA0Rkd9K/LnlLR90aH/pP7puNvwhPnuLNnrHN7Si0Buoy3VEYH/RNziO4pxTulJHB7p30vUFpair1791oei8iISJx9xNk4+4izcWzyseia1BUndz4Zk/tPxjfXfIMr+18Zil28bTF6PtkTR807Cm///Dbyg/nYkroFc7+eixGvjUCXR7ug3/x+eOCLB1BcXoz3f3kf6/esd/Z9tjoeyPiiatleSWrVhBQAtD0N5SlrTY+ZmfGWyRGNVfW5+wEvjIXdPaisb6UW9e89vDIW9ICaHHpADq+MA/WvJof6N4/by7Sc+kwqKiss11DRa3m53NP3ZM6XmZlJDwjilXFoTNcAUTgpJUF2dnbYY7qspc3KysILL7yArKws287RNLopXhj9Al674DW0atIKAJAXzENpRZUxmsc2RwB//u9B9R1WNVm6famlHqTfZ1Q80H4Y8NFpQIsBf77eehDKDqwzPWZmxlsmRzRWJI4e8E8PKutbqUX9ew8v6N+JPugB+TgdPED9O1uL+vcupUF3/yh3yoslJSWWa6joteBggW3nW7t2rWUP6KJ/XgPsg8v3BKi+7SwzMxOtWrWqM0aX2xbLysqQk5ODFi1aIDo62vbzZRRm4I7Vd+DV719FTGQMpp08Df867V8oLCnEu9vexYrdK/DBrx+gvLIcA9oPwPaM7QhWBNEuvh32377f9BI+0++zNLfqe0xS6KXKT0Yis+8raNGypfSYmelDJkc0ViSOHvBPDyrrW6lF/XsPL+jfiT7oAfk4HTxA/Ttbi/r3FjWX743pOQZvTXzLtV7s9EDN5Xs3DLwBT533lKV6ZnutuXzvldGvYFL/SerP90YAeUc/h6a9JlvygA76B3gNMIPo8r0oS2fRDDfF5xWio6PRtm1bx87XJr4NXrngFUwfMh3NY5ujbXzVuRNiEnDNydfgmpOvQXphOn7N/hUndDwB45eOx9s/v420wjSs37MeQ7oNMXVe0++zxmRUNREt+6Ft9D4gup0jfcjkiMY6/bl7GS+Mhd09qKxvpRb17z28Mhb0gJocekAOr4wD9a8mh/o3T0SEu4ttnPpMVLxPFb1GRYr/yS57vsTERKCBv3HpgSq8Mg6N6RogCpfvSZCfnx/2WPUNZ36/8Sw/Px+rV6+udyzs4PCWh4cmpP7aR9v4tjil8ymIiojC+D5/btRnZQlffe/znZ/fwekvnY5rVlyD5zY+h6c3PI3rV16P0YtG48lvn0RxWXGt+INtx2PPupmmxszMeMvkiMaKxNED/ulBZX0rtah/7+EF/TvRBz0gH6eDB6h/Z2tR/96lrKzM1fM75cXSMuvLFFX0Wlxc3HCQyfNt3brVsgd00T+vAfYhNCl1xhlnmPoaNmyY3f07SjAYDHtMFzOWlJRg586dStZY29HHqCNHITYyFgCw7KdlpjcoDFf/YOlBTHprEj7941M8v/l5XLvyWtzw/g2Yv3E+VuxYgZs/uBmHP3E4tqRuCeUURXeDkf8rSgpzlfWhKkc0ViSOHvBPDyrrW6lF/XsPL+jfiT7oAfk4HTxA/Ttbi/r3LpUV7u4d5JQXZTYYD4eKXoOl4f8GtXq+AwdSLHtAF/3zGmAfQntKmb11MRAIoKLC+lML3EZkLaQua2kbA2MWjcE7O94BEP4RqvnBfLz/y/sY2m0o2iWIL6t75rtncN171zUY16ZpGzx45oPomtQVQ7sNReC354CoZkA3Gx7n6hHoAaIz1D/RHXqA6IwO+q+5p9TY3mOxbMIylzuyh5p7St10/E144pwnXOmj5p5Sr499HZccfYn6k7wRAE5dAnQZ33BsPeigf2IOpXtK+X0nfeIvLjn6ktCk1OS3J6NpdFOM7jW6VszfVv4Ni35chDZN2+Dra77GYS0Oa7CuYRiY99280M/3D7sfLeJaICYyBl2TuiIhJgFTP5iKb/Z/g4yiDFy14ioAwLxz5uH6/pOAz8YAXSYAJjdfJ4QQQgghhBBC/AT3lJIgIyMj7DFdHoWZnp6Oxx9/HOnp6Z7tY1yfcbj06EsBAGWVZRi3dBze+unPJ4TkB/OxbHvV/+5kFGXg7NfPRlZR7Ude1qxfWlGKKSum4MQFJ+L7tO8BACd1Ogn/PPWf+Ntxf8OVA67EGd3PwAkdT8Cqy1ahf/v+tWpNXzsdD897GgVJw4Ddryl7nypyRGNF4ugB//Sgsr6VWtS/9/CC/p3ogx6Qj9PBA9S/s7Wof+8SLBFfTmYHTnmxqLjIcg0Vvebl5dl2vvfff9+yB3TRP68B9sFJKQliY2PDHgsEArW++5W4uDj06dPn/9g77zApqqUPvzOzObG75BwlCSLBHABzBCMKBhBzvsb7Xb1XxRzQq9eAioiJYAAVxIAiYCTnnNPCLptzmpn+/uidtJO6e3pmenfO73n2mZk+VXWqT1f16a2uU4ekpCTD6mE2mfn4so+54Th561Sr3cqYr8Ywd+tcABbuXki93VWgcUfhDq6dc61f+Z+u/5QP1n7AysMrne13DrvTp16ZSZksGb+Edy9+13msoLqAnS12IvW8FfZMh83PQ43/AKfS89SDRymtEjrhA81HBz3lhyJL2L/xYAT7j4QewgfU08WCDwj7j6wsYf/GhdkS3X8hI+WLFkvoqxv00DUhISFs/XXq1ClkH4gV+xdzQPigqKaUP9TU1LBy5UoOHz7stwj4jTfeqFk5o0DUlGqasNltTJw3kU/WfwKAxWRhzpg5zN0213ksKS6JGqtcxG3NbWsY3H6wl5zr5l7HzI0znb+HdRjG7zf9TlJcYEfdkr+FAe8MQEKiZXJLtt+znZaJ6bDvU6gthP6P6nWqhoDwAYFYhrB/gViH8AGBWEYs2H+s1JRKeCbB+fL67hPu5q2L3oqKHhGrKXXa59B1TEhiYsH+BbRBaU0pzWHut99+mw4dOjBixAjGjRvHTTfd5PE3YcIEbrrpJq3iDYlob39qBNTX15OXlxf1sVCih8Vs4cNRHzLh+AkA2CQbE76dwPzt8wFIS0jjpXNectJ/uPZDL/l1dXUs3bcUgDhzHDkP5rDilhVBA1IA/Vv3d04ghdWFPLLwEbAkQOcroXidbucZCo9SWqNcdyPACGMRbh30lB+KLGH/xoNRxkL4gD48wgfUwSjjIOxfHx5h/9oR7WVakbomepynHrpabcp3AVTbX0lpifABhTDKODSlOUApNAWl5s6dy7333kvnzp2ZPHkykiQxevRonn/+eS644AIkSeLKK6/kww8/DC4sRCxYsICTTjqJ5ORkWrVqxRVXXOHRfuDAAS699FJSU1Np1aoV9913H3V1dZr6Kiws9NsWK2tpCwoKePfddykoKGgSeljMFqaNmsbV/eVdJUpqSiiuKQbggl4XMH7QeGeAacbGGc6sKYf8NXvXkFOeA8CIbiPokN5BVWrqy+e+THp8OgDT10/nsUWP8dWuX1hZuN8/U/luKFju/zxtdbDybijdCrYasHtOVGqukVJaJXTCB5qPDnrKD0WWFl5h/+GFEew/EnoIH1BPFws+IOw/srKE/RsXdbXa/pfSC5Hyxerq6pBl6KFreXl52Pr7+eefQ/aBWLF/MQeEEZIGnHHGGVLbtm2lyspKSZIkyWQySZMmTXK2z5gxQ4qLi5MWL16sRbxifPXVV1JWVpY0ZcoUafv27dK2bdukL7/80tlutVqlAQMGSCNHjpTWrFkj/fzzz1KHDh2ke+65R1U/paWlEiDl5+f7penYsaMESB07dtR8Pk0BtbW10qFDh6Ta2tompUdhVaHU9pW2Ek/h/Pt43ceSJEnS9XOvdx6bvXG2h/ypK6c6255Z+owmXd/46w2Pfh1/X274zJvYWiNJv5wtSX+M9X+ey26WpF3TJOnnEZI0v58k7fvcQ4SasVFKq4RO+EDz0UFP+aHI0sIr7D+8MIL9R0IP4QPq6WLBB4T9R1aWsH9joct/uzifYS+bdVlUdQmnD8Q/He88zzvm3RGyPK26evzPsubj8PQ3A6lwzTsh+0As2L8kiTlACxxxlNLS0oB0mjKlNmzYwKhRo0hJSXEes9lszu/jxo3j7LPP5umnn9YeLQsCq9XK/fffzyuvvMIdd9xB79696dOnD1dddZWTZuHChWzZsoXPPvuMwYMHc8455/Dqq68ydepUysrKVPeppshcc0VCQgIdO3aM+lio1SM7OZt3Ln7H+dtsMnPRMRcBMPH4ic7j09ZO85D/Z86fzrYzu56pSdd7Tr6Hf5z0D8wmT3e7eu71PPfbc6zPXS8fsNfDyjugz71QVwyS3fs868ugrhR6ToSzfoGTPoDynR5y1YyNUlpV422rgarDwemaKIzgA+HWQU/5ocjSwht1+2/mMMpYCB/Qh0f4gDoYZRyE/evDI+xfO8zm6BY6j9Q10aPQuR66xsXFha2/7Oxs4QMKYZRxaEpzgFJouqPU19fTunVr5+/k5GRKSko8aI477jjWrFkTknKBsGbNGnJycjCbzQwePJj27dtz4YUXsnnzZifN33//zYABA+jQoYPz2Pnnn09tbS2rV6/2K7u2tpaysjKPPwicOik11IuXtNeNbxIoLy9nyZIlqtJIjaLHFf2u4O4T7gbglsG30CqlFQDDuw2nW2Y3AH7d+ys11hqn/CV7lwCQaEnkxI4natK1sqKS0Umj+fP6P3nizCc82v69+N+cMf0MCoq2w+9XQYdLoNNoyBoEJRsoLz7Cb4sXus7z6O/QpiE4ZrZAWk+o2O0hU83YKKVVQue0fWslbHgcdr0P9dG1k3DACD4Qbh30lB+KLC280bZ/MQc0Dz2ED6iniwUfEPYfWVnC/o0La73yGkfhQKR8UWvJF3fooauaZYRq+9u8ZXPIPhAr9i/mgPBBedjVDR06dODIkSPO3127dmXt2rUeNPv371cV1VWLPXv2APDUU0/x2muv0a1bN1599VWGDx/Ojh07yM7OJjc3l7Zt23rwZWVlkZCQQG5url/ZL7zwApMmTfI6Pm/ePDIzM33yOG4W1dXVzJo1S+NZGR+1tbUcOnSIffv2kZiY2OT0OI3TGNRzEKnlqR7XqYu9C/vYh02yMfnTyXQydWLzwc3ss+8DoHtCd77+8uuQdO3UqRN9E/vyTo93+Oe+hym3VwFQXlfOkrnnkZpyJyWH6+DPWbSVzHTZ8iBp9hy61day7MCVFCQMY7D0GbsZQdmaBt0liTNZx297Z3n1p2RslNIqoXP4gM1mY/OeYur3LIYVi9lqGqVmuAwPI/hAuHXQU34osrTwRtv+xRzQPPQQPqCeLhZ8QNh/ZGUJ+zcWqiqrnN9zDudE9TzD6QPudZF279kd8nnqoeuKlStI2Z0SnFBlf2OB7du2szJvTkg+EAv2D2IO0IKqqqrgRKCtptTYsWOlQYMGOX8/8MADktlsll544QVp06ZN0rvvvivFxcVJF1xwgWrZTz75pAQE/Fu5cqU0Y8YMCZDee+89J29NTY3UqlUr6d1335UkSZJuvfVW6bzzzvPqIz4+Xpo1a5ZfHWpqaqTS0lLn38GDB4OuhYyVtbTNFf9b9j/nuu0pK6dIkiRJMzbMcB7796J/69rfptyNUpvnEpzyP1rUqM5ZfZUk/XSKJFUdlqTKQ5L05/Xy8V8vkCS73ZN28cW66qYVTh9olSQfsNVL0q/nR1cpAYEIQcwBArEO4QMCsYxYsH/3mlKXz7482uqEDe41pe5ecHfU9HCvKTVjw4zwdDIDSdo3O2QxsWD/AtqgtKaUplSmq6++mscee4x9+/bRrVs3/vWvfzFnzhwef/xxHn/8cSRJokWLFrz88suqZd9zzz1ce+21AWm6devmTCfr37+/83hiYiI9evTgwIEDALRr147ly5d78BYXF1NfX++VQeWOxMTEqEY/BSKPIe2HOL+vOSIvO/1t/2/OY8O7Dde1v2PbDuC9/qdw+fqlABwkzZMgLhnO+8v1u64E8pZCSkdovPufJQms1TJPNGFrSC02x7k+41vIS/gadiAUEBAQEBAQEBBoejChfPdpAQEBATXQVFPq8ssvZ+vWrXTr1g2A1q1bs27dOl588UVuu+02nn/+eTZt2sTAgQNVy27VqhV9+/YN+JeUlMTQoUNJTExk+/btTt76+nr27dtH165dATjllFPYtGmTx1LDhQsXkpiYyNChQ1XrJraChfz8fKZMmUJ+fn6z0mNQu0HOyXbNkTXk5+fzzbpvAIgzx3FKp1M0y/ana6fO5zu/H6oqDshbnnEmrL4fBr/qTZTWAyr3Bu1PjW6q6Sr2OetHSSa3onipXaAqJ6geTQlG8IFw66Cn/FBkaeGNiv0j5oDmpofwAfV0seADwv4jK0vYv3FRW1sb1f4j5YtV1QqXHgWAHrqWlpXq3p9dsvNzJXz0w1ch+0Cs2L+YA8IHTZlSBw4cICEhgXbt2jmPZWVl8cgjj+imWDBkZGRwxx138OSTT9K5c2e6du3KK6+8AsiZXADnnXce/fv354YbbuCVV16hqKiIhx9+mFtvvZWMjAzVfcbHx/ttMzVkr5gaZ7E0MyQkJNCtWzdD7Dqgpx5pCWn0adWHbQXb2Hh0I/m1+eTZ8gAY2n4oqQmpuuvaqfuVwGMAHCo7FJDX3m0I9B8PCS18KN8TyndBi/4B+1Ojm2K6Q9+CyQL7ZyPFZwL5cuaWA8mdoOogtOgbVJemAiP4QLh10FN+KLK08EbU/t0g5oDmpYfwAfV0seADwv4jK0vYv3FhhN33wuUD7tfQYtZn971QdVW7+56S/qavnc4thyHe9DU77ZNDkhkr9i/mgPDBJEnqy+RbLBYmTJjAtGnTwqGTYtTX1/Ovf/2LTz/9lOrqak466SRef/11jj32WCfNgQMHuOuuu/j1119JTk5m3LhxTJ48WdXyvLKyMlq0aEFpaanfYFanTp3IycmhY8eOHDrkO8AgYGxcP/d6ZmycAcDjZzzOc78/B8Cjpz7KS+e+pHt/dslO4jNxWCWJQW0Hse6OddoE5f8Fh7+HQc/qql9Q2G2w+FxoMxISWtDp7Je9feDgXKgrhZ43RVY3AYEIQ8wBArEO4QMCsYxYsP9ur3djf+l+AC7vezlzr5kbZY3Cg8RnE6mzybvu3TXsLt6++O2o6GGa5ArwfHb5Z1x33HVhkz/l4incMewOzbJiwf4FtEFJHAU0Lt/Lzs4mOztbs3J6IT4+nsmTJ5OXl0dZWRk///yzR0AKoEuXLnz33XdUVVVRWFjIm2++qblelNUa3e1PjQCr1UpRUVHUxyIcerjXlfrvsv86v5/Z9cyQ5PrT1Wwy0zGtPeA/U0rRebY6BQqXg61G5qmroebPu7AvuRT+HAv7/O+CoXQcfdKVrINWp8LA/0Cf+3wzJneCquY1ORnBB8Ktg57yQ5GlhVcNT0j2H6MwylgIH9CHR/iAOhhlHIT968Mj7F87NOQ06IpIXRO7FPpyND10tdltYe3PZgssX/iADKOMQ1OaA5RCU1DqjDPOYNmyZXrrYniImlLyGtM333zTEGtp9dbDPShVVS+vITdh4rQup4UkN5CunTK7A1BYXUh1fbXz+LaCbbz616ts2b8l+HmaTNB1LOx4CySJqrUv8POKQ+T1ngInTIHd0+SsJpW6BaSTJMj5Dtq4CsD79IGUTlDdvIJSRvCBcOugp/xQZGnhVcOj2f59QMwBzUsP4QPq6WLBB4T9R1aWsH/jwgg1pSLhi9XV1cGJgkAPXcvLysPaX0VFRUgyY8X+xRwQPmhavrd9+3ZOPvlk/vGPf/D444+rWufaFOFIOzt69CitW7f2SRMraYu1tbUcOXKE9u3bR3WHwnDoUVpTSuZLmR7Hjm97PGvvWBuS3EC6XvvVtXy++XMAdt67k17ZvdhRuIOh7w+loq6Cq/pexSsnvRL8PO31sPkFyP8TW2JbDnaYRPsOHWSeVfdDn3shvZcq3QLSbXkFqg7A4Mlgkfl8+oDdBr+eBWf9Amb/NdmaEozgA+HWQU/5ocjSwquGR7P9+4CYA5qXHsIH1NPFgg8I+4+sLGH/xoL78r3RvUfzzdhvoqZLOH3Affne7UNu591L3w1JnlZd3ZfXTb90OhOGTNC1P3f5b57/JvecfI9mmbFg/yDmAC1QunxPUzTppZdeYsCAATz99NO8//77DBo0iLZt23oVNzOZTFGvO6Unoml8RkFiYqJz18XmpkeLpBYMbjeYtblyEKp1SmteOOeFkOUG0rVTRifn9+WHlvPwwof5dvu3zmNfbfuKL8Z8EbxwoDkeBj4BgAXw6K1Ffyjd4jMopXQcPeislXDkJzhrIZiCJFuaLdD9Rtj7KfScGLSfpgAj+EC4ddBTfiiytPCq4dFk/zEOo4yF8AF9eIQPqINRxkHYvz48wv61I9qFziN1TfQodK6HrmoSQLT0F0y+8AEZRhmHpjQHKIWmO8pHH33En3/+iSRJHDlyhB9//JGPP/6Yjz76yOuvOSFQaqMj4Szaa6zDjYqKCv7888+gaZ5NVY/Pr/qcp4Y/xZwr5vDlyV9yervTQ5YZSFf3oNT1X1/vEZByYP7i+arO06u/FsdC6WbVuvmkKy+DZTfBgMe9AlJ+faDVqVC2VbH+RocRfCDcOugpPxRZWnjV8Ki2fzEHGML+I6GH8AH1dLHgA8L+IytL2L9xEe2aOpHyxfr6+pBl6KFrTU1NWPsLthwzmMxYsX8xB4QPmoJSe/fuVfS3Z88evfWNKiorK/22xZIz/vHHH4ZwxnDocUzLY3hyxJOc2vpUlv21TLcHMn+6ugel/OHbZd+qfiDz6M+RKaVSN1909m3/g7Yj5b9G8OsDqd2gYp9i/Y0OI/hAuHXQU34osrTwquFRa//iHxJj2H8k9BA+oJ4uFnxA2H9kZQn7Ny6MEJSKhC/qFZQKVVe1QSm1/dXUBpYfTGas2L+YA8IHTTWlYg1K1kLGylpaAX2xJX8Lx77juWPkMyOfoXNGZyZ8OwGAyedO5qFTHwqtoyUXw4gFocmoLYK/roMR38vF1RshoA8suVTeoe/obzDomdD00AtHfoaM3pDaNdqaCDQDiDlAINYhfEAglhEL9u9eU+ryvpcz95q5UdYoPHCvKXXXsLt4++K3o6KHe82nTy//lOuPuz5s8qdcPIU7ht2hWVYs2L+ANiitKaUpU2rixInMmzcvIM3333/PxInNo4aMgEC40L91f+478T7n7+S4ZO4cdicD2w50HttwdEPoHSVkQ+VBv8211lrKassCy9jyEvR72GdAShH2fgIFf0GFATIoq3Jg0yTY+HS0NREQEBAQEBAQEBAQEIhZaK4ptW7duoA0Gzdu5OOPP9Yi3rAoLCz02xYrW2EWFBQwbdo0CgoKmrUeesoPJuv1C17nlXNfoV+rfrx54Zu0TGlJv1b9MDfUbFqyZYkqPXz21/Nm2O296UBBQQH/mfIfur/enZYvt+SLzV/w/O/PM2fLHA+64r2/s3vjEgriBvntN6APJLWCuBQY9jZsnKT4XMKGgmXQfTzUqt/q1Ag+0JzsX29eNTxKaZXQiTmgeekhfEA9XSz4gLD/yMoS9m9c1NXVRbX/SPlidU11yDL00LW8vDys/QVbphVMZqzYv5gDwgdNu+8pQU1NjaqdApoCLBb/OzA4dkcLuktaE0dcXBytW7eO+rUNtx56yg8my2Qy8fCpD/PwqQ87jyXHJ9O7ZW+2FWzjsPWwqvCxz/7aDIfNz4HdCmbX8VqpljeL3qTUWgrANV9dI+uEiW33bKN3y94AJBX8wOH0K2kZYDwC+sBJ01yF0WsLwV4v7xgYLZRthXbnwKHAGZ++YAQfaE72rzevGh6ltEroxBzQvPQQPqCeLhZ8QNh/ZGUJ+zcuon2ekfJFPXYZ1ENXs0W5Hlr6C3aeSv6Xcf9srhBzQPigqaaU2Wxm0qRJ/Oc///FqkySJQ4cOcdVVV3H06FH27t2ri6LRhKgpJRANjJ49mnnb5aBJzoM5dEjvEJrAra9Bei/oNMp5aMm+JYz82LtoOcBHoz9i/PHj5R9/XAMnfQDx6X7FK/aBDU9Bhwug1ckaTkInrHkIet0ufw7/1msnQQEBtRBzgECsQ/iAQCwjFuxf1JSKLERNKYHmAN1rSpnNZiwWizNb6KmnnnL+dv+Li4ujW7durFy5kmuvvTb0MzEQbDZbtFWIOmw2G+Xl5VEfi3Droad8rbLap7V3fj9UqvwG77e/HuPlJXxucej1uev9ytmQ56plJdWXU16jkw+0OxuOLAxdTiioK4aELLnIeeU+VaxG8IFYsH+tvGp4lNIa4ZobBUYZC+ED+vAIH1AHo4yDsH99eIT9a0e098mK1DXR4zz10DVcPuBAsGV3wgdkGGUcmtIcoBSKg1Jnnnmm889kMtGlSxePY46/kSNHcuWVV/LOO+/w7LPPhlP3iCM/33/9mVhZS3v06FFee+01jh492qz10FO+VlnumVFbD20Nvb/EltDhIlg+0RmYWrV/lbP5w1EfMneM663XxqMb5S+2WmrrCXoOin2g1amQ/7tHcCzsqCnw7K+uBBIyIXMglGxUJcoIPhAL9q+VVw2PUloldGIOaF56CB9QTxcLPiDsP7KyhP0bF7W1tVHtP1K+WFVdFbIMPXQtKwuyGVGI/QWrWRVMZqzYv5gDwgfFCwWXLFni/G42m7npppt44oknwqGTYZGZmem3LVbW0mZlZTF27FiysrKatR56ytcqyz0oVY7yAocB+zvmdqg6BLk/Q/vz2Fm209l0Zf8rSU9Ip1VKKwqqCvh5z8/c8vX1/KPqe/r2vTXoOSj2AbMF0npC5X5I66b4vELCmn9A//+DzAFQXw71JXJNq4w+ULQqGLcHjOADsWD/WnnV8CilVUIn5oDmpYfwAfV0seADwv4jK0vYv3ERnxDFuqBEzheTEpNClqGHrqmpqWHtLyUlJSSZsWL/Yg4IHzRVr2ruUVB/SEryf2OKFWdMSkqid+/e0VYj7HroKV+rLPegVH618l3iAvVXUVfBr3H9OGPTq2S2O5ctBVsA6NqiKxmJ8jrfgW0GsnjfYgCmbZjB2hbtWH3tJHpbAk/MqnygxQAo2xa5oFTJJqhpiPZvehry5PMjsZVceF0FjOADsWD/WnnV8CilVUIn5oDmpYfwAfV0seADwv4jK0vYv3FhMfvf/CkSiJQvBtrkSin00DU+XnkQUEt/weQHkxkr9i/mgPBBU3XfQ4cOMW/ePEpKSny2FxcXM2/ePHJyckLRzXCorKz02+ZYcxztNdbhRmVlJStWrAg4Fs1BDz3la5XlHpQ6UHxAl/6um3sdo7+6jjHb1vHb7h8or5MzsAa0GuCkuX3o7cS77Yy3pjSXrXl7g56DKh/I6ANl25WeUmiwW6F8O1Q1jGHRGlebhqCUEXwgFuxfK68aHqW0SujEHNC89BA+oJ4uFnxA2H9kZQn7Ny6sNmtU+4+UL9Zb60OWoYeuapZLaukvmPxgMmPF/sUcED5oCko999xz3HTTTSQnJ/tsT0lJYeLEibzwwgshKWc0BFpvGyvOWFZWxsKFC1WtbW6KeugpX6ssrYXOA/Xn2M3vl6KjPPXrv5zHL+56sfP7NQOuIffhXC7ve7nzWP+p/fnqp68CnoPqoNThBXIGU7hRWwhJ7WDZTbBgIJgT4OpSuS0hG+rUBaWM4AOxYP9aedXwKKVVQifmgOalh/AB9XSx4APC/iMrS9i/cWGtj25QKlK+WFdXF7IMPXStrq4Oa381NTUhyYwV+xdzQPhgkjRYT+/evRk6dCizZs3ySzNu3DjWrFnDtm3bQlLQCFCylaHYClNAb9glOwnPJGCTbAxuN5g1t68JzhQAVruV+Ge803PbJCRz8JFiEuISPY6vy13H4PcGO38/fMrDvHLeK37lq/IByQ4/ngCtT4Nh/1N3ImpRsgnW/RMOfw+9boPu46H1qa72JZfC8HnQzFOOBcILMQcIxDqEDwjEMmLB/ru93o39pfsBuLzv5cy9Zm4QjqaJxGcTqbPJwai7ht3F2xe/HRU9TJNcz6WfXPYJNwy6IWzyp1w8hTuG3aFZVizYv4A2KImjgMZMqZycHLp16xaQpmvXrs1u+Z6AQCRhNplpny5nSx0uPxyyvKLqIp/Hb2mZRsKRH7yOD2o7iDHtujt//33o75B1cMJkhgtWQfnO4LShorYAsgZD73vhxPc8A1IAh7+Dg1+FXw8BAQEBAQEBAYEmA4nmnfkjIGAUaApKJSQkKEp1bW7FzoqKfP9TD7GzFWZhYSGffPIJhYXqljw1NT30lB+KrDbJbQA4WnkUq11ZqrS//vIrvYulm4Bulpuo3TXTu81k4vO+A+mR1QOAFYdWkHs012+/qn3AZIK4NLBWQl0J5HyvjE8tavMhvbf/jKxTZ0CV8gC6EXwgVuxfC68aHqW0SujEHNC89BA+oJ4uFnxA2H9kZQn7Ny70WNYWCsLpAyZc/79W1yhfNucPeuhaUVER1v4qKgPLDyYzVuxfzAHhg6ag1HHHHcf8+fP9FkWrqalh3rx5DBw4MCTljIbmFmTTArPZTGpqKmazJtNpMnroKT8UWe1T5UwpCYm8iryQ+iuoKvCivaF1B7JbnIDJ5q9emsTJnU4GoF6qZ3PRZuXKK0H6MVC+C0q3Qs63+sp2IHcRJLX23559AlTuVyzOCD4QK/avhVcNj1JaI1xzo8AoYyF8QB8e4QPqYJRxEPavD4+wf+2I9v9E4bwm7uemx3nqoasaPbT0ZzEF3mVQ+IAMo4xDU5oDlEJTTamPP/6Ym266iXPPPZcpU6bQo0cPZ9vu3bu56667+OWXX/jggw+46aabdFU4GhA1pQSihbsX3M07q94BYNnNyzip00maZX215Suu/vJqAO478T7GDhzLkPZDSLAkwNJRcl0ld0h2WDqKd1Iv4u7v7wbghuNu4JPLP/EpX5MP7J4O8emASV5Cd5r/OnWaUHUIvukMF66HrON809hq4K/r4Iw5+vYtEFMQc4BArEP4gEAsIxbsP1ZqSiU/l0yNVS78fcfQO5hyyZSo6BHJmlLvXvwutw+7XbOsWLB/AW0Ia02p8ePHM2bMGH7++Wf69u1Lnz59OOuss+jTpw/9+vXj559/ZsyYMc0iIOWO5p6SqAR2u53a2tqoj0W49dBTfiiyHEvnAL7b8V1I/bkv3xvUbhAndzqZOFMctbW18m4ZjePTZdsgoy/jBo4jOzkbgE83fMrTS59me8F21efiE+nHyHWlqnOgrlQfme44+juc/JH/gBSAJQmsVYpF2u126nd+jH3XNDkLa/GFoeupErFi/1p41fAopTXKfc8IMMpYCB/Qh0f4gDoYZRyE/evDI+xfO6K9y1qkrokeNaX00NUuhccHlMoXPiDDKOPQlOYApdCckzV79mzeeustjjnmGHbu3MmSJUvYuXMnvXv35u233w64M19TxdGjR/22xcpa2ry8PF588UXy8pQtJWuqeugpPxRZZ7U5C3ODm76/5n1qrb6XzPrrb9PRTTy15CnO+vgs7vr+LidN65TWHrTVtiSobxQUyv8DWp9GZlImDw15yHn4ySVP0vftvoydM9b5Jgk0+kD6MXLwq/owWMOw7WjJBrnIeTDUFsAKZW+I8vLyOPLbf7Buexc2PgUVu0PTUQNixf618KrhUUqrhE7MAc1LD+ED6uliwQeE/UdWlrB/48JfCZdIIVK+WF0Vek0pPXQtK1X+jKylv4rywDWlgsmMFfsXc0D4ENJCwbvuuovNmzdTUVHBoUOHKC8vZ9OmTdx555166WcotGjRwm+bY61vtNdYhxuZmZlcddVVZGZmNms99JQfiqy+HftyXqfzALnY+dfbvlbc36vrX2XglIFMWjqJxfsWe9C0Tm3tQRvfopu81A3AbpOzpo7+Bq1PA+Afp/6D8ceM95Axe9Ns5m+f7/ytyQeS2oC1AvIWA2HwnYo9kNYjON3pX4A1yINHzVGoOkRmejKZ7XpjiU+A1K6Q2g2+SNNFXaWIFfvXwquGRymtEjoxBzQvPYQPqKeLBR8Q9h9ZWcL+jYv4+Pio9h8pX0xITAhZhh66pqSmhLW/5OTkkGTGiv2LOSB8iNNDSEpKCikpyp2lqSKQw8aKMyYnJ3PsscdGW42w66Gn/FBkJScnc9+Z9/HjzB8BWHtkLdcOuDYoz6HEQ7y6/FW/NK1SWnnqtqObvANd5gBYeaec/dPyRDlohOzj08dO54y1Z3DL/FuccnIrXLvxafIBkwmGvQULT4UWA5TzKYW1EuIVBIxSOoGtMjDN4e+hJp/k7CEktxsAxWsheyj0fQB+u0wO5pkDF4r0iZwF0O5csCh/8Ikl+1fLq4ZHKa0SOjEHNC89hA+op4sFHxD2H1lZwv6NC7MluoWeI+WLcZbQ/1XWQ1c1QUAt/SUkBH4GDSYzVuxfzAHhQ0h3lLVr1/Loo48yatQozjnnHOfx/fv388UXX1BUVBSygkZCVZX/ujOOtdXRXmMdblRVVbFu3bqAY9Ec9NBTfiiyqqqqqM51ZfDkVuYGoHbx3DXPtVTvrmF38cYFb3jQOJbvOXSrNbeC6kNybaXqHDh7ERz/gofM9evXM7bvWL691rVLXlmtK51Ysw8kt4dL/NSoqle+Ba4Xqg6BWWGgxxwP9vrANDX5kPMt9r/Hc7hYwhqXDVlD5La4NDnjSy1stbD0Ejjyoyq2WLJ/tbxqeJTSKqETc0Dz0kP4gHq6WPABYf+RlSXs31hwDzjYrLYoahI5X7RarSHL0ENXNcsltfRXV1cXksxYsH8Qc0A4oTko9eijjzJs2DAmT57Md999x+LFruVBkiQxbtw4Pv30U12UNArKyvyv540VZywtLeXbb7+ltDQMRakNpIee8kORVVpayopfVzh/u2cm+cPGgxvZU74HgGEdhvHWRW9x3cDrPGgyEjM8dCuzZ0P5Ljg0DzqNDngODl6A8rpy5/eQfMCSIGdNLToH8v+C7W/C5hdhQT+ob+ij8qC6YugH5kCvW9Xr4g+1BVC4AlP1EZZvOEBZqyuh5TC5LS4drK6x4Lv+ymRW7IH03lCjbs12LNm/Wl41PEppldCJOaB56SF8QD1dLPiAsP/IyhL2b1zUW4O8yAszIuWLwYI1SqCHrtXVymtbaekvmPxgMmPF/sUcED6YJA3WM336dG6++WYuvfRSnnvuOWbNmsWLL76IzeaKmp966qkkJyezaNEiXRWOBhxbGZaUlPitKxUrW2FKkoQkSZhMpqimaIZbDz3lhyJLkiTsdjspL6RQZ6vjuLbHsf6O9QF53lv1HncsuAOAZ0c+y+NnPg7AeZ+ex897fuaUTqfw181/eeqGhGnJBXJw5eRpkJDl9xzWHFnDsKlyMObOYXfyzsXvADr4wJ/jwFYlL4OrOgg9xkPOfOg6FjpfCUsuhoQWcOY38o55wbBxEnS42BU4Coalo2D4PP/tyybCnulIXcciHXM3ptanuq7n2n/K+rboD5IdZllgXJBbq2SHPR/JBeVzf4GRC6FFX0WqxpL9q+VVw6OUVgmdmAOalx7CB9TTxYIPCPuPrCxh/8ZCt9e7sb90PwCX9bmMr68NXuc0XAinDyQ/l+zcyOf2obfz7iXvhiRPq66mSS7aj0Z/xPjjxwegVt+fu/x3L36X24f53/AnmMxYsH8Qc4AWOOIopaWlZGRk+KXTtFD2nXfeoV+/fsyZM4e4uDif61D79u3LL7/8okW8YdHc18kqQbSdMFJ66Ck/FFkmkwmLxUK7tHYcKD0QNFNq4rcTmb5uuvP3uT3PdX7/7IrP+G7Hd1zY60LfumUOkoNBjQJSjenSE9Odx90zpUJGfAa0HQFtz4YDX8i1mtqdA4tGwtHfod/DYI6DLa/AwP8El1dXCvH+NydQjZo86DEB0wnvYWpc/yk+3ZXRZVf4Vu3g17D8Zjjxfdj7CRT8pTgoFUv2r5ZXDY9SWqPc94wAo4yF8AF9eIQPqINRxkHYvz48wv61I9rjEalrYtJhEx49dFUVzNLoN3rLbI4wyjg0pTlAKTQt39uyZQvnnnsucXH+Y1pt27bl6NGjmhUzIgLVyIqVrTCLioqYNWtW1OuFhVsPPeWHIsvB2zKxJQD5lflY7Z7r2+2SHUmS2F202yMglZmYydD2Q52/26S2YeLgibRPb+9btz73wYB/Bz0Hj+V7ta6gVMg+kNoFWp4E6T3h2H81nMRAOHUmHJoLHS6CDpfIwRslqC+VM6v0QF0pWFLg5OkUlVZ4X0/35Xs2+e0auz4ILPPgHBj4NHS6HE77HMq2KVYn1uxfDa8aHqW0SujEHNC89BA+oJ4uFnxA2H9kZQn7Ny70WNYWCiLlizW1NSHL0EPXigrldUu19FdZGXizn2AyY8X+xRwQPmjKlIqLiwt6Mzp8+DBpaZHdJl1AoLmibWpbACQk8ivznYGlstoyTv7gZAqrC+mQ3sGD57r+12FRsxtcahdFZOkJrkwp90LnIaP/v+S6Uo3R6mToeSvENex+GZcmF2SPC7LjZ73KTClLkn+5tQWQ0tE/b0YfKForZ3bZauTi7Qe+hF63+OepL3NlfHW4CPbPVq6rgICAgICAgICAgIBAM4CmmlKnn346hYWFbN68GbPZzKRJk3j66aedNaWqqqo45phjGDBgAD/99JPuSkcaStZCxspaWoHo4Lb5tzF1zVQA1ty2hsHtBwMwa+Msxs0d50X/xVVfcFX/q8K2zjjumTjskp1hHYax8taVQAR9YNW90PdBSOsemC5YjajGWPOwXBg9o493W/E6ODgXjnvaN6+tFv4aB2fMgYp9sO2/chHzEfN90xeugh1vwikfa9dXwFAQc4BArEP4gEAsIxbs372m1OV9L2fuNXOjrFF44F5T6o6hdzDlkilR0cO95tPHl33MjYNuDJv89y55j9uG3qZZVizYv4A2KK0ppWn53sSJE9m+fTt33nmnV8ZUWVkZEyZMIDc3l1tv1XHnKwOgue8ooASOwtvRHotw66Gn/FBkOXgdmVIAeZWundp2Fe3y4kmNT+Xyvpfrqps7nclkcmZL6ZoppRRJbVXvVqcIqV2gbLu8C2FdKWx+wdVWXyYv0cPPmFkSwVoJ6x+Xg1HBCrHn/wndb9CsaqzZvxpeNTxa7D/WYZSxED6gD4/wAXUwyjgI+9eHR9h/00WkrolEdH3AXUY4+xM+oAxGGYemNAcoheag1NixY5k6dSqtWrVi2rRpAJx44ol07NiRr776ivHjx3PVVVfpqmy0kZfn/x/hWFlLm5ubyzPPPENubuCC201dDz3lhyLLwZtidy0pcy92vqdkjxfPlb2u5Llnn1PUn1LdGtM56krpWlNKKcIVlErpDL+NhvnHwMo7YP1jrrb6MrkQOwHGrPoIbHsNfj3bFZTa85G8m6A7JAly5kFiG82qxpr9q+FVw6PV/n1BzAHNSw/hA+rpYsEHhP1HVpawf+Oipib0WkuhIFK+WF1VHbIMPXQtLS0Na39lZYFfMgeTGSv2L+aA8EFTTSmAGTNmMGLECN566y02bdqEJEmsWrWKfv36cd9993H77f63lWyqCJRy5lgmZYSK/OFEixYtGD16NC1a6LirmQH10FN+KLIcvFvZ6jx207c30Su7F6d3OZ3dRbudx78b+x2bjm7ixmNvJK93nqL+lOrWmM6xA597plTEfCCpLdT4uEna6sB9Vzy10f1Ol8m1nVocC7mLPNvqy51BKb9jVnVIrndlq5H/yrbCspug5YnQor+L7uhvkPcrJGkPSsWa/avhVcOj1f59QcwBzUsP4QPq6WLBB4T9R1aWsH/jIj4+Pqr9R8oXfe0wrxZ66JqcnBzW/oLJDyYzVuxfzAHhg6aaUo1RXV1NcXExGRkZzbK4uagpJRBt/HXwL0778DTn75T4FH6/6XdGzRpFTnkOrVNac/SRyO12ecq0U1h2aBkA1v9YsZgtkfOBguWw5SU4/UswW+DIz3KW0rLxMK7hdlZXLNeeOvUzdbJX3QutToEVd8i76Tnk7XwPUjpBx4v98840wQnvwPb/ycXZe90p7xSY1Ba6jXXR7f1MpjnvLzC7vRdYOgrO/NZ3sXcBw0PMAQKxDuEDArGMWLB/UVMqshA1pQSaA8JaU6oxkpOT6dChQ7MMSLmjutp/CqcjthftNabhRnV1NZs3bw44Fs1BDz3lhyLLwZsZl+lxvKq+ivM/O5+c8hwAemb31NSfUtrGdO478H255UvqbfWR84GM3nDoa6iSH4zY+Y5ciLxFf1d2VPluSOulXnaHS+SAkrXc83h9KcTL5xxwzFqfLhdKrzkKrU6Us6Qq93rS1BbA8S94BqRAXvJnr1WkZqzZvxreSNi/L4g5oHnpIXxAPV0s+ICw/8jKEvZvXDg2t4oWIuWLVps1ZBl66Bps1/tQ+wsmP5jMWLF/MQeEDyEFpSorK5k5cyaPPvoot99+O48++igzZ86ksrJSL/0MhUDreWPFGUtKSvjqq68oKSlp1nroKT8UWQ7edHs6PbJ6eLQVVBU4v/fM6unFo6Q/pbSN6RzL9wDGzhnLvxb9K3I+kJAFA/4jFyPf8zGk9YShr0HWYFcwqWI3pPcMLMcXOpwPaT3k3f1MFtfxsm2QLu/K53fMOl8FGX2h973Q82b5WGpXeTc+d9QWQGIr777j0uVlggoQa/avhjcS9u8LYg5oXnoIH1BPFws+IOw/srKE/RsX9fX1Ue0/Ur5YV6s8GOQPeuhaWaX8f2st/QULPgSTGSv2L+aA8EHz8r1Zs2Zxzz33UFJS4mGAJpOJzMxM3n77ba699lrdFI0mHGlnxcXFZGZm+qSJlbRFu91OfX098fHxmM26JNoZUg895Yciy523oLqATUc30SOrB4PeHeRRz+k/Z/6Hp0c+rbo/pbSN6W6ffzvvr3nf2Z6ekE762+kczjkcGR/Y+hpkD4ZD38pBoPSesPZROQi0/jEY+DRkHgvtztHex9JRMHyenH21+Hw4ayGg8npKdlhyMXS8FI65U16at+JOGPBvSOnoSbv6H9DnPjkoFgSxaP9KeSNh/74g5oDmpYfwAfV0seADwv4jK0vYv7Hgvnzvsj6X8fW1X0dNl3D6gPvyvduG3MZ7l74Xkjyturovr5s2ahoTB0/UtT93+VMunsIdw+7QLDMW7B/EHKAFYV2+N3/+fK6//npqamq46667mD17NosXL2b27Nnceeed1NTUcP3117NgwQLNJ2BERNP4jAKz2UxiYmLUxyLceugpPxRZ7rxtUttwVvez6JbZjbcvetuDrld2L588eunWmO62obfRu2VvZ3t5XTnV9cpTPN9b9R4nTj2RhbsXKubxQEIm1JVAdS4kt5OPJXeAXe9DSheoPgQJLbXJdockQcHfkD3MeUjV9TSZ5eV7q+6GJRfC7mkNmVI+dItLl3f5U4BYtP9w8Gi1/1iGUcZC+IA+PMIH1MEo4yDsXx8eYf/aEe2C1uG8JiZc56bHeeqhq9kUHh9QKl/4gAyjjENTmgMU96mF6dlnnyU9PZ21a9fy5ptvMmbMGIYPH86YMWN46623WL16NampqTzzzDN66xtVFBcX+22Lla0wi4uLmTNnTsCxaA566Ck/FFn+eK8/7noWjFtAz6yeHNf2OC7re5mm/pTSNqYb2mEo2+/Zzq83/uqkcbxVCuYDkiRxx4I7WHl4Jed/dn5QHX0ivoVc58laCXGp8rHWp0HFXjkrKf8v34EfNTAngr0O8v+A9uc6D6u+nskdofOV8o5++X/KdaMsST7OSfnyvbDa/y8jKdv/m6HtXy8erfbvC2IOaF56GH0O0ItH+IA6CPuPrCxh/8ZFtJfvRcoXa2uV1foMBD10VVMaR0t/VVVVIcmMFfsXc0D4oCkotXHjRq699lp69+7ts71v375ce+21bNiwISTljIbmvk5WCex2O5WVlVG/6YRbDz3lhyIrEO9Fx1zEznt3su72dWQkZiji0aqbP7rTupxGSnwKALU2ZRN3Zb3nxJpTlqOIzwOOTCl3tDxBXmLX4lgoWhl6UCouFawVULQasoc6D6u+nqd8DO0vAMkGe6ZD4QrfdCqCUmG1/6NLMBevNrz968ETqv3HIowyFmIO0IdH+IA6GGUchP3rwyPsXzui/T9RpK6JHueph65q9NDSXzD5wgdkGGUcmtIcoBSaakq1a9eOCRMm8OKLL/ql+ec//8knn3zCkSNHQlLQCFCyFjJW1tIKCDTGhTMu5MddP8KrQDlBfSCnLIdO/+3k/P3BpR9w85Cb1XVatBoOzZc/R8xv1LYWFp4C11TLNZy0YvWD0PsuWHUfjPxeuxyAA3Pgz2vkwJQ5Hq71UThz7wy5uHq3KNfim50IvW6DIa+D2RKUXECGmAMEYh3CBwRiGbFg/+41pS7vezlzr5kbZY3Cg5TnUqi2yiUpbh96O+9e8m5U9HCv+TR99HQmHD8hbPLfv+R9bh16q2ZZsWD/AtoQ1ppSl156Kd99953f7UCtVisLFixg1KhRWsQLCAg0IZzY4URV9KW1nrtYPrHkCUpqStR1Gt8C9s2Ql+w1RkYfSGoTWkAKIKk1HP4BMnxnhKpCQgs5IAVgSfVPY1VWUyqsMCfAjregZH20NREQEBAQEBAQEBAQaObQFJR65ZVXSEpK4sILL2T58uUebcuWLePCCy8kOTmZl156SRcljYLc3Fy/bbGylvbIkSM8++yzUc+AC7ceesoPRZYWXjU8SmkD0XXM8NxFLpgPlNZ4BqUOlx/moZ8eQpIkPln/Ce+vft9nGnFFXYXrR0KW/Nn3Ae8O4lLgmLsC6qAISW1g6yvyrnlu0HQ941u4vtv9LHOMz1Bc6Dys9t+g6+cfvSbsXwWdmAOalx5iDlBPFws+IOw/srKE/RsXNTU1Ue0/Ur4YrNaSEuiha0lJSVj7Ky0tDdgeTGas2L+YA8KHOC1MQ4YMoa6ujrVr17Jo0SLi4+Np2bIlhYWFzsJ37du3Z8iQIR58JpOJ3bt3h651lJCenu63zbE7Q7R3owg3MjIyOO+88wKm3zUHPfSUH4osLbxqeJTSBqJrn9be43cwH2icKQWwKX8Tfx38i/HfjAegur6a+0++n9f+fo2NRzdSa61l9qbZPHvWszx2xmNyvagL14Il0Xcnx/6fz8Pzt8/nud+f454T7+H6464PqCeJrSEuTc68coOm6xmfKX+e8C6svNMPTQuoC/xQEJIOgbDtdbnW1Wkz5Yyt6hyu7DCf2vTQU9abu/07IOaA5qWHmAPU08WCDwj7j6wsYf/GRVy8pn8hdUOkfDE+IT5kGXrompycHNb+kpJ9bMCjQmas2L+YA8IHTTWlunXrptno9u7dq4kvmhA1pQQE/GP14dUMmzpMcU2p2ZtmM3bOWI9jnTI6ce+J9/LPX/7pPHbfiffxvxX/8+KXntRedNJ9/XxQOSWb4fAC6P+o5v6cqCuBr7LgxPdhxW0wzkffFXvhz7Fw1i8QnxZ6n2ow0yQXiL94Eyw8DQr+ko+PqYI45Q9CsQwxBwjEOoQPCMQyYsH+RU2pyCKSNaWmXjqVW4bcollWLNi/gDaEtabUvn372Lt3r6a/poxAqaqO2F60d6MIN2pqatixY0fU03bDrYee8kORpYVXDY9S2kB07dM9M6UC+cCrf73qFZACOFJ+hMRGWU++AlKhoLFe5bVBdrrLPNZnQErT9UzIhFG7gQD3h6R2ULgcitcGFaer/ZdubRCaBz+eALYaJFM8pS2voKayMGTxzd3+HRBzQPPSQ8wB6uliwQeE/UdWlrB/48Jm911XOFKIlC/6q5+sBnro6liJFK7+gskPJjNW7F/MAeGDpqBUrCLQet5Yccbi4mJmzZpFcXFxs9ZDT/mhyNLCq4ZHKW0gujapbTCbXLcSfz5QVV/FY78+5rPNJtnYV7IvqL6hoLzOMwiVU56jSY7m65nWAyQJ8JNlGpcMve+Vd+ALlw7usNXCxmegbDvEpUNtARStAiB3xH627z5IWVHoa8mbu/07IOaA5qWHmAPU08WCDwj7j6wsYf/GRX2d8iBJOBApX6yt9VMHVAX00LWysjKs/VVWBZYfTGas2L+YA8IHTcv3fMFqtbJx40YABgwYQHx86GtwjQJH2llRURFZWVk+aWIlbdFms1FVVUVKSgoWS/S2iw+3HnrKD0WWFl41PEppg9F1eLUDRyYdCbh875c9v3Dup+d6HOuW2c0ZjLr4mItZsHMBIKdL/7DrBw6UHvCSo3X53raCbfR7u5/z9883/Mw5Pc5RLSck29j5Hqy6C8b6efO27XXIPA7anRU+HRwo3QILjoWTPwLJDssnysd73Y5t6NtYVz1M3DETsWQP1CZfB12biv2DmAOamx5iDlBPFws+IOw/srKE/RsL7sv3LutzGV9f+3XUdAmnD7gv37ttyG28d+l7IcnTqqv78rppl05j4pCJuvbnLv+9i9/jtmG3aZYZC/YPYg7QAt2X7+3du5cPP/yQHTt2eLV99913dOzYkWHDhjFs2DDat2/PF198oU1zAyOaxmcUWCwW0tPToz4W4dZDT/mhyNLCq4ZHKW0wOvcd+Mpqy6i3eb9B+2nXT17H+rR0FRHfWbTT+X38oPFsv2c7k0ZM8uJRkzJus9v4addPbD66mXnb53m0HSrTNmmGZhtBAmqWJLAFT5VVpUN9GRRv8D5eKGdFUbYVkt2WYJ4wBYvFQiLlWFbeGly+nrrqwBsN+48lGGUsxBygD4/wAXUwyjgI+9eHR9i/dkS7oHVTuiZ66Go2K1/cpKW/YPKb0niHE0YZh6Y0ByiFYgufOnUqt956K4mJnnVfdu3axZgxY8jPz6dLly707duX4uJirrvuOtauDV4bpSlBLN+Tx2DevHmqtiZtinroKT8UWVp41fAopQ1GN7T9UOf38tpypq+bzpHyIzy+6HGmr53O/5b/j8l/T/biG9LetUPnjkJXwDs1IZWkuCTuGHaHF4/j7ZU/2Ow2Xl/2OmO+HMNx7x7HBTMuYMCUAR5F1EF7UCo02wiwfA/koJQ9eFBKlQ77Z8MPg7yPLxsPLQZA0Wq55pUDJhMlJSUc2bdJrnEVImLB/kHMAc1NDzEHqKeLBR8Q9h9ZWcL+jQs1NY7CgXD6gHvArbYu9OV7euhaVVUV1v6CyQ8mM1bsX8wB4YPioNQff/zBoEGD6Nq1q8fxN954g5qaGu6++2727t3L5s2b+fLLL7HZbLz11lu6KxxNBCp2FyvOaLVayc/Px2q1Nms99JQfiiwtvGp4lNIGozut82kev1/56xVu/+52nv/jeSbOm8j9P97vbBvUdhAndjyRh095mEt7X+pTXmp8KiDXq3py+JMebVX18sQpSRJ2ye7Rtrd4LydMPYEHfnqAL7d8yZb8LX7P6ZP1n/htC4RQrucueyqv2Y/1HxAzK8uU0s0+u98IJZsgPgNMZrhgjVN+RW3D9LD4wpC6MOd8Q0Lh4mZt/yDmgOamh5gD1NPFgg8I+4+sLGH/xkW0zzNSvijZQz9PPXS12sLjAw4EW4UQTGas2L+YA8IHxTWlOnfuzIgRI/j00089jh9zzDEcPHiQ/Px80tPTnceHDx/OkSNHfC73a2pQshYyVtbSCgj4wu6i3fTq1gvKgXTgId90x7U9jm+u+YbuWd0BKK0pJfOlTC+63IdyaZvW1vn7mq+u4YvN8pLg1bet5vFfH+fHXT+SnZzNrCtncV7P8wA4+YOTWZ6jPLtny11b6Ne6X3BCndD9je7sK9nH6V1O5/ebfvcmOPgN1BVBzyB1A6oOQ3yaHEwKhu1vwtpH4NpGwa6lo2DIf2F+L7jsICR3BPd0/L9uhH0N9/txITxkLL5IzgA7s3luHe2AmAMEYh3CBwRiGbFg/x41pfpextfXRK+mVDiR+nyq8wWoHjWltMK95tOHoz7kpsE3hU3+1EuncsuQWzTLigX7F9AG3WtKFRQU0LlzZ49jJSUl7N69m5NOOskjIAVw/PHHk5OjbXcrAQGBpoUeWT1Iik/y2/6fM//DqltXsf6O9c6AFECLpBZ0TO/oRZ+akOrxOyU+xfn9X4v+xY+7fgSgqLqI539/3tmmJiAFsHT/UlX0oUCSJGdR9z8O/OGbSGFNKX49Cza/qKxjWzXEpfhuS2u4FvEZngEpgIw+3vRq4HjrFpcK1vLAtAICAgICAgKGRrTrSAkICDRfKA5KxcXFea0rdNSMGjZsmBd9WlpaaJoZEHl5eX7b7Ha7x2dzRW5uLi+99BK5ubnNWg895YciSwuvGh6ltMHoTCYTWYm+d6bcfs92nh75NEM7DPXZ3qeVd/DDPQgFkOIWVFm4e6FHm+NtVmVd8O1ybzjuBo8g2At/vBCUpzF8jUV+ZT51trqAfJX1SrbzNcGquwOTVO6Hsu2sWr5UmV3YqsGSLH+vKZB3+Fv9D8iZLy/Za38+xHm+VMjNzeWlBXEUD5gKWUO8RCrC7DgAKkxtKDm0plnbP4g5oLnpIeYA9XSx4APC/iMrS9i/cVFTo+AFWhgRKV+sqlZey8kf9NC1tLQ0rP0Fkx9MZqzYv5gDwgfFQanevXuzaNEij2MLFy7EZDJx6qmnetEfPnyY9u3bex1vykhNTfXb5nh70NzfIqSlpXH66adHPegYbj30lB+KLC28aniU0iqh82X7J3U8id4teweU3T2zu8fvlPgUzCaz1zF/qLXJRSgLqgq8+k60JPLGBW/w8w0/8+zIZ3n7ordZdssyJ82B0gMcKT8SUL/GaDwWry97nbaT29Llv13IrfB/8y6pKfH4vSV/C/O3z8dqd1uv3e4saH062AMUEC1eB0Dndi0CXzdJgmU3NQSlUkCyw9zWsOYBKHCNASN/9MqScpxjfI9rIcU7ky0oHKvC7Vbik7NISTRpsv90czEXnJDdpOxfzAHNQw8xB6iniwUfEPYfWVnC/o2LuLi4qPYfKV+Mj48PWYYeuiYmJQYnCqG/xhuZqZUZK/Yv5oDwQfEd5corr+Tf//43t99+O3fffTe7du1iypQppKWlccEFF3jR//nnn/Tq1UtXZaMNMRnJY3DaaacFJ2zieugpPxRZWnjV8CilVULntH03F3jg5AeCym4clHIUOXdHoKBUdb28G19+Vb7z2J3D7uSdi9/BLtmdAa5zepwDQHqiZ1bQzqKdtE8PHkD/YvMX1Fpruf646z3G4sU/XkRCIq8yjy82f8F9J93nk/+HnT94/D72nWMBmHLxFNcug+Z4aHMmHJgDXa6UfwOU75Z3wus2Dn6/EhKyaFv5A1SthbQzfCtcth32fCR/b3UKWCvk722Gg7VSXlbnB17XW5K8l/cFQn3DG7fdU0ms2gq2QhI0TGypv/RnEEDarYp5om3/Yg5oHnqIOUA9XSz4gLD/yMoS9m9cGCEoFQlfjI/TJygVqq5Jif5LZOjRX1JSYPnBZMaK/Ys5IHxQnCn1wAMPMHDgQKZOncrgwYO5+uqrKSsr44knnvDKIFq1ahW7du3i3HPP1V3haKK2NvRtQZs6amtr2bdvX9THItx66Ck/FFlaeNXwKKVVIzM9IR0TJu4Yegdjjh0TlN69xhR415OCIEEpqxyUcs+UapXSCsAr48qBV859xfldSabU0n1Lueara7jxmxv5dsu3zrH4euvX5FW6lvUuO7TMr4xf9v7i8/idC+70PNDhEvhrLBSucB3bNwNW3gn1FSDZqDtRLkBuzfFcyuiBDY+7vie3h51ToOXJcMonUFsAA570y+pxvc3xIKncfaPqoPy58i44KBc4r60qUSejkT5qaKNp/80dRhkLMQfowyN8QB2MMg7C/vXhEfavHXZbdJdpReqaBNuVTgn00LXeGiCDXof+gskXPiDDKOPQlOYApVAclEpOTubPP/9k0qRJXHDBBYwbN45vvvmGhx7y3mZrzZo1jB49mlGjRumqbLRRXFzsty1W1tIWFRXx8ccfU1RU1Kz10FN+KLK08KrhUUqrhM5h+2nxaVQ9XsWUS6YoemPSI6uHx+/MpEwvGiWZUgt2LHAea53SOmCf7dLaOb8HWnLnwGO/Pub8fvlXl/P8x89z67e3csUXV3jQ7S7e7VdGclyy3zYPHVqdDFnHQ63bWNeXQv9/ws53oNNlFMbLdZ6q6iy+BS6bCEntILWr/LvdubDu/+Rsp8TWclAq3n/mksf1NifJSwCVwloFFfu8DpcdUleEvrE+amijaf9iDmgeeog5QD1dLPiAsP/IyhL2b1zU1QeuoxluRMoXa2tC/6dcD10rK5XUJdXeXzD5wWTW1Ms1xmrrm3fQSswB4YNJkqQQ9vqODTi2MiwsLCQ7O9snTaxshWm1WikrKyMjIyOqqbvh1kNP+aHI0sKrhkcprRI6rT5Qb6vn5Gkns+bIGiwmC59e/iljB471oJm2Zhq3zPfcqjY5LplqazUp8SlUPlZJ19e7cqD0AADLbl7GSZ1O8tvnoj2LOOfTc5y//++0/+P5s5/3G0Qb9O4gNuRtUHQ+RY8WkZXsXfT9lnm3MG3tNJ88Sycs5cyuZ7oO5HwPVfvhmIYsqpX3QNdrYdU90OVqrH3/SdwX8diGTsHS5w5vgTNN8u55cWnyMr3TvoCvGwJxY20wywKnfArdr/epj8f1/mkw1B6FK/xv9OCBxRdA6RaoyQO7/ND6eOKVPL9pDtNGTWPi4InK5DjOA7COqW+29t/UIOaAyMqKhTmgKUHYf2RlCfs3Frq/0d25i/Do3qP5Zuw3UdMlnD6Q+nyqcxOdm4+/mQ9GfxCSPK26mia5nkmnXjKVW4beEoBafX/u8t+96F1uP+F2zTJNGSYoB9JBKmu+oQUxB6iHI45SWlpKRkaGXzrFmVIC0V8/bQTExcWRnZ0d9bEItx56yg9FlhZeNTxKacM53vGWeJbdvIwfrvuBTXdt8gpIAfTK9q5P1791f0DOlKq31TsDUh3TOwYMSIFnphTAi3++6LWr376SfdRa5SV6SgNSAJ9v/tzncUdBdl/wytZK6QRVOa7f9lpI6wYl6yGls3wdhr2NxVcGWc1ROUOq8gAMexvO/AaS28IZc+R2x5LGOP+ZUh7Xu2ybLFMp6krk5XvJcp2uXCs8v0nu++Z5NyuXY62CLldDt+uJs/rPUg2ou060RrnvGQFGGQsxB+jDI3xAHYwyDsL+9eER9q8dJnN0aweF85qY3Iqjms2h/6ush64Ws5/MeJ36i7M0QR+YGXkbNMo4NKU5QClEUEoFAm2X6Ug4a+6JZ6Wlpfzwww+qtiZtinroKT8UWVp41fAopVVCF4oPxFviuaDXBfRt1ddn+7AOwzx+775vt3NJn4TEwbKDzrYTOp4QtD9fhc13FO5wfv943cd0f6M7g98bzH0/+i5c7g93LriT539/3msc6myuVPdjWx/r0eY7KOU6J+x1csZT5nGQ1o3S0lJWb82lqtLH9SjbBq3PkJfcJWTJfwCdr4CebgXD49O9eRvgcb0llfUUEhuWTqZ0AeD/ksep43egeB01Sb3ZnmuhIne9YramaP9NCWIOiKysWJkDmgqE/UdWlrB/46K+XnmNo3AgUr5YVxf6MkU9dK2qrgprf8HkG+XeF20YZRya0hygFCIopQKBbsCxMhnV1dWxb98+XW7SRtZDT/mhyNLCq4ZHKa0SunD6QGpCKoPaDgLkelHdM7uTHO+q0bS7yFXLqX1a8J30spK8l9ct2LmAcXPGMXr2aCZ8OwGArQVbOVQWPA3/twm/efx+/NfHWbxvsccx96DUzzf8zNfXfO387RWUSsiCGtdugthqwZwIF62HNmdSV1fHkaNF2Op9PETUlUCLfvJ3S6PdVE563/U9QKZUSPafkAmdr3IGwz7eMtOjWbF9WCupN6VSWFyOtVZ5LYXmaP9GgpgDIitLzAHGgrD/yMoS9m9cRLt2VqR8UY/z1ENXm1X5C0It/QWTb5R7X7RhlHFoSnOAUoiaUgqgZC1kLKwlFxAIhHD7wMa8jby14i3GDRzH8G7DuWz2ZXy7/VsA3r34Xe5YINdWenrE0/xn+H+CynNfS68UQ9oPYc2RNV7HKx+rZOCUgewp3uM8NvncyTx0qmsjiItnXsz3O78HoOCRAo5UHGHglIHO9m13b6NPqz4uob9dDqfNBkui/P30L8Hslkab+6u8nK/PP2D7G9D3H/LxvZ/KAaw/r4HLc+Wle42x/j/Q9wFI9F0jzwNz28rL94a8Dn3udS3/84cll8CZX8MfV2M/+C2WXZ7Ntidsnrsi1hZBfAtonJp+aD7UHAFbHaQfAx3Ol4/b6+UdAQ0GMQcIxDqEDwjEMmLB/t1rSl3W9zKPl2vNCWnPp1FZL78Mu3XIrbx/6ftBOMID9+fUD0d9yE2Dbwqb/A8u/YCbh6gosdBYVjRqSs00wTgRxjA6RE0pAQGBZoWBbQfy3qXvMbzbcACPTCn3YJCvpXl64JjsY1h16yqfbSnxKXx77bekJbiyj6oaZTG5Z0olxiV61bV67e/XPIVmHQ/FDcvWJJtnQArkYJWtFmxVsOYBt45KIT4DErK9M6UcGPSMsoAUwCXbocNFsOYfntlb/mAyy0GjQS+yq4P30j271Oit45yWcORHbzn2huwwWxWUrHMdn50ARd6BQQEBAQEBAQEBAQGBpgcRlFKBo0f9F/uNla1g8/LyeO2118jLU7gTVxPVQ0/5ocjSwquGRymtErpI+0BynFtQqsQtKKVg+R7AsyOfVdWfTbL53J2vSwu5dtKANgOYd+085/Fqa7UHnXtQKsGSQMvkliRaEp3HimsaFfNueSIUrvCpS15eHrNmz4b1/5IzjdxRXyIvobuqEBJaKDgz3/Kd1zshE0wNWUw1RzwJJQlKNvsW0qIvR3ve6XXYIyi1e7r8WX3Ym99WS0l5DYt/+wvblv82MDcsoV56qTLdg6Ap23+0IOaAyMoSc4CxIOw/srKE/RsXtTX+N2+JBCLli9XV1cGJgkAPXUvKSsLaX1lZme4ymyOMMg5NaQ5QCk1BqbPOOosnnnhCb10Mj+TkZL9tjn9W/W0p31yQkpLCkCFDSEnxsetXM9JDT/mhyNLCq4ZHKa0Sukj7gEdQyi1TqkN6B0X8j53xGFvu2uKzvpQvvHTOSz6Pv37+687vKW674QXKlIo3x2MymVh+y3LnsRprjafgtB5QtR+s1ZAz36MpJSWFHv1ObBDcEJTa/IL8WVsIia2UnJJfeF1vx86Bu6Z6ElrL4fsBrt+S3WN5X36ld2aVx4rx/Q31pvbP9lbi7+tJTDAT3/sW7G3Oko9tflH+rD4Mxb53RIwV+48WxBwQWVliDjAWhP1HVpawf+PCYlG+G1w4EClf1GP3MT10TUxIDE4UQn8JCQm6y2yOMMo4NKU5QCk0edry5cs5+eST9dbF8EhP979bVaxMRunp6YwYMSLaaoRdDz3lhyJLC68aHqW0SugiHpRyW77nXudJ6fI9k8lEv9b96JbZjeLcYr90CZYEvr7may7odYFXW+M6UO46vbH8Da459hpO6XwK4ApKOQJSAD2yejjpG2dWkZAtB5hqGhVBR74eJ51zA3x+B2x9FTpdJgdqtr8JtQUhB6W8rnfuQvlz5ztwwtuu4411ri+DONd68aOV3tmlHplStoZAXJvhPvVIbtmP0/ucBL80BNw2ur0M8VPbKlbsP1oQc0BkZYk5wFgQ9h9ZWcL+jYu4+MhtFe8LkfLF+PjQa1jqoWtSkp9yDDr1F0y+Ue590YZRxqEpzQFKoSlTql+/fuzbt09nVYyPaFfaNwLq6urIycmJ+liEWw895YciSwuvGh6ltEa57u5IT/AdJG6d0lqVnMa1ndzxwtkvcPjBw1x0zEWexbkbkJHoWbDPPVMK4MIZF1JdLwduHIGzertrF0/3IJZXplRClpwFVZMPA570aHJcD2xVsO9TaHs2FK+DQ19DfalcODwIJEliY95Gp36+5Htcb7PbW7TFF0DpFrA14q0r8VgymFfpnfYr0ZApVXMU8v+QvzeWY5d3ganLGELOkaPY7W67wmSfIH9W+S4kGyv2Hy0YZSzEHKAPj/ABdTDKOAj714dH2L92RHuZYqSuic2ufNc7f9BDV6vVGtb+rLbA8oUPyDDKODSlOUApNAWl7r33+17yWAABAABJREFUXubNm8eWLVv01sfQKCoq8tsWK2vJCwsL+eCDDygsLGzWeugpPxRZWnjV8CilVUIXaR8Yc+wYr2Pt09pjabyLWxD4W+73zMhn+L/T/4+WKS398gYLSpXWlpJXmUdBVYFP/jhzHJaGek1eQSlznBycqS2ApDYeTY7rUdlxPFxVBL1ukYNEhSvlIJaCN7X3/nAvx717HKd+eKpX8XGv6z1Ogk6XuwiO/ATlu72DSfUlEJ/p/PnnwT+9+nX2dfgH+fPMeT6CUvIkWFhcygcffECdqSEAmdwehkyWvy+/xed5xYr9RwtiDoisLDEHGAvC/iMrS9i/cRHtf8oj5Yt61M7SQ9eKioqw9ldZUam7zOYIo4xDU5oDlMIkeRT4UIbffvuNl19+md9++43bb7+dE044gbZt2/pMWT3zzDN1UTSacGxlWFBQQMuWvv9BjYWtYAHq6+spKioiOztbl5RWo+qhp/xQZGnhVcOjlFYJXTR8IOGZBI/Mo4dPeZhXzntFlYy/D/7NpbMupcZawxdXf8GKnBUcKjvEf8//L+mJ3tlY87bO494f7uW6467j+XOe92grqSkh6yXPGlWb7txEjbWGYVOHOY9JT7puu46thwe0GcDGOzd6djbTBFlDoN9D0M21k53P6zHT7f7bsEVuVX0Vc7fO5YQOJ3gsM/xp109cMMO1HHHRjYsY0W2EMxvMp/w/xsCBL2XZjr5GfA9LLnJtyTuvFxxzp6wv0Pm/nTlU5mkLpf9XKgfzdn0AK26F85bDnmlw4nsuorpS+CqT+qvrKCoqovWWiZhHLoClo2D4PNj2urx8r+VJULYNeowPPDZ+0NTtPxoQc0BkZYk5wFgQ9h9ZWcL+jYXub3RnX8k+AEb1HsW3Y7+Nmi7h9AHHcxnAzcffzAejPwhJnlZdTZNcz3XvX/w+tw67Vdf+1MgPJtOUYYJyIB2kMtWhBW2YaXI9f0YIYg5QD0ccpbS0lIyMDL90mhYEjxgxApPJhCRJvPrqqwHXT9tsoac9GgXRND6jID4+nrZt20ZbjbDroaf8UGRp4VXDo5TWKNe9MeIt8c6g1MhuI1UHpABO6XwKRx464pR30TEXBaQf1W8Uo/qN8tnWOFMK5MCQe5HzUX08eZPikqisr/TOlHKgeA3EpXkc8ns9Tp0BRaudP59Z+gwv/vkibVLbcOAfB0iMS2Rn4U6PgBTA2Z+czYhuI1g8frF/+Y4MJ1sdZA+DolVyQModFbvlbCa3c28M53sQqSFVPCHLuzaVvQ7an+/SY6tZ3unPgbTucgbZ4QWwZ7pHUCqW7D8aMMpYiDlAHx7hA+pglHEQ9q8Pj7B/7TCbo7uBe6SuiR7nqYeuavTQ0l+wwvXCB2QYZRya0hygFJo87YknnuCJJ57gySef5Mknn3T+9vXXnBBou0zHP1oaEs+aFMrKyvjll1+Cbh3a1PXQU34osrTwquFRSquELho+MG6AK3vI13I+pYi3xBNvURZ0DjQWCRbv3Uuq6qs8Ak4D2wz0aE+Kk4tL+g1KgVdQyq8O6cfAkFedP1/8U96t7mjlUXYU7gDg0V8e9dnFkn1LOFJ+xL/8/v8HGX3kmlXJHaCLj/Fufz50Hev8WVnnnQ7uXL7nqAmVkOV7+V5qd6ce9Xazc0mfDDNINtjykldtqViy/2hAzAGRlSXmAGNB2H9kZQn7Ny6s9cprHIUDkfJFPZYp6qFrdY13/U89+6uuDizfKPe+aMMo49CU5gCl0BSUeuqpp5wBqWB/zQm1tf7XFcfKZFRTU8OWLVuoqQnwD3Qz0ENP+aHI0sKrhkcprRK6aPjAC+e8wPCuw7mi3xXcPPjmiPSp9po0zoJyBKEa//YVwKHHTfJnXGpwHc76BVoc6/zpCDA54Mhu/WbbN351Pe+z8/h43ce+5bccBm1GQE0eJGTKgaR250LHUXIW1c4pcPQ3Zz0rm91Grc37nuksdF59WP6Mz2gUcAJKNkFcilMPqykZrG7jY7LAittdfG6FSGPJ/qMBMQdEVpaYA4wFYf+RlSXs37jQowB4KIiUL+qx4kcPXevr64MThdBfMPlGufdFG0YZh6Y0ByiFpppSsQYlayFjYS25gEAgCB+Q4b5GH+DLq7/EhImrvrwKgFfOfYWHT33Y2T78o+H8tv83AIr/WUxmUqanwJkmuGgTZMoBJ0mSuP/H+9l0dBPTRk2je1Z3n3rcteAupqya4vy97OZllNaWcv5n5wfUP8GSQOVjlcSZfazuXnU/dB0Dez+Bir1ycEqS4NRP4cehcrH1hvX9FXUVpL/gXZMr/5F8WqW0gt+ukHcLHGuHeT3h/GWugu4zTTDkdeh7v/x75d3Q/5+w6h65ptThH2HJhS6hYyohznvpZCQh7F8g1iF8QCCWEQv2715T6rK+l/H1NV9HV6Ewwb2m1K1DbuX9S9+Pih7uz5MfXPoBNw/R9+Wru/xpo6YxcfBE7bJipKaUgHqEtaaUA2vXrmXWrFls27aNqqoqfvnlFwD279/P8uXLOeecc8jOzg6lCwEBAYEmjar6KucOe+CdKdW3ZV9nUGpX0S6GdRhGYxRabTzy7US6ZXZj5eGVfLfjOwDu+/E+5o+d77PfT9Z/4vH75b9e5o8DfwTVt85WR1F1EW1S23g3WhKhvhzMCWCrAXOinCW17CY5IOUGn5lfuL1FtjdkUZlMULkXdn8Axz7mInTPDotL886UciD7BFmXKAelBAQEBAQEBAQEBATUQ3P1tkcffZRhw4YxefJkvvvuOxYvXuxskySJcePG8emnn+qipFGQn5/vty1WtoI9evQob731FkePHm3WeugpPxRZWnjV8CilVUInfMA3ft//e8Dle+47/PmsK9XrDh5f9jbT103nySVPOgNSgMf3xuia2dXj99ytczlaqUznHYd2+D5HSxJYG4JSJRshtSvYa+TvjeCryDm41ZTCBIMnu8lOlj8dQStLsnOsK6uqYNdUyGkIwJncpq6s411LARH2H26IOSCyssQcYCwI+4+sLGH/xkWgkiaRQKR8MVitJSXQQ9eycuW1fbT0F6x2kFHufdGGUcahKc0BSqEpKDV9+nQmT57MJZdcwoYNG/jXv/7l0d6tWzdOPPFE5s2bp4uSRkFiYqLfNscOhIF2ImwOSEpKonfv3iQlJQUnbsJ66Ck/FFlaeNXwKKVVQid8QMaS8Us8fn+w9gOKa4pd/I2CUu7L5Kx2H4VDT5zCe6uVp46vPbKWV/58hfxK/0H0YKiRanyfozkR6svAHA/1JZDRFw7OhdLNXjIcqe+N4QxKmczQ7yFXQ2KrBoKGugZxKc6xTixbBdv/61vZjD7yTnwNEPYfXog5ILKyxBxgLAj7j6wsYf/GhcUceLe2cCNSvhhsVzol0ENXNTvAa+kvmHyj3PuiDaOMQ1OaA5RCU02pE044gaqqKtavX09cXByTJk3i6aef9igGN3HiRH755RcOHDigq8LRgKgpJSAQHMIHXFh9eDXDprqW4WUlZTkDU19e/SVX9b/K2fafX//Ds78/C8DC6xdybs9znTLmbJ3DLUNuoef/evrsp2dWT3bdt8v522q30uHVDuRXaQ9IAfx8w8+c0+Mc74atr8pL5+qK5N330nrCFw3L5uLS5SyqhvX9fx38i9M+PM1LRM6DOXRI7wBLR8n1oQD2zQIk6DYO6krhq0wY8QN0uEBu//VcyJWXhzNO8qwpNewtiM+E7teFdM5e+OMaOGkaxKcFp0XYv4CA8AGBWEYs2L+oKRVZiJpSQSBqSjUJKK0ppSlTasuWLZx77rnExfkvSdW2bduop7bpDTU7HzRX1NfXc/To0aiPRbj10FN+KLK08KrhUUprlOtuBCgZi44ZHT1+a8mUGvPVGF744wVGzx7tt5+c8hyP3yU1JYoDUpf0voTpo6f7bCurLvN9jma3mlKZAyAuGRJby20XbYC2I52k7/vJ7nIt33ODJRmsDcv9bDXOY86xPuXLRkLclg0Ur4W/r3f+1MX+Nz4NB76AlXeoltncYZSxEHOAPjxiDlAHo4yDsH99eIT9a0e0lylG6procZ566Gq1+cik17G/YLsMCh+QYZRxaEpzgFJoCkrFxcVRV1cXkObw4cOkpSl7w9xUUFhY6LctVtaSFxQUMGXKFAoKCoITN2E99JQfiiwtvGp4lNIqoRM+4ILPIuENGNR2kMdvX0Gpels9e4r3ALDp6Ca/smqsNXyw5gPn74q6isDKu+HRUx+lc0Znn21XfnUlz0551vsc3WtKOXB2Qz3BtG5w9q/Ow+vz1vuULfmyj8yBsHuq/N3WUL/BnOAa65JGNR3cE3zjMz2adLH/PR/JnwfnKpYp7L956SHmAPV0seADwv4jK0vYv3ER7P/AcCNSvlhdE3pNKT10La8oD2t/FRWBnx+Ncu+LNowyDk1pDlAKTUGpgQMHsnjxYr83XsdOfEOHDg1JOaMh0E6CZrPZ47O5omXLlkycOJGWLVs2az30lB+KLC28aniU0iqhEz7ggtlk5tXzXvU6/uDJD9K5hWcgKN7iWsdf31BPyT2zKhgm/+UqFu4rKHV8u+OJN3vXCkiwJGA2+b9W+7vv9zrHvVVlfJ+zCStuNRaSfAfgEiyuwNVxrY5zfi+tasigdQ8spffEOR05glKWJM+xHrXHRd9pNFxVBAOekANlIO8CiAr7L1pD68qFfmgbdBs4SbFMYf/NSw8xB6inC6sPHFkIO97RX65KCPuPrCxh/8ZFQkJCcKIwIpw+4F4XLFA9YaXQQ9e0VOWJHlr6C5ZIYpR7X7RhlHFoSnOAUmi6c06cOJHt27dz5513ekXKy8rKmDBhArm5udx66626KGkURPsGbAQkJCTQuXPnqI9FuPXQU34osrTwquFRSmuU624EKB2LUzqd4nXs/pPv9zrmK1OquFp5UGp74Xbn98o67+LiiZZE7hx2p/fxuMSABVk3lWzyOMfKukoGzH+Mi1f/wE0rP3cR+glsuQfCNhRscH6f8PVY3x2a46Bsp2v5XkKW51indYexDenlJhMkZMFxk1z9NwSzFF2fXVNh+/+I2/Qf37SV+zzOTZFMW+hvU5sCjHIvEHOAPjxNZg7IWQA7ox+Uivo4REgPYf+h69HcEe2C7uG8JiZc56ZHkFEPXQOVzNGjvzhLYPnCB2QYZRya0hygFJqDUmPHjmXq1Km0atWKadOmAXDiiSfSsWNHvvrqK8aPH89VV10VRFLTQnm5/9RJR714DXXjmxTKy8v57bffAo5Fc9BDT/mhyNLCq4ZHKa0SOuEDnmhcVwp8L+tzD944glIHyw6q0smRIVVSU+LV1qVFFx474zGv4wPaDPB48AK5kKYDSbYkj3P8ec/PVFnlWk6f7VvJgdKGTSwSsuHiLV7ybZLv+gSrC3b5PE7+H7BouBzc6fcopHXzHmtfAbC+DTv45S0F/Fyfin2emVkrboO9H2O32wJfy7UP+5fZGDZ5bCRfNbOaEcQcEFlZYg5ogEF2NBP2H1lZwv6NBfdnBqtVeY2jcCBSvqhHTR09dK2pqQlrf8HkG+XeF20YZRya0hygFJrDvzNmzOC9996je/fu5OTkIEkSq1atokuXLkyZMoUPP/xQTz0Ngepq/2/CY2EyAnlp5sqVK6mqqmrWeugpPxRZWnjV8CilVUInfMAT7dLaefxOtCR6FTkHz0ypepv88PPHgT8Cyk6NT2WAZYDz98ApA9lRuIM1R9Z40T5y6iO0TWvL6+e/7tVv4zedNw2+yfm9sqLS4xxrrJ4PLJfNvkz+YjJBi35e/brbQaop1fm9R3p7zwCRB5Mdqo9AcntA4VgntIDWp0PJOv8887pDVaNAnyUZSbJ70/rQTZH9m+TrKNn81NloJn4h5oDIyhJzgEcPYZKrHML+IytL2L9xEawwdrgRKV/UI/imh65qanhp6a+2rjZgu1HufdGGUcahKc0BSmGSdLh7VldXU1xcTEZGRrMrbg7KtjKMha1gBQQCQfiAN9JfSHdmMbVKaUX+I947401dPZXbvrsNgAdOfoBjWx/L7wd+5+P1H3vRDu86nIuPuZiR3UeyeO9iHv3lUWfbmV3PJCspi2+3fwvI9atuGHQDx7c7HoDX/n6NhxY+5KSXnpT4ff/vnPnRmR7HLE9bsEt2TuhwAituXeHzXEAOstX82/+btZM/OJnlOcsBWHbzMk6edjIA53Q8np8nroQ/roYz3baTnmmSM6EkO5w6A7qN8yvbC0f/gIK/oP+jvttnmuDcv6D1KXJwaJYZ0ntDfRlcccSTNvcX+PVc12+F2w13apdFTl4JHdu34dDhPG+CVfe5lhwKCDRDhHUOWP0A5C6EizfrK1dAQCfEwjNQjzd6sLdkLwCj+4zmm2u/ia5CYULGCxmU18kZIjcPvpkPRn0QhCM8ME1yvTiceulUbhlyS9jkfzjqQ48Xk6plZZigHEgHqSxCgdmZJsXPaALRg5I4CoDyBaoBkJycTHJysh6iBAQEBJoNMhIznIGclPgUnzTuhc7/u+y/AeW1SW3DI6c9AsCyQ8s82n7b/xundT7N+fulc1/yyMLyVdTcvd0Bi0kOSrnXt0pLSPMqot64YHtjSG5ZDY7AGEC9zQr1pRDfwgdTw9K3VicHlO0FcwLYg6TY/3yq/PBir5eDX+U7fNO5B6RADmIpWjokNfp0w5ZXYMeb0OkyBXIEBAQEBAQEBAQCwS6FsORLwHDQdC2PPfZY7r33XubMmRP1LREjCbEVLOTn5/Pee++Rn++d8dGc9NBTfiiytPCq4VFKq4RO+IA3Dpcfdn531mBqBF+BIXfcNewu5/f7T7rfqcPyP5d70ToCRwmWBC+5E46fQFqCnMn65dVfAnBixxPpkdUDgDcvfNNDn6MFR/nv0v+S/XI2Cc96Fzqsrg9c2NuRhGvCxIcfuJZz19nroXwnJLbyzxyX5jxPRWNtjgd7nZNn6nvvkH9kr29aW6Uz+GVPaO1f/gWr5c+i1Yr0cNSSknzZf2FDALEZ1JsSc0BkZYk5wA0GWBYl7D+ysoT9GxfBlnuFG5HyRTW1nPxBD13V1PbR0l8w+Ua59znw6fpPyd4Djy3yrpkaThhlHJrSHKAUmjKlCgsLefvtt3nnHXknlGOPPZaRI0cycuRIhg8fTlZWlq5KGgXx8d7bqjvgqM0S7d0owo2EhAQ6depkiF0HwqmHnvJDkaWFVw2PUloldMIHtCFYUOqxMx6jZ3ZP+rTsw2ldTnPq0LZlWyjzpN2SLxccT41PbSyGzKRMdtyzg8PlhxnSfggAFrOFdbevY2fRTga3G+yhjyXOwoNLHvSrV+PMqcZwZEqZTCa6dO6C5agFm2SjzmaF8l2QOdA/syXZeZ6Kxtqc4AxKJSQkMDH9H7DqbbjUx1Ifq2t9vJTY2lO++z+96cfInznzSOj6UIjXvOH9j5/i700JYg6IrCwxBzilh0Gmegj7j6wsYf/Gha/s60giUr6o1+57oeqqdvc9tf1Z4iy6ywwnbvzmRgBe+OMFnj/7+Yj1a5RxaEpzgFJorim1bds2Fi9ezK+//spvv/1Gfn4+JpMJk8nEwIEDGTlyJCNGjGDUqFF66xxxiJpSAgLBIXzAG8///jyP//o4IGcv1f7b+83inC1zuOpL/zuV1v+n3mfgKhBf54zOHHjAd2ZWMGS/lE1xTTG9W/ZmR6GfJW4NOPrwUVqntvbZNuz9Yaw+shqLyYL1CSspz6VQba1mYIt2bGiTCwMnwcAnXAwzGx7kz1kKrc9Qt9tW2U7Y9S4MeRXsNpjdMF6OWgMO2ddaoWIPfNdb/p3RDy5x2znQXg+zE6DdeXDWT/BdX+j7MPQKXsehU9sMco6W0zHbzKHCRsGnP66BA1/IBdnP/V35eYULO96G3ndHWwuBZobw1pR6EI78AJds1VeugIBOiIVnIFFTKrIQNaUC9Oemu/Rk9LNoBfxDaU0pzeHfvn37cuedd/Lll1+Sl5fHhg0beOONNxg9ejT79+/njTfe4IorrtAq3pCI9vanRoDVaqWkpCTqYxFuPfSUH4osLbxqeJTSGuW6GwFqxuKxMx7j5sE30zqlNV9f87VPmmCZUr7arVYr9TX+ayilJnhnSimFxSy/LauzBt/p5ZxPz6GgyveyZvdMqZKSEhIs8tuWuqrcwEIzj3MGpBqP9a6iXTzw4wP8tv83Tx5zvLOmlLVOzoSSWrnqa9HhYuhwCeyfDbYqSGwp00g2z2vZkG2FvSF4eNwzYElUZ/++lug53ijbQl8GoAtW3aOZ1Sj3AjEH6MPTZOYAg2SfRH0cIqSHsP/Q9WjuiPYug5G6Jnosx9RDVzW7HWrpz2YPLL8p+8C63HUMe38YD/30UHDiIDDKODSlOUApdMm9rKuro6CggPz8fPLy8qisrESSpIDL3ZoiRE0peY3pG2+8YYi1tOHUQ0/5ocjSwquGRymtEjrhA77xwagPyHs4j4uOuchne32AAt2fXv6pXx2+nu87yAXQPq29It18wREEKywtDEq7IW8Dt393e0AaEybeeOMNEsxyUKrS8Rzb+jTfDGbXvNF4rK/+8mpeX/46wz8a7vlA7LZ8r+BoDgC1uL2NMZkhqRX8fT3Ul0PvewGw1dd4XktbQzDq6NIGvjiwWxVdcylQvShTQ2AxWDH2JgAxB0RWlpgD3BH9t+HC/iMrS9i/cVFbG/2aUpHwRb1qSoWqa3mFuppSavtTUlPKCPc+LTjr47NYfWQ1ry17jQ15G0KSZZRxaEpzgFJoCkpZrVb+/PNPnn32Wc466ywyMzM5++yzefHFFzGZTPzzn/9k0aJFlJSU6KxudBGoVpZjzbEea4+NjOzsbG644Qays7ObtR56yg9FlhZeNTxKaZXQCR/wj0A1Jlomt/Tb1iLRxw51DTo8do3/4o4D2wSo1xQEuRVyJlM5yh6A5m6dyzfbvnHWs3LAPWh0ww03OHfrO2wF64CnoN3ZvgWaXEGpxmO9Lneds62kpsTF4xaUypZ2AhAf38gOG+pU8csZcmAKsGD1vJb2Rtlh5niQrIGvedVhqC0MXPHGktggP7oP8R7Q+JZbzAGRlSXmAAeMkSkl7D+ysoT9GxfRrqkTKV9MTEwMWYYeuqamKs+A19JfMPlGufdpQXFNsfN7TllOSLKMMg5NaQ5QCk2FzrOysqiqqsJisTBkyBDuv/9+Ro4cyemnn05Kiu9tz5sD9LgxNXUkJibSo0ePaKsRdj30lB+KLC28aniU0hrluhsBeo/FGV3P8NuWkeh77XViYiKD+g7i7O5ns2jvIq92xy574cBFx1zE9zu/9zh2+eeXkxyXzIEHDtAqRd5Vz335Xo8ePWib1hYAO1Bml/A7zbllSgUa67zKPLKSs1w8jkLn9lLodRuWKtfOh0gS1JW4ftfL303YPOVvetazE0mCir2Br/mymyAhK3ARc3PD3JHcwXXMViMH06JVLLYmF5LVZ9QZ5V4g5gB9eJrUHGCA3fcMMQ4R0EPYf+h6NHdEO/gWqWtisQQuAK4EeugaZ1H+L7uW/hLiAwcZhQ/ISExMpGu3rs5SF9HUo6nMAUqh6Y7iWJ53xhlnMG7cOMaNG8d5553XrANSABUV/nebcmQFRHuNdbhRUVHB33//HXAsmoMeesoPRZYWXjU8SmmV0Akf0IY4cxxtUtv4bEtPTA+ow5vnvMkZXbyDWqHUlAqGf53+L5/Hq63VzN061/nbYQcmTPz999+kxbkCZcXF2/134JZVFmistxe4ybAkwr4ZUFcKf9/AlvJ+WG2OOlH1ULEbrJUuelstZPSFmjzy5o1yyd/5tvzp0DWlE1grAl/z+jI48HngelGOoFTBX/D7lfL3H46HvZ/45wkXqhreEmrcCVDMAZGVJeaABhikppSw/8jKEvZvXES7pk6kfLG+PvRl93roWlOrfBmhlv6CLVM0yr0v2njg+wfIeD6DKcumRFWPpjQHKIWmoNQXX3zBXXfdRW5uLv/4xz84/vjjadOmDVdffTVTpkxh27ZteutpCFRWVvpti5XJqKKigiVLlkT9phRuPfSUH4osLbxqeJTSKqETPqAdNVbfDwM9sny/pXDokGXOYsrF3hNjSnx4XhC8c9E7zkwoX3Aveu7MlMLEkiVLSDG7dCo5vNC3gNO/8vgZaKzzq9zWuVuS5M+Gmk0r123Hamuo65G3GMq2gnvB+MGTnbt4ZZT+4ik/pQsMnyd/T8iCHW9Se2iRS48DX8LuD1301T5SwYvXNwyC5JndYauBgw2Bu7IdrhpWgVCxB6zVwemUor5M/my8VFEhxBwQWVliDvDoIUxylUPYf2RlCfs3LpwvfqKESPmiHsE3PXRVU8NLS3/B5Bvl3hdtvL7ydapsVdz1011R1aMpzQFKYZJCvHsePXqUX3/9lcWLF7N06VJ27NiByWSibdu2jBw5khkzZuila9SgZCvDWNgKVkAgEIQPaEfCMwk+C54r2eZ2b/FeevzPM3j13FnP8dgZ/mtOBYL7NrvuGNBmAOtuX8eRiiN0/m9nnzQ3HHcDn1wuZ/8cN+U4Nh7dSHJcMlWPV/H4osd5/o/nAfjlimmcPXCiJ/NME5z2OXQd41O2zW4j7hlXYOnV817lwVMedBH8MQYGvwLfdoOLNvHK/Kv5qjadyaYVnJEMdB8Pez+WacdJrj4Bhr0Fve+Wf2cPgwtWysdr8mFuG+h2PbQ4Fo79PznTyVoNIxuWMP50MhQup9M9kFMMHbPg0FsNfSwYCIOegyML4Zjb4fvjXP3PNMHJH0H3G2D/59DhIkjwUUPMoeM4nf7Rqdwvj9HFW6FFX31kCggQ5jlg7SNwaB5cGiDLUkAgioiFZ6Aeb/Rgb8leAEb3Gc03134TXYXChIwXMiivk2tP3jz4Zj4Y9UFU9HB/Hnv/kve5deitYZM/ffR0Jhw/QbusDBOUA+kglYU/MOuue7BnZXfa78d9z4XHXBiRfgVkKImjgA6777Vp04Zrr72W9957j6VLlzJ58mRatWpFbm4us2fPDlW8XyxZsgSTyeTzb+XKlU66AwcOcOmll5KamkqrVq247777qKvT9oZYQEBAIBwItANfMDgKiLujQ3oHH5TK8PfNf3sd+2j0R6y9fS0Ws4VOGZ388h4sO+j87l5TCiAzKdPZVmz2sSxx2NvQ8gTnz6+3fs2n6z/F3rCrXeNsMq/ssvgWUCcXs/xm7+88umcrK3JWcOYhIOt4OOFtSO3qW/Ftr7m+S25vReMasrsOfAnrG5Yt1uTBkR9cNOYAu8yWboK6IjkrKbG1d3tSG6gtgL/GwZ4Pvdv9YXYI9Q0d76E0ZkoJCEQP4h8AAQEBAQGB5oiQglJFRUXMnTuXe++9lwEDBtChQwceeeQR8vPzadu2LWPG+H7jrQdOPfVUjhw54vF3yy230K1bN4YNGwaAzWbj4osvprKykj/++IPZs2czZ84cHnroIU19Fhb63yI9VraCLSgo4MMPP6SgoCA4cRPWQ0/5ocjSwquGRymtEjrhA9HRIc4cx+wrPV8AXNX/Ks2yT+50MgNbee7e1zO7J3Fuy99O7nSyT97D5Ye9D0rw4YcfEmd18ZfUlnrT9b4L0roD8puoK764ghu/uZHxb46noKCA6kZL2Gz2RjWRJCtsfwOAy+fd6dmW3AniUl3L/BrBKjUU+Gx1Kpw5z9Xg2LGvYde8goICz4LpIBcrD4T4TDkA5KBrd45vujUP+j7uQPUR13c9AkqStkCoEew/EnqIOUA9XXjnAGPUlBL2H1lZwv6NBcktMBztF/yR8sVgtZaUQA9d1Syj0tJfeXngHZeNcu8TkNGU5gCl0LT73oMPPsjixYvZuHEjkiQhSRKtW7fmyiuvZMSIEYwcOZJ+/frprasHEhISaNeunfN3fX098+bN45577nG+mV+4cCFbtmzh4MGDdOggZw68+uqrTJgwgeeeey5gCpkvBNqBwdFnoK3fmwPi4uLIzs4mLk6T6TQZPfSUH4osLbxqeJTSKqETPhA9HbpmemYAhbr73r9P/TfXzLvGr7yXznmJ4R8N9+LbUbgDSZIwmUyuQucmE9nZ2ZhTXO9ASmt8BKUasHC3Z72pz4o/4824NzlQfsDjeEVdowe0PR8BUNv1FtjZKNX+1M8avpihzz+8+jTZGwJeiS0h1S3zrNHOeHFxcc66VU4kZHn+NscBVldGkmNnQEdQyhHoArBbgweY4tLAWgG2RnWlJElb8edfzpQ/bdr+oTCC/UdCDzEHqKeLhTlA2H9kZQn7Ny6ivftepHxRj/PUQ1ezRbkeWvoLtsugUe59AjKa0hyguE8tTK+//jrZ2dmMHj3aGYQaMGCA3rqpwrx58ygoKGDChAnOY3///bczg8uB888/n9raWlavXs3IkSNV9ZGZmem3LVYmo8zMTC677LJoqxF2PfSUH4osLbxqeJTSKqETPqAdl/S+hO92fKdZh2EdhtG7ZW92FO5g2qhpoesz4BJwSxjKSvIMvJzZ9UwW3biIsz8524s348UMDj942GP53mWXXcb87fOdNP4KuwO8u+pdr2OZmZl8vfZrj2Mv//UyL537kutA69Mh/w8SE30UeXfUajKZ8LUEyFK9Xy5C7q/EYnJHqM6R54Dk9lC+w9XWOFOqYbkhFbvlT3utKyiV3B6PjA/JR1Bq2xvQdgRkDZJ/dxwF+2dCwQpIc6sdJtnApGEKr2pYYvnnNXDZgcC0PiDmgMjKEnOAsSDsP7KyhP0bF/HxAZauRwCR8sWEhCDZ0Aqgh64pyco3sNHSX0pKYPlGufcJyGhKc4BSaAr/rl27loKCAubMmeNcuhdtTJs2jfPPP5/OnV1vuXNzc2nbtq0HXVZWFgkJCeTm5vqVVVtbS1lZmccfyMsBYx02m43Kysqoj0W49dBTfiiytPCq4VFKa5TrbgSEYyz+fca/ObHjiYwfNJ6TOp5EWkIav9zwi2Id4sxxrL9jPbvu3cXEwRP98ilFgsnzIaxjRkcvmsaBKgcq6irIeimLyjp5t1ITJiorK4l3q73kCEpNXzud6+ZeR2GVa2l075a9vWTabDas9iA74CS3B8DuY5mPa6mfySPwZO8+wU3xvX5FSw2BI5vNJhc8zzrerbGRXuaGt43WhkwuW01DUCoeLj8MuO3IJ1m9M5bWPgQFf8nfC1fKASlf/TT+rQTuY9h1bMMxG2x8WrEIo9wLxBygD4+YA9TBKOMg7F8fHmH/2hHtXQYjdU30WI6ph65q9NDSn2QPfD2biw80l6BxU5oDlEJTptSgQYP01sOJp556ikmTJgWkWblypbNuFMChQ4f46aef+OKLL7xofRmfY3mJP7zwwgs+dZg1axZZWb7/EauqqnJ+zpo1K6D+TRk1NTUcOHCALl26kJTkuz5Lc9BDT/mhyNLCq4ZHKa0SOuEDoeEfqf+Aajgv5TysXawcXX6UWct9j2MgHVawImRdampqOJuzWW5eznmZ5/Hl51960Ryq9b+7kE2ysb90PwDWeiuTJ0+mpo0rO2rdpnX8a8+/eDHnRQAWbVvEf7v/F4Di0mIPWd3pzieffMLfNd4F2N3tzCxdzGX8wJ6tG73oPpn1CUnmJC6Uysgr3c6anbMazvNMro//jHizFRb05xBD+L2R7Y4FrDWlxJvgk08+4czELfRkHT/NfJYiU09Ol/bhXmreMX8v/OFbzgPW/rWA1uTwe8PGH2Ol+cye9RnXAn/98Rul7OFC4Ch9WTRrFmMlG8tWrmfvqlm0kzbiyOf9/e81HFpmcer05eczsZrclgIqQJxUxdUN3zds3cPmbbOwSDWM4UlmbTpGkQwxB0RWlpgDZBwvbaUj5SyI8twi7D+ysoT9GwuVFZXO7wcOHIjqeYbTB6xW1wucnbt2hnyeeuj697K/ydilrOyMlv7+/PNPkraH5gMORNou1PS3ZMkSilcWByfUuV+90ZTmAMe9MRhMUgih7v379zNjxgzWrVvn3OZv8ODBjBs3jm7dummSWVBQELSoVrdu3TwG6JlnnuHNN98kJyfHI530iSee4Ntvv2X9+vXOY8XFxWRnZ/Prr7/6Xb5XW1tLbW2t83dZWRmdO3cmLy+PNm3a+OTp2LEjhw8fpkOHDuTk5Cg616aImpoa9u/fT9euXaP+QBZOPfSUH4osLbxqeJTSKqETPtB8dFAif3fRbnq92SuorBaJLVh++XLyE/I545MzALj3xHt5c8WbHnSOrXXfWfkOd39/t/P4iW1OZOlNS5m6fir3/XifTx4nZsovG/rn92NryVbn4dyHcmmb1ha+HwRtzoRhbzrPM+GblpjtDRNmyxPh/OU+ZQLUXFFN0u/nQf7v8oFxEiwdBTnz6XQP5BRDx7YtOPRaKWT0hbJt0PYsucj68HkueVeXw1eZcPJ0aDEAfhwCXa+FnrfCr2dDt+vkOlhHf3fVgDpjDnS+wiXjpA+h502BB78xqnPhazmjjIGTYOATYK2EL9Lkc1EAI9h/JPQQc4B6urDOAWsfhUPfwKU7gpKGE8L+IytL2L+x0O31bs4XTpcecynzxs0LwhE+hNMHWrzYgrJaeZXM+IHj+eiKj0KSp1VX0yTX88fb57/NXSffpWt/7vKnXjSVW064RbNMU4YJyoF0kMrCn0XnrrvXs2AA2h+u+4ELel0QkX7DiaY0B5SVldGiRQtnrMgfNFeveuutt3j44Yepr6/3SOGcM2cOkyZN4uWXX+b+++9XLbdVq1a0atVKMb0kSUyfPp0bb7zRa33zKaecwnPPPceRI0do315+EF+4cCGJiYkMHTrUr8zExEQSE7233A7o2DGyljwpKYk+ffpEW42w66Gn/FBkaeFVw6OUVgmd8IHmo4Pe8vv06UNdnmuZWqCaUo3bLAkWkpKSfC7fq7XWkhjnfa82x3uuTH931bs8OeJJGi/fS0pKArMZEtvLu9tV7PFW6ML18MMgF70jIOVxgvcD8s5/xKVB53Pkf6ABWp8GB+d60h/6Rg5U2a1ybSiQP3c0BOr2zZCDUnENNR5O+cRVq8qB5RPVB6U8iqU7lhCqe6gygv1HQg8xB6inC+8cYIx5Rdh/ZGUJ+zcu4izRLXgdKV8MVgBcCfTQVU0NLy39BZNvlHufgIymNAcohaaaUt9//z333XcfmZmZPP/88/z999/s3buXZcuW8eKLL5KVlcWDDz7IggUL9NbXC7/++it79+7l5ptv9mo777zz6N+/PzfccANr165l0aJFPPzww9x6662qd94DqKys9NvmCMxFe411uFFZWcmqVasCjkVz0ENP+aHI0sKrhkcprRI64QPNRwcl8jOTMhXJMmFi1apV2OtdQZXGgacO6R38thWXFVNZWekzKLWzaKfPPssqyzx+L89pyH4ymQCXHvJ6eTuSQ3atjyzdFse66MsKvdsBurh2KpQkCQ7OcQWb7HVQutmT/sAXYEmBkg1ybaisIXKAKqPRrrWOWliFK2HvJ777VgP3oJTTT9XVyzCC/UdCDzEHqKcL+xxggLlF2H9kZQn7Ny6sNg11DXVEpHzRfSmfVuiha02t/5d5evTnvkJIL5kC4UNTmgOUQlNQavLkybRs2ZI1a9bwz3/+k5NOOomuXbty4okn8uijj7J69Wqys7N57bXX9NbXC9OmTePUU0+lX79+Xm0Wi4UFCxaQlJTEaaedxpgxY7jsssuYPHmypr7Ky8v9tsXKZFRWVsb333/vLP7eXPXQU34osrTwquFRSquETvhA89FBifyWKS157bzXGN51OK+f/3pAed9//z111a5MqZ/3/OzRnmBxFVZvHJTaVraNsrIyn0GpiroK3/pXeeo9otsI+UvWYMh21SMsKyujsj7OVUC05Ynewsyut6SmVQ2p8/3/T/6U7JAz34Pcy/7rSuSleR7HiqEmF7a/Lgevulwlf6Z0ctGUbnEFtg4v8OpHE6zu6/ob9NzzkSoRRrD/SOgh5gD1dLEwBwj7j6wsYf/GhbU+ukGpSPliXX1dcKIg0EPXmhrlQSkt/VXXVAdsN8q9T0BGU5oDlEJTTanMzEyuu+463n77bb80d999NzNmzKCkpCQU/QwBJWshO3XqRE5ODh07duTQIf8FgAUEmiuED8Q2rpt7HTM3zvQ6np2cTeGjhRytPErbyW19cELH9I4celC2mUcWPsLkvz1fHBx84CD/W/4/XvnrFY/jtw+9nXcvedd1YKYJ0o+h7fZSjlYe9aD1u/a/tgiqDsIPx8sBqwtWetP8fDrk/wmdLpOX3o2T5L4SW0NtPpz7F536nCrXlOrYkUMvN9QT6THBFfRx1GyaaYLMQdByGBSugmH/g4Ll8rLAzlfCsgky3XHPyrK3vyHTl6z3lOEuUynca1Qd+28Y9AzMOwYqdqmXJSDQCGGdA9b+Ew59HfWaUgIC/hALz0DuNaUu73s5c6+ZG4SjacK9ptTE4ycybfS0qOjhXr/ovUve47aht4VN/kejP2L88eO1yxI1pQT8QGlNKU2ZUnV1daSmpgakSU1Npa4u9OiygICAgIDx4SuTCeTlewDJcf53iquzueaK3Mpcr/btBdu9gkwA761+z/NAnwfAHO8hzwF745pMDiRmQ5ZjR1k/DxhnL5U/za6MLtqOlINGAG6ZXh7ofJX8mdrN83hCFiS1g9QucjaUuaE2h2Rz9bHh33JACiCxpW/5auFYvjf4FZznavWfASwgYCjESAaKgICAQGPESgaeQOxCU1Cqd+/ezJ8/3+86W6vVynfffUfv3r1DUs5oKCoq8tvmWP7hXAbSTFFYWMhnn31GYaGf2irNRA895YciSwuvGh6ltErohA80Hx20yO+Z1dN3gwSfffYZdRX+X1LU2+ud33cV7fJqLy4t9hn0SopzbT5RVC3fn61WG1W13tvPOt56usPrPP089BUWl8hfDnzh2gEvb7GLIGsI9iQ5C8zD/usath1OyHQdG/4dpPcCc6Lcn2QDU8MSQWslDG+0TK///8nHWp/mUzcvLDoHKg/6bnMs3zMn4AxK9XHbkGT3NKgN/V4QCRjRB8IhS8wBQMlG2PqyvjI1Qth/ZGUJ+zcWJLcXN9FOPIiULwartaQEeuhaUem7XIFe/VVUBJZvlHufgIymNAcohaag1Pjx49m+fTvnn38+q1ev9mhbtWoVF154Idu3b2f8eO1pgEZErOyoEQhms5nExETMZk2m02T00FN+KLK08KrhUUprlOtuBBhhLIxo//93+v9xbOtjvY6bTKagsuptrqBUYZX3BGjH7jModfPgm9mQtwHTJBMtX27J7Rt+xmSCeqnei9bXjn9e51nlO5jjaP+kDIas/pO5WxstWTCZ8Dmdtj9f/nTUoAKozoHdH4AlUeazuwWl6krkLKqebht3JLWTd+GLz5J/V+xztW1+3rvPvEVQk+d5bKYJNj7jypQyWVwBuLh0MDfsurP8Ftjxjq8hcMII9h8JPcQcELoeuqGuRP40wDOYsP/IyhL2b1xE+3+iiF0THU5TD13NpvD4gAMmc+ATbS4+YDLITq6hoinNAUqhqaaUzWZjzJgxfP3115hMJpKTk2nbti15eXlUV1cjSRKjR49mzpw5Td54QdSUEhBQAuEDApIkcft3tzN1zVTnsdYprTn6iLz0zn0tvjvizfHU/aeOiroK0l9I92qfd+08bvr2JgqrPQNWdw67kymrpngcqx3Sj8Q1W71kHHzgIJ0yOnkddyJYnaaZJkxum/1Jx7i1jZM87X/5u7D0UhhTBV+kwGU5kNKww+CWl2Dd/0Gv26D6CPS6XQ6GHf4e0o+BXnfA9v/CzobzGvom9LkHlo6C4fOgYAUsPElua30GnPub93lcsAqyh3oe6/MPyBwo7wbY+nTYNwOOfwE2vwjbJsOVBdprVQkIEMY5wFELLa0XjPK946aAQLQRC89AXV/vyoHSAwBc0e8K5oyZE2WNwgMj1pR69+J3uX3Y7WGTHys1pX687kfO73V+RPoVkBHWmlIWi4U5c+bw8ccfM2LECBITEzlw4ACJiYmMHDmSjz/+mK+//rpZBKTc0ZxTcpXCbrdTV1cX9bEItx56yg9FlhZeNTxKaY1y3Y0AI4yFUe3fZDKRlZTldcwh6/ahvh+o6u31PLH4CZ8BKZBrTjUOSAEcKvN+8M/xsyOQzW7zOuZxnsfcBf0e9snrcxyS2/ukBcDSsKzQkih/utfTctSMKlwlf7ov37PXyfWpLO70rt3/GhjcNfOjgI/g3/bX5eV7qd3BZJZ3DnT0afZTE8sHjGD/kdBDzAGh69EcYZRxEPavD4+wf+2I9lhE6ppI/mpNqoAeuvqti6lTf8HkCx8wFprSHKAUIUWNbrjhBhYtWkRhYSH19fUUFhbyyy+/cMMNN+iln6Fw9Kh3oV0HYmEtOUBeXh4vvPACeXl5wYmbsB56yg9FlhZeNTxKaZXQCR9oPjqEIj81wXMTDMkuOWWN7jPaL98zvz3jt62o2Hc9v/k75nsdG7DZuyYV+C7E7nGeJ7wNx/uuW+NzHE6c6vHTw/7NDUEpR7q9JcVFaIpnbz38WWWVC5dKNjA5Cp3b5QCVJcmNvlFQyv3BsXGgzZH47F4Xyj0ZevW9UL4DMMGuhl0LVQaljGD/kdBDzAHq6WJhDhD2H1lZwv6NBfelT3rUWgoFkfLFqirvGpVqoYeu5WXKNyXR0l9ZmXfdzVBlCoQPTWkOUApVQally5Zx9tlnk5GRQUZGBueccw4rVqwIl26GQ4sWLfy2OdZWR3uNdbiRmZnJFVdcQWZmZrPWQ0/5ocjSwquGRymtEjrhA81Hh1Dkd8vs5vHbbDY7ZcVb4jXpY05UPlVV2X2/1bRJ3plSXufpx3YzMzPZ1XOmxzFroxpVHvYf12h3Wregz56U/vTYB6dv2sCbOXs9M6UkG2CGuDR35oa2hvOqc88Ys4Ot1hWcctSM2viUm6JuD7JdxkDLE+VgWX3DA6i9HkyNrkv1EfzBCPYfCT3EHKCeLhbmAGH/kZUl7N9YcM8aio/XNp/rhXD6gHvwLSFR+Usbf9BD1+QU/zsY69FfSkpKwHaj3PsEZDSlOUAp4pQSbty4kbPOOouaGteD+K+//srIkSNZsWIFxx7rXeC2uSE52f8NIRYmI5DHYODAgdFWI+x66Ck/FFlaeNXwKKVVQid8oPnoEIr80zp77hJnNpmdshIs2h7u6vEuXK4WvjKlGp+nzW7DbDJ72XBycjK9ThoLP45zHrN3vBhOnQF/XQc0sv+ERi8w3OT1/PBs5/f7d23mvtPdg1INmVJ9H4D1jzXwNsqUciz7c7QtvQQy+sOwN6Bij3y85Ynunbu+pnaF+BauY8tvkQudN74uX3eAET9CB++6C0aw/0joEVT+0T/g6FIY8HjosnTmFXNA+CDsP7KyhP0bF3Fxiv+FDAsi5YtxltDPUw9dE+KVPz9p6S+YfKPc+wRkNKU5QCkUv35+8cUXqamp4fHHHyc3N5e8vDwee+wxqqureemll8Kpo2FQXV3tt81RL15D3fgmherqajZs2BBwLJqDHnrKD0WWFl41PEppldAJH2g+OoQiPzneO3jvkOUrMKQE76963/m9Z1ZP4s3q39D6qinlfp5b8rfQ6b+dGDZ1GLXWWi+6devXeRyzA1Tsdf72sP+kdjDoOWWKNc6UMpl9L99z/KNT7lboOS4dcn+BHf9rOMmG65U1yFO+83tD0MsRlNo9zf/yvSUX+FTXCPYfCT2Cys//3TXuocrSmbe5zQE11lrOPgQnbD9IbkWurrLVQth/ZGUJ+zcubDbvOTWSiJQvWm3anlvcoYeudfV1Ye0vmHyj3PsEZDSlOUApFAelfv/9d04//XSeeeYZ2rRpQ+vWrXn22Wc57bTTWLp0aTh1NAxKS0v9tsXKZFRSUsLXX39NSUlJs9ZDT/mhyNLCq4ZHKa0SOuEDzUeHUOQ3zoaS7JJTVkmNenkA5bWuJWhD2g/RtAzQV0DM/TwnfDOB3Ipc1hxZw7ur3vWim/vNXI9jNrsNMvo6f3vYf1wKHPtYUJ1SzBawW8HseBNrdwWhUrvJn/GNir/vnwkdLpG/xzVKt3cEoNzPtWSTZ7vJjEeBdHsdmBM9a1UFgC62t/5x2PG27zZrZeT0UCtfRaHZoLLCyNvc5oBX1s3m12pYVVXLPd/fo6tstTDC/T8SeohnIPV0sfIM5EB9XegZzKEgUr5YV6s8GOQPeuhaXaU8OKClv2DyjXLvE5DRlOYApTBJCu+eiYmJ3H///bz8smch2EceeYQ333zTY1lfc4NjK8OSkhK/daViYStYkCdbm82GxWKJaopyuPXQU34osrTwquFRSquETvhA89EhFPnlteVkvOja8rVjekf23bcPi8VCZX2lxw57FpPFZ62nxjip40ksz1kOwIMnP8hry15TpRPAyltXMqzDMI9j7udpftr1jua+E+/jjQvf8KCrqKkg42XXed19wt10bdGVB4dMwJLc2sv+JUli3vZ5WIBL+roKvMc9HedxztJ170Fia9gzHeIzYdj/ICETKvbBvO5w1iJodxYsHQXD58FME3QcBTnzoOu1sH+2LGicJGc+7Xofuo+H3nfJx38YAsVr5e+974W+D0L1YfjZbZll27NgxPfwuVuGFsBYu2edrZ1TkHrdEbrtLTwVMvrAydO922aa4Ip8SGoVUERUfGCmSR5ngM0vyDsaXhG8CKiYA0LDmM/O4svdiwHokN6BnAdzdJOtFka4/0dCD/EMpJ4uFp6Bur7elQOlBwC4ou8VzLlmTtR0CacPZL6YSWmtnIgw4fgJTB/tY65SAa26mia5aKdcPIU7ht3h/P37/t/5v0X/x7gB47j7xLs19ecu/6PRHzH++PGaz8GUYYJyIB2ksvAHZt11l54M3J877Y/X/cj5vbxLE4Sj33CiKc0BjjhKaWkpGRkZfukUZ0rV19eTlpbmdTwtLY36+uhGyyOFWFknHggmk4m4uLioj0W49dBTfiiytPCq4VFKa5TrbgQYYSyMbP+NM6XcZaUlpDl34Hvw5AdJS/CeU3zB8RAM0DGjo2Jd2qa2dX6vrne9BSyuLmbyX5P5+9Dffs/T/X2NyWTymi3fXvk2j/7yKB9v894BEOC3/b9x2eeXcennl/Hz7p+dx82mRoJW3A5VBxt+uGVKpXWTPx3ZUPY6V7Fzc4JcG+rQNy45FXvkGlH1ZWB3X37o9tAk2eVMKalR1pglRS543hgFy1zf7VZYeZeOtmeSZfpa0rnspuDc0faB8p1Q439HXlWydOZtznOAewHiqPRvlHGItv1HSJawfwMjykMRqWuixz1HD10b63HmR2fy18G/uOeHe6izeWZzafWbYO3NwQeauv4ONKU5QClU7b4X6yguLvbbFgtbwYI8Bp9//nnAsWgOeugpPxRZWnjV8CilVUInfKD56BCK/MZL6yS75CHrm2u/IfehXF49/1WS4pJ8ifBCflW+83t2cjbdM7ur5nvmt2ec3+//8X4e+fkRTvvwND6a+ZHXea44vIJ2r7bjtvm3AfJ4fPD5Bz77eHulvAytsf279/fQwoec3+t9BX8cmVPO5XVusDQEpeJSXXTmBBi9F2wNGcpZgyHne/n74FfkAJZTtntQqqF+Vdbxnn3EZ3jyOOnddLVWADrZniQBJlh9vxyU04BI+MDc2dMoObLFN8Ee5W/OxRwQGoy0HMoI9/9I6CGegdTTxcIzkLsv1tWFvqwtFETKF2vraoMTBYEeulZVVflta1yeQEt/lZWBl84b5d4nIKMpzQFKoWpLgc8++4xly5Z5HNu1axcAF110kRe9yWRiwYIFIahnLBjpwShacKTzRXsswq2HnvJDkaWFVw2PUlqjXHcjwAhjYWT7b5wJlFOR4yWrbZqcwTSo3SAW7l4YVKb7A1dmUibn9DiHqWumBuWzu9UA+nmPK1vp0w2fOr//VPQTo6RRHnzLDsnz3NQ1U3n0tEfJJpsv8r/w2ceaI2v488CfXsfdx2Hj0Y2BFa2vgJz5kNjSe7e9uNQGgQmuDKjWp8pFzgHanScXRs/7Rf6d1A6K1rgJaBj39GOQM7HMchDKgQ6XQFyy70wpk49HhLoSdbaRtwTajvA8JtWDOR6qc3xnSqHfvUsrJElioH0maavfhEvWNW70z+i+xM9NlpgD9EG033IbZRyMPAfoKUvYv3ER7azFiF0THcTroaukQhGtfqO3TIHwoSnNAUqhKii1a9cuZxCqMX788UevY9F+eNAb2dnZftvMZrPHZ3NFdnY248aNC07YxPXQU34osrTwquFRSquETvhA89FBb/n+ZE29dCpdX++qSlZmUqbiDCslmF04m8etj/ttzynLoVe3XiyrWOaX5vTpp9PRLC8rdPpBo+CczW7DYrZ48QKujKTaQrwSmB3L98wJcjZT17HQ/QbP4ugAh76VPy2JnllPjiBXmxGeO/05YK0Ac2ew+XgL677LYUOWVlaLVHW2sWikV5BG1iMO7G76LDwNzlkSWJa1EqpyQLKTnd037D6Q3asXFPnY4ERlwXMxB4QGNf+MhRtGuP9HQg/xDKSeLlaegRxISPCxa2sEESlfTEgM/Tz10DUlJSU4UQj9paelB2w3yr1PQEZTmgOUQnFQau/evcGJBAQEBARiHq1TWnssnfOHLi26UPfvOn7d+ysSEhfOuDAoT/u09iTHJeuhphPP//48CZYEr7oMANd8dQ25Dwffhr7x26Ram2fKf15lHruLdvtm7nkrbGpY7tc4aGRpCMCZE6FiL+yfBafNdOvYhserXEdGlSRB2TaXPMmGHMBq9A/T0SWQeRxseMJbr7oStzpUbjv7HZwrZ2MNetb3+QRD8TpoM1zWx9QQ+Cr4y9WHP3yRBu3Olc9xxHfa+laKH4ZCy2H4LJxS7aOI8UwTXO1/h14BAQEBgaaB5pZUISDQFKA4nN+1a1dNf80Jubn+/zGJhbXkAEeOHGHSpEkcOXKkWeuhp/xQZGnhVcOjlFYJnfCB5qNDqPI33bXJ43cgWfGWeM7vdT5ndj3T4/isK2f5pG+V0orkeG1BqbLaMp/HZ22aRVZSls+2vMo8ReNwuPwwADX1cp0nS6PgUmFVIauPrPY41j4xRa4HldrZdbBxTSlH0MacAIUrvDtuHMgxJ4KtFmryYEF/qNzf0GCXA0y+srXM8VBb4H188Xlw+IeGfmS/Ltr1I/x+JfZt//Wmd6D6CJT7zqp2nZfFRw0tBf8I2GrAZMY6t2t4/bB4DatXr6Ku8UYuf14HpVv96Oa7xoqYA5oPjHD/j4Qe4hlIPV0s2L87or3reqR8MVAtJ6XQQ9fSUuUvPbT0V1JSortMgfChKc0BShEbOaY6IdA2ho6oenOPrrdo0YJLL72UFi1aNGs99JQfiiwtvGp4lNIqoRM+0Hx0CFV+y+SWHr+VyGqc/XTtgGt9ZkSZTWav5Xv+lvONHTDW4/fd39/tkw6gX+t+fttS01P9tjVGYXUhL/z+AqkJnjzldeVemVh2axUUr/UU0Nh/HMv0LInedZ8cS/Jy5B0A99TDiyvfZ1f5Ufi6vUxT25CxVp3XEMDyMe07lgb6Qn1DIK8h+JVeLetr9rXcz4GNT8Ef1/hvB3n5niMLy4HdjmLyAZZr5f8ORauJqzkQdj/s2qULFkujhPL9M6HMT1DKj95iDtAP0a5jY4T7fyT0EM9A6uli4RnIfSltfHx8AMrwI1K+qMcyRT10TU72/zKu8X1RS3/JKYFf9hnl3hcqmktNrKY0ByiFCEqpQKD1vLEwGYE8BkOGDFG1trkp6qGn/FBkaeFVw6OUVgmd8IHmo0Oo8hvXTlIiy2QycUnvSwB49NRHZT3ivXnMJjM9s3p6HEtLSOOTyz7xOHZ6l9N5euTTHsc+2/CZ3/5X5PjIQmrAs3+rW6b22K+PMW/7PI9j5bXeQam8RklO5XZYfmg5Nrt7Q8M0bU4ASS4K/vzvzzNq1ij2mDzrHJ6fA//67QVO+/sbb6WO/NAQBPKTKWX3s8PQX+Pg0DxnwCi+47ny8cZF0OvL4egfDW0WglaHNcc10LjdL1bdE5jHgWo5Ky3cftiqVSsslobx+nu8qyHOT5DSz/JDMQeEBiP9E2GE+38k9BDPQOrpYuUZyIG4OFVliXVHpHxRj/PUQ1c1wTEt/SUmJOouUyB8aEpzgFKIoJQKVFdX+21zPDQZ6eEpHKiurmbr1q0Bx6I56KGn/FBkaeFVw6OUVgmd8IHmo4Pe8pXK+uaab9h691ZePOdFwHcGlNlkpnOLzh7HSmpKuGHQDdifsHP9gOs5qc1JTL94Or2yeynS75zu51BV7z/z55W/XlEkJxBKakp81qwqbIhj1B7/Khm74eRpJ/P00oZg2qU7wdLwIGqWM6U21MLjvz7O/B3zGbPmeyhe75S1qyGR6mh9owDT6V/Kn1WHXEEp9+Lj5ni/S88A+G20nP0U34LamgrAR/HpRWfBL2e4HXBrr9jjLdNkadjFzsc/cIFqSyW2hi5yFpYuNpr/J/ww2GdTSUmxaynOXregZ2Ir37J87WCImAOaE4xw/4+EHuIZSD1dLNi/O2y2IDUAw4xI+aLV6muHWHXQQ9e6ugBztA791dUHlm+Ue5+AjKY0ByiFCEqpQKD1vLEyGZWUlPDFF18EXXvc1PXQU34osrTwquFRSquETvhA89FBb/lKZVnMFvq26ut802zBO6vHbDJzTPYxHsesdvmh0WQy8fKpL3Ph0QtJtfnOZpmycorXsaX7lwbVLVRUW6upt3kHLe44Kn8+t/UX57Gnf2sISqW7BdXqimD7/9ji9ty4uqpG3j3PB+476vYjviH9Ov93eRlgY5gToL5E/t7yZEhq5/sk4lKoKi8GwCTZYPFFrjZrpRtho0BTyUYfwkyA5L1cEeDIT777B+Ri7fI9Rhcb3f6mXHh9r3cW3d49e7D5Clb6231P8v3PS1B/qituCNBp4A2RpynMAe4mEu2d+Ixw/4+EHuIZSD1drDwDOVBf5zsIHylEyhfVBIP8QQ9dAwUHGmfnaemvqjJw7aywj/eh+X5f7OiJ5pLJ2JTmAKUwSbFy9wwBZWVltGjRguLiYjIzM33SdOrUiZycHDp27MihQz525mkmsNvt1NbWkpiYGNVtb8Oth57yQ5GlhVcNj1JaJXTCB5qPDnrI7/92f7YWbGVE1xF8f833mmT1fasv2wu3exyreqyK5PhkTJM8HyykJyWfurvTxZvjqdfw0DOwzUA2HvUVWHHDq0A5kA485N387sXvYpfs3PX9XV5t0pOS3/Nx4vNUsFUxswyuy3Ojc8TnTHGYdngGRZxtw+dT/Oul1EvQ5kY3uTMb+hzyGqx5UP4+ToLvj4eS9XghuSP2gU9hXnGr69hlByGhJSw8SQ4+XbBGXuqX/ydctM7VxzgJ1j4Cg1+Rjx37byj4Uw6AnTbTRQeQPQwuWOnd/0wTxGdCYjZU7KH68ir5Ouf+DOU7oM+93jzB8NvlcOgbGPAEHDcJ7DawVcKXLbBnDsFcskbW3V2/U2fKyxod5+XQrcvVcOBLzyw0FPjTTBOctwxaneTVJOYAuPrTEXy1Rw4cd0zvyKEHoze/GOH+Hwk9xDOQerpYeAbq/N/OHCqTz+3Kflfy1ZivoqZLOH0g66UsSmpKABg/aDwfXfZRSPK06ur+XPD2RW9z1wl3+WyrebyGxDjXCyel/bnL+Gj0R4w/frxf2mAyTRkm5zOQVKYutFBaU8rHH2Zy6vnzGdbzEkU87rp7PS8FoP3p+p84r+d5qvTT2m840ZTmAEccpbS0NGB9bpEppQLRfAAxCsxmM8nJyVEfi3Droaf8UGRp4VXDo5TWKNfdCDDCWDQF+//lxl+YNmoaX475UrOsBIt3DQVzQ2Hsawdc65Onse7pCenONi0BKYADpQc08bmjoq4iYDH1oGjIcNrm6xQ6XARtR/hlPVyeQ6e90GkvbDrqtjNih0sgo69rhz8H/L1JrC/FnP+H57H5fWDPdFc2VMUewCTv5ueeUWSthq2TXb8lm//le456VXlLobBRcMpe61wO6LzOuQth59vecpZNhNJtvs/FgUPfOBSSP/4aB1/KmWVmyc8bcn9F4cu2+zysyJ/2fKSdNwQeMQeog1HGoSnMAXrIEvZvXEQ74yRS10SP89RDV3PjnXl17i+Y/HCO993f3839+XDCZ5dSWVcZnEGgSc0BivuMWE/NAMXFxX7bYmUr2OLiYubOnRtwLJqDHnrKD0WWFl41PEppldAJH2g+Oughv0N6ByYOnoil1qJZllnynqIcD05xZlfx0exkV8Hvxrovv2W56n4bo7TWtXT77O5na5LxxvI3sPtb9qUEZjlw9EyRj7a2I6HVKX5Z/7VqBlUS1AM3fn2jqyGjDyC56lY54ech3FoBez/2PGar8txBb+c7ULkXqnM8a0M5dvErXCV/Sjb8Lt+jYZw2TYJt/23Un2sJw9w5c+TrbI73nfa/ZzqU+w4UOdH6tAb9GpZBVroCkKVlfpbs+ysKX7JB/myUgK7InyTfAVMxB3gi2v8IG+H+Hwk9xDOQerpYeAZyX1yjx7K2UBApX6yt9XO/VwE9dK2qCry8LtT+KisDB4PCOd4zNs5wft9RuEN3+YZCnf9SQGrQlOYApRBBKRUQKx3lybasrCzqk2649dBTfiiytPCq4VFKa5TrbgQYYSxixf7jzd5bTjuCUqN6j3Ieu3WIazlZ4/5Cyk7yAfdgmBocLDtIUbWviJJCOOpC+UK/h+G4p70Om3bCyENQVueqO1Vc4/aAYTLJAZTGmVL+glL+4L4TX4tjwdbwEO8ehLM1PFCvvLPhgKM2lAm2vOQpr3CFS6693m+9pfLyEvk6m/wEpRrr4FP3hrplBX83/HZLzbf7KeRrC/JPSqM+ffpAXTH8fqXrd/vzfYoSc4Anov0cZpRxiJU5QNi/cWFSO0/ojIhdEx1uOXroquallpb+gt1bhQ/ohK8ydRHTlOYApYjufp5NDNnZ2X7bHOltzT21t2XLlkyYMCHaaoRdDz3lhyJLC68aHqW0SuiEDzQfHYxi/ylJ3lvROoJSV/W/iv+c+R8Kqgr495n/1qU/JSirLdPM+9UW3/U3aqw1wZnNyreDdseSauDgWufvg6UHG1FIrsCMA2qzUdwDdand5KLs4JkpdfgH+dNREN1uhZo8OPqbp6y2Z0Her/L33J/lz1lmealhI4y/4Xp5WePhRkGpn0+HkQs9dagpACRIat1YefmjcFnDb9e5Z6YlQCVQvtuTxd/yPQckG7gV6feySVstfNXoeaLxNfDHqwCq54CrR0KK/+cbpTLDNQcYqSytEe7/kdDDKHOAeAYyLhIStM1JeiFSvpiY5GNzEJXQQ9e01LSw9peWFli+Ue59AjKa0hygFLFx5xQQEBAQaHLwVVPKsXzHZDLx9Mineefid0hLUP6wFiqqrdq2x514/EQ+3/y5zzZfNRTeXtGoRlJ8C+p9vMgsbDlClR4290ARDZlS1vJGVN5hgL31YPP3InXZTa7vdcWQORASsjyDUqvulj+T28ufkhWqcrxllfmpAXX4O/kzpZPrmEP+gc+hJlf+/vcEucj6d30aaBre8q24Df52W7roQOMAnPtvxzK9+b08adY+7FtHR+BQsnkWRm8MRyaYO0JZ2hkqvu0mL7k0KMKWG/VFGlTuD5d0AQEBgYgg2suaBQT0gAhKqUBeXp7ftlhYSw6Qm5vL888/T25ubrPWQ0/5ocjSwquGRymtEjrhA81HB6PYv73e05aUFPoM99g0TnHvltlNEd+H6z7021ZjrWFI+yEex+754R7n7j8ADH2d33zEw/5OHKCof99oqOnUOAur0Tj/txh67IOzfcSQvLD5WTg4Fzng5WP5m2MZot0KLfp7tztqTwUK6jRg8isvyde5dIt8oPKAq+ZVVcPuVw4dTCZ8hjcSGmUI5f/p/FpcpiCDzR2dLpM/7Q18v10BM03eNlnsylxzLU30HXqJxBwAkJ+fH7LM8M0BYQpLWSuhvnFANjCMcP+PhB5GmQPEM5BxUVOj8v6oMyLli9VV2l5EuUMPXf3WONSpv5LSEt1lCoQPTWkOUAoRlFKBQKmN7m/vmzPS09M5++yzSU9PD07chPXQU34osrTwquFRSquETvhA89HBKPafkui5fE9JUCrcY1Nn81y6dduQ20KW+dSSp8hI9N4m99nfnnX9yB7Kly3HetHkpPkI7ChFx0uh/z+dRdSdS94wsaASuu2F7yrgwQL56NJqOGpVILdwhSzTV1AqtSucMEUu7J3a3bvdvXZWi2MDdjNi+Jme1/nbrt5E9Y4HebPv2lStTvUrPyu+GHtSR/8KJLb0/H3gC/lzY0N9r0NfAz5s0j0ryvHdT6ZUJOYAgNRU76WyamWGaw6Idu0adxjh/h8JPYwyB4hnIGNBcgsQx8VFtwJMpHwxPt67tqVa6KFrYqL/ZYSN75Fa+ktOSg7YbpR7n4CMpjQHKIWoKaUCqampfttiYTICeQxOOumkaKsRdj30lB+KLC28aniU0iqhEz7QfHQwiv0nJ3g+JCkJSintr1d2L0pqSiioKlClU+Ple76WGKrFB2s/INHi/cD5464fmXzeZCRJIrcijxO6ns17G2Z50CTHu+Yli8nSaHleELQ5U/7b84n8u/258ucpn3LJst4AXHrEk6XOFAf4iEwld4Dqw67fpjjfQSkksCTLmVK+MmB6TIDNzzWQ+gjUODKggGFDB0Oi/3kZgIy+DfqYAbss01YNcUH4GmCuCZAeJtmhYq+8VNEdLTyL63vZpOP8wFV/q9r328jUA+9x0nHjIFmZvj77C0SbJNeySkkOHJSK5hwghW8Bn2oY4f4fCT2MMgeIZyDjQo9gTSiIlC/GxYf+r7IeuiYmKK9tpaW/QEEvrTKNCCO95AgFTWkOUAqRKaUCemwL2tRRW1vLrl27oj4W4dZDT/mhyNLCq4ZHKa1RrrsRYISxiBX7NzeaopQEpXz1d0W/K7zott+zneykwMWdfaGq3nNbZo8ldgFg8VPI2oFaHzu6bc7fDMB1c6+jw2sdeOWvV7xoUt2CUkr+efepR6NxrUv1kXHUgHy7wgd0cxzkLfE+vv0N+VOyykGrlC6N+Nz+0cn2XNLYGIe2LFJmV9bqhl387LD/c/iur6stlH8g64phXg/Y9lqjBs/xdNpkZRFseBJq3QKhG/4jf675h+9MrrUPwdftwzYH1G9/T+apE3OAEhhlHGJlDhDPQMaF3RbdZYqRuiY2m4oXPX6gh65Wq5I0Ze391Vv97GAbgkwtMNJLCCOjKc0BSiGCUipQXFzsty1W1pIXFRUxY8YMiopC2Nq8Ceihp/xQZGnhVcOjlFYJnfCB5qODUexfsno+nMSbg7+Z9dXf9NHTvejMJjMWAgeKfME9oynOrPwN6tAOQxk3cJzq/iRJYtYmOTvq/9k7zzAnqi4Av9neO3UpS2/Su4B0kY4U6SAqWEAE7Popgh0bVlSkKYIISFeagICAoICF3ntZtveWfD+yyaZnJpnsZrP3fR7YZOacM2funJuZnNx77qmEU2b7DUduSVkyumuNrha2Gidm8tXWH36/TLayz/TYKh/r0++S/y1MEhWYJcS0q9AV+hPRxFzXIAZy/nzBflxp8uGvqdqpdBmXIOuGSYF1BX41NW2vgxON3maeWsrPP36K/7po+G+2sezZrwx8tf7lJ+mW9ELkcvpcwdWfAUhJsV2vpCTvAe70y7Y7fP4Xhx/ucg8Qz0Dui71Etqsprr6oxJdyJXzNyDRfEEWH6eg8R46XkW7dvqM2Ba6jNN0DpCKm78mgXDnTpaSLKCtLwZYvX57p06fbnMroCX4oad8ZW47oytGRKitFTvQBz/HBXeI/PDjc6H2ov/257ZaOZ6leE8CFVPkrjn1w7wfM+m0WF5MvsnP8Tjac3iBJT61REx0YbV/QhHf2vmNz/9g1Y1Ghkpzwspi4MkkM2UpK5av8sDh9zzRBl30bbmy2bCS2H5z+1DgpFVyjcAU4lbbuVMZF84QVGI0mql4tFlX58lZ9BeD3UZBTWMQ7/Zx25JEr8A7UTgu0QHj6bh4Z0hP+smPjwhKo9bDFXeWipNd1kNPnAu5o64hFR9keNej29wB1AeQmQICdeLDFvnFw97c2Rdzh8784/HCXe4B4BnJfAgICSvT4xdUX7dVakoISvtqqa6zE8cLCLD8nOWNT4DpK0z1AKmXjk1MhvL3l/6ruaXh7exMWFlbibeFqP5S074wtR3Tl6EiVdZfr7g64Q1uUlfj38zGu12Q4Vc2Z401rOw3QrnpnSMdqHW3afrPbmwxtOJSjjx0l+YVkWse2ljyKQ61RczH5oiRZQ17a8ZJdmTFrxkgaJQVWEk4myR/TdjEkT+UD9YsSO4eyoetVUP19lX75nUnWDfbJT4Mjz1g24uVbNLoo/bz2r77GkwZ9rSlL09kM8PFW2Y8rXULKKgqNwrExtdTrykqCzr5t30a2dV+9D1lOVlmUdeS+YeeLtDt87tnk+ib4qYIDigYxdvE7u9Lu0g5l5R4gnoEE1iiua6Lycv4eoYSvcpKdjvYbpW0KXEdpugdIRSSlZGBreLtumXDT5cI9jZSUFDZs2GB3qH9p90NJ+87YckRXjo5UWSlyog94jg/uEv+m0/cqhlRU5Hgj7hphcbu1EVUAD1d5mMlNJqNSqfDx8tFP3ZNa1PbwjcOSR1U5wpg1YyTJ5eRbmIoQGAuRLWzLFJKQn8+5c+f07ztcgV2FA4Q2XfiN503rxpfrYMGKl/l0P6/CBKRGXZSMuvSDuaqmKKmWeOe2AjGq1OeVjcepgixIOS7BFRs1Q25skeyJI30uLdV6eQKpNl11DziTctW+kNp2PRSlcIfP/+Lww13uAeIZyH3JyyuePmeN4uqLubm59oXsoISvWVmWR+IqdbzMzEyb+93ls0+gpTTdA6QiklIysFVkrqzcjPLy8rh582aJ34xc7YeS9p2x5YiuHB2pslLkRB/wHB/cJf5PJpx0yfF8vS3XprJVIyojLcOiTXepd/PDfxYSOBawVFCd8h2hd9HcMlsr+N3OKyA9I5OErqchoCKmLfJDuskGbwtTH0wTeeGNoNvWwjcaoLA2S+Jhq34A5OdlKxCjCn1e5ac5b0OhxIojfS50t+1VdkrqHpCcnczRhHP2BaVyfjFkGqwSKbP/usPnf3H44S73APEM5L6U9HkWV19UokaYEr7aKrhu+hziyPHsFa53l8++0o5aoW5Tmu4BUhE1pWQQHW29HkhZmUseExPDxIkT7QuWcj+UtO+MLUd05ehIlZUiJ/qA5/jgLvH/d/zfRu+lrMoi5Xh+3n6ytgN07tiZmJgYu8d3d2yNgtJhq6ZU17AgmjZpDJXqFBYlNybV9LnW31KNHy/jxFTKMfAvur/mqQvoegUu58OWWGhg5bKUj4mC/H9snIkNfu0Bt36Fxq85pm+EQk+Z/82GJrOK3v82wCEzkvvcJiuF6B206Yp7wLJ/l0mUlHgNDkyADiug+gMO+eMOn//F4Ye73APEM5D74u/vb1/IhRRXX1TiPJXw1VZNKdMR244cLzTUdt1Cd/nsK82sOr6KR87D6E2T+bzv507ZKk33AKmUjU9OgUAgEJQ6IgIijN4788usbgW+NrFtaFRO+2W8SQULq7tZwdooqvRc06FB7o2lkVIajYZdF3dxOuE0AAVq67/IRnp7s+bGGVSzVHxyx/ZwfwDC6kLHH423qVSW60UFVACVN1/eSef3bLiSD/dfNxcrcjwPsiwLfJ4Mk2/DHWuncutX7V/D9ri43MbBipmsG3DNZLrn5lbS9TOvwh92HiilTCksYVwyElFi/TWBQFA2MfzckfJjmEAghWErh5Gihi/+/ILUnNSSdsftEEkpGdy+fdvqvrKyFOytW7d47733uHXrlkf7oaR9Z2w5oitHR6qsFDnRBzzHB3eJ/wAv49V9pDwcWjveg80e5PqM6+x7aJ/+V8WFPRYa27eR9Nq2ZZvFc4gMjLTrkzthaaTUyuMr6bqkK03mNSE+I97m9L2kvAIG/7kegKeu265DpMVC/ShUxiOlTFZMe+Zm0VS4UzZGjt+Jvw37x5pt/ysbpsTDFynwhPXbdiHqouPvk7aCoRnZNx3Ts8WayubbEk2W77u1Cy6aT9u8desWP8x/Hc59o5g7NvvxT9pab664B3iZFJCX/AUx/SLE77ey09A/eV843eHzvzj8cJd7gHgGcl+ys60viFEcuLIPGI48klPLyRpK+JqaKj2J4cjx7NUOKq7PPldPC5VaB9TV5BU4Ny2uNN0DpCKSUjIICgqyuk8X5O4S7K4iODiYdu3alfiSoK72Q0n7zthyRFeOjlRZKXKiD3iOD+4S/290ecPo/R9X/3DqeJVCK+HtVTTlrF7Fekb7Q/ysD4+vXqO6RZtPtnmSuIg4u365C5ZGSg1fNVy/78s/v7Q5fe/PLNtfRCp4Q+9roDqj/Xc+I7koKRVaR/tXpcKolk9ky6LXGg25Ep9JgwItz+vbb+DiSnsD2VJPQZM37AjZ4fxi5/Tlkp8Ft36Di8u0iTSTEU/BwcE0bhCnffOD9SmpcrDarzQayNY+tLriHuCwrbNfwn4rxf8vfAs3tjlk1h0+/4vDD3e5B4hnIPfCMGHg412yFWCKqy/6+Dh/nkr4KmcaoSPH8w+wbd9dPvtcjqW6m25IaboHSEUkpWQgZT6vJ9+MQNsGnTp1stkWnuCHkvadseWIrhwdqbJS5EQf8Bwf3CX+BzYaaPTe1ggeR45nKtO0QlNWP7DaouzOtJ0WbYb6h3LmyTNUDDVeGfDgIwfJ+V8OMUGW61CtGLqCcP9wuz4qTW5BLmob05c2ntnIj8d+tLp/Z7rtX41vFcBmg1l9tbZ8aDBSSlX0N+1U0fQ0/XVVIWfkSlCF5ha3y/oEurpW+89dOPGhfZkbv8CvXQrfaOD4u0a7Q0JCaNSosfaNafH0nAT5Pl1cZr1fGfRJ2feA1DOWp3EaYDpSirxUOLfAgqQlO1b8uLEFrq6R5CIAl1dq/53+3C0+/6Hs3APEM5D74utrecGQ4qK4+qIS56mEr3KSUo4cL8A/wOZ+d/nsczkrbLeDu1Ca7gFSEUkpGSixLGhpJzc3l8uXL5d4W7jaDyXtO2PLEV05OlJl3eW6uwPu0BZlJf5NV/3oU6ePosfLzc1l1+BdxEXE0aFqBya3mczgBoNJej6J9BeNh9iEeYVZtenj5WP2nbh1bGv8vP24k3nHok6zis24/rR5PaTq4dXpULWDXd8dJTUnlZg5Mey6uAswHyp/8NpB3tzzpqLHfGD357S5DBdzCttP5aUdoaRDUzgyS+aXuRSvGs47V2Mc1BhPUgFsSIfMwvyZxrf4E4YAHHnavsx/tkd25ebmcjvectyxOgayrEw3tJQg2twa9o027ld7hkL8vkId+4liq2ysq00y2cCsplRBFvynQHyqrIx+SDoKh5/Rv72dcZveKx5g3JYXKbiw1C0+/6Hs3APEM5D7UtLTFIvrmthblU4KSvhqawV4JY5nz77oA+5FaboHSEUkpWSQmJhodV9ZmUuekJDAokWLSEhw4NfWUuSHkvadseWIrhwdqbJS5EQf8Bwf3Cn+DekW103R4yUkJLDrp138Pux39j60V7/6XkRABMF+xkOWNVc1Nm3aKg5uiXx1PkG+5lPCk7OTjaYYuoKk7CS6LunKL2d+ofKHFmoXKczKi/s5lANj43VTyYwTDen5hQ890e0gOE6y3X/+Pmxxu6zUVsJBUKnocx0G3ICp8drNNzv8J8dK8ZH8HyQdMd524VujtwkJCVzZ/6l1G9ZGyh19wXxb4p8AJF3/j5wt3bV94MpqODOv0FZR3Dt0D7CT1DIbKaVVMn67fzwkHDLelnkdMi9bN2zRLpB4BE5+oH875ecpbM6E766fY8H5A6Rc3l/in/9Qtu4B4hnIPcnJKdlpTsX1LKbEeSrha3qG9EVVHDleerpt++7w7CsoojTdA6QiklIysLUceFlZCrZcuXJMnjyZcuXKebQfStp3xpYjunJ0pMpKkRN9wHN8cKf4/77v9wBEBkQyqeUkRY+nky1fvrxd2YUTF9q06etdNMS/TWwbu/as1W3KU+dZ+SKuPH2W9eFmuguKdFth7+3Tha+K0kYzs6oQdmAv9yy6h/e825NUqT91/Syklcp1MtvUskVT551KPQnBcRworEO1IBWSC6Bc+Yq29azhF6WAT6es77tjrXh3EeXKlaNluOWEnU0yr1jdFR2UR53gs5SLidZu0BV3N0hwOXQPOGh7hUCzqVDqAoySUvvGaZNyqSeN5S5+Zz510ZA7BvXpNGo+2/cu9S7C6svGxeRXHl+pf/1xMsQc6l7in/9Qtu4B4hnIPQkIKNlpTsX1LGav1pIUlPBVzjQqR44XGhaquE2B6yhN9wCplI1PToVQothdacfHx4eYmJgSbwtX+6GkfWdsOaIrR0eqrLtcd3fAHdqiLMX/qFajODn5JOemniPU3/ZDk9zjyZGtXqm6TTndl+cQ/xCrdakMCfbVjsRqUamF0fa8gjzZo66KkzD/MOeNGCQaZl+9igbYc3kPz21/jid+foKUApMphdlw6uafZmaC/H2hYk8A8jSg8da2qexxCl7GNUMiz0NiTiJ0WGFywKrQ/4xtW70Oyj26OYU1rtalw7JUUBs2R35G0esky4knu/G8e4Dl7TZqjels+iQWJsV0CR8p0/cOPGR935WfbKpaTNAaTjO8+J32r64+GUBusn2fEg4U2bq+mSe3vcDpPBi6+3OrKsdzQaUpKPHPfyhb9wDxDOSelHTtrOK6JkokGZXw1dYIatNpzo4cz94IbXfuA65esc8dKU33AKmIpJQMbC3HqesQnt4xUlNT2bJli6ylSUujH0rad8aWI7pydKTKSpETfcBzfHC3+K/kV4nIwEjFjydHduvWrZLiP8wvjCphVWzaahPbhlpRtQAY3mi40b58dT57Lu+x68873d+xK+MK8guk17WwjvUvMz/89wO3TPIcba9Ag/NZVL8AjS8V1X26dOkcOf5xfFP9dSLPQZtLueRpQN3oZaf9Gb96PFtOmtaVUkFobfCN0L6tZTzK59NkqLGwB987222OvsDuLBh0A0bfgu/TDPYdnl70OtFgVM/VDfBzM8DGs4quiHriX5b3X15hdZRWerrWiYyMQmfCG2n/GialClfhI/OasfL5ReYGsy3UvFLnwXnjqYiSpu+ZsrF+0etlEr44q+XVzNiyZQupySU7haWs3QPEM5B7oDHoe6Y1H4ub4noWy8t1/jyV8DU72/bKt84eLyvL9iIm7vDs60loZCzqYonSdA+QikhKycBWsa+ycDMC7dzqc+fOlfhcclf7oaR9Z2w5oitHR6qsFDnRBzzHBxH/5igZ/78/9Lv+temXbqkPKs93fJ4xTawsee9CcmV+gbeM/F/YNcDlfPgvV5usAUhPSeDNc38ycfsrZGjgz6w8lqSCxl/ecHONBX8aRjfk3Llz2jch2gSiRqNh+b/LWZiUrR2sozL+ZXlqPFxMvsiYW3LPzpwPkopej7sFr9jLgeTcgeS/tS+txalJEfUsNcxMgM+SDTaaToMrJK/w+Scvr/D6R7XS/jVMSlmZkmqRNRXMt+XcgQPjjTaZFTrXHtS2bV1yLMDCMSxwItn6tEVLnDt3jrCfYyDlhCw9JRH3AGV0xDOQ42jUJXuexfUspsTIZSV8zcuXnhxz5Hj27BdXezubrCkrlKZ7gFTcbwyeGyNqSmnnmD7xxBMl7YbL/VDSvjO2HNGVoyNVVoqc6AOe44OIf3OUjH8fr6Jbr2lSSoVK8kOZ5S/srsVaLSypbMmAXk7WzNqWqf1bx+93Xj9rvO9WAQRbaL+/smFRKkwIg5YmpVAstXZwULD2mi+bDOU7Qfo5DmTmMOqnUQCoysMEhaav3M6Hp+LhLn94ubAklanlNxLh9WgbRq5v1L8s53XJeF9OgsVpdm8mwpuFya96vtAzGG3B8KybUOdRI9nIiAgAIiIKRyymndFO93N09T1LUwV1X+bz0sG3sH6K2sIDsdQv/dkm2cEc88xeZsYNGv40VZq9QvRxUWB7ZIErEfcAZXTEM5DjKFFryRmK61lMidpZSvgaGmK/fIEzxwsLtT013x2efZWgJJ6bXEFpugdIpWx8cgoEAoFAIJPNozfTJrYN3/T/xmXHOJNgXKNIzsp70YG2shTuyX3XITNP+jQEaxzMBv+z5ttP5sL0LdPNtre6Ap+naP+aYmmkVEZuUe2mAnUBbybC3Wdv67fNTARd6ui/HJyastf5KvyQDv9LgM2Fh5X9cKarzXRuAdzcarxvbVX4yXzU0ByD0VjrdKd7aTn8Y2n6oy4RVNhWx9+G+L1w8iPL/hjWvpLLSoMvXwcetuGLMQUa+GDfB1S7AN9Zuh6/NDfbdDTBQhABpJ2FI89a3nf0Re3fYlqQQCAQCAQCT0fcUWUQHx9vdV9ZWQr29u3bzJ07l9u3b9sXLsV+KGnfGVuO6MrRkSorRU70Ac/xQcS/ll61e/HHI3/Qv0p/h+P/ubufs+nDheQLdv20xnMdniMiIMJh/ZLidmai0zbaWplxtTTN8nZDruVD32sw9bZ20I3awsibDw98yNy5cwH4/sZ5/mdl+lyaGhpfxvKUvUYv2XcGOGkwa+L+wqmJDv+W+8cjZN0xmVZmaUTPzvuwOFkj/bzFEUWJSdprlpRkkMnKuAQn5mhfm05x+dHGSlFZ1lZ8NLgOKyOs61tJSi1Ng2e2PcOVfO2Uxz91uc+zX2v/5ltY8twn0PIhEg7Bifct7zuuq+dWco/Q4h6gjI54BnIcOTWOXEFxPYtlZzl/nkr4mpYu4ebmxPFSUlMUtylwHaXpHiAVkZSSga0hnLpVKEp6NQpXExgYSJMmTQgMtPIg5yF+KGnfGVuO6MrRkSorRU70Ac/xQcS/fDlr8V8nuo5N24lZxgkaOUPLK4VW4sp0efVw3IE8RepSOc6j6dX4ORM+TdGOELqSbvmhq0mTJmzKgPH//W5xP6j43dYMrlgrq9zZILsw3+LMx6i3t4TRdje2GL2db2ekl7+/n/avr4FjeQZKBZnmSoemwI57AUg9t5RXd77Kd39+AWsqWT6I2iBNlqf9gpRjKf9kZRTW+0nG73/WiR181EwWYGkqdFhlaSQWcG295e2GlOC9TtwDlNERz0DyMKyXJelzxoUU17OYt4/z56mEr76+vvaFnDien5+f4jbdEU+pWVWa7gFSETWlZBAaan0+b1m4GYG2Dbp161bSbrjcDyXtO2PLEV05OlJlpciJPuA5Poj4ly9nLf69VbYfaB2p0bRj3A796xA/GyNS3JSzyZdYnqAdZVQSbIq/rH99JAeeWjXeoly9VvWoYmshRJXK9i97TkzvcuZT1O/yEtk6uZae0y8u178MDgwCIOjmj0X7/5zC4lS4lAdP51oYhXTmc/3LFzeM5YvCH+LvqgrNDX/jy0kE/yjz9ko9zcOW8oVWajmZtpnRKaWfh9yirFWmGsbaKkh/fbONnTpK7nddcQ9QRkc8AzmOn6/tJIarKa5nMTnJIGso4WuAv/TaVo4cLzDAdvLBHZ59BUWUpnuAVMRIKRmU9PKn7kBeXh43btwo8bZwtR9K2nfGliO6cnSkyrrLdXcH3KEtRPwro1Mc8W/vC0rv2r1l2+xao6tsHXeiz7rHmZkI7yeXtCcwOxEup123uO/nf3+2q28rsXY0/jRTb2uLrMvFUtTkF/cPvPtGFR27cGUmw6lJB7Jgwi14LRFm751j09QXBjNDtpoOqrr4fWHxcu1Z6wdjpFuZ2qrOg2Uq7T8bGDXXlbV8lgzPxkNqAcxNtqlqeeSXKSWYfBD3AGV0xDOQ45T0NMXiuiZKnKcSvhYUWF9UwvQ5w5Hj5RfY/oFM9AFlcbbgemm6B0hFJKVkkJBgfU3msjKX/M6dO3z99dfcuXPHo/1Q0r4zthzRlaMjVVaKnOgDnuODiH/5ctbi33R1PVNevse4qLRKpaJaeDWbOmUdP+/i+YV+83bro2Vu5sPsM4c4Y+N5rfmKMXxqpbg6/tZX8wXLSamzEp8NUwtgQQqcljlLMs9G0is5JRmA7NyiL0brDWbRvXdgrryDGfLXVDj7FVxeycRbUP0i7M4CML+X6Fx8KxFG3YDrBt+jTNtMjXZE1Mo0WP7vdzwZr02EjrllrGcRK1NMP02GJF0T3NiiTYwlH7NjTHnEPUAZHfEM5DjFuVS8JYrrWSwn2/nzVMLX9AwLo1EVPF56mm377vDs60k4O42wNN0DpCKSUjKIjra+0lFZWQo2JiaGSZMmERNj+4G6tPuhpH1nbDmiK0dHqqwUOdEHPMcHEf/y5azFf3yG8QIZ7au0N3of5Btk9N5b5U2vWr3s+m7I/P7zZcmXdopjymKdqDo2h67nATNP/8GL1n+rMsIoCeJfDnJsP+hZSkqpJT7DTo6HR25rC7DbGl3lb3IQv7MGo5TyjIvqRoSHAxAQWBSvig7cuvAtx09/zzepcCVfuyIh+82nVd4ogD1Z8HICLE+HqoWDqfI15iksDTA1Hh64CaNOHNVv35Bh++F3j406YVPjYaJuSuHhGYVOSZnqpyziHqCMjngGchx/f/8SPX5xPYv5Bzh/nkr4GhIs/b7nyPFCQm3bL6721lhYeERgTmm6B0ilbHxyKoQS84pLO76+vlSqVKnE28LVfihp3xlbjujK0ZEq6y7X3R1wh7YQ8a+MTnHE/5ZzxgWlZ3aeaVM+PCCcOT2Np0LN6WF7atTDzR9m74S9nH3yLCkv2F5BxxOQ+9C611Yxciu0qtwKFPzONc0wN1k4eq5AYzkBklpgJSll8DpLrS3knWphRoduBcJcDcQX7r+UBx8kwUWD0VaWioj/opu1tjLMaLtPYVFjL++iPqDoV4c7+7mTbbK6VI7lFY/vuVr0Wg2sTgPfs/CfyeCmE7mwwEoB909tdBOd/Z1WZvCtNh1QkGV5+qcrEfcAZXTEM5DjlHTyrbiuiRLnqYSvcgrLO9RvfEQfKE2UpnuAVERSSgZpadaX49Q9JHt6hjctLY0dO3bYbAtP8ENJ+87YckRXjo5UWSlyog94jg8i/uXLWYv/iS0mGr3vWaunme6mUZv0r+f3n09EQITR/vsb3G/TP5VKRYdqHagVVYsw/zCbsp6A3GHvna7alzElLy+Pmxduyle0gtFIqcKk1Iw7xgkWHbmAl4WslGFS6rHb0Pc6DLwh7fidr8Izd+y3xbVCP8/mamtG6cI5M1M7Vy83r8gLxT/p088YvVWdsSJnwlArlynCiSfcjenQ7ZpE4ZMfOn4gBxH3AGV0xDOQPAw/e0u6tlBxPYspcZ5K+JqVLf3XFUeOl5Vl235xtberFwpwtpaTu1Ca7gFSEUkpGWRnW69WWhZuRqD90Prnn3/sfniVdj+UtO+MLUd05ehIlZUiJ/qA5/gg4l++nLX4N0xCDW041GKNqT51+rBz/E42jdpE3zp9zfb7evnSo2YPAJ5o9YRNXwGLNjyJ4viMKSgo4PKly/YFJeIFaLx0qyepeCa9Ip8kW5bN01geKWVYVP3bwufEXXbCvPc1bWLpUmGy6aqExR5v5EOdS9D+KnxVOKKoIOEoAOqsoiXrpE4nNOWFBGh12WCqoIuo7MT60v0lJvtmJkDseVhzYo3F/ReSLrD83+Vk5kkonC4DcQ9QRkc8AzlOSdfOKq5nsfx8+SvkmqKEr3KSY44cz559d3j2tYaz9ZlKI6XpHiAVlaasfHo6QWpqKuHh4aSkpBAWZvlX6CpVqnDt2jViY2O5etWBn2UFglKO6AOCsoyt+N99aTe/X/6dR1s9SlRglCR7qllFaYn8V/LJU+dx+MZh2sa2xdvL9jD+5OxklhxdwrQt02Sfh0DLyLtGMqDeAEauHumQ/u4qxqOgugTCznpxkHERdWAs3v9YH4ZzOQ5eSiiahqejYwDsqap9bTiKSFPHWM50hNHvVaDDVXN5SyORPikHX6cYT4Uzta/j6Xj4MLnofezHcC0JYiPh6mewJQOm34GxodrzMeXnytA7uOj9b5nQReroJAn8LwreSFTOniGaOtrplz5ni7a93Oll3uj2hv59vjqfiHciyMjL4LGWjzGv3zzXOCNwC8rCM1CF9ytwO0NbVG1U41F8P/j7EvbINcTMiSEhS/uhNbbJWL69/9sS8cPwOeDT3p8ypc0Ui/s0Mx37Km9oY9ngZYxs7Nj9DkAVpoI0IBQ0qfL8MfTj0MRD2unzMnQKXi2wuaiMoez2sdvpXrO7dcPLVDDKuv/OtLuhbvyz8cQElWx95uJCSh4FxEgpgUAgEAhcyj3V7+HFTi9KTkgBfHDvBwBMaT0Fby9vAnwCuLvq3XYTUgARARE81e4ph/0VaJm+ZbrDuiNMRtp4Aai0Q3fyNbYfvT5PMU9IAey1PljbJikyBjRszjCvzWSNv+wsSnXfdW1dJ0sJKYDtyg4eMsNVCSnQ1rEyrcn15p432b51BCT8CcDllMtk5GmnPX7515euc0YgEAgEglKOSErJQCwFC/Hx8XzxxRfEx1suQOopfihp3xlbjujK0ZEqK0VO9AHP8UHEv3w5peN/RvsZ5Pwvh0/7fOqwjY7VOiriS1kkJyeHm+mO15S6blKA3FsF+YWhUVDrIZu67yY5fFin6RNsvs3aNL3fFB7VX5qG7Q+9CY/eNt/+5+kVsKU1JB1Fs3uIy44v7gHK6LjzPcDdsVXSpDgormcxJc5TCV/T001XWFD2eKlpVlaFcMKmwHWUpnuAVERSSgZ+fn5W9+kKs7m6QFtJ4+/vT61atUp8KVhX+6GkfWdsOaIrR0eqrBQ50Qc8xwcR//LlXBH/ft7W7zlSWDlspdm2trFt+f2h352yWxZQemWpHA2ovLzI00BBg2cUtW0PORHpZ0F4uHL13i2i0UBmKfweb2k0mz6xlnEJTdJRlx1b3AOU0XH3e4C7YVjxRc5qcK6guJ7FlDhPJXz18ZFeJM+R49lbfc8dnn09CWerJ5Wme4BUnCgDWfawNQ+yLNyMQNsGvXr1Kmk3XO6HkvadseWIrhwdqbJS5EQf8BwfRPzLl3PH+K8YUpF7qt/D7ku7AWhesTkHHjkAaOtkfPfPdyXpnlvj46vs49HuLFiXksHYCxD0cQ1FbdvD2YhcJfEH+psF9mVMUWug/RU4mAN1PWml8dTT5iO/trSD1vMgqrnT5sU9QBkdT78HuBI/X+d+NHGW4noW8/V1/oNJCV8DAgLsCzlxvMDAQMVtOoIodS2N0nQPkIoYKSUDJVZgKO3k5+dz586dEm8LV/uhpH1nbDmiK0dHqqy7XHd3wB3aQsS/MjplIf4Ni3+qNUXDUZKyS3COWGnABc/FQ85fI1MDdzKtlwKwR7ercNxCLaeswkubZCExJOcrsjNfpwtkttnGDFiWpk1IAZwu2RXmFUHfBEefMw+hhD8g22DY2V/T4dZvDh1H3AOU0SkL9wBXUaB2IAutIMV1TQzvm46ihK8FBdLb25Hj2bueog+4F6XpHiAVkZSSgagppZ1j+vnnn5f4nGJX+6GkfWdsOaIrR0eqrBQ50Qc8xwcR//Ll3DX+vVVFUw8KNEUPnRtPb3Tpce+tda9L7buaH479UNIuWGRnFtx73Xjbp8kQdA5izlmeaicn0SQneidYHzwuidN5MPaWczbcjRsGz++mbZmvgZVntrLvyj7thnPzIemIQ8cR9wBldMrCPUBJDEeB5eTYWenAxRTXs1hOtvPnqYSvcmtKyT1eaqr9mlIl/ewrKKI03QOkIpJSMoiKsr5ykq7+hNJ1KNyN6OhoJkyYQHR0tEf7oaR9Z2w5oitHR6qsFDnRBzzHBxH/8uXcNf4NV+tz9pftyIBIybKdq3d26lgC61wz+eFyauEzY4IatllY0e5H6d9lOJULgy0UO7fEJQ8Y2aQ0n6XAy4W/X5qOlPomBR7YNZcOCztwLvGctpiWg2PTxD1AGZ2ycA9wFf5+JVtbqLiexZSoqaOEr8HBEj+YHTxeaEio4jbdEXeZXuusH6XpHiCVsvHJqRC2Cp2XFfz8/KhWrVqJt4Wr/VDSvjO2HNGVoyNV1l2uuzvgDm0h4l8ZnbIQ/4YjpZydhjCp5STJsiqnKxkJlOIb2z+AGzE/FWpJCPO9WbBD4dX3PIW3kiCxAM7lGm9/3OAH50W7XyJPU0BSTopDxxD3AGV0ysI9wFV4eZfsV8jiuiZKJBmV8FVOoXNHjmfPvugD7kVpugdIRSSlZGBr6KSuMJunF2hLT09nz549soaRlkY/lLTvjC1HdOXoSJWVIif6gOf4IOJfvpy7xr/RSCmNcyOlfL2kF3zdfXm3U8cSlAxpanhPQrmxQddt7z9fxkdR1bgI/W9Y35+beoJ653KotG4mey7tkW1f3AOU0SkL9wAlMTy3/LySrS1UXM9iStTUUcLX7Oxslx7Pnn13ePYVFFGa7gFSEUkpGWRmWhgXX0hZuBkBZGRkcODAATIyMjzaDyXtO2PLEV05OlJlpciJPuA5Poj4ly/nrvFvVFPKYPpeq8qtZNvy9ZaelLqWeo1pd90v+xgC9+TPbMgzCO00G2GeB9S66GqP3JtUO4MS37vwLxfyIUcD9yy+R7Z9cQ9QRqcs3ANchZzC266guJ7F8vKdz7Ar4WtOrvTaVo4cz16NMHd49hUUUZruAVJRacrKp6cTpKamEh4eTkpKCmFhlit7VqlShWvXrhEbG8vVq1eL2UOBoOQRfUBQlnHX+B+8YjBrTq4BoFp4NS5NuwRAq69b8deNv2TZerPbm7y842VJss0rNmdOzzn0/K6nPIcFLufVKPgnB9Y6+KwZXxMqn9cmn4z4AEgDQoGnnXKxzKGZqYFlKrj/JgRWKGl3BA7grvcAJSn/XnniM7XzUEc3Hs3SwUtL2CPXEDMnhoSsBADGNBnDd/d/VyJ+qGYVTYP/5L5PeLLtkxb3aWY69lXe0MaywcsY2XikQ3YAVGEq/ee/JlWeP4Z+HHzkIK1jW8vSyX8l32hUuC3ZX8f9Srca3awbXqaCUdb9l9Lu+ep8fLzMp0Ma6t5+5jblgstZ98ODkJJHATFSSiAQCAQCj8VaoXNHpvLJqRNVP6Z+iS8ZLrDM7ETHE1IA0+PNi3gLFEItfYqOQCBwDe5SDNsQTRn51C3t5/nkz08S+W4k3//zfUm7UuoQSSkZJCQkWN1XFpaCBbhz5w7z58/nzp07Hu2HkvadseWIrhwdqbJS5EQf8BwfRPzLl3PX+LdW6DyvwLVFf9QaNflq6bU4Rjce7UJvBEryWxaUbDUZD0bi5AVxDzDmrT1v0f3b7vx3+z9xDygm7E33cjXF9SyWk+38eSrhq5zaPo4cLy0tTXGbZY28gjw+O/QZ6bnpjFkzxqXHKk33AKmIpJQMbK1MoMuqu2N2XUl8fX2pWLEivr7Sa4uURj+UtO+MLUd05ehIlZUiJ/qA5/gg4l++nLvGf/2Y+vrXzSo2078+Fn9Mti1bv2BuHLnR6L3cpFSQb5BsfwQlQ9n4yl28aDQafkiD5SfWS6pJJO4BRZxLPMfLO15mx4Ud9Pi2h7gHuBDDe4ASq9I5Q3E9i6m8nL+eSvjq7W19epoSx7Nn3x2efd0dZ1c4loPV67FMBXkyltyVa9+FSF9fUkB4eLjVfWXhZgTaNujfv39Ju+FyP5S074wtR3Tl6EiVlSIn+oDn+CDiX76cu8b/8x2eZ/PZzSRnJ/NVv6+csnXw2kGr+/rW7Wv0Xm5SynBEl8C9uSaGSSnOhtMbGHkT+PkpAkOrMaj+IJvy4h5QxNXUovpNtzJuiXtAMVGcS8VboriexZQ4TyV8DQwMdOnxgoJs/zDkDs++giJsXo+CXHAyl1QS11uMlJJBSa804Q4UFBSQmppa4m3haj+UtO+MLUd05ehIlXWX6+4OuENbiPhXRqcsxH+gbyAHHjnAicknqBpe1a583zp9re4L8QuRfFy1Ri3rV0NbRUoFAk9n4A8D9a/f3vu22f60nDTuX3E/nRZ14lrqNXEPUEinLNwDlOROZtFUnr+uy1soQ2mK65po1M7XOFLCV7VazbHbxxi+ajjL/12u+PHsTTv1lD4gpzamO1Oa7gFSEUkpGcTHx1vdV1bmkt++fZuPPvqI27dve7QfStp3xpYjunJ0pMpKkRN9wHN8EPEvX87d49/013tL0+W+HfQtG0ZusGqjZmRNhtYZCsCLrV/Ub3+o2UNmsmqNusyMGBAIlKQgPxuurte/P5NwhrB3wlh7ci17L+9l4oaJ4h5ggOnnjLgHFA8n7pwo0eMX17NYdrbziw8o4WtaehodF3Xkx2M/MuqnUYofLyU1RXGbAus4W9Dd5vVQ4Nnr1+O/MvSjoZy4VHz9XCSlZBAZGWl1n25udUnPsXY1UVFRjB49mqioKI/2Q0n7zthyRFeOjlRZKXKiD3iODyL+5cuVtviPi4gz2za6yWibiSQVKpYOWcrJkSeZ2X0mv477lVXDVvF1/68BbdJKh1qjlvWLpJQ6OgJBWeCvW//A7qKRUxPWTTDav+38NnEPMMD0c0bcA8oGruwDiVmJ+td+/s5P31PC1+CgYJKzk112vNCQUMVtCqzTb1k/p/SVvh7XUq/pSy7kFeTR66debGMb0/ZMU8S+FMQnpwz8/f1L2oUSx9/fn9q1a5d4W7jaDyXtO2PLEV05OlJl3eW6uwPu0BYi/pXRKcvxv3zIcsL8w6geXp20F9PQzNTgpbL9SKBSqfD396de3Xr4+/vTrUY3hjQcop96Z/jlUIPGZoLrzW5vGr3PLcjly75fOnQuL3V8ySE9gcDtybrFleTzZpvFPUAZnbJ8DyjtuPKaGE49T8+TvuqdNZTw1dZiW0ocz15Ba9EH7CNndPih64e4mHzR4WPZvh5Ffuy8sJPHNz7O8fjjJGYl8t/t/8ykl/6zlCofVaHN/DZoNBqSspP0+369+KvDPspFJKVkkJGRYXWf7ldeT/+1NyMjgz/++MNmW3iCH0rad8aWI7pydKTKSpETfcBzfBDxL1+utMV/kwpNuD7jOmennpVcKyrUL9RmWxgmtTQajdkIhnZV2gHwYLMHeamTcSLJ38efSS0nyT0NADNbAoHHcPJDyDYuHZGvzqfG3Bp8vPFjWZ+N8RnxbD+/nQK1/RohGRkZHDhwgMSURLuyUmy58h5g+kVQ3APKBsX1LHYy/qTTNuz5qtFoeGzjY/T4tgeXUy5blMnJzVHseJbIzrE9TVHp9rb2OWTaf84lnmPi+omsObFGkeMWN7Y+D3LypV9TU2xeD4PPxG7fduPLv76kybwm1P20Lo3nNWbV8VVG4mPXjAXgyM0j/Hn9T4d90nE8/jiLjiwiI1derIiklAzS061ny8vKzSgtLY1ff/2VtLQ0j/ZDSfvO2HJEV46OVFkpcqIPeI4PIv7ly5XG+A/2C8bHS/qvrw80esBmW5QPLq9/HR4QbvZlcdOoTawdvpbP+3xuphsVGOVwDapgv2CH9AQCd0WjfzzXgMZ8ucOLKReZ9tc0rt25JslegbqAtt+0ped3PXlrz1t25VNTUxmzdQxVP6vK1nNbrcrlFuTateXqe4DplCZPuQckZyfz761/FbHliRTXs5gSNcKs+ar70r7+1Hq++usrfr3wK2N+GmPRRk629ASGI22TnWWclDKNYyXbe+L6iUS+G8nq46vtyvZa2otvjnzD4B8Hk56r/R5+Ir5k65lJpfPiztw17y6ricbZu2cz79A8h2zLvR4FmgISshIAGLZymH676XXOLciVXHrhTuYdBiwfwEPrHtInGbPysmj0RSMeWv8QUXOi9NdMCipNaXqCLiFSU1MJDw8nJSWFsLAwizJVqlTh2rVrxMbGcvXqVYsyAoEnI/qAoCzjSfGvmmX5geTWM7eMEk+mnLpzimZfNcPHy4eTk0/i7+NPuffKAfBkmyf5pPcnVo+T9HwSEQERVo9tjWfaP8N7974nW09Hnzp9+PnMzw7pCkz4AEgDQoGnS9iXUs6cGHjmCTW/bR9B130/WpV7seOLzO4622Jy+bltz/H3rb/5su+XZOZlcte8u/T7NDNtP/r/fvl3Oi7qaFN+7oG5vLD9BZ5u/zRvdn/TbL+OlOwUwgPCbR7PUQrUBfi8bnzu1s4tITPBqeS3PZS8B+Tk51B9bnVuZdxi6f1LGd1kNKD9AplTkEOAT4ASLsvG9HPWXhyVVpQ4z9sZt1l5bCW96/Q2qreo49297/LSjpd4qu1TxATF8PKOl82OZ+jHx/d9zFObn7J4LEevg6H9H4b8wPC7hgOw9/JeRq4eSfca3Vk8aLE0W2Eq/ee/JtXcn2X/LuOD/R8wqcUkHtv0mJHvhn5sGrWJPnX6aPdpNHjNLho/c/Gpi1QLr2a0DSD/lXybK/ga2t8xbgdda3S1fiLLVDDK2P8tZ7fw0o6XeKT5Izzx8xNGvhtyK/0WFT+oaGayW41u/DruV6vPKZtHb6ZX7V7WfTr8NLT4wGyzRqNBg0nphWUqGJoEfhGA9ec5ne+bTm+i3/Ki+lY7xu0gMy/TaJtmpoa0nDQm/zyZEL8QPun9CT5ePoz+aTTL/l0GwIf3fkiATwBqjZopv0zR6z7a8lHm3DPHbh4FxEgpgUAgEAgEVrirfNEX2XB/218s68XU49qMa1ydfpXYsFhigmL4/aHf+bzP57zV3Xx0RqNyjQAI8QshIiDCIf86VOvgkJ6O5UOWs3b4WotfGgSCkuK5O+A128tmQgrg7b1v8+rOV822/3bxN97b9x5bz21l+KrhZvv/uv6XTbt/3bC9H2D6lunkFOTw1l7rI69G/zSaqDlRfHHoC7v2HMHaVJMT8Sc4dO2Q/v1jGx8j5r0YvGZ7se/KPpf4oiRrT67lVsYtAMas0Y6cUWvUdFjYgfLvlWfPpT0l6Z6evIK8knbBbRny4xCm/DKF5l81B+BG2g2j6bMv/PoCao2ajw585PSxfrv4G6BNUkzaMAnv2d4cvHbQYXudFnXiaupVlvy9hKM3jzrtH2g/Cw7fOGyUkLLEe/veA7Tx3mlRJ7P9285vM9uWU2B5FFlWXhY/HrP9GQqw8fRGPj7wMVl5WQDsu7KPgT8MZO3JtZCXxn3f38fhG4eNElKW2HFhh8Xtf1z9w6berN9mWd+ZfEw7jdt0c3Yyvq/7UuPjGpxNPEtmXiapOan8J2NG4OWUy7z222tG24avGm6UkAKY/9d8nvzlSb775zvm/TmPr/78CoANp4pWa56xdQZP/PyEUUIK4Ku/vpLsj0hKySAx0frc+rKyFGxCQgKLFy8mISHBo/1Q0r4zthzRlaMjVVaKnOgDnuODiH/5cp4a/xtHbmRGuxlsH7sdfx9/u20RFRhlNCri7qp380TrJyzWrdo8ZjPv93yfI48ecdg/Z6cShPmHMbD+QKa2meqUHYGgpHh779scjz9Oz+968t7v2i90x+KP6fcfun7ITKfV/FZWv0ABVkdkWOOj/eZfrHMLcln27zLUGjWTf56syD0gMy/TqDiwYUFqHYcvHKbhFw1p800b5v81HzD+YtRhYVEiW8494LMFn7Hz5E6rMurClavk3AM0Gg0f7f+I13973ai+jG4VLEPWn1rP/qv7SctN457F90iaOulqGs9rbNFXHUlZSVb3yeWH/36gy+IubDunTUrYunZqjZr/bv9nMT4skZmXybd/f8ux28fsC1shtyCX+X/NZ9PpTYB2tBFAak4qN27foMHHDej5XU8+/uNjM11L06Uy8zKN3tuq5dTt225k5mXywf4PmH94PmqNmrbftC1qmxtbYevdNv1PS7d8L03I1No4dO4QEz6dwPnr5gsvWGrnxKxEZu6cyfpT620e15R8dT5ZeVl0XtyZ36/8brTvwNUD3M64babzwT7zUUQAj2x4xGJS3pBjt4/Rf3l/pm2ZRtg7YbySoP2MWH9qPfevuJ8m71sf2WM62WzUT6NsHssa+6/uZ8eFHcw7NM9oOvK2c9sY9M1d/JpprhP5biQFmgIup1ymzqd1CH4rmPB3wml8GXqvGGbRP0N2XNhB3Nw4s8R+fGa8meykjZNY8vcS/fspv0zhVvotyaNOuy3pJklOJKVk4Kohv6UJLy8vwsLCSnzJW1f7oaR9Z2w5oitHR6qsu1x3d8Ad2kLEvzI6Iv7tUz2iOh/0+oDuNbsDyrZFlbAqPH3309SOqq3ftnfCXkY3Hs2eCdJGAtgasi/XF4GgtNLoi0ZsP7+d57Y/x+mE02b7VecXmW3r/m13xY4/Y+sMzicZf1k1/aIq9TMjJz9Hr2v4eZOTn0PdT+tS4+Ma2hEMVpi9b7b+9aSNthdP0Nkv0Ngu/p6jzuHlGy/TbUU3lv6zVL9drVGTmKX9wdorV37SbfWJ1czYOoNXd73K3ANz9ds1mH+ZNE3wvLP3HdnHcwbT2l0ApxJO6UdLaDQao5FTb+x+g6g5UTyxyfboEqmMXD2S3y79xr1L7wXgvzv/8VniZyw7scxM9tENj9J4XmMeXPugJNsv/foS49eO5655d8kqznwh6QL3Lb2P57c9z2cHP2PSxkn0W96PT/4wnqpeeV5lUgpSAHh6q/ncZtPvl7su7uKN3W/YlDFErVFT8f2KPLvtWaPt+j6XdR3u7Ld5LrqYu5JyxWj7fd/fh2qWijZL27A4cTFP7TBOWGfmZfLYRvPRT09seoLZu2cz8IeBZjYNOZd4ztgPjYZ3f39Xn9QzZMTqEXx+yLwm5cmEk6TnpjNz50wWHlkIwNKdU/VTywwxbEeNRmM0rTlfnc8bJuNP/rWR+/35zM/cybwDaBeSsMWUn6fY3N/92+488fMTPLL+Ef22e5fey7oM6HENLiVf4kzCGS6cXUHTL5vatLX5/HYmbZhkNs3RkF5Le1n8nJFKxQ8qkpqTKknW3shcHaKmlARETSmBwD6iDwjKMp4U/wevHeTD/R/yYLMHua/2fSXmh5Q6UWuHr2Vg/YEO15TS1VX46cRPDPlxiEM2BIWImlJuwdCGQ+ka15XJP0/WbztWvxKNTt4wk7VWi8a0Py0fspwQvxD61e1nVeaVe15hdldtQmjhkYU8vP5hSccy5J9b/9B1SVcqhVTir0l/4e9TtNz50n+W6leJ0tnbd2Wf0cgngJ41expN8TGtWaPblpaTxtZzW/nx+I9sOLWBL/t9ybim4yz69d3f3zFu7TgjfY1GQ6dFnThw9QDLhyxneudRXEvIJyAygIuXL1IhpILd8x3y4xB+OvEToE2MX5l+xeq5LjqyiIfWP2Skn/Vylr6+1IWkCzy1+SlaVW7Fq53Np3RKpUBdwKKjiwjxC2HEXSMAOHnnJA0+b2BRflKLSTQq34gv//ySO5l32DZ2G00rNjVq82ltp9G4QmMeav6QRRvv73ufKylXmN11ttX6Y4b2bj9zm6ofVdVP20p7Mc1oNK6hrGHc5RXk8eaeN/FWedOyckue3/48/93+z+g4eyfsNaqnBjC80XCeavsU7au2N9re8uuWHL5x2KK/tjCNybe7v82Lv75oJFMzsqZRondMkzFGCVEpqF9Va0eyXViC78GJZrWSDH0oF1SO28/eZtu5bfrEny3/AYb+OJTVJwqLlRt8/t+8ftOottKjLR+1Oo2rfkx9Tt4xXuHQS+UleZQbwMi7RlIhuAJz/5irdeXeDywm/wDqRNXhhY4v0KhcI9otaCf5GNbw8/ZjWMNhfP/v907b0tEgpgEn7pSOYu6SyAbewW5NKenL7gg8blqGI6jVanJycvD39y/RUQOu9kNJ+87YckRXjo5UWXe57u6AO7SFiH9ldET8W6ZNbBt+GPqDxX3u1hZSlre3RsdqRV882sa2VcIdgaDEWXV8FZ2rd3ZY33TEE2hHqYD2C7u1Om6v736d2V1ncz3tullCCrSfHV5eXlxJucL8w/PpV7cfbWLbGMm0/Lol+ep8ErMS+eLQFzzV9in9543U5dOlfpkdu2Ys606t078fv3a81aRUdn622bYjN4/opxc9sOoBItVeetnHNz3OT8N/kuSHJaSOFwh8M5ATk09QP6Y+Q1cO5fCNw2w4vYG+dfrSsnJLQFsv55Wdr1ArshYf9vqQauHVrNq7kXaDV3e+yjdHvgEgJiiGHjV7MH7teKs6Xx/+2uj9gB8GsHn0ZqNtumRBoE8g55LOsebkGoY2GMqLnV5k67mt+hE+OQU5fNnvS7vnPffAXKM6QinZKRaniOvYcnYL55POk5abZrt+jxVWHFvBimMr0MzUkJ6bzqk7p2hRqYVDCSmAnReMp4H+cc285pBpP5SbkAJo/lVz/r71NwDn4sBW5UTdtC05o2f0CSkTTIt926orZJqQAul9WIcGjT7GwPJoNB1nEs9Y/HxylNyCXEUTUoBnJaRkUPJPlKWI27fN57Hq8NR6IqbcunWLOXPmcOvWLY/2Q0n7zthyRFeOjlRZKXKiD3iODyL+5cuJ+C8hsqzvGnnXSKv7nrv7OVYOW6l/Xzm0spJeCQQlyrTN04zen8+xXvcHAI0GDmmnl0xYN8GqmOEXP2uYTiHSofvM6LusL6/vfp2237Sl4ecNjaYbGtYn+vfSNqaueYSRc0bK+rzJybGfvHrv9/eMElI6fjnzi1mtrQ/2fWA2DTC3IFdfFFm/zSCRZGt6odK0nt8awChB8s7v7+iXYu+/vD9Hbx5l9YnVNP2yqVktKl2bZ+Rm0ODzBvqEFEDP73qy8thKi3V8rHE55TINv2hocd+on0bxys5XOHzjMC/teImEzAS2ntuq3y+1KLJpcf0lfy/haqrlEcqn7pzivu/v44mfn+D57c9LPAvLqDVqQt8OpdX8VvRaamO1NDt0+9a4xo6r4kWXkALof11b34ozX6HWqLmRZj5ysse3PSSd16IjiywmaksKZ4q6C9wHMVJKBuHh1lce0s1R9fS6UxERETzwwANERER4tB9K2nfGliO6cnSkykqRE33Ac3wQ8S9fTsR/yXBfA+vTC7/u/zVZ+VkWH/if6/Ac0UHR+vcqlYpDEw/pv+AJBKUZ0xpJ/S/YrncCkHLyc1Z6N2P3pd1OHdtanRHdZ8a/t//Vbztx5wR9l/Xly75f0raK8WjFRad+0b8enzDe7LP17T1vW1y1Mzkv2a6Pz21/zuL2Psu0S9Hvf3g/7apop/Y8s+0ZM7nQt0PNkjtqFxZDsbXKnS75ZMiq46tYdXwV3/T/xmh7cnYy+6/sp1nFZoT5h/Hevvd4bddr1IiswfH44xbtP7DqAeect0FabhoHrh4w2nY64TR1o+vKsvPyjpd5ecfL7H94v1ntqw/3m69c5iiGKzpaWgXOnTmeC1U+rMJ30WkMWmZ5BbxfL/wqydZD6x8y6scljaXRnYLSh0hKySAwMNDqvrLyhSQwMJAGDSzPK/ckP5S074wtR3Tl6EiVlSIn+oDn+CDiX76ciP+SISgoyGybj5cPt5+5TYhfCPP6ziNfnU+V0Cp8+VfRtBAvlflA8VaVW9G/bn82nN5gts+UWV1mMXPXTOecFwjcgLScNK4kX+TBa3Do/ESbsquOr0KtUducXmN16plXPuSZJ1DOJp6lx3c9uKf6PVZtDl49mAUDFhhte2nHSxZl/4s3rhG05OgSi3K2aL+gvc0aWJZWvssyyErZvQ8kHoGo5kabrqZeRTVLRZ2oOnSvYVyE/rODn1lMwNnjkQ2PmG3rsqSL2TZrCSlXcz7pvNkKa50WdeLWM7cg+RhENAKwOKrHEu0XtDfbZjq90B62VhO8lHJJli13Iy03jUHSmtIuHx0wX3FTIHAGMX1PBpmZFtZkLER3E/b0uvGZmZkcPnzYZlt4gh9K2nfGliO6cnSkykqRE33Ac3wQ8S9fTsS/a3n1nlfpXqM75YPLm/kDMKj+IP22m0/fJDIwEoCKIRXZMHID8/rN4+P7tEtx96zZU7/flCda218pKtw/3KlCwgKBu5D3vYpGH8bQ6MsmHJJWsgnv2d74vu5rcV9WXpbFhA3AW983h80trdq1N0LL1gpetnhw3YMO6TmDWqPmtV2voZql4p5F9+hXFHx43cOoZqlQfdqCgT8M5Gb6TTPdM4lnjBLogFnixlPYdHqT2bbbGbe5nXEbzaa7SMxKJGZODJU/LL7p1dO3TLe6z9Pv7wJBSSKSUjJITbW+9GFZ+UKSkpLChg0bSElJ8Wg/lLTvjC1HdOXoSJWVIif6gOf4IOJfvpyIf9fSqXonto/bzsnJxkVRdX583e9rZnaeydYxW42m5Rkyte1Urky/wuYxmy3uB+hVy349DU8fDScoO8RegCu5NtY8l0nQW0FWpzW9ceUcqsOnLe6Twmu/veawrqPM/2u+w7q6gtp7Lu+h5ic1+eG/H1h4dKF+//pT69l3ZZ8kW6tPrDZbec8T+PCA5al1Fd6vgNdZiJ4TTUJWQrH6dOTmEav7RqweUYyeCARlC5XG05+gFSA1NZXw8HCbSxl60nLgAoEjiD4gKMuI+Fcew+Wqt43dRo+aPQBtkdXVJ1bzetfXaV6puTV1RY5riciASBKfT7QrV+YwWBIc64sfCQSlgqvTr1LloyrSFUow/jUzNeLzSFCyiM9/gTWygXewmUcBUVNKIBAIBAJBKWJC8wlMaG59hbCSJMg3iMy8kp3eLhAInEdWQqqEeWid542iEggEZQsxfU8GiYmJVveVleXAExMTWbZsmc228AQ/lLTvjC1HdOXoSJWVIif6gOf4IOJfvpyIf9diOqi7JPuhtel7PWr2IP3FdB5o5LrVqgQCgcCURUcXlbQLAoFA4BRipJQMRB0JbRt4e3uXeFu42g8l7TtjyxFdOTpSZd3lursD7tAWIv6V0RHxLx93aYuS9EOF5WNuG7vN5n6BQCAQCAQCgTmippQERE0pgcA+og8IyjIi/pXHsEbKljFbuLfWvcV+XEvEBMUQ/2w8Lb5qoS+K27JSS/6c9CcAey7t4Z7F1pe391hETRFBWUbEv6AsI+JfYA2JNaXE9D0ZiPydtg3y8/NLvC1c7YeS9p2x5YiuHB2psu5y3d0Bd2gLEf/K6Ij4l4+7tIU7+DGq8Sj969GNR+tfd6reiZ8e+IlFA8WUGoFAIBAIBAJ7iKSUDG7dumV1X1mpJ3Lz5k3efPNNbt686dF+KGnfGVuO6MrRkSorRU70Ac/xQcS/fDkR/2XHD930vKfaPsWMdjOY3m46k9tMNpK5v8H9PNjsQUn2gnyDaFW5ldJuegwjanUpaRcEAoFAIBC4EJGUkkF4eLjVfbq6FiVdZ8PVREREcP/99xMREeHRfihp3xlbjujK0ZEqK0VO9AHP8UHEv3w5Ef+uxXRElCv96F6ju/61t8rbqpyvty8f9PqAD3t9iJ+3n8PHK+lRZ+5MZEAk84au4eAjB0vaFYFAIBAIBC6iVCelTp8+zcCBA4mJiSEsLIwOHTqwc+dOI5nLly/Tv39/goODiYmJYerUqeTm5jp0vMDAQKv7ysoXksDAQJo0aWKzLTzBDyXtO2PLEV05OlJlpciJPuA5Poj4ly8n4t9z/Fg8aDE9avZgYouJDG041Gx/2yptFT+mwDKXp18mIiCC1rGtS9oVgUAgEAgELqJUJ6X69u1Lfn4+O3bs4K+//qJZs2b069dPP5y/oKCAvn37kpGRwd69e/nhhx9YvXo1Tz/tWAW2rKwsq/t0v3R6+i+eWVlZ/PvvvzbbwhP8UNK+M7Yc0ZWjI1VWipzoA57jg4h/+XIi/pXHcPpby8oti82PKmFVWD90PU/GPQkmszHrRddjfv/5Dtt+qNlDnJt6jkktJum3adCQr8532KYnE+IXUtIuMLzR8JJ2QSAQCAQCj6bUJqXu3LnD2bNneeGFF2jSpAl16tThnXfeITMzk2PHjgGwdetWjh8/ztKlS2nevDk9evTggw8+YP78+aSmpso+ZkpKitV9ZeULSXJyMj/99BPJycke7YeS9p2x5YiuHB2pslLkRB/wHB9E/MuXE/GvPHN7zWVOjznsHL+TmKCYYvVDZz/cp2jafotKLTgx+QQVQyo6bHfBwAXUjKxpNqIuJz/H6P2+h/Yxvul4dg41Hv0tKH561uxJuL/18g0CgUAgEAicQ6UppU/QGo2GRo0a0aFDB+bOnYu/vz9z587l/fff5+TJk0RERPDqq6+ybt06/v77b71eUlISUVFR7Nixg65du1q0nZOTQ05O0QNiamoqVatWJSkpyWr9irKyHLharSY/Px8fHx+8vEoup+lqP5S074wtR3Tl6EiVlSIn+oDn+CDiX76ciH/P8kNnPz0/ncZfNiY9N50DDx+gQbkGsuz4zPahQFOgf6+ZqX3kenzj43z515cABPgEUDm0MueTzpvJqdVqvF8vqmvVJrYNB6+5aX0lFywJrmsHANUs86mxXeK6sOviLmUOZoUFAxYwY8sMUnKs/zApELgi/gWCUoOIf4E1soF3tIN7wsLCrIr5FJ9HyqJSqdi2bRsDBw4kNDQULy8vKlSowObNm/WJo5s3b1KhQgUjvcjISPz8/Gyu2PP2228za9Yss+2rV68mKCjIoo5uCkFWVhbLly938KwEgtKL6AOCsoyIf8/lnYrvkK/J5+j2oxzlqCzd2VVn8/LllwF4pcor+tioll1NLzM6ajRrEtcY6VmLoWnB0xjFKFk+lGZs9aWKvhUZ5jWMXexyqQ9//PEHeXl5Lj2GQCAQCARlGbcbKfXaa69ZTAgZcujQIVq2bMmgQYPIy8vj5ZdfJjAwkG+++Yb169dz6NAhKlWqxKRJk7h06RJbtmwx0vfz8+Pbb79lxIgRFu1bGyl18eJFqlevblGncuXK3Lhxg0qVKnH9+nWZZ116SEpKYvv27fTo0YPIyEiP9UNJ+87YckRXjo5UWSlyog94jg8i/uXLifj3LD+UtL/l+BYOHDzAkwOeJCoqSr9989nNxGfEM7LxSHZc2EGvpb30+3QjhJKSkoj6JMpou6URQ26Bwr+Uz+oyi1c7v6p/b3rep6acom50Xap9VI0rqVccOkaYfxipObbLOex7aB+9v+8tRkoJbCNGigjKMiL+BdYorSOlpkyZYjVZpCMuLo4dO3awceNGkpKS9Cf4xRdfsG3bNpYsWcILL7xAxYoV+eOPP4x0k5KSyMvLMxtBZYi/vz/+/v5m290sf1ciqNVqcnJyUKvV9oVLsR9K2nfGliO6cnSkyrrLdXcH3KEtRPwroyPiXz7u0halqQ+0qtCKeJ94s2eI+2rfp3/ds2ZPq36UVf53z/+s7ls0cBF1o+sCMKnlJF7Z+YpLfHip40u0r9reJbYFAoFAIBBocbuRUlLZsGEDgwYNIiUlhZCQotVZ6tWrx/jx43nppZf45Zdf6NevH1evXqVSpUoArFixgvHjx3P79m2b2TpDUlNTCQ8Pt5nhKyv1RAQCa4g+ICjLiPgXOIvhSCBrtZRcMVLqmfbP8Nmhz1Ch4veHfqfF1y1syner0Y0dF3aY71D4l3LDNgDr7fPWnrd4ecfLZvqPtnyU5hWbUyGkAvevuN/iMcL9w62OgNr/8H7aVWkHQOS7kSRnJ8s9BUFZQowUEZRlRPwLrCFxpFSpXX2vffv2REZGMn78eP7++29Onz7Ns88+y4ULF+jbty8A9957Lw0bNmTs2LEcOXKEX3/9lWeeeYaJEydKTkgJBAKBQCAQuJo1w9fQNa4rm0ZtMtq+fex2hjYcym8P/qb4MWOCYpjVdRbXZlzj2oxrNKvYzK7O9rHbuaf6PQCE+IXYkS45vuz3JY+2ehQvlfVHXdNVEA2xpScQCAQCgUA5Su0dNyYmhs2bN5Oenk63bt1o1aoVe/fuZd26dTRt2hQAb29vNm3aREBAAB06dOCBBx5g0KBBvP/++w4d01ZxdN0Qe08fan/jxg1mz57NjRs3PNoPJe07Y8sRXTk6UmWlyIk+4Dk+iPiXLyfi37P8KIk+MKj+IHaM30GfOn2MdH9f+jufdPxEnwiqHVVb8rGXD7FcKLxTtU6cnnKavQ/s5f233ycnOYfIwEibSRqAblW7oVKpWDVsFZ/3+Zyjjx61KT+1zVTJvhoyvul4h/QsoURyqW1sWwU8EQgEAoFAYAm3qyklh1atWpkVMTelWrVqbNy4UZHjhYaGWt2ne5Cz90BX2gkLC6NPnz4lPtLM1X4oad8ZW47oytGRKitFTvQBz/FBxL98ORH/nuWHO/eBn0f9TN3P6krSH3HXCDpW60jVj6qa7asTXYeMgAxZvvn6+AJQLrgcT7R+wq780IZD+eTgJ5JsGxIZIL24vArbfc7mSClUhHlBqp1c8jcDvqHP930I9wtn79W9kn0TCAQCgUBgn1KdlCpugoODre4rK19IgoODadWqVUm74XI/lLTvjC1HdOXoSJWVIif6gOf4IOJfvpyIf8/yw537QJ3oOrJsVAmrwk8P/MTgHwfrt2nQOOSbt4+3rGMryeTWk/n80Oe83vV1o+2WphDqiqCD/ZFS6ytB12sqgv2CSc9NtyhTJawK/zz+D2C+CqBAIBAIBALnKLXT90qC7Oxsq/t09eJLad14yWRnZ3Pq1CmbbeEJfihp3xlbjujK0ZEqK0VO9AHP8UHEv3w5Ef+e5Udp7gOWuL/B/bSs1NJp++oCedNTdckvuVhK7n7W5zOSnk8yW5XvkRaPEBsai5fKi3D/cBrENGDdiHX6/b5evlaPM7jBYDqXr83ZoZ9w8amLxj5YGIFl2k5+3n5STkcgEAgEAoENRFJKBsnJyVb3lZUvJElJSfzwww8kJSV5tB9K2nfGliO6cnSkykqRE33Ac3wQ8S9fTsS/Z/nh7n2gZ82esm3dyrilf30j7YYk32Z3mU2dqKKRWfn5+bKO6Wh/sDYlLyIgwmxboG8gZ6ee5fqM6yS/kMzxycepH1Nfv79zXGeqh1cH4Ot+XxvpPtbqMeh3nJoNJxMdFG00qiomKMbsWKbt9HirxyWfk0AgEAgEAsuoNJ7+BK0AqamphIeHk5iYSGSk5ToHZWU58IKCArKzswkICMDbu+SG8bvaDyXtO2PLEV05OlJlpciJPuA5Poj4ly8n4t+z/HD3PnAz/SbTNk9jxbEVNvU1M4se8UynnWlmaizaN5RbNngZM3fN5EziGQD61O7DptHGqwPq5S0sCb5r/C66LOliJH9P9XvQaDS82e1N7ll8j0W/n27/NO/f69iiNJZIy0njfNJ5mlZsanR+Rx49YrTi4MFrB3ls42P0rt2bN7u/aWanoKAAnzeKKl9Mbzedjw58pJifglKMhfgXCMoMIv4F1sgG3oGUlBSb9StFTSkZlOQDuLvg7e1ts7aWp/ihpH1nbDmiK0dHqqy7XHd3wB3aQsS/Mjoi/uXjLm1R1vtAxZCKfNH3C7tJKaV9k1szzdL0vVXDVlEuuJzRNi+VF2qN61auDPUPpWnFpnbl2sS24fCjh63uN30OVGJlP4FAIBAIyjribioDMX1P2wZr16612Rae4IeS9p2x5YiuHB2pslLkRB/wHB9E/MuXE/HvWX6Uxj5QN7ouywYvc6lvuXm5suxb6g+Gia0Tk0/wYscX+eexf2hdubV+e83ImrKO4yj2Vu4zJTk5mSHlhwDwSPNHRFJKIBAIBAIFEHdTGRQUFFjdV1a+kOTn55OYmCi7rkRp80NJ+87YckRXjo5UWSlyog94jg8i/uXLifj3LD9KQx8wjbVKIZUUsd+0QtGIonox9YxHO1kI78gAy2UNpFA/pj5vdX+LRuUbsWzIMupF16NbjW5MbDHRYZv2MKxLVT64vCzd/Px8+vj34d8H/+Xr/l/LTmqNbzqez3p/JktHIBAIBAJPR9SUkoCuppStuZBlpZ6IQGAN0QcEZRkR/4LiJiEzgZj3iopx31P9Hr4d9C1xH8cBMK7pOJYMWqLfb6mmlCXOJ51n6i9TaRPbhlc7v0qdT+twNvEsAP3q9mPDyA1G8qcTTrPk6BLeG/oeecl5RjVFfh33K+tPrefjPz7Wy9959g7RQdEWj63RaGRPEZTLP7f+4dltz9K7dm+mtZvmlK0Xt7/IO7+/I0n2/Z7v8/Td2oZ58zMV/0tw6tACd0PU1BGUZUT8C6whakoJBAKBQCAQlA0eb/U41SOqs27EOo7cOMLUtlMdslMzsiYbR22ULF83ui5vdn+TJcFLuJZ8zWifWqPm7e5vGyWlCjTWR527OiEF0KRCE7aM2aKILUvT91SoLNbSmtxmsv71y1Hw0mQ1XrPFhAWBQCAQCMTdUAa3bt2yuk+tVhv99VRu3rzJ22+/zc2bNz3aDyXtO2PLEV05OlJlpciJPuA5Poj4ly8n4t+z/CgNfcDP28/o/QONHgCgTXgb/Pb7kZOSo7hv2dnZVvdZin0VKgJ9A422ZeZlSjqWO2LaXhaTUlYSawE+AZLkBAKBQCAoa4iklAxsrVCje7jw9IeMkJAQunTpQkhIiEf7oaR9Z2w5oitHR6qsFDnRBzzHBxH/8uVE/HuWH6WhD4T6hzK59WTC/cNZOWylPkHiij6gw8fH+gB7S7FvacRQaca0vdpVaWcmExUYxebRm4vbNYFAIBAISi2ippQERE0pgcA+og8IyjIi/gUlhVqjlrQKnNSaUqbU/qQ255LOAZZrSunQ9QHDmiJbx2ylZ62eRse+NuMalUMrSzq2u6PRaPjfjv/x1t639NtqRtbk3NRzHLx2kLbftC2SNWzvSz9C9QfMromgFCNq6gjKMiL+BdaQWFNKjJSSQU6O/aHwnk5OTg7nz58v8bZwtR9K2nfGliO6cnSkyrrLdXcH3KEtRPwroyPiXz7u0haiDxRhmpByRR/QoVHL+x2zXHA5cxul+LdQ0/ZSqVS82f1NIxndyoFtYttYN1T9AZf5KBAIBAJBaUMkpWSQlJRkdV9ZqSeSmJjId999R2Jiokf7oaR9Z2w5oitHR6qsFDnRBzzHBxH/8uVE/HuWH6IPWCY3N9fqPl3sRwdGExcRx0PNHqJZxWZmcqV5Sp+U9hpQb0AxeiQQCAQCQelHTN+TgG76XkJCAlFRURZlysrUjfz8fNLT0wkJCbFZW6K0+6GkfWdsOaIrR0eqrBQ50Qc8xwcR//LlRPx7lh+e2AcsTd+TYt9o+l6dfmwYZXv6nqU+YHjsy9MuUzW8qqRzcTektO3xJ47ToFwDs+2WpkuK6XsehJi+JCjLiPgXWENM31OeknwAdxd8fHyIiIgo8bZwtR9K2nfGliO6cnSkyrrLdXcH3KEtRPwroyPiXz7u0haiD8jXaV25tf51dGC0Q/YdLeQf7h+ufx0REOGQDXdASnsZTqd8vNXjALSv0t7lvgkEAoFAUFoRSSkZpKSkWN2nG3Dm6QPPUlJS2LRpk8228AQ/lLTvjC1HdOXoSJWVIif6gOf4IOJfvpyIf8/ywxP7QPWI6vrXgb6Bku0bTrfLy8+zLmejD+x9aC/317+fxQMXE+ofKu1E3BAp7WWYlJp731y2jNnC5jFiNT6BQCAQCKwhfvaVQV6eYw9jnkRubi5Xr161WVfCE/xQ0r4zthzRlaMjVVaKnOgDnuODiH/5ciL+PcsPT+wDlmJTrn1bhc5t9YG7yt/FT8N/knQMd0ZKexmOJvPz9uPeWvcWh2sCgUAgEJRaRE0pCehqStmaC1lW6okIBNYQfUBQlhHxL3B3hv44lNUnVgNQNawql6dflqRX65NanE86D2iLeK8bsc6iXFnuA4a1oc4+eZZaUbVk6wlKOaKmjqAsI+JfYA1RU0ogEAgEAoFAAI6vetendh/9607VOinljscS5m/9oVsgEAgEAoE5Iiklg9u3b1vdV1aWA7916xYffPABt27d8mg/lLTvjC1HdOXoSJWVIif6gOf4IOJfvpyIf8/ywxP7QIXgCvrXutXvpNh/s/ub9K3Zl5Y+LRkRN8KqXFnoA9baa9f4XTQs15BX7nmFcsHlSsg7gUAgEAhKJ6KmlAwCAwOt7tPVEHB0ZZrSQlBQEK1btyYoKMij/VDSvjO2HNGVoyNVVoqc6AOe44OIf/lyIv49yw9P7ANvdHuDNSfXkJ2fzeKBiyXbD/MPY/mg5Rw5coTw0HCrcmWhD1hrr85xnTn2xDGXHDPCN5DkvCyX2BYIBAKBwB0QNaUkIGpKCQT2EX1AUJYR8S8oDeQW5JKvzifIV/lknugD8pFSU6p3pUb8csM1CS+BgoiaOoKyjIh/gTVETSnlKenVhtyB3Nxcrly5UuJt4Wo/lLTvjC1HdOXoSJV1l+vuDrhDW4j4V0ZHxL983KUtRB9wTMfP288oISX6gDxc2Q6zu8wGINzfeDRah3oPKH4sgUAgEAjcCZGUkkFiYqLVfWWhlgJAQkICCxcuJCEhwaP9UNK+M7Yc0ZWjI1VWipzoA57jg4h/+XIi/j3LD9EH5MuVhT7gyrgb3WQ0+x/ez4nJJ4y2j2oylsmtJyt+PIFAIBAI3AUxfU8Cuul7d+7cITo62qJMWRm2npeXR1JSEpGRkfj6+nqsH0rad8aWI7pydKTKSpETfcBzfBDxL19OxL9n+SH6gHy5stAHlI47w+l756eep0ZkDbPt12dcp1JoJUlT/VRgtMbi+TioedFpNwVSENOXBGUZEf8Ca0icvicKncugJB/A3QVfX1/Kly9f0m643A8l7TtjyxFdOTpSZd3lursD7tAWIv6V0RHxLx93aQvRB5TREX1AHsXVDkvvX8qENWPoX28glUIrSdYbGQrL0ore1xCPrQKBQCAoBYjpezJITU21uk834MzTB56lpqaydetWm23hCX4oad8ZW47oytGRKitFTvQBz/FBxL98ORH/nuWH6APy5cpCHyiu+B/dZDRJtWD1iLWy9Dy46QUCgUDgwYiklAxycnKs7isLD2MA2dnZnD59muzsbI/2Q0n7zthyRFeOjlRZKXKiD3iODyL+5cuJ+PcsP0QfkC9XFvpAccZ/sEJP6AvFADeBQCAQuDmippQEdDWlbM2FLAu1FAQCW4g+ICjLiPgXlHVEH5CPYZ2oi09dpHpE9aKdy1QwSmNR1hojQ2B5etF7TR1QayD4HGSLp33XImrqCMoyIv4F1pBYU0qMlBIIBAKBQCAQCIqZT3t/CkC7Ku2oFl7NaXvNA8y3eangTHXz7QKBQCAQuAsiKSWD+Ph4q/vKwlLIALdv3+aTTz7h9u3bHu2HkvadseWIrhwdqbJS5EQf8BwfRPzLlxPx71l+iD4gX64s9AGl425Kmymcm3qOPRP2oFLZHwllj6ciTDaM0sDwLKr4wvIe/5NtL6Wm0y4JBAKBQGAXkZSSgb+/v9V9uocJJR4q3JmAgAAaNmxIQICFn+M8yA8l7TtjyxFdOTpSZaXIiT7gOT6I+JcvJ+Lfs/wQfUC+XFnoA66Iu5qRNfHxsr8Y9txecwEI8Qsx21c1rCrz756En6Wm99b6OuLu2XSLjpXlmwdfSoFAIBC4EaKmlARETSmBwD6iDwjKMiL+BWUd0QcU5uIPEDdC/7ZAXcD289upF1OPGh/XMBLVzNTApRXw+whUZ0y2g74+1aj5dVl+vUhgfnn4QtOAI/EnLLqQWgvCzil3Sh6NqKkjKMuI+BdYQ9SUUp68vLySdqHEycvL49atWyXeFq72Q0n7zthyRFeOjlRZd7nu7oA7tIWIf2V0RPzLx13aQvQBZXREH5BHsbaDQUIKwNvLm161exEXEce4JuMcMvlBg47611+Ug0fC4fDDe4xkwgu/GbQLgBBvb4eOIxAIBAKBHERSSgYJCQlW95WFWgoAd+7c4csvv+TOnTse7YeS9p2x5YiuHB2pslLkRB/wHB9E/MuXE/HvWX6IPiBfriz0AXeJ/0jvSIf0KvkHkdHiLtJeTOPxxkO1G70D6BdWNB3xZHXY27w3O2MhJ7qnEu4KBAKBQGATMX1PArrpe/Hx8cTExFiUKSvD1nNzc4mPj6dcuXL4+fl5rB9K2nfGliO6cnSkykqRE33Ac3wQ8S9fTsS/Z/kh+oB8ubLQB9wl/l/a9hJv73tb/17q9D0OTYH4vdDnqNH29Nx0Fn8TSpMAH+4JyKegxkN4X1hI7r1/4/950+I7MeB2DZh+B75PK9bDOo+YviQoy4j4F1hD4vQ9+5UVBXpK8gHEXfDz8yM2Vl6hzNLoh5L2nbHliK4cHamy7nLd3QF3aAsR/8roiPiXj7u0hegDyuiIPiAPd2kHXx9fZQy1XQBoi6dPiQC8vEAN3l7aiRR+MU2UOQ7QqFwjjsUfsytXzgeWVoRJ4dDZM3ObAoFAIDBBTN+TQVqa9Z9tdAPOPH3gWVpaGrt27bLZFp7gh5L2nbHliK4cHamyUuREH/AcH0T8y5cT8e9Zfog+IF+uLPQBd4l/CixsC28EdZ6wLF97kuXttR4qeh3VSv8yvdrjgOXn3qOPHuWJcDhQ1baLPQKN36vVah5u/rBNnU/LFb2+J9C6nDviL1YqFAgEAocRSSkZZGVlWd1XFh7GADIzMzl8+DCZmZke7YeS9p2x5YiuHB2pslLkRB/wHB9E/MuXE/HvWX6IPiBfriz0AXeJ/zF1x+CPPwC/jP5FuzHiLmj9uWWFNl8VvtCAykr2pPU8aPg8dPmFDC/taLDMzEyqmcypaFqxKZ+Xh7YBFmwYMDTU+L1arcbHy9jYAyHGMo+HG79/yPpMD7cjUtSEFwgEAocRNaUkoKspZWsuZFmopSAQ2EL0AUFZRsS/oKwj+kDxkpCZwJ3MO9SLqWe0XTWrKOmkryml49BkuLMPeh+xf4DCelNd5qj4rfA32WAvFemvqOHGNth5L4Ouw7oMy+r5Uw7j81kL/fuG5RrSsWpHvj78dZF/dTCugVXH2MbtfKh/CZIk1M6v4B/CrZx0u3K9gmCLC3KKFT+Gm0mImjqCsomoKSWwhsSaUmKklEAgEAgEAoFAUIqIDoo2S0i5Ak1kM/3run6Fw4EKR1stqgCtK7e2qOcd3Zx7a90r72C1HzN6W94HrnYby4J7ptlUi/OBC+PX8+8j+6lgZ8TSoGB5LgkEAoHA9YiklAzK+lLIAPHx8cybN4/4+HiP9kNJ+87YckRXjo5UWSlyog94jg8i/uXLifj3LD9EH5AvVxb6QGmI/896f0bFkIrM6zvPXDGmHVTuI8m+/q9v0S/bKt30u8jmUL4zkd4wpc0UST4X5Begwc7kjDbmPi/5pz39Gr3IrNjKVtVUQKCPH3eVb8iGyhCggsoWklOrKsLEcGmrPK2qaL5tTf0W/C9KgrJAIBAIZCGSUjLw9bW+2omq8FcjlbW5+h6Cn58fcXFxJb4Soav9UNK+M7Yc0ZWjI1VWipzoA57jg4h/+XIi/j3LD9EH5MuVhT5QGuJ/cpvJXJ9xncdaPWauWGMsNH1Tkn3Dv3rC6mv/+kdbL54ODG4wGICowKIMTnRQtN3jmpLV4E3i4uLw9/fn1SqV8bESW14Gm1sHwPUacOauOmZyQ0LBWwVflLd93HAvrey2WIgMiGRYCGTXgr4xFXg5EhbGVWZ/FdmnowiVLCTb1lSSZ+OpCEVcEQgEAsUQNaUkIGpKCQT2EX1AUJYR8S8o64g+4GGknYXQ2uy7so8OCzsAsGPcDrrW6Krdf3E57BvFkoaLeXDdg0aqr97zKrO6zuJ62nXqf1afAk0BRx89ynv73mP+4fl6ObOaUjM12lpWAF1+gQrdwLswMfbHRPy2LiJPbb70YG1fODPxd+0KhKsitBsr3otqz1YjOV3NquzAatQ4dplbBZiN3fJRwa5Y6FC4+l/BiHy8fygcW1VlIFxdB62/gENPGPle8Yswbt5OVaSmzmflYIrJIDgf4I1oqOwD424Vbf8oBqZFGrejPWZGwaxE53wUCIwQNaUE1hA1pZQnPz+/pF0ocfLz80lMTCzxtnC1H0rad8aWI7pydKTKust1dwfcoS1E/CujI+JfPu7SFqIPKKMj+oA83KUdiiX+86LIz8/n7qp3s3P8TraP3U6XuC6y7FQOrcylqZf4b8J/1AivQdMKTe0rDUstVL6PfI1X0Xm2nU/1iBoWVbRprKL0Uk7Fgag11qeRBlToxNkGlTkfZ77vaq9pdAgpWlrQ26toaJLaxs/4Gu9As21zY6zLWyPcP5zJEfBPNfi0nHZbc3+4VgOej4IwP+Pj6AaJxYbGSj6Go2MZ24Q5cEISmOMaswKBoBQhklIyEDWltPUFPv30U7eop+BKP5S074wtR3Tl6EiVlSIn+oDn+CDiX76ciH/P8kP0AflyZaEPlNX47xLXhe41u5tMzZQ2XTM7NZtvv/6W+Ph4Hm31qP2D+4Za9WPVsFWE+IVQxQc6Vetk4gngE0JSw885e+YMebm5lu0PTQIgOCCSOF/oEWCc5KkQEIK1tE1uTo5Vty3F/T31R1A7orpVHUu81uU18A6gsT9MidCO7jpcTVv0HYC7l1vUOzH5BKsfWM2fVWUdzozrNSCxJgwNMd83rccndvVTa8HEFhNlHbOlvyxxgUDggYiklAwiIyOt7vPy8jL666lERUUxfvx4oqJKttKjq/1Q0r4zthzRlaMjVVaKnOgDnuODiH/5ciL+PcsP0Qfky5WFPiDi3zlbPl4+3Ff7PgCqhNkvymTqR9OKTbnx9A3OP59NsF/RMnoqAJ8Q8PImqMHDxMXF4etrpe6XX0ThC+2wp2dqF60e+FjLxzCf0FeEr59x9mRWYfMMaTDELO6/KQ/Nuy/H39dCdscGT7R+AoJNEln9TupfWksChvqHMrjBYCK87Y+Dqm29RC6VouoR6Q2RFrqxaaH6ewLB3+RwoV4w9765dAuE9gFwsf299Jew4uH3FezLCAQCz8VznxxcgL+/SOX7+/vri056sh9K2nfGliO6cnSkyrrLdXcH3KEtRPwroyPiXz7u0haiDyijI/qAPNylHdwi/st1gNZfYKk0baPyjazaWjZ4GYsGLmL/w/sBGFGYsxnacKgkP0L8QvD18Tc6riqsPkQ21esEBwfj5eXFtrHb9DIPVmteZLj5e9B2EQC9Bu/i896f8Uz7Z3inxzs6i9o/LT4q0qk7Be8q/bSvK/SAFh/yajRcuiuOlcNWojIZXfVwuPbvggELzM7LEiF+IWwdsxU/bz/QaKBc0UgwwuoVnaudyXcBff+xuX9wMIy8513rAsGWp0haOnZ9fz+umYq3+Yog3yB+rQL7qkJ1/wCzxJUpGmCU9VIzdsmoBa3L9keTQFDqEUkpGaSnp1vdp7s5enrd+PT0dH7//XebbeEJfihp3xlbjujK0ZEqK0VO9AHP8UHEv3w5Ef+e5YfoA/LlykIfEPFvQHBVqPO42eYJzSYwrOEwq7YiAyN5sNmD+pFSSyrC7gd38/3g72X5YThqx3D0UHp6Onfu3CG/oIAeNXvwfs/3mdJ6Ch82ua9IObASBFcD4Pd9+xjXcDzv3fse4QHh4BsGobWh1kSoP02v8nvOCNIrjtC+CasD9adDw+ep5uuDSqUyr2HVbgkAbau05TnrEy30xD8bT89aPQtPTq1d6bD2oxA3Vrut7UKzc7VEbMxd+tfTIsz3r64MXgG2hiVp21VS3Sm/CEJMBWs8aC5XoZvR28omKwg6+4kR5AV/VNUmp45VM97nBYyUN1hNIBCUAD72RQQ6MjIyrO7TPYQFBASQnZ1dXC4VO0lJSRw+fJhq1arh41Ny4eNqP5S074wtR3Tl6EiVlSIXGxuLr68v5cuXF32glPtQWuPf19eX9PR09u7dS61atQgJsf0kKlVWilxZ+EIO0tustPuhpH1nbDmiK/qA6xDxb5+FAxfKsuWngk7VO5ltt6drNFLKJCn1z7Uw2rVqQhjw9N2FS4H9+7qxcd8wssr3N7dffwbUfRJ8jGtN6eWMtqrQpVTM4j5utP5lKzujeEY3Hk2AT4DxRr9IaG4woqnWBPjjIbPRSv4qIKSm0TbNTA1ZS1UEekGsDzxroSTuoarQ+optv0wJ8TM++5oBAeYJJW+TaZOhtcH/sv6tCjgbB0HnDPzVAA2egzNz5DkE3B9TDYafQbXCnyALmTQvwE4er0xQwwculO11KgRujkrjyU8PCpGamkp4eLjNpQyrVq3Kvffey+DBg6lZs6ZFGYHAk7l69SoFBQV4e3tTpYr9WhECgSuIiIigYsWKdn9NVpoqVapw7do1YmNjuXr1arEeWyBwB0QfKJssObqEB9c9qH+vmSnja8Wyws/pURrz7abbTOj5XU+2n98OQKNyjfjvif9sH+vf1+HMFzD4hnT/LPlj+Proi3B5JQw4S8XKFbl14xaEAk8bt8OPX6kYftOy6UktJvFW97eIDoou2ri+NlQdYpyUKjz2plYb6be8n35TZi0IDK8D/U+b+wwUaMDnbNFmTR20o7gOjIdRGh6fq+LLFO2+ABVkdeoFKh8ePbKJr1OL9AbWG8hHvT6i5idF33Gyh32IxieQwOVFI+b0571MBY1ehkr3cqQglBZftwBgbSUYGAKqM0W2N1eGXq2eRbX+PcuNZMJbMSqivTT8lwOvdnyOmFbv6s/3RC40vFQk6wucqA61L1m2ZYsRd41g7+W9RAVE8s/tf2XrJ9aEqPPyj+sKLsVB9YsuPMAHQBr6+BcI9GQD72AzjwJipJRiDB06lL59+xIdHU1cXFyxfyESCEqanJwc8vPz8fHxoUYN6zUJBAJXoNFoyMzM5Pbt2wBUqlSphD0SCAQCz0dXuBzg5U4vF9txrY2UKl6cP+5X/b+yYtqybdNzDfSicKiRCZXugxub8VbBtw1asPzWFV4LlrBaY4u5oPKGI5v0m3y8fFg7Yi0Xki4Yifo3nE52fjZgPo0TgKZvANAc2D3iR9JUgfQ+1N9MTGPwvxRefDQDUo7BltbQfJbRvnr3LIHvxuvfe6mg1uBT/Lu6Ho0vm1qyzfIhy9FoNKhUKhK+U/HADe1UwUAVrLQzczbOByK9bcsAhKggXUYed2gIrHJg1m41X+2oMc9dG1VQ2hFJKRkkJCRYzPAVFBTQo0cPIiIi8PLyIjAw0IK2Z5CXl0dycjIRERH4+tpYvqOU+6GkfWdsOaIrR0eqrBQ53YOSSqUiICDAoown4A59QMS/ZQIDAykoKOD8+fN4e3tTvnx5m/J37txh3bp1DBw4kJiYGKfkdMuBW1oW3JOQ2mal3Q8l7TtjyxFdOTqiD8hDxL85FUIqcODhAxyPP87IxiOV8fWBDLu6NSKKfvyqE1XHoePJkV2wYIFWznBjRGPITQRAo1Zw4knHFeBv+f5lr9C5Hr/CpQEDKzE2uipjy1eC64WJJpUKmminM/YJQj9S6ok6HSG8PgCVDb4hNi7f2OphpE646VSvsM7YnxZsaA1JsgOATyB3NHHEAHeS0omJCYC6U+H0J3jVHMeo+itZdnIjUJg29PLhLn9o5AfHco1NPRgKi9MsH0Z/zWNiiPaGXwsnAYyxMurNyG7h18WHw2BB4YizcG8vUgqMPx8/Kw8P3pJ01gAsriA/KfVI4wcg+0cFUqjWifSGJBfaF3g+otC5DLy9Lae88/LySjRBU5yoVCp8fX1LfCSYq/1Q0r4zthzRlaMjVdZdrrs74A5tIeLfOoGBgZI/j318fChXrpzdelVS5AyTsp6M1DYr7X4oad8ZW47oytERfUAeIv4t07ZKWyY0n2BeF8kBW1qlILu67/R4hxoRNagaVpXP+nxm/3j+Ufri5o74ZlEubiS0+VL7Wsmwj2qpLSRvytBE6f2r2TtwzzoYaDJvrcY4CK0Hd/0PgH7B8G7TATwdAbOaDdeLPdt3KQ2i61IhuALLhyx38ESkYS8dNdSglJUuKae7FvprEtlEL9Mprrv+9b1BFCXowhvKOrbV2AiqZr4NbQLqf1HwbCQ8X1jc/oMYmBUFP1WC5yqYJz7lhk2ADIUgFUR6wVsdnwHgc9u/09llmI3ycpbqeem4HAfvRmvbRSpN/OzLCDwLUVNKAvZqSmVnZ7Nnzx4iIyPx9fWladOmJeClQFCy/P333/oEregDgpIiOzubCxcuUKNGjWIdsSfq6QjKOqIPCGRzeRXsHWa3fpQ1CtQFAHh7SZgnpVGDOt+8ELcUrNWUMsBWTakVX6kYYWV0jawaXMDms5vp/X3vIv16vhBUHQacsa7020DQFECrT8yKorNMBfcdhs0toO03UOth/S61Rk2BugBfb+0PPReSLhjVlNLM1JCVl0XQW0Hm53PxB4gbYe5LYe2nEbmtWXHpEAA32nam4j3LUL0Xa9H9pyLg42TtaxUq1DMLRxv93Az6HNW+vvA9HHoUHkgnX53P6I98uV0AyytCxXEayE2i49L+/H7ldyPb40JhQqWqdD1tXvXd6Nqc/BgOTwNgjHd/vj+5Qb+rli+sqgRN/WwXVc8Na8yQk/+y0WDdrCV172L8aTv10Ax9qgN7s6CThI/Y5Jrgq4KgQedhfU3yNfBjGoyWMTJLxyNh8GXPN/FZbXmKbuzHcC0JizWlNIUDGb9JgYm3Ldtv5g9Hc7SvI7zg32rQ9DIkeu7A27KDxJpSYqSUDAoKCkrahRJHo9FQUFBQ4qvruNoPJe07Y8sRXTk6UmXd5bq7A+7QFiL+beuo1WpJn9cFBQWkpaXZlZUqVxZwl7ZwtR9K2nfGliO6cnREH5CHu7SDx8R/lUHQ33oyxZ4f3l7eZgkpqzoqL7OElJzz1Ms1fs2urBnNP5CvYwWz6Xv1pkvWNEtI6YhqbnGzl8pLn5CyhsbaWCNLCSkDvmg9mtldZvNznapULNccgirTsJz5SCYAKnQ121RQUEBapz1F1676cP2oMB8vH1ZUgp1VoKJuoJNfJN8M+AY/C0nJLqFB/Fi/idl2o9ioNrRoh6/xF2t/lTapolJhMT4K7tfW8vL18mJDZeN998QUjbp6qNlDRvt8rWS4OkqsEhPura2BhZf2Gvr4RzLKek7AJhog24Wr9x2qCusqwX/VIKEmVPGFAxYGC5ryfgz0DTLfvr+Ktq4XwPUaMNHB87bFG9H2ZQTSEUkpGcTHSygQ6OHk5eVx69Yt8vLyPNoPJe07Y8sRXTk6UmXd5bq7A+7QFiL+beukpqaSkJBgV/b27dt8+OGH+uLozsiVhXo6IL3NSrsfStp3xpYjunJ0RB+Qh4h/hW15+UBobUX9cEX8A0VyjWda3G8z7oMsjwByBMemxyrzA5aSU3Oj/IN5pfMr9I6uBN7+AGwatYmpbaYyvNFwI1mNd7CZvtm18/IBf4MsQVAVKH+PkU79mPpcnX7VKK2nbRkVmug2Zscwjg3r527UuhamCN5O1j7D5OebP8vEBQazvmEzXu/6Oh/2+tBo3/XmTZnbZa7V40rigUxtWwBEtQJgTP0Bss14Abt37aa8tUGJVponQmKmwUcFA0Kgkb+2OD1ABSvHWlIBBpSrwo5YeDpSmxQ0pIU/tAuECzW0o7Qq+cB7MdbtOUKwCl6OgkHmoWlXT2AZkZSSQUREREm7UKJ88skn+Pv707NnT7eopxAVFcXmzZsZN24cjRs3llx7pkWLFjz11FMAPPjgg6hUKv0/f39/6tWrxxtvvEFQUJD+PF977TVUKhV37tzR2zHVDQ4OJi4ujgEDBrBo0SJycnKMfJXSZosXL0alUvHnn3/K1jVtG6n1RKzJLlu2jLlz51qUU6lUvPbaa5J9cgV5eXl89dVXtG7dmqioKIKCgqhevToDBw5kzZo1ermLFy8aXScvLy+io6Pp06cP+/fvl3XMuLg4/P39iY2Nxd/f38iubqrYunXrUKlUfPnll1btbNu2DZVKxYcffmhVxpBdu3bpj7N48WKL161bt26oVCri4uJknZMlDO3HxcXx4IMPyraxfft22rdvT0REBE2aNGHixImSv1joVjA1bevHHntMku/BwcGEh4fblY2MjGTkyJFERtoudCBFrizU0wHpbVba/VDSvjO2HNGVoyP6gDxE/BevLXeJ/+z+tyTHv6spF1TOeIO3v74Gl00U8K96eHUaxTQCYNY9s+xIS6TrFrhLm+iLi4jj494fM6CeSdLEq2h0k66dHY2rcsHliDL79quCSj3NZGXbb7vAfFvlfnobmoYvAfB6y7FUDa3E6n5z4a6Z9O+xmP/d8z/CA4yfW6J8fBjZbKR+dNz7jqxp4FM4rGpoMvhrDXwyYDHP3v0sNSNr8nDTh/mn03PU9YVwL6htYWCcDzAzGlq2bMmfVkYvaQK0Q8CiAyP4roJ2IYIg3yA2xwJV7tcKVbc9es6UQCtZinFhsK7tMLoWhn0NE58XVzDXCffWJqacQYk6V8m1LG/vLHONtGUVzWt8fVYOpkdoXyuYfys2RFJKBp68opgUFi5cCMDx48c5dOhQifri5eVFQEAA69at48CBAzRs2FBSHaMLFy5w5MgRhgwZot8WGBjI/v372b9/P2vXrqVt27a8/vrrPProo3h52e4ihrobN25k9uzZBAcHM3HiRFq2bMnVq1f1vtqzZes85ejK0bEla5iUMpXbv38/jzzyiGSfXMHYsWN58skn6dq1K0uXLmXDhg3873//w8fHhy1btpjJP/nkk+zfv589e/bw9ttv8/fff9O1a1eOHDki+Zhr1qzRX2/dvxUrVgBw//3am27fvn2pWLGivr9YYtGiRfj6+jJ27FhZ5xwaGsqCBQvMrseFCxfYtWuXzbnacnAmZgF+++03evfuTYUKFVi3bh0ff/wxv/76K927d9cna+3RoUMHs7Z+/vnnJfnu6+uLv7+/XdmAgADq1q1r97NdilxZ+EIO0tustPuhpH1nbDmiK0dH9AF5iPgvXltuE/+h5SXHvyU6VOugfz268Wi7ftmieaXmjG86nqphVdk7YS80egl67LKtFFSlaLSMNbz8QWX7q6xKpeLAxAP88cgfvNLlFQACfQL1KyFOuusB+ydQd6r2r67ovF9EUeKkkKENh1I5VJvkWNl+tMWRZs7ElWHB7RGh2r+WygQY2bf1uRZSmGmo9ZD5tsgmeht+tUYB8L8WI7k84zqDWz4FEY0gsuj7y4GHD9AnMpqlFbQjhsqHl+fklJOsv+8tnoqQdZrG+IVDuDahGBkYyZyeczg39RzfDPqGxtVqcaI63KgBzesM06tU9oa/q8GZpy4Q6wPly5WnioXfuwdFRenjP8A3mDFhcPrJ09x8+iZtmz+jHwlnL75M8a05nl+tDTI0mIr6ahQ09NMO1toZC42tPP61tLO9o5VQurtcbS7EQWuD/arCc+ofKm+Qho/KfGQXaKcuymFkKPxYCW7WgI9i4O8eU5gcAR+WA3VtyK8D98scxVXSiKSUDDIyMuwLeSh//vknf//9N3369AHgm2++kaRXUFAg+UuoHAoKCsjIyODLL7/k9OnTrFixgnbt2tnVW7VqFeXLl6djx476bV5eXrRr14527drRu3dvvv32Wzp27MiPP/7I5cuXbdoz1O3atSvjxo1j+fLl/Pzzz5w+fZqhQ4fqfXW0nohcXTk6UmVN5dq1a0eVKnYecFzIhQsXWLFiBS+++CJz5syhT58+dO/enYkTJ7J69Wq++OILM51q1arRrl07OnTowKRJk/juu+/IycmxKGuN5s2b07p1axo3bkzr1q1p164dJ06cANAn6Xx8fBg3bhyHDh3iv//Mi1cmJyezZs0aBgwYQLly5cz222L48OHs3buXkydPGl2PhQsXEhsbS4cOHexYkIYzMQvw7LPPUrduXVatWkW3bt0YNGgQy5cv57///rOZrDMkIiLCrK1r1KhhV0/3mZOZmWlXNiMjg4MHD9r9bJcip3ug9fS6a1LbrLT7oaR9Z2w5oitHR/QBeYj4L15bpTH+LVElrAo/j/qZt7q9xWd9PqNqmHa4yfim4+36aInFgxZzadolbbLLOwD87IzmafWZ9p8tBl6E6qPsHluVp4Jr6O+xKpWKfQ/vY3Xfj5jbX8L9vdXH2kLxle61KuLn7cepKac4XTucobF3YWlumKRrZ+WaTIuAd7q/w5d9v6R3END6c4tyFu2HmA91GdnExnXUaPQ2pMRk2ypt2dSoGaPDALS6yeeS6V57OD6NXij0wfqUV5vcZV6kPCMjgwsXLuCl0o5MMk2uNun9K3ERcQBcunzJTP/5qjWY36Cd2ee/j5cPof6h0Pw9vWzXCnX1rx+LiTD3b5QG7vsT6kzWb+oWpF29UMd3FkZBhXlra1Hl1YYuNgYNNqw70uL27bGwpXV/qyOp6oVVIs7XeJqmrpUeDFMxSebvwRsrm29z9K5ZwQemRUKT8IpFvhU6J3f0VUkjklIySEtLK2kXSowFC7RDUt944w1atWrFihUrzL706aZJzZkzhzfeeIMaNWrg7+/Pzp079dPf/vnnH4YNG0Z4eDhRUVHMmDGD/Px8Tp06xX333UdoaChxcXHMmTPHpj8FBQWkpKTIfvhdvXo1999/v90RIG3aaOeWX7hwQZZ9Hffeey8TJ07kjz/+YNeuXaSkpDiclJowYQLh4eGcPXuWPn36EBISQtWqVXn66afNEn6zZs2iffv2VKlShcjISFq0aMGCBQssttOyZcvo0KED5cuXJzw8nGbNmumvc5cuXdi0aROXLl1CpVLh4+NDSEiI/hwMp+/9/fffqFQqoylzOn755RdUKhXr16/Xbztz5gyjRo2ifPny+Pv706BBAz7/3PIDgTV09YIqVbL804KUET66JOalS+Y3WVvoYk9XgHvRokXUrFmTbt266WUefli7es2iRYvM9JcvX052djYPPfSQ2T579OzZk6pVq7Jw4UK9D2q1miVLljB+/HiL552dnc2LL75IjRo18PPzIzY2lsmTJ5OcnGwkl5eXx3PPPUfFihUJDQ2la9euHDhwQLaP165d49ChQ4wdOxYfHx99e7Vt25a6detajBNrGLa1HJ3s7GzS09PtyqamprJ161ZSU1OdlisLX8hBepuVdj+UtO+MLUd05eiIPiAPEf/Fa6s0xb9hAfI6UXXM9veu05sXO71IREAEfzzyByuGruDzPvKefYyOJ2dEospL+88WgRUlrUxoqS0qhlRkcKtpBPopNzQjxC+EOvXGQmRTWlZuqd+um9rnTFz5e8HzHZ/n0VaPohpVYLGQOmBsP6CitjC/BZ7t8GzRGwuffzobkn1t/h6U66DX2bp1Kym5gdDsbe3+UPPE2IB6A3i7gvF8rrTqT9k9VGpqKsePH9e+afq20T4NQEXts63GK4CTJ0+h9jbOdLxTox4x/gGSPv9rhcSwbsQ63mo1jjkdZxjvHJ6l/RvVEqoWTvdroS1x8Wo0xD8bz6kppxjTQTdt1OA4w9JQqcBbBfiEmh+4xjjt32Zv420yWitEBRHecG+5avha6VItY+pAt+1Q0+C5XeUL1R7ASwVvS5wWuKIwb9RDwmxbKexNusd8Y2BhxiumPZMjYEIYtFN4QK038K4LiryLpJQMKlasaF/IA8nKymL58uW0bt2a5s2b89hjj5GWlsbKlSstyn/yySfs2LGD999/n19++YX69evr9z3wwAM0bdqU1atXM3HiRD766COmT5/OoEGD6Nu3L2vWrKFbt248//zz/PTTT1Z98vPzo3Llyvj5SZ/ge/XqVQ4ePGg0dc8aumRU5coW0tkSGTBAe+Pcv3+/bF91+Pn5ERQURF5eHgMGDKB79+6sW7eOhx56iI8++oh3333XSP7ixYs89thjrFy5kp9++onBgwfz5JNP8vrrrxvJvfrqq4wePZrY2FiWLFnCmjVrGD9+vD5B88UXX9ChQwcqVqxoNH3K0jk0bdqU5s2bs27dOrN9ixcvpnz58voRdsePH6d169b8999/fPDBB2zcuJG+ffsydepUZs2SXp+gQYMGREREMGvWLL7++msuXrwoWVfH2bNnAWSPVjKMve3bt3Pp0iUeeughowfEunXr0rFjR5YuXWpWpHvRokXExsbSq1cv2T57eXnx4IMP8v3331OhQgX8/PzYunUrV69eZcKECWbyGo2GQYMG8f777zN27Fg2bdrEjBkzWLJkCd26dTNKak6cOJH333+fcePGsW7dOkaOHMnw4cNJSkqS5aNudFiTJtqVbAzbq0mTJhZHj1li9+7dREdHU716dZo1a8YHH3wgKTnl5+dHeHg45cuXtytbqVIl/ve//1lNbsqR0yUEHZ3yWFqQ2mal3Q8l7TtjyxFdOTqiD8hDxH/x2ipN8e/jrZ3GE+QXxC+jf7FtL7QSDzR6gGAFkzgOM/CiLPFi7QOtPoXKvRnTZAwPN3+Y+2rfx5d9v1TWj8JknaVVBI3sq1QQVs9MplxQOQJ8DL/1a4z/evnobVSS+p0iqjk0excavST5PNeNWMeTMUXZjqkRENphrt1DVapUib59+min1jV6gXaxRbNOehokT1QqFb169cJreNForxC/oiSY1M//AfUG8GLfJYQ2fcV4h7eFzIl/0RCpmKAY6kbXtbxogK9BMi68gYWjFj2fH3viGO/3fJ/lFeHxCuX5Q1cjq+pgfH2NE1o9g2BEwyE82nMeVOxuFCMqLy8o3xnQ1twyJNykCdZ1nUFiTXhAZ77SfZQLMBleVbmvBb9t03HybwbvCn0r30X7N6gKPipYWAH2S1jFUA6HqsJzUdrpnaZYGgUmlZKtVi0oFaxatYqUlBT96I/hw4czbdo0FixYwPjx5kNWAwIC2LJlC76+5tXyJk2axIwZ2ux4jx492Lp1K5999hk//fSTviZPly5d2LhxI99//z2DBw9W7DxWr15NREQEXbua/yKSn69d5zQ5OZlly5axdu1aWrduTZ065r92SaV69eoAXL9+3WEbOnJzc5k1axbDhmnnenfv3p0///yTZcuW8eqrr+rlDEfmqNVqunTpgkaj4eOPP+aVV15BpVJx4cIF3nrrLUaPHs3SpUv18j17FhV5bNiwIREREfj7+0uaFjlhwgSmTp3KpUuXqF1bO6w4KSmJdevWMWXKFH1B7hkzZhAaGsrevXv19Y969uxJTk4O77zzDlOnTpVUVDI4OJjvv/+e8ePH8+ijjwIQHR1Nt27dGDt2LP379zfTUavV5OfnU1BQwLFjx/RFs0ePdry+w4IFC/D29rZYCPzhhx9mwoQJbNy4UR/bx44d49ChQ7z88st4eztWhnDChAm88cYbbN68mb59+7Jw4UI6d+5MrVrmv5xt3bqVLVu2MGfOHJ59VvtLnm601fDhw/n222+ZOHEiJ0+eZMmSJUyfPl0/SrFnz55UqFBBdvvoRrFFRUWZ7YuKipK0Kl7fvn1p1aoVtWrVIikpiZUrV/LMM89w9OhRvvvuO1n+CAQCgUBQXEQGRFIryko1Y3ckuHpJe2AXL5UX3wyQVjZET6X7wDsI4ve4xikp1JoIDV803tbwBYsr9JlRzkY5BiujkYK9vPivxxT+DG7FsP8elO4noEvcTGkzhYPXD5KcncyH6s2GB9VKqVT8POpnVh5fydPtn4Zjz9g33WIuXF0HvhZGMdnwxTaFbdDyY+3fxrPh31etixdSL6Ye9WLqQaSKEZdXQMJtCKsPFbvReEwKrb5pw5/X/2Rh0x5M8LkC/VYZHNEgKaXzUaMhzBseCIHVGd58Wa6AJoF+tL2UC8CUcOhftQWqq4WKowpt/GkyvMpfoUUrAiuBTzBGbVihG5zZ4bDJV6rX5fVLp822dwyEH00mJfR1Is/uuT9nuYDExETHFA8+Dr8NKNl/Bx93+LwXLFhAYGAgI0aMID8/n+zsbIYMGcKePXs4c+aMmfyAAQMsJqQA+vXrZ/S+QYMGqFQqevfurd/m4+ND7dq1bU6rys/P586dO/pkkhRWr17NwIEDzVaay8jIwNfXF19fX8qVK8e0adO47777WLBggSz7puiGsKrVatm+6tC1t0qlMku0NGnSxKyNduzYQffu3QkLC8Pb2xtfX19effVVEhIS9Cufbdu2jYKCAiZPniy5He3JjR49Gj8/PzZu3Kjftnz5cnJycvQjeLKzs/n111+5//77CQoKIj8/X/+vT58+ZGdny5ou1qdPHy5fvsyaNWt45plnaNSoEWvXrmXAgAFMmTLFTP7555/H19eXgIAAWrZsyeXLl/nqq6/0o7ikomuL27dvs3btWu677z5iY81/uXnggQcIDQ01qqG0cOFCVCqVxVFNUqlRowadO3dm3rx53Lp1Sz9yzhI7dmhvQqZJs2HDhhEcHMyvv/4KwM6dO4GiBJ3uHAcPHuzwSpu6kWOmsSNlysHnn3/OhAkTuPvuu+nQoQOLFy9mypQpLF261G5h+vz8fNLT0yWN8EpISODbb7+1myiTIqdbDtzmsuAegNQ2K+1+KGnfGVuO6MrREX1AHiL+i9eWiH/3o9T0gbbzoeVcGHLH8n4T/EymLpYPKm9u38u/8Au/RPyjwSdQbyMhIUE7BU9GItDieQZYKKxUSKOwcvSr2o8gLyy3zSjjhFZCQgL7DxzQp1t8vX1ZPmQ5v4z+hWiD3041Gjh48BAJCQn0rtObhQMX0qh8I3TJIZvxH1gBhiZCnMQfOct10NaWskRkc6hvMPUvtHDwQKiuzpaFZ0zd9EzDZF6DGdD+W6g6VK+jUqnY//B+Lk+7zIRB26DfSdt+RrWC+tMAWFEJEp9P5JFwaBNTg8yXMimYdpxPy1tOsakkJd5s8+2335IX3sJ8h+GiBn6R0Pg12bZrBYYwvcJ0Lj16idkPnjLap2tF02mBjZ1cnVCMlJKBwyvKtJmnrCPFyNmzZ9m9ezdDhgxBo9GQnJxMeno6Q4YMYcmSJSxcuJC33zaeg2xriKnp6And9DTT1TP8/Pzszr2WM9Lk5s2b/P777zz33HNm+wIDA9m9ezcA/v7+VK9enaCgIKdriOkSRpUrV3Z4VAxoh8JaaiN/f3+ys7P17w8ePMi9995L586dmTt3LrVr1yYoKIi1a9fy5ptvkpWlna8dHx8PoC9ULtU3W3JRUVF07tyZn3/+mSeffBLQTt1r06YNjRppV/tISEggPz+fTz/9lE8//dSinTt3pD086AgMDGTQoEEMGjQIgMuXL9O7d28+//xzHn/8cf2xAZ566inGjBmDl5cXERER1KhRw+E+7e3trS+Ubm0VwqCgIEaMGMGiRYu4efMmMTExLF261OqoJjlMmDCBRx55hLlz5xIYGMjQoUMtyiUkJODj42M2RVGlUlGxYkXjByWMpyh7e3vj4+NDdLS8ieM6ecOHIV3sJCYmWhxBZQud7pgxY/jss884cOAAzZs3t6nj5eUlefXJ4OBgu7JS5coC7tIWrvZDSfvO2HJEV46O6APycJd2EPGvjI6If/m4S1tI8kOl0iaGTGnxkdmm/nX7Uy28GpdTLnN31bv5ovsXnP3zrLH9Ri9C/Wm0Pvwt3//7PQC9aheWYmj0P+1fXeKj1iPaBArOTW22eJ5tv4ZtRaPGH235aNH5yjyel5cX/v6+IKF0p5+/nxWbJs/SoyyM5LI0Pc8a3v7a2lKWiGqh/XfqE/Dy1Y6IMySkBiT8Ab7hUK4jXN8E1UfCgQfNbYXVg7iRkPyvfpOPlw9Vwy3PdzOrlxXTRvvvxPtac/5FU/ICfQOxNeKrc9W7WXlqvdX9UggODib97u1E/mLjuXrwLfDyRYXK4hRVaxxr25+Ndzpoi9VbYUrFChwIq8eP53cT7QUrnZxJK5JSMpAyrcjTWLhwIRqNhlWrVrFq1Sqz/UuWLOGNN94wSlgUx3LQPj4+sq7HmjVrCA4ONpqipsPLy4tWrVqZbXf2euuKe3fr1s1hWz4+PpJrUf3www/4+vqyadMmowTW2rVrjeR0CYqrV69StWpVSb5Jae+BAweybds2Dhw4QEBAAIcOHWLevKKEbGRkJN7e3owdO5bJkydbtCFldTVbVKtWjUmTJjFt2jSOHTtmlJSqUqWKxessF11bLF68mAoVKpiN/jPk4YcfZv78+Xz77bfUrVuX27dv88EHHzjtw7Bhw5g6dSpz5sxh4sSJBAZaXmIjOjqa/Px84uPjjRJTGo2Gmzdv0rp1a70caJO3sbGx+nPMz8+X/WvoXXfdBcC///5Lnz59jGLn33//1e+XgqGu7mHA3kOWj48PQUFBhIeH27UfGRkpqcacFLmyUE8HpLdZafdDSfvO2HJEV46O6APyEPFfvLZE/LsfHtEHCke3GOLr7cuJySe4mX6TmpE1AWhavamxkHcAeAfwROsn+OPaHyRnJzO311ztvqbGtVtpVDRtT/cc48h3AbPzjG5nluCZ13eemY7U40VGRhLZvAX8tdh8Z5ei2mgqFTRr2gys2HRp/Lf8xHybbziE1Cxaak6XALr7eyjXSfu67hNw/Rdt8soaVQdr/0nAMKnjZWvhAGvF3qsW/YD8RueXZCeltg/4lLkntzCl9RQ4eJ/l+K96P0Q0gYSDhY5qz33vQ3sZ8F13WgT6si3V/qALfz8/u/3Ld8hNVmReZ8XaWDQag0thQgM/OGH3iGL6niw8fUiuKQUFBSxZsoRatWqxc+dOdu7cyY4dO/j111/ZsWMHTz/9NDdu3OCXX2wXdHQFGo0GtVoteZWf1atX069fP/z9/V1i35Rt27bxzTff6KcfOWpLo9FI1tOtkufl5aU/XlZWllkNnnvvvRdvb2/mzZtn8zz9/f31o6uktEf79u0pX74869atY9GiRQQEBDByZNHyq0FBQXTt2pUjR47QpEkTWrVqZfZP6qictLQ0q6urnTih/ehzpki9LTQaDQcPHuSff/5h/PjxNqe3tW3blrvuuotFixaxaNEiwsPDFXmYCwgI4JVXXqF///48/rj1qbndu3cHMKodBtr+kJGRod/fpUsXAL7/XvvLn+56r1ixQva009jYWNq0acPSpUv1KxSq1Wr279/PqVOnZNWJM4y7b7/9FsBujTNdn5Hyea1Wq8nJybErK1WuLOAubeFqP5S074wtR3Tl6Ig+IA93aQcR/8roiPiXj7u0hSv8CPIN0iekbNn39fZl2ZBl/Dz6Z6KD7D+3OjO108yPXvvNZIwHA2hkHU+tVpPrVwVNxXvNd1YuGoWk7rianPK9zW3WnaKtneVK6j1pvq3GWOj9d9H78Pra6YEqL20yqu4T2u2VexdlSxQcNGE2AMM3zHoyKrrwB/FORQuEBfsaTwPVmIyq6lfX+Afv1v7QvWprNozcQK/avVAPumkcF7pjl+sANcdBS+PRgHdXvZub3ceztUFdM/cOPGxeOkWj0ViNf6OzDKoMVQZabdpP7vuEAxILrYuklAx0NXnKCr/88gvXr19n0qRJdOnShS5dutChQwfq169Phw4deOGFF/D392fBggXF7lteXh43b97k7Nmz+lFc586dA9C///NP7XzkhIQEfvvtN1nJAJ1905XTTFGr1Rw4cIADBw7w22+/8d133zFq1Ch69+5NvXr1+PHHHyXbsuaHLjFkj759+5Kens7IkSP58ccf+f777+nUqZNZIi4uLo6XXnqJ7777jqFDh7Jw4UK2bNnCp59+ysyZM/VyjRs35vbt28ybN499+/axZcsWm+fg7e1Nnz592LVrF0uWLGHw4MFmo1U+/vhjLl++TKdOnVi8eDG7du1iw4YNfPTRR3Tr1k1yu5w6dYrq1aszefJkfvzxR/bs2cP69et59NFH+eqrr+jSpQt33323ZHtyyMvL47PPPgPQF/+3xUMPPcTJkyfZsGEDI0eOtDqqSa4PuuvctGlTq3I9e/akV69ePP/888yaNYvt27fz4YcfMmHCBJo3b87YsWMBbW23MWPGMHfuXJ5//nl++eUXZs+ezXPPPacvSC+Hd999l5MnTzJs2DA2b97MvHnzGD58OHfddZdRPa1Lly7h4+Nj1I7Lli1j6NChLFq0iK1bt7Jw4UJGjBjBvHnzePDBB22er65tUlJSJE0FvXXrFu+88w63bt1yWq6s1BOR2mal3Q8l7TtjyxFdOTqiD8hDxH/x2hLx736IPuCYLcO/Svix76F9DGs4zGSlR5Xs4926dYu3F//FzXrzbct5NeedT743txnbDyr3cij+hzcaDsCYJmMk6+hReWmn+emIbAZ3L7UqrgSGP8xr1AapmZBaMCzFQtKrUMbCqo1mstUeMHrbLc74O9FzJgPUbqWojeMi0GTunIXRYT6Fx5xdu6gO1YnJJ2hbpa2ZbFZ2tpH9d3toV3uv7gPNTMd3eBsk2ALsr3xtDTF9TwZSpoN4EgsWLMDPz8/oS6RuOo2Pjw8xMTHcf//9rFq1qthvTjo/Nm/ebJYY0K1QN378eBYvXszatWvx8/MzKqYu1b69Is9ZWVm0b98e0NY3KleuHE2bNmX+/Pn64t9qtVqSLWt+SB3d1a1bNxYuXMi7777Lpk2biI2NZeLEiZQvX96sjWbPnk2dOnX49NNPefLJJ/Hx8aFOnTpMnTpVL/PUU09x7NgxXnrpJVJSUtBoNBQU2J503r9/fxYvXkx8fLzFYt4NGzbk8OHDvP766/zvf//j9u3bREREUKdOHVkFx2vXrs2MGTPYsWMH69atIz4+Hl9fX+rUqcMbb7zBjBkzXDaEPi8vj/Xr13PPPfdQt675Lw6mjB07lhdeeIHc3FyrBcnlIjU+VSoVa9eu5bXXXmPRokW8+eabxMTEMHbsWN566y2j2FqwYAEVKlRg8eLFfPLJJzRp0oSVK1cyatQo2f516dKFn3/+mVdffZXBgwcTFBRE3759ef/9942OqYspw7iqWbMmycnJvPTSSyQkJODr60ujRo344osv9Cst2mub4OBgScm0iIgIhg4dSkREhNNyul/NimP6ckkitc1Kux9K2nfGliO6cnREH5CHiP/itSXi3/0QfcAOVe+HAefNbBn+VcKP9lXb075qe3MFjYaIiAiONfmbmsXYBxyJ/+/u/47p7abTsrKV+lFujNF3jAFn5RvwMckpeJnX3GpaoSl/39KOBqvnB3gX/ahtdD2674TMKxIPrOLZGncRU5BEjbu/oH5MfQCiAqNIzNIu6PZBjLa2s+H1fubuZ2gbHMBdSTvwvrHOxGZh8q3/WQitxWd5bZlyUjt9cPhdwyG8EjDMvmcaR+cnlSFSU1MJDw8nJSXF4hed7Oxs9uzZQ2RkJL6+vnZ/yRcUL3369CEwMJDVq1eXtCsezd9//01eXp7oA4ISJTs7mwsXLlCjRg2zxQFcSZUqVbh27RqxsbFcvXrVvoJA4GGIPiAoy4j4F9hkmcpyAXAlWVNFW2C9yWuuPY4FXBb/SrXbMhUMvChr5UNTxq4Zy9J/tKOxogOjufOchRH5y1QQWhf6n4L0i7C+htZ/k/O4lnqNKh8VrZKX+PA2ohYU1T3+qNdHDKg3gOlbptO+SnteaD/deGSYKee/hQPjjdvKtO0OPgaJf0FkU0g5Dvfu0+86fOMwA5YPoLEqhU3l0/GqOR7aL7Z8rGWFiUed7d9HwaXl+vf5v4/l56tHqNFlOY0rNLabR9Ehpu/JIDMzs6RdKHEKCgrIzMy0O2LGnfz4+eefZSeklDxPZ2w5oitHR6qsu1x3d8Ad2sLVPpT2+M/NzZU07TUzM5OjR4/a/WyXIqf7fcfTf+eR2mal3Q8l7TtjyxFdOTqiD8hDxH/x2hLx736IPuCYLcO/rvajJPqAy+Jf5fjq5UpjeG4qayvrNXgG/cihkDgYkat9HWdnimKo+arcNSNrsm7EOl7o+IJZQsrseqi8JbaVZb9bVGrBlelX+OWB5Xj5BpOfn2f9ejd5Q7uioY6ACka7fRpMZ0DXL2hcobEEf4oQSSkZpKamlrQLJU5BQQHJycklnpxwtR9K2i8oKCAxMZGcnBzy8/Ot/lPKDzk6UmWL87oXFBTYbCdX+CDnmEq2hUajsXnc/Px8izf4kop/e75aqiXgjK+Oxn9mZiZpafZXF0lJSWHdunWkpKQ4LVdWvpBIbbPS7oeS9p2x5YiuHB3RB+Qh4r94bYn4dz9EH3DMluFfl/nRaTXUerhE+oDL4n+kvMV2rOJfzrj2kZNYP0+TpI+uttPdxotOBfiYjOT3i5BoX4vZ9ag2DAZetqljUqLcDJVKpa0RFtWS3Lw869f7rpehw7Ki983fh6HJRe+jWkD5e+z4YuH4YvqefXTDzpKTky3WlSpL0/eMssQlOG/e1X4oaV+j0fDaa68xe/Zsm3IXLlwgLi7OaT/k6EiVlSKn1PS9uLg4Ll26ZHV/586d2bVrl8P2LdGlSxd+++03q/urV6/OxYsXAWVjY/HixRZrbxmyc+dO/ep4Okoq/u0dS1fHTYotZ/ywRVZWln76nr2i8rqV+lQqld34tydXVqZuSG2z0u6HkvadseWIrhwd0QfkIeK/eG2J+Hc/RB9wzBYbG0C/Ex7bB8pC/L+15y1e3vEyAP3r9mf9yPXmQkeeg6trof9pu/Ymrp/IimMrWDhwId1rdCdqTpR+34f3fsj09tOt6kq6bqbT9w5NgeS/IbK5dvpe9+2W9bZ3RhMUh6bdIkXiX+r0PVHoXAaeXrxQCu7SBq72Q0n7KpWKRx99lP79+9uUq1y5siJ+yNGRKluc133Dhg3k5ORY3R8aGqr4Mb/66iubI2sMi3Mr2Rb9+/fn0KFDNmXq1TNftaOk4t+erzExMZJtOeOHPR2pN1Gl5coC7tIWrvZDSfvO2HJEV46O6APycJd2EPGvjI6If/m4S1uUtj5A/5PF5ofoA65hRvsZ/HrhV5Kzk/mq31dO25s/YD7z+s3Dx8uH3IJcWboOXY9m74A6F7wDQGN7BJpKBSoXLRhlDZGUkkFiYqJDy6N7Evn5+aSkpBAeHu7QanKlxQ8l7efn5+Pv70+zZs1k23LEDzk6UmWL87o3bixvDrISWEr8WEPJtoiOjiY6Olq2XknFf6tWrRSz5Srd/Px8MjIySE5OpmLFijZlExMT2bJlC7169SIqKsopubKyHLjUNivtfihp3xlbjujK0RF9QB4i/ovXloh/90P0geK1VVr6QFmI/wCfAFb2W8mWLVvwz5O2Mro9fLy0z7Z+3n6y9CRdN9MC8b4hku3n5OTw0/LlxdrPRVJKIBAIBAKBQCAQCAQCgcBRYu4GL3kJJoEWUVNKAvbmQpalmlICgTWUqiklEDhDdna2vqZUQECAfQWFKAv1FAQCW4g+ICjLiPgXlGVE/DuPalbRdDx7NaVcyvbOEBwH7ZcoYk5qTSmx+p4MRP6uqLBaSbeFq/1Q0r4zthzRlaMjVdZdrrs74A5tIeJfGR2NRoNarZYU/1LkygLu0hau9kNJ+87YckRXjo7oA/Jwl3YQ8a+Mjoh/+bhLW4g+oIyO6APycGU7LBiwAAAvlRfjmo4rMT+09in26y2SUjK4detWSbtQ4uTl5XHjxg3y8vI82g8l7TtjyxFdOTpSZd3lursD7tAWIv5t66SkpBAfH29X9ubNm7z++uvcvHnTabmyUE8BpLdZafdDSfvO2HJEV46O6APyEPFfvLZE/Lsfog8Ur63S0gdE/DvPg80eZOuYrZyYfILoINv1Zl0d/1nZWcXez0VNKRmU9SLnAN7e3kRERODt7e3Rfihp3xlbjujK0ZEq6y7X3R1wh7YQ8W9bJygoSNIqjeHh4QwcOJDw8HCn5XSroHj66jRS26y0+6GkfWdsOaIrR0f0AXmI+C9eWyL+3Q/RB4rXVmnpAyL+ncdL5UXPWj1L3A8q9sRHFc7AgZ2KtZ+LmlISEDWlBAL7iJpSAndA1JQSCEoG0QcEZRkR/4KyjIh/gTVETSkXkJWVVdIulCiffPIJKpWKRo0alfjwTLVaTVZWFuvXr2fcuHE0btwYX19fSRn6Fi1a8NRTTwHw4IMPolKp9P/8/f2pV68er776KklJSfrzfO2111CpVNy5c0dvx1Q3ODiYuLg4BgwYwKJFi8jJyTHyVW6bOdrehse7fv06r732GkePHjWT052TFN8cPQcpnDhxgrFjx1KzZk0CAgKIiYmhRYsWTJkyhdTUVL2ctWs1c+ZMsrOzJR9v8eLFRnZM/73zzjsANG/enNjYWAoKCoz0DduiQ4cOxMTEkJubK+nYXbp0QaVSUbNmTYvztHfv3q33Y/HixVbtyL0eunO+ePGiJHmd/dTUVKZNm0blypUJCAigWbNm/PDDD7KOaemf1OHAjsSdWq0mLy9PUkxkZWVx7Ngxu5/tUuR019PTf+eR2mal3Q8l7TtjyxFdOTqiD8hDxH/x2hLx736IPlC8tkpLHxDx71l+lMR5iqSUDFJSUkrahRJl4cKFABw/fpx9+/aVqC/5+fkkJSWxZs0aDhw4QMOGDSWNzrlw4QJHjhxhyJAh+m2BgYHs37+f/fv3s3btWtq2bcvrr7/O+PHjyc/Pt2nPUHfjxo3Mnj2b4OBgJk6cSMuWLbl69areV3u2THG0vQ2Pd/36dWbNmmUxKfXII4+we/duSb45eg72OHLkCC1btuT48eO8+uqrbN68mS+//JK+ffuyZcsWEhMTjeQtXavZs2czfvx4ycfs27ev3obhv549tUNm77//fgAefvhhrl+/zpYtW4z0dW2huy5jx47Fz0/68q+hoaFcuHCBHTt2mO1buHChpGnCrroepvYHDx7MkiVLmDlzJr/88gutW7dm5MiRLFu2TLKt+fPns379enbv3q1v6+ho23PlTf2Qc575+flkZGQYJTStkZyczKpVq0hOTnZarqw8kElts9Luh5L2nbHliK4cHdEH5CHiv3htifh3P0QfKF5bpaUPiPj3LD9K5Dw1ArukpKRoAE1SUpLF/VlZWZqtW7dqDh06pDl69GjxOldMHDp0SANo+vbtqwE0jzzyiCS9/Px8TXZ2tuL+qNVqTUFBgSY/P1+/bfLkyRp7IT1nzhxN+fLlNQUFBRqNRqMZP368Jjg42EyuU6dOGkBz5coVjUaj0cycOVMDaOLj4/Uy1nQ1Go1my5YtGl9fX03btm31vqrVasnn52h7azQao+Pp7CxatMiurFSb1jh69KjsPjBu3DhNcHCwJjU11epxddi7VlevXpV8XFPS09M1ISEhmo4dO+q3JSYmagICAjRDhgwx86mgoEDz3HPPaQDNP//8I/k4nTt31jRq1EjTrl07zahRo4z2paamaoKCgjQTJ060ec0MfZAaU4sWLdIAmgsXLkiSV6vVmg0bNmgAzbJly4z29ezZU1O5cmWjvmfrmAcPHpQd/4Z+yNXNzMzUHDt2TJORkWFXtqCgQJOdna3/PHBGLjY2VgNoYmNjJftaGpHaZqXdDyXtO2PLEV05OqIPyEPEf/HaEvHvfog+ULy2SksfEPHvWX4oaV+XR0lJSbEpJ0ZKycDLq+w214IF2mUq33nnHe6++25WrFhBZmamkczFixdRqVTMmTOHN954gxo1auDv78/OnTv1U8X++ecfhg0bRnh4OFFRUcyYMYP8/HxOnTrFfffdR2hoKHFxccyZM8emPyqVCi8vL9nFk1evXs39999v91q2a9cOgMuXL8uyr+Pee+9l4sSJ/PHHH+zZswcvLy9Zxf+ktPf/27vvsKjOtH/g32GQJiAgiiiKxmhco+JGsWusiI2X2KNRQCNxS7LGmLIxtmyiyWt9N+q6GguWYO8boyYgRmxo1FhiVhOxAKIgRURA4Pn94TXzc5wBzpkZzrTv57q4dj3zPPe558x9k+TxnGcAIC0tDbGxsWjYsCFcXFxQv359jBgxAvfv30dSUhJCQ0MBADExMdpHp2bPng3g6eN7Tk5O2twiIyMRHBxs8FGpTp06oX379tr3IITA8uXL0bZtW7i7u8PX1xfTpk2T/Rx5dnY2vL294enpafB1KddM81ndvHlT1rmftWXLFhQUFODNN9/UHvP19cVrr72Gffv2ITs7WycnIQQ2btyI0NBQtG7dWvb5JkyYgJ07d+r8DYTmsbjRo0cbnHPs2DH06dMHXl5eqFmzJrp164Zvv/1Wb9zJkyfRtWtXuLm5oX79+vj73/8u+5vvVCoV9uzZA09PT4wYMULntZiYGKSnp+PUqVOSY8mtf1Pmaupcyu9rJycnuLq6VjlW6jhHYC3XorrzMGd8U2IZM1fOHPaAPNZyHVj/5pnD+pfPWq4Fe8A8c9gD8ljLdbCl+pd8TsXOZAdycnIsnYJFPH78GPHx8QgNDUWLFi0watQoPHz4ENu2bTM4/p///CcSEhKwYMECHDhwAC1atNC+NnLkSISEhGDHjh2YNGkSFi9ejHfffReRkZEYNGgQdu3ahd69e+PDDz/Ezp07K8zJmMd67ty5g9OnT+s8uleRa9euAXi6MGGsiIgIAMCRI0dk5Sr1eqelpSE0NBS7du3C1KlTceDAASxZsgReXl5ITU1FmzZtsHbtWgDAJ598on106tmFFwDa3CZMmIBbt27pPVZ29epVnD59GqNGjdK+h7feegtTpkxB3759sXv3bixfvhy//fYbJk6cqLOAU5XOnTsjIyMDY8eORVJSklHPLl+/fh0AUKdOHdlzNVavXg1vb2+9BZiJEyeipKQEGzdu1B4rLS3Fjh07kJ6ejokTJxp1vtGjR0OtViM+Pl4nh+HDhxt8fC8pKQm9e/dGXl4eVq9ejY0bN8LNzQ1DhgzBli1btOOuXLmCPn36IDc3F+vWrcOKFStw7tw5fPbZZ7LyKy0txfnz59GiRQs4O+t+SWubNm0AAJcuXZIUa/DgwVCr1fDz88PQoUMlz9PkYczje4WFhZIet87JycGOHTuq/N0uZZyjfB2y1Gtm63mYM74psYyZK2cOe0Ae1r+ysVj/1oc9oGwsW+kB1r995WGJ9+lc9RDSEEY8J9t+ZXvcLZC2qW91q+dZD2diz8iet337duTl5Wn/AzwiIgLTp0/H6tWrDe7l4+bmhoMHD6JGjRp6r8XGxmLq1KkAgL59++LQoUNYunQpdu7cqd3Lp2fPnti/fz82bdqEoUOHVpjX8xtQV2XHjh3w8fFBr1699F7T/Edvbm4uvvnmG+zZswd//OMf0axZM1nneFZwcDAAID09XVauUq/3zJkzkZWVhQsXLuAPf/iD9vjQoUORm5sLb29vtGrVCgDQtGlT7R1Fz9PkNnDgQAQEBGDt2rXo27ev9vW1a9fCxcVF+/mcPHkSq1atwsKFC7WfJQDUrl0bERER2LBhA3r37i3pvU6bNg1nzpxBfHw84uPjoVar0aZNGwwcOBB/+9vfDC40Pf9Z7d69G6GhoUZ/VlevXsXx48fx1ltvwcPDQ+e13r17o0mTJlizZo12c3wA2LBhAzw8PPD6668bdU4vLy8MHz4ca9aswZ/+9CdcuXIFp06dwpdffmlw/EcffQRfX18cOXIEnp6eKC0tRdeuXdGnTx9MmzYNI0eOhEqlwqeffgohBBISEhAQEADg6R5amjqQ48GDB3jxxRf1jvv5+QFAlYuP9erVw/Tp0xEaGqrdZH3+/Pno1KkTkpOTJX9Do9w+B57+S5GUfzEqLy/Ho0ePJG30L2WcI7CWa1HdeZgzvimxjJkrZw57QB5ruQ6sf/PMYf3LZy3Xgj1gnjnsAXms5TrYUv1LZvKDgg6gqmchK9tTqsHCBgKzYRU/DRYa95zvq6++Ktzd3UVubq72WExMjAAg/vvf/2qP3bhxQwAQ7777rl4MzZ5Mv/76q87x119/XahUKvH48WOd4507dxbt2rWTlWdVe0p1795dREdH6xyLiooSAHR+VCqVGDhwoM4eRXL3lBJCiCtXrggA4k9/+pOs9yH1elQkszYAACZeSURBVAcGBoqwsLBKY1W2p5TmPT3rvffeE25ubtpzl5aWisDAQDFixAjtmOnTpwuVSiUyMzPFkydPtD9nzpwRrVu3Fq1atZL1foV4eq0WL14sxo4dK4KCggQAUbt2bXH16lXtGKmflVzTpk0TAERKSorB1z/99FMBQJw5c0YIIURWVpZwcXER48aNk30uzZ5SQgiRlJSk3ZNq6tSpomnTpgb3ASsoKBAqlUr8+c9/1ov35ZdfCgDil19+EUIIUbduXTF48GC9cZrPWuqeUkII0axZMxEeHq53PD09XQAQ8+bNkxxL48aNG8LT01NERETInivV48ePxZUrV/R+p1Q3R9lPgagi7AFyZKx/cmSsf6qI1D2leKdUNavnWc/SKWgZk8v169dx9OhRDBs2DEII7R44w4cPx9q1a7FmzRrMmzdPZ05gYGCF8TR3WWi4uLjAw8MDbm5ueselfHuWVHfv3kVycjI++OADvdfc3d1x9OhRAICrqyuCg4MlfQNaVTR7HNWvX1/yHDnX+/79+wgKCjI5z2dNmDABCxcuxObNm/HWW2/h4MGDyMjIQExMjHZMZmYmhBDaO3GeZ0xOf/jDH7R3ewkhsGTJEkydOhUzZszA1q1btePM/Vk9efIE69evR0hICNq3b29wTExMDGbPno21a9eiXbt22LRpE0pKSox+dE+jR48eaNasGf79739j69atmDJlisG9k3JyciCEMNhXmtrS3LWUnZ2NevX0+9zQsarUrl3b4N1Qmm9EfL6XpWjcuDG6deuGkydPyp5LRERERET2h3tKyXD3rvzH8M7EnsGdqXes4seYR/fWrFkDIQS2b98OX19f7c+gQYMAAHFxcXqP1xizobFcJSUlSE9PR0lJiaTxu3btQs2aNdGvXz+915ycnNC+fXu0b98erVu3hre3t+z4huzduxcA0LVrV8mx5FzvOnXqGNxYXG7uz45t2bIlOnTooN2Lau3atahfvz569uypHefv7w+VSoVjx44hJSVF+7Np0ybExcVh8eLFks5bEZVKhXfffRc+Pj56+w8Z+qxMsX//fty7d09vn61nBQUFISwsDN988w2Ki4uxZs0aNG7cuMLHIeWIiYnBv/71Lzx48MDgo7DA033NnJyckJGRoT2m+Yw1G/H7+/sDeLqQZOj3lNzfXSUlJWjatCl++eUXvf2cLl68CACSHwl8vh6FEJI3TjSmD0tKSpCXl4d79+5VOTYjIwOfffaZzrU1dpyj7Kcg9ZrZeh7mjG9KLGPmypnDHpCH9a9sLNa/9WEPKBvLVnqA9W9feVjifXJRSgYvLy9Lp6CosrIyxMXFoWnTpkhMTERiYiK+//57fPvtt/j+++/x3nvvISMjAwcOHFA8N7VajVq1akn+9r0dO3Zg8ODBcHV1rZb4zzt8+DC+/vprdOnSBT169JAUS+71HjBgABITE/Hrr79WmLvm/Va2gfjzucXExODUqVM4duwY9u3bh6ioKLi4uGjHDR48GEIIpKWlaReI2rdvj5dffhktW7aUtbdTRb/s0tPTkZ+fL+suM2OsXr0abm5uGDt2bKXjJk6ciJycHMycORMXLlxAVFSU3gbgxoiKisKQIUPw/vvvo0GDBgbH1KxZEx07dsTOnTu1n6NarYaXlxc2b96MoKAgNG/eHADQq1cv/PDDD8jMzNTOLysr09kMXQq1Wo1hw4ahoKAAO3bs0HktLi4O9evXR8eOHSXH0tTOjRs3kJycLHlBz5g+VKvVcHNzq/AbHZ/l7e2NsLCwKhc3pYzTLMYrsShvSVKvma3nYc74psQyZq6cOewBeVj/ysZi/Vsf9oCysWylB1j/9pWHRd5n9T5FaB9M2VPKlu3bt08AEF9++aXB1+/fvy9cXV1FZGSkEOL/7yk1f/58vbGG9mQSouJ9mZ7de6cyqampYtu2bWLbtm0iPDxcAND+WbNHUFZWlnB2dhbbt2/Xm1/VvlCV5R8VFSXc3d3FiRMnxIkTJ8SRI0fE+vXrxeuvvy7UarVo1aqVrL2O5F7vO3fuiMDAQFG3bl2xZMkS8cMPP4gdO3aISZMmafcYevTokXB3dxddu3YViYmJIiUlRaSlpem8p+fl5uYKd3d37d5Oz+8DJoQQsbGxwsPDQ7z//vti3759IiEhQcydO1cMGzZMfPzxx5Lf8+DBg0W3bt3E4sWLxeHDh0VCQoJYvny5aNasmXB2dhaHDh3SjpX6WUmVlpYm1Gq1GDNmTJVji4uLhb+/v1CpVEKtVhu9h5WUuja0D9iRI0dEjRo1RMeOHcW2bdvEnj17RP/+/YVKpRKbN2/Wjrt48aJwd3cXLVu2FJs3bxZ79+4V/fv3Fw0bNpS9p5QQQvTr10/4+vqKlStXioSEBDFp0iQBQGzcuFFn3IQJE4RarRapqanaY3369BFz5swRu3btEj/88INYsmSJqF+/vvDy8hIXL16UlYcc3FOKyDLYA+TIWP/kyFj/VBGpe0rxTikZioqKLJ2ColavXg0XFxed/YTKy8tRVFSE8vJy+Pv747XXXsP+/ft17sxQgiaPH374ASNGjMCIESPw3XffAYD2z0uXLgUA7N69Gy4uLhgwYIDs+FXdhvr48WN07twZnTt3xoABA/DJJ5+goKAAq1atwtmzZ9GgQQPJseRe7wYNGuD06dMYPHgwvvjiC4SHh+Ptt99Gbm4uPDw8UF5eDg8PD6xZswbZ2dkICwtDaGgoVq5cqXPe53OrVasWXnvtNdy5cwddu3ZF8+bN9d7Dv//9byxduhRHjx7F6NGjMWjQIPzrX/9CUVGRrG96e/vtt9G8eXOsWrUKw4cPR1hYGP7xj3+gdevW+PHHHw0+bmku69atQ1lZWaWP7mm4uLhg3LhxEEIgLCwMtWvXVvQW5VdffRUJCQmoWbMmoqOjMXr0aOTk5GD37t0YNWqUdlyrVq3w/fffw9vbG1FRUYiNjUWbNm0wY8YMWefTfN7bt2/HuHHjMHPmTISHh+PUqVOIj4/Xu7OsrKwMZWVlOt9Q2rp1a2zZsgXjx49H//798b//+7/o3bs3zpw5I7lGpPbO83OePHmC4uLiKscWFRXhv//9b5W/26WM07x3YcS3tNoSqdfM1vMwZ3xTYhkzV84c9oA8rH9lY7H+rQ97QNlYttIDrH/7ysMi77Nal8bshGaFz9AdI0LY751ShhQXF4u0tDRRXFxsM3kMGDBADB06tNriV2csY+bKmSN1rJRx58+fZw/YSQ62XP95eXni+PHj4ubNm1WOTU9PF7Nnzxbp6ekmjwsMDBQARGBgoORcbZHUa2breZgzvimxjJkrZw57QB7Wv7KxWP/Whz2gbCxb6QHWv33lYc74Uu+UUglh50uaZpCfn49atWrhwYMH8PX11Xu9qKgIP/74I3x9fVGjRg2EhIRYIEtlCCFQXl4OJycniz43XN15mDO+KbGMmStnjtSxUsZduHABT548YQ/YQQ62XP+PHz/G77//jsaNG6NmzZqVji0rK0NhYSE8PDwq3bdKyrigoCCkpaWhQYMGBr+AwF5IvWa2noc545sSy5i5cuawB+Rh/Ssbi/VvfdgDysaylR5g/dtXHuaMr1lHycvLq3SPKtN36nUgliw+a6FSqaziOlR3HuaMr1KpoFKp9L6l8HmGNs42Jg85c6SOlZuHEKLK96tWq826oKLUOQ1di+cfXZMyx9w5SFVeXl7l43DOzs5mrX9jYxlb/05OTpLmaTaMN9c4R2At16K68zBnfFNiGTNXzhz2gDzWch1Y/+aZw/qXz1quBXvAPHPYA/JYy3WwpfqXintKyZCbm2vpFCyutLQUubm5el8Tb295mDN+aWkpPv74Y9SoUaPSn9TUVLPkIWeO1LFy84iLi6vy/SYlJUmKJVVSUlKV54yLizP5PIauRdOmTSs9b58+fUw+b1U5SPXpp59WeZ2uX79u1vo3Npax9V9YWIj8/Pwqx+bm5mLv3r1V/m6XMk44yH4KUq+ZredhzvimxDJmrpw57AF5WP/KxmL9Wx/2gLKxbKUHWP/2lYcl3qdN3yn1008/4cMPP0RKSor2K8wXLVqk81Xgt27dwl/+8hckJCTA3d0dY8aMwYIFC+Di4iL7fFXdheEIhBB48uSJxX/pVHce5owvhMDYsWMRGRlp8G4ojfr165slDzlzpI6Vm8eQIUOQkpJS6ZiXXnpJUiyp2rVrV+U5mzRpYvJ5DF2Lffv2Vbqxtrn/tsGU+oyNjcXgwYMrHRMYGIjCwkKz1b+xuRpb/+Xl5ZJ+X5eWluL+/fuSFmWrGuco/0Im9ZrZeh7mjG9KLGPmypnDHpCH9a9sLNa/9WEPKBvLVnqA9W9feVjifdrsnlLp6elo1aoVRo0ahSlTpiA/Px9TpkxBYGAgtm/fDuDpIlLbtm1Rp04dLFy4ENnZ2YiKisLQoUPx1VdfST5XVc9COtKeUkQVcZQ9pci6FRUV4caNG2jSpAnc3NwUO6+j7KdAVBH2ADky1j85MtY/VcTu95Tav38/atSogWXLlsHJ6elTiMuWLcMf//hHXL9+HS+++CIOHTqEK1eu4Pbt29q7UBYuXIjo6Gh8/vnnlV4YIiIiIiIiIiKqPja7p1RxcTFcXFy0C1IA4O7uDgA4duwYAODEiRNo1aqVzmNR/fv3R3FxMc6ePSv7nJmZmRW+ZqM3nMn25MkTZGRk4MmTJ3adhznjmxLLmLly5kgday2fuzWwhmvB+q98Tl5eHu7fv1/l2Lt37+LLL7/E3bt3TR6n2Ty+qk3kbZ3Ua2breZgzvimxjJkrZw57QB7Wv7KxWP/Whz2gbCxb6QHWv33lYYn3abOLUr1798bdu3cxf/58lJSUICcnBx9//DEAICMjA8DTCxoQEKAzz9fXFy4uLpVe5OLiYuTn5+v8AKjw68WdnZ0dZr8pJycneHl56SwG2mMe5oxvSixj5sqZI3WstXzu1sAargXrv2Ll5eVwdXWVdCesp6cnunXrprMPobHjNN/qaM5vlLRGUq+ZredhzvimxDJmrpw57AF5WP/KxmL9Wx/2gLKxbKUHWP/2lYcl3qfVPb43e/ZszJkzp9IxKSkpaN++PeLi4jB16lT8/e9/h1qtxjvvvIOAgACdrwI31BxCiEqbZt68eQZzOHDgADw8PAzOKS0thb+/P4QQyM7OrjR/e1DZps5Kqu48zBnflFjGzJUzR+rYysY9u8khe8A+crDF+s/JyUFhYSG+/fZbyXNu3bpl8riioiLt/8bHx0s+t62Ses2qW3XnYc74psQyZq6cOewBeVj/ysZi/Vsf9oCysay9B1j/lmEL9V9YWChpnNVtdJ6VlYWsrKxKxzRu3FhnA9vMzEzUrFkTKpUK3t7e2Lx5M0aMGIGZM2diz549uHDhgnZsTk4O/Pz8kJCQgF69ehmMX1xcrPMfQfn5+WjYsCHu3buHOnXqGJwzbNgwTJ48Gf7+/mjRooXdrhSXl5ejtLQUzs7OFr1TpLrzMGd8U2IZM1fOHKljpYy7evWqdkyLFi0k5WqLrKEHWP/6hBB49OgR7t27B2dnZwQHB8PV1bXSOcXFxcjIyEBgYGClY6WMc5RNPqVeM1vPw5zxTYllzFw5c9gD8rD+lY3F+rc+7AFlY9lKD7D+7SsPc8a32Y3O/f394e/vL2uO5hG9NWvWwM3NDf369QMAdO7cGZ9//rn2ogLAoUOH4Orqinbt2lUYz9XV1eAHkJOTU+Gi1MmTJ+Hj44OIiAhFv/FJaWVlZXj48CG8vLx07kiztzzMGd+UWMbMlTNH6lgp4+7fv4+ysjKo1WqL/qKubtbQA6x/w1QqFZydnREfH4/Y2Fjt7/2KPHjwAHFxcVWOlTLOUfZTkHrNbD0Pc8Y3JZYxc+XMYQ/Iw/pXNhbr3/qwB5SNZSs9wPq3rzws8T6t7k4pOZYuXYouXbrA09MThw8fxvvvv48vvvgC77zzDoCn/0HTtm1bBAQEYP78+Xjw4AGio6MRGRmJr776SvJ5NCt82dnZ8PPzMzhGs0L84osv4uLFi2Z5f9aotLQUBQUF8PT0hLOz5dY0qzsPc8Y3JZYxc+XMkTpWyrhXX30VmZmZCAgIQFJSkqRcbZE19ADr37AaNWpACIH8/Hx4e3tLqn8pY6WMc5S/JZR6zWw9D3PGNyWWMXPlzGEPyMP6VzYW69/6sAeUjWUrPcD6t688zBlf6p1SNr0oNX78ePznP/9BQUEBWrRogWnTpmHcuHE6Y27duoU///nPSEhIgLu7O8aMGYMFCxbIupNDysV0lGYkqgh7gBwZ658cHXuAHBnrnxwZ658qInVRyqa/Smv9+vXIzs5GcXExLly4oLcgBQCNGjXC/v37UVhYiOzsbHz11VdGP1qUl5dX4WvPbvJsz/Ly8nDgwIFKr4U95GHO+KbEMmaunDlSx0oZxx6wnxxY//LHsf7tKw/2gPxxjtADrH9lY7H+rQ97QNlYttIDrH/7ysMS79OmF6WU9uTJkwpfc5RmLCkpQWpqKkpKSuw6D3PGNyWWMXPlzJE6Vso49oD95MD6lz+O9W9febAH5I9zhB5g/Ssbi/VvfdgDysaylR5g/dtXHpZ4nzb9+J5S+PgeUdXYA+TIWP/k6NgD5MhY/+TIWP9UEYd4fI+IiIiIiIiIiGyT5baNtyGam8l+++03NG3a1OCY0tJS7f/m5+crlpvS7t27h61bt2LkyJGoW7eu3eZhzvimxDJmrpw5UsdKGccesJ8cWP/yx7H+7SsP9oD8cY7QA6x/ZWOx/q0Pe0DZWLbSA6x/+8rDnPE19VDVw3l8fE+CO3fuoGHDhpZOg4iIiIiIiIjIZty+fRtBQUEVvs5FKQnKy8vRvHlznD17FiqVyuCY/Px8NGzYELdv3670eUl7EBoaipSUFEunUe15mDO+KbGMmStnjtSxVY1jD9hXDqx/eeNY//aXB3tA3jhH6QHWv7KxWP/Whz2gbCxb6AHWv/3lYa74Qgg8fPgQ9evXh5NTxTtH8fE9CZycnODi4oJatWpVOdbb29vum1GtVlvFe6zuPMwZ35RYxsyVM0fqWKnj2AP2kQPr37hxrH/7yYM9YNw4e+8B1r+ysVj/1oc9oGwsW+oB1r/95GHO+FLWULjRuUR/+ctfLJ2C1bCWa1HdeZgzvimxjJkrZ47UsdbyuVsDa7gWrH/zzGH9y2ct14I9YJ457AF5rOU6sP7NM4f1L5+1XAv2gHnmsAfksZbrYEv1LwUf3zMTqV93SGSv2APkyFj/5OjYA+TIWP/kyFj/ZCreKWUmrq6umDVrFlxdXS2dCpFFsAfIkbH+ydGxB8iRsf7JkbH+yVS8U4qIiIiIiIiIiBTHO6WIiIiIiIiIiEhxXJQiIiIiIiIiIiLFcVGKiIiIiIiIiIgUx0UpIiIiIiIiIiJSHBelFLB//3689NJLaNasGb7++mtLp0OkuNdeew2+vr4YPny4pVMhUtzt27fRs2dPtGzZEm3atMG2bdssnRKRYh4+fIjQ0FC0bdsWrVu3xqpVqyydEpHiCgsLERwcjGnTplk6FSLFOTs7o23btmjbti3efPNNS6dDVojfvlfNSktL0bJlSyQmJsLb2xuvvPIKTp06BT8/P0unRqSYxMREFBQUIC4uDtu3b7d0OkSKysjIQGZmJtq2bYt79+7hlVdewa+//oqaNWtaOjWialdWVobi4mJ4eHigsLAQrVq1QkpKCmrXrm3p1IgUM336dFy7dg2NGjXCggULLJ0OkaL8/f2RlZVl6TTIivFOqWp2+vRpvPzyy2jQoAG8vLwwcOBAHDx40NJpESmqV69e8PLysnQaRBYRGBiItm3bAgDq1q0LPz8/PHjwwLJJESlErVbDw8MDAFBUVISysjLw70PJkVy7dg1Xr17FwIEDLZ0KEZFV4qJUFY4ePYohQ4agfv36UKlU2L17t96Y5cuXo0mTJnBzc0O7du3w448/al9LT09HgwYNtH8OCgpCWlqaEqkTmYWpPUBk68zZA2fOnEF5eTkaNmxYzVkTmYc56j83NxchISEICgrCBx98AH9/f4WyJzKNOep/2rRpmDdvnkIZE5mXOXogPz8f7dq1Q7du3ZCUlKRQ5mRLuChVhUePHiEkJARLly41+PqWLVswZcoUTJ8+HefOnUP37t0xYMAA3Lp1CwAM/m2gSqWq1pyJzMnUHiCydebqgezsbIwfPx4rV65UIm0iszBH/fv4+ODChQu4ceMGvvnmG2RmZiqVPpFJTK3/PXv2oHnz5mjevLmSaROZjTn+GZCamoqzZ89ixYoVGD9+PPLz85VKn2yFIMkAiF27dukc69Chg5g8ebLOsRYtWoiPPvpICCFEcnKyiIyM1L72zjvviE2bNlV7rkTVwZge0EhMTBTDhg2r7hSJqpWxPVBUVCS6d+8u1q9fr0SaRNXClH8GaEyePFls3bq1ulIkqjbG1P9HH30kgoKCRHBwsKhdu7bw9vYWc+bMUSplIrMyxz8DwsPDRUpKSnWlSDaKd0qZoKSkBGfPnkVYWJjO8bCwMBw/fhwA0KFDB1y6dAlpaWl4+PAhvv32W/Tv398S6RKZnZQeILJnUnpACIHo6Gj07t0b48aNs0SaRNVCSv1nZmZq/1Y8Pz8fR48exUsvvaR4rkTmJqX+582bh9u3byM1NRULFizApEmTMHPmTEukS2R2UnogJycHxcXFAIA7d+7gypUreOGFFxTPlaybs6UTsGVZWVkoKytDQECAzvGAgADcvXsXwNOvwFy4cCF69eqF8vJyfPDBB/zGGbIbUnoAAPr374+ffvoJjx49QlBQEHbt2oXQ0FCl0yUyOyk9kJycjC1btqBNmzbavRg2bNiA1q1bK50ukVlJqf87d+5g4sSJEEJACIG//vWvaNOmjSXSJTIrqf8ORGSvpPTAL7/8grfeegtOTk5QqVT4v//7P34LPenhopQZPL9HlBBC51hERAQiIiKUTotIMVX1AL9xkuxdZT3QrVs3lJeXWyItIkVUVv/t2rXD+fPnLZAVkTKq+ncgjejoaIUyIlJWZT3QpUsXXLx40RJpkQ3h43sm8Pf3h1qt1vvbkHv37umtGBPZI/YAOTr2ADky1j85MtY/OTr2AJkLF6VM4OLignbt2uHw4cM6xw8fPowuXbpYKCsi5bAHyNGxB8iRsf7JkbH+ydGxB8hc+PheFQoKCnD9+nXtn2/cuIHz58/Dz88PjRo1wtSpUzFu3Di0b98enTt3xsqVK3Hr1i1MnjzZglkTmQ97gBwde4AcGeufHBnrnxwde4AUYbHv/bMRiYmJAoDeT1RUlHbMsmXLRHBwsHBxcRGvvPKKSEpKslzCRGbGHiBHxx4gR8b6J0fG+idHxx4gJaiEEEKJxS8iIiIiIiIiIiIN7ilFRERERERERESK46IUEREREREREREpjotSRERERERERESkOC5KERERERERERGR4rgoRUREREREREREiuOiFBERERERERERKY6LUkREREREREREpDguShERERERERERkeK4KEVERERERERERIrjohQRERERmUV0dDRUKpX2Z8WKFYqe//r16zrnb9y4saLnJyIiInmcLZ0AERERUWVSU1PRpEmTSscIIRTKhqT429/+Bh8fH7Rv317neOPGjXH37l0UFRVVONfNzQ316tVDamqq7PP6+flh1qxZAIAlS5bInk9ERETK4qIUERER2YSmTZvijTfesHQaJMGUKVMscpeSn58fZs+eDQBYt26d4ucnIiIiebgoRURERDbhxRdf1C44EBEREZHt455SREREZBdmz54NlUqFI0eOIC4uDu3atYOHhwd69uypHfPw4UPMmjULL7/8Mtzd3eHj44Pw8HAcO3bMYMzLly9j8ODB8PLyQq1atTBw4EBcunRJu3fSs4+YPXv+561btw4qlcrg3Ts///wzRo8ejcDAQLi4uCA4OBhvv/02srOzdcalpqZCpVIhOjoav//+O4YPHw5fX1/UrFkTffv2xYULFwy+h3v37mHatGl46aWX4ObmBj8/P3Tq1AkLFy4EAPz+++9wcnLCoEGDDM7PycmBm5sbQkJCDL5e3TTvu7IfYx71IyIiIsvjnVJERERkV+bPn4/ExERERESgX79+cHZ++q87Dx48QI8ePXD58mV0794d/fv3R15eHvbs2YNevXph27ZtiIyM1Ma5dOkSunbtioKCAgwdOhTNmjXD6dOn0bVrV7Mt0OzduxcjR46EWq1GREQEGjZsiCtXrmDp0qU4ePAgTp06BV9fX505qamp6NixI1q2bIkJEybgt99+076HX375BQEBAdqx165dQ69evZCWloZu3bohMjISjx49wqVLl/D555/jvffewwsvvIC+ffviu+++w507dxAUFKRzvg0bNqC4uBiTJk0yy3uWy8fHR7tP1LMeP36MRYsWoby8HG5ubhbIjIiIiEzFRSkiIiKyCdevXzf4+F54eDg6deqk/XNSUhJOnTqF1q1b64x7++23cfnyZaxZswYxMTHa43PnzkVoaChiY2MRHh6uXeD461//ivz8fGzcuBFjx47Vjv/4448xb948k99PdnY2xo0bhzp16iA5ORmNGjXSvhYfH48xY8Zg5syZ+Oqrr3TmJSUl4YsvvsCHH36oPTZjxgx89tlnWLt2LT766CPt8TfeeANpaWlYuXKl3qLSnTt3tP8/NjYWhw8fxpo1azBz5kydcatXr4abm5vZ9vMqLS2t9DHM0tJSnT/7+PjojRdCYPTo0SgtLcX8+fNRr149s+RGREREChNEREREVuzGjRsCQIU/ixcvFkIIMWvWLAFAvPvuu3ox7t+/L9RqtejTp4/Bc/zzn/8UAMS+ffuEEELcvHlTABBt2rTRG/vw4UPh4+MjAIgbN25oj2vOn5iYqDdn7dq1AoBYu3at9tiiRYsEALFhwwaDOb3yyivC399f7zo0adJElJWVGbxGQ4cO1R47ffq0ACB69OhhMP6zSkpKREBAgGjcuLEoLy/Xi/HGG29UGUMIIaKiovSuy7OCg4Mr/Sw1P8HBwZWeZ8aMGQKAiImJqXBMcHBwlXGIiIjIsninFBEREdmE/v3747vvvqtyXIcOHfSOpaSkoKysDEVFRQbv0rl27RoA4OrVqxg8eLB2f6Zu3brpjfX09ETbtm0N7h0lx8mTJ7X/e/36db3Xi4qKkJWVhaysLPj7+2uPh4SEwMlJd1tQzSN3ubm52mOnT58GAISFhVWZS40aNTBhwgTMmzcPhw8f1s5ZvXo1AODNN9+U8c4q5+rqiqKiogpfr+pRvPj4ePzjH/9A9+7dsWLFCrPlRURERMrjohQRERHZlWf3VNJ48OABACA5ORnJyckVzn306BEAIC8vDwBQt25dyeeQS5PTsmXLKh336NEjnUWpWrVq6Y3R7JtVVlamPaZZoGrQoIGkfCZNmoQvvvgCX3/9NcLCwlBYWIj4+Hg0b94cr776qqQY1e3kyZOYMGECXnjhBezcuRMuLi6WTomIiIhMwG/fIyIiIruiUqn0jnl7ewMA3nvvPQghKvzRbKitWfi5d++ewXNkZmbqHdPcvfT8nkjA/1/kMpTTxYsXK80pODhYytvW4+PjAwBIS0uTNL5Jkybo168f9uzZg6ysLGzduhX5+flmvUvKFLdu3UJkZCRcXFywb98+nYU6IiIisk1clCIiIiK7FxoaCpVKhRMnTkgar/l2vWPHjum9VlBQgPPnz+sd13xLnqFFoHPnzukd69ixIwBIzkkuzWOMhw4dkjwnNjYWJSUlWL9+PVavXo0aNWogKiqqWvKTo6CgAEOGDEFWVha2bNmCli1bWjolIiIiMgMuShEREZHdq1evHkaOHInjx49j/vz5EELojTl16hQKCwsBAI0aNUKPHj3w888/Y9OmTTrj5s6dq7N3k0b79u0BAOvXr0d5ebn2+IkTJ/RiAEBMTAy8vLwwffp0XL58We/1wsJC7b5TxggNDUWHDh1w9OhRrFq1Su91Q4tn//M//4N69eph4cKFOHbsGCIiIip8hFEp5eXlGDNmDH7++WcsWrQI4eHhFs2HiIiIzId7ShEREZFDWL58OX799Vd88MEH2LBhAzp37oxatWrh9u3bOHv2LK5du4aMjAx4eHgAeLrXU9euXTF+/Hjs3r0bzZo1Q0pKCk6fPo3u3bvjxx9/1InfqVMndO7cGQkJCejcuTN69OiBmzdvYu/evRgyZAh27dqlM75OnTqIj4/HiBEjEBISgvDwcLRo0QJFRUW4efMmkpKS0KVLF0mbu1dk48aN6NmzJ2JjY7XvuaioCJcvX8a5c+eQnZ2tM97Z2RkTJkzA3LlzAZh3g3Njbd++Hfv27UNgYCAePHhgcKP6KVOmaB9XJCIiItvBRSkiIiJyCH5+fjh+/DiWLl2KLVu2YNOmTSgvL0e9evUQEhKCGTNm6OxT1KpVKyQnJ+PDDz/Ed999h4MHD6Jbt25ITk7GggUL9BalVCoV9u7di6lTp+I///kPLl68iJCQEOzduxfp6el6i1IAMGjQIJw7dw7z58/H999/j8OHD6NmzZoICgpCTEwM3njjDZPec7NmzfDTTz9h3rx52LdvH5YsWQJPT080a9YMn3zyicE5UVFRmDt3Lho1aiTpm/uqm+butYyMDMyZM8fgmOjoaC5KERER2SCVMHT/OhERERFVKDo6GnFxcbhx4wYaN25s6XTMauvWrRg1ahTmzJmDmTNnypprTddFc/7U1FSL5kFEREQV455SRERERAQAEEJg0aJFcHZ2xsSJE42O06RJE6hUKqxYscKM2VXt+vXrUKlUUKlUuHnzpqLnJiIiIvn4+B4RERGRg7t48SL279+P48eP49SpU5g8eTIaNGggO05kZKTOHVKazd+V4ufnh1mzZmn/zEf6iIiIrBsf3yMiIiKSyZoeUzOHdevWISYmBj4+PoiIiMCyZcvg6elp6bSIiIjIznFRioiIiIiIiIiIFMc9pYiIiIiIiIiISHFclCIiIiIiIiIiIsVxUYqIiIiIiIiIiBTHRSkiIiIiIiIiIlIcF6WIiIiIiIiIiEhxXJQiIiIiIiIiIiLFcVGKiIiIiIiIiIgUx0UpIiIiIiIiIiJSHBeliIiIiIiIiIhIcf8Pv5bpmR3m5dYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_analysis(processed_data_bkg, processed_data, Sxx_bkg, Sxx, filename_bkg, filename_data, peak_find_threshold=-60)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3c4dc198", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "05fa8d30", + "metadata": {}, + "outputs": [], + "source": [ + "\"\"\"Synthetic data to validate analysis\"\"\"\n", + "# # Generate time series data with values against time in seconds\n", + "# num_seconds = 10 # Total number of seconds\n", + "# time = np.arange(0, num_seconds, 1/30) # Create timestamp index\n", + "# voltage = np.sin(2*np.pi*4*time) + np.sin(2*np.pi*7*time) + np.random.randn(len(time))*0.2 # Generate 4 Hz and 7 Hz sine wave\n", + "# data = np.column_stack((time, voltage))\n", + "\n", + "\"\"\"Real data\"\"\" \n", + "dir = str(globals()['_dh'][0]).replace('\\\\','/') + \"/Time Series Data/\"\n", + "filename_bkg = \"Arm 1/PID_Active_SP_7V_Mod_0\"\n", + "filepath_bkg = dir + filename_bkg + \".csv\"\n", + "\n", + "background_data = extract_data(filepath_bkg)\n", + "\n", + "dir = str(globals()['_dh'][0]).replace('\\\\','/') + \"/Time Series Data/\"\n", + "filename_data = \"Arm 1/PID_Inactive_SP_7V_Mod_0\"\n", + "filepath_data = dir + filename_data + \".csv\"\n", + "\n", + "data = extract_data(filepath_data)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "1f4a1b8b", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Calculating power spectrum...\n" + ] + } + ], + "source": [ + "# Extract the first and second columns from data_array\n", + "time_bkg = background_data[:, 0]\n", + "voltage_bkg = background_data[:, 1]\n", + " \n", + "processed_data_bkg, Sxx_bkg = compute_psd(background_data, new_sampling_rate = 1000000)" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "a00aa553", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Calculating power spectrum...\n" + ] + } + ], + "source": [ + "# Extract the first and second columns from data_array\n", + "time = data[:, 0]\n", + "voltages = data[:, 1]\n", + "\n", + "processed_data, Sxx = compute_psd(data, new_sampling_rate = 1000000)" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "ebb9c09a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAMWCAYAAAAgRDUeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5xU1fnGn5nZXtilw1KkiCIqgmBFKfaOGjWWYI0lamJN/CWxYIu9RKOxxd4RC1hRAREFqYKCgDQp23e272yZmfv747K7LOzsnnPnljP3Pt/Phw+7c9/3nfeeeR4mOZ5zrk/TNA2EEEIIIYQQQgghhNiI3+kGCCGEEEIIIYQQQoj34KQUIYQQQgghhBBCCLEdTkoRQgghhBBCCCGEENvhpBQhhBBCCCGEEEIIsR1OShFCCCGEEEIIIYQQ2+GkFCGEEEIIIYQQQgixHU5KEUIIIYQQQgghhBDb4aQUIYQQQgghhBBCCLGdJKcbSASi0Sjy8/ORnZ0Nn8/ndDuEEEIIIYQQQgghyqJpGqqrq5GXlwe/P/Z6KE5KCZCfn48BAwY43QYhhBBCCCGEEEJIwrB161b0798/5nVOSgmQnZ0NQB/MLl26tBszfPhwFBQUoG/fvlizZo2d7RGiBPQA8TLUP/E69ADxMtQ/8TLUP4lFVVUVBgwY0DKfEhONdEplZaUGQPv1119jxvTt21cDoPXt29fGzuynsLBQe/DBB7XCwkJX92Fm/XhqGcmVyRGNFYmjB9zTA/UvH0f9u6sPekA+zgseoP7trUX9qwc9YG+tRPEA9e+uPsys3zyPUllZ2WEcDzqXICMjI+a15rOm3H7mVGZmJg499FBkZma6ug8z68dTy0iuTI5orEgcPeCeHqh/+Tjq31190APycV7wAPVvby3qXz3oAXtrJYoHqH939eHEffo0TdNse7cEpaqqCjk5OaisrIy5fa9///7Yvn07+vXrh23bttncISHOQw8QL0P9E69DDxAvQ/0TL0P9k1iIzKMAAFdKSdDY2Oh0C47T2NiILVu2OD4WVvdhZv14ahnJlckRjVXlc1cBFcaC+jcnh/qXR5WxoAfMyaEH5FBlHKh/c3Kof3lUGQt6wJwcekAOVcYhkfQvCielJAgGgzGvRaPRNn+7lbKyMrz00ksoKytzdR9m1o+nlpFcmRzRWJE4esA9PVD/8nHUv7v6oAfk47zgAerf3lrUv3rQA/bWShQPUP/u6sOJ++T2PQGal52VlZWhW7du7cZ4ZdliOBxGRUUFcnNzkZTk3MMbre7DzPrx1DKSK5MjGisSRw+4pwfqXz6O+ndXH/SAfJwXPED921uL+lcPesDeWoniAerfXX2YWV90+x4npQTgmVKEdA49QLwM9U+8Dj1AvAz1T7wM9U9iwTOlLKCqqirmtea5PbfP8VVVVeGLL77ocCzc0IeZ9eOpZSRXJkc0ViSOHnBPD9S/fBz1764+6AH5OC94gPq3txb1rx70gL21EsUD1L+7+nDiPjkpJUFHh315xYwNDQ3YsGEDGhoaXN2HmfXjqWUkVyZHNFYkjh5wTw/Uv3wc9e+uPugB+TgveID6t7cW9a8e9IC9tRLFA9S/u/pw4j65fU8Abt8jpHPoAeJlqH/idegB4mWof+JlqH8SC27fI4QQQgghhBBCCCHKwkkpCUpKSmJe88qjMIuLi/H444+juLjY1X2YWT+eWkZyZXJEY0Xi6AH39ED9y8dR/+7qgx6Qj/OCB6h/e2tR/+pBD9hbK1E8QP27qw8n7pOTUhKkpaXFvObz+dr87VbS09MxcuRIpKenu7oPM+vHU8tIrkyOaKxIHD3gnh6of/k46t9dfdAD8nFe8AD1b28t6l896AF7ayWKB6h/d/XhxH3yTCkBeKYUIZ1DDxAvQ/0Tr0MPEC9D/RMvQ/2TWPBMKQtoampyugXHaWpqQkFBgeNjYXUfZtaPp5aRXJkc0VhVPncVUGEsqH9zcqh/eVQZC3rAnBx6QA5VxoH6NyeH+pdHlbGgB8zJoQfkUGUcEkn/onBSSoKysrKY17yyl7a0tBTPPfccSktLXd2HmfXjqWUkVyZHNFYkjh5wTw/Uv3wc9e+uPugB+TgveID6t7cW9a8e9IC9tRLFA9S/u/pw4j65fU+A5mVnpaWl6N69e7sxXlm22NTUhNLSUvTo0QPJycmu7cPM+vHUMpIrkyMaKxJHD7inB+pfPo76d1cf9IB8nBc8QP3bW4v6Vw96wN5aieIB6t9dfZhZX3T7HielBOCZUoR0Dj1AvAz1T7wOPUC8DPVPvAz1T2LBM6UsoLq6Oua15rk9t8/xVVdXY/bs2R2OhRv6MLN+PLWM5MrkiMaKxNED7umB+pePo/7d1Qc9IB/nBQ9Q//bWov7Vgx6wt1aieID6d1cfTtwnJ6UkqK+vj3nNK2YMhUJYuXIlQqGQq/sws348tYzkyuSIxorE0QPu6YH6l4+j/t3VBz0gH+cFD1D/9tai/tWDHrC3VqJ4gPp3Vx9O3Ce37wnA7XuEdA49QLwM9U+8Dj1AvAz1T7wM9U9iwe17hBBCCCGEEEIIIURZOCklAR8FC5SUlODpp59GSUmJq/sws348tYzkyuSIxorE0QPu6YH6l4+j/t3VBz0gH+cFD1D/9tai/tWDHrC3VqJ4gPp3Vx9O3CcnpSRISUmJec3n87X5262kpqZi6NChSE1NdXUfZtaPp5aRXJkc0ViROHrAPT1Q//Jx1L+7+qAH5OO84AHq395a1L960AP21koUD1D/7urDifvkmVIC8EwpQjqHHiBehvonXoceIF6G+idehvonseCZUhYQDoedbsFxwuEwSktLHR8Lq/sws348tYzkyuSIxqryuauACmNB/ZuTQ/3Lo8pY0APm5NADcqgyDtS/OTnUvzyqjAU9YE4OPSCHKuOQSPoXhZNSEvBMKX2P6VNPPaXEXlor+zCzfjy1jOTK5IjGisTRA+7pgfqXj6P+3dUHPSAf5wUPUP/21qL+1YMesLdWoniA+ndXH07cJ7fvCdC87KykpAQ9evRoN8YryxYbGxtRWFiIPn36dHjGVqL3YWb9eGoZyZXJEY0ViaMH3NMD9S8fR/27qw96QD7OCx6g/u2tRf2rBz1gb61E8QD1764+zKwvun2Pk1IC8EwpQjqHHiBehvonXoceIF6G+idehvonseCZUhZQU1MT81rz3J7b5/hqamrw7bffdjgWbujDzPrx1DKSK5MjGisSRw+4pwfqXz6O+ndXH/SAfJwXPED921uL+lcPesDeWoniAerfXX04cZ+clJKgrq6u7Qv1pcD654BvfweE9Q/N7Wasra3FwoULUVtb6+o+zKwfTy0juTI5orEicV75QlLBA9S/OTnUvzwq6N+OPugB+TgveID6t7cW9a8e9IC9tRLFA9S/u/pw4j65fU+ANsvOUpuAbR8C22cC/jRgwJlA3+PQf489sb2wDP16pmPb8veAvscB/qTdi0WbgLJFQMGXQOVPwCH/A1Jy7b4lQkyHS3eJl6H+idehB4iXof6Jl6H+SSxEt++1M2tCYvLd+UB2BtD/DOCw14Dk7NZrgTT97+RcoGo1sPYxoNtBwJBLAGhA4ZdA0VwgEgK6HwzknQD0OQpY/lfgkOcduBlCCCGEEEIIIYQQ5+D2PQmCe/4LOOJdYNB5bSeksNOjMDUA+9wMTJoF9D8NWPMIsO5JIGMAcOj/gIkfA/vfDvQ4FOg1HkjKBvI/d+BujFFaWornn38epaWlru7DzPrx1DKSK5MjGisS55XHwargAerfnBzqXx4V9G9HH/SAfJwXPED921uL+lcPesDeWoniAerfXX04cZ9cKSVBIK1rzGs+n6/N3/D59ImnHod2XPSAe4BvTgV6HAak5JjVqmUkJyejT58+SE5OdnUfZtaPp5aRXJkc0ViRuN084FJU8AD1b04O9S+PCvq3ow96QD7OCx6g/u2tRf2rBz1gb61E8QD1764+nLhPniklgMheyLj20hZ/C2x+Azj4GRO6JcQZuJ+ceBnqn3gdeoB4GeqfeBnqn8RC9Ewpbt+TIBKJWFO415GAP1U//FxxIpEIqqqqrBsLRfows348tYzkyuSIxqryuauACmNB/ZuTQ/3Lo8pY0APm5NADcqgyDtS/OTnUvzyqjAU9YE4OPSCHKuOQSPoXhZNSEpSUlMS8Fvde2lH/AlbfDzRVG8u3ieLiYjz22GMoLi52dR9m1o+nlpFcmRzRWJE4r+wnV8ED1L85OdS/PCro344+6AH5OC94gPq3txb1rx70gL21EsUD1L+7+nDiPrl9T4DmZWfFxcXo2bNnuzGmLFssmgtseRc46GnjzVpMQ0MDtm7digEDBiA1NdW1fZhZP55aRnJlckRjReK8snRXBQ9Q/+bkUP/yqKB/O/qgB+TjvOAB6t/eWtS/etAD9tZKFA9Q/+7qw8z6otv3OCklgOVnSu3M4muBAWcCfY4yXoMQB/DKFxIh7UH9E69DDxAvQ/0TL0P9k1jwTCkLqK2tjXmteW4v7jm+UfcDq+4BQoXx1bGI2tpa/PDDDx2OhRv6MLN+PLWM5MrkiMaKxJnmAcVRwQPUvzk51L88Kujfjj7oAfk4L3iA+re3FvWvHvSAvbUSxQPUv7v6cOI+OSklQU1NTcxrppkxOQsY+x9gwYXA5jcBxcxdXV2Nr7/+GtXVzp59ZXUfZtaPp5aRXJkc0ViROK98IangAerfnBzqXx4V9G9HH/SAfJwXPED921uL+lcPesDeWoniAerfXX04cZ/cvieArdv3mok2AasfACp+Asb8G0jvE39NQiyES3eJl6H+idehB4iXof6Jl6H+SSy4fS/R8ScD+90K7PtPZVdNEUIIIYQQQgghhBiFk1ISBIPBmNcsexRm15HAxE+Amo3A938AIo3m1pekrKwML7/8MsrKylzdh5n146llJFcmRzRWJM4rj4NVwQPUvzk51L88Kujfjj7oAfk4L3iA+re3FvWvHvSAvbUSxQPUv7v6cOI+OSklgc/nc+aNm1dN7XEOsPQ6R1dM+f1+dOnSBX6/s9Kxug8z68dTy0iuTI5orCqfuwqoMBbUvzk51L88qowFPWBODj0ghyrjQP2bk0P9y6PKWNAD5uTQA3KoMg6JpH9ReKaUAI6cKRWLn+8BUroBe11t3XsQYgDuJydehvonXoceIF6G+idehvonseCZUhagxJLEff8JlHwHFM1x5O2j0ShCoZDjY2F1H2bWj6eWkVyZHNFYVT53FVBhLKh/c3Kof3lUGQt6wJwcekAOVcaB+jcnh/qXR5WxoAfMyaEH5FBlHBJJ/6JwUkqC4uLimNds20vr8wGHPAes+pd+zpTNFBUV4cEHH0RRUZHt721nH2bWj6eWkVyZHNFYkTiv7CdXwQPUvzk51L88Kujfjj7oAfk4L3iA+re3FvWvHvSAvbUSxQPUv7v6cOI+uX1PgOZlZ4WFhejdu3e7Mf369UN+fj7y8vKwfft265uq3QIsvBQY/wGQnG39++0gFAph8+bNGDRoENLT0217X7v7MLN+PLWM5MrkiMaKxNnuAYdQwQPUvzk51L88Kujfjj7oAfk4L3iA+re3FvWvHvSAvbUSxQPUv7v6MLO+6PY9TkoJoNSZUjtTPB9Y9yQw7i3Ax0VvxFm4n5x4GeqfeB16gHgZ6p94GeqfxIJnSllAXV1dzGvNc3u2zvH1OgLoewKw+BogGrHlLevq6rBs2bIOx8INfZhZP55aRnJlckRjReIc8YADqOAB6t+cHOpfHhX0b0cf9IB8nBc8QP3bW4v6Vw96wN5aieIB6t9dfThxn5yUkqCqqirmNcfMOPQSoOfhwMJLgGiT5W9XWVmJmTNnorKy0vL3crIPM+vHU8tIrkyOaKxInFe+kFTwAPVvTg71L48K+rejD3pAPs4LHqD+7a1F/asHPWBvrUTxAPXvrj6cuE9u3xNA2e17O7P1Q2DzG8BhrwJJzu1xJd7FcQ8Q4iDUP/E69ADxMtQ/8TLUP4kFt+95jQGnA8OuBOafAzRVO90NIYQQQgghhBBCSIdwUkqCYDAY85oSj8Lscwyw7z+Ab88CGmL3Gg/BYBBvvvlmh2NhB1b3YWb9eGoZyZXJEY0ViVPCAzagggeof3NyqH95VNC/HX3QA/JxXvAA9W9vLepfPegBe2sligeof3f14cR9clJKAp/P53QLndPzMGCfm4B1/7GkvM/nQyAQcHwsrO7DzPrx1DKSK5MjGqvK564CKowF9W9ODvUvjypjQQ+Yk0MPyKHKOFD/5uRQ//KoMhb0gDk59IAcqoxDIulf+D15plTnJMSZUjsTjQDfnAxM+tzZPoinUMoDhNgM9U+8Dj1AvAz1T7wM9U9iwTOlLCBh5u/8ASBjIFCz0fTSmqYhHA47PhZW92Fm/XhqGcmVyRGNVeVzVwEVxoL6NyeH+pdHlbGgB8zJoQfkUGUcqH9zcqh/eVQZC3rAnBx6QA5VxiGR9C8KJ6UkKCoqinlNub20A84Etn5getnCwkLce++9KCwsNL22Sn2YWT+eWkZyZXJEY0XilPOARajgAerfnBzqXx4V9G9HH/SAfJwXPED921uL+lcPesDeWoniAerfXX04cp8a6ZTKykoNgFZYWBgzJi8vTwOg5eXl2dhZB4QbNG3OSaaXraur01asWKHV1dWZXlulPsysH08tI7kyOaKxInHKecAiVPAA9W9ODvUvjwr6t6MPekA+zgseoP7trUX9qwc9YG+tRPEA9e+uPsys3zyPUllZ2WEcz5QSIOHOlGrm+ynA6IeA9D5Od0I8gJIeIMQmqH/idegB4mWof+JlqH8SC54pZQGhUCjmtea5PaXm+PqfDmz7yNSSoVAIP/30U4djYQdW92Fm/XhqGcmVyRGNFYlT0gMWoIIHqH9zcqh/eVTQvx190APycV7wAPVvby3qXz3oAXtrJYoHqH939eHEfXJSSoLKysqY15Q0Y94JQMFnppasqKjA+++/j4qKClPrqtaHmfXjqWUkVyZHNFYkTkkPWIAKHqD+zcmh/uVRQf929EEPyMd5wQPUv721qH/1oAfsrZUoHqD+3dWHE/eZ0Nv3Bg0ahN9++63Na7fccgvuv//+lt+3bNmCa665BrNnz0Z6ejrOP/98PPzww0hJSRF+n+ZlZ+Xl5cjNzW03Rtlli9+eDRzyHJDS1ZRy0WgU4XAYSUlJ8Pudm9O0ug8z68dTy0iuTI5orEicsh4wGRU8QP2bk0P9y6OC/u3ogx6Qj/OCB6h/e2tR/+pBD9hbK1E8QP27qw8z64tu30uK610U4K677sLll1/e8ntWVlbLz5FIBCeffDJ69uyJ+fPno6ysDBdddBE0TcOTTz4p/V5Ois8w/U4Btn8CDP6DKeX8fr/UhJ5VWN2HmfXjqWUkVyZHNFaVz10FVBgL6t+cHOpfHlXGgh4wJ4cekEOVcaD+zcmh/uVRZSzoAXNy6AE5VBmHRNK/8Hva+m4WkJ2djT59+rT82XlSatasWVi9ejVef/11jB49GscccwweeeQRPP/886iqqpJ+r/Ly8pjXlH0UZr9Tge0zTStXXl6OadOmdTgWdmB1H2bWj6eWkVyZHNFYkThlPWAyKniA+jcnh/qXRwX929EHPSAf5wUPUP/21qL+1YMesLdWoniA+ndXH07cZ8JPSj3wwAPo3r07Ro0ahXvvvReNjY0t1xYsWID99tsPeXl5La8df/zxaGhowNKlS6XfKyF3OqZ2AyL1QLjOlHLRaBQNDQ2O/6NjdR9m1o+nlpFcmRzRWFU+dxVQYSyof3NyqH95VBkLesCcHHpADlXGgfo3J4f6l0eVsaAHzMmhB+RQZRwSSf+iJPSZUo899hgOPPBAdO3aFYsWLcLf//53TJ48GS+88AIA4IorrsDmzZsxa9asNnmpqal4+eWXcd5557Vbt6GhAQ0NDS2/V1VVYcCAAR3uhVR6L+26p4H0vsCAM5zuhLgYpT1AiMVQ/8Tr0APEy1D/xMtQ/yQWCXum1NSpU3HnnXd2GLN48WKMHTsWN9xwQ8trI0eORNeuXXHWWWe1rJ4CAJ/Pt1u+pmntvt7Mfffd124P06ZNQ0ZGRrs5zY9MDIVCeOuttzrs327SNeAAPIaFvnqnWyEuRmUPEGI11D/xOvQA8TLUP/Ey1D+JRV2d4G4tTTFKSkq0X375pcM/oVCo3dxt27ZpALSFCxdqmqZpt912mzZy5Mg2McFgUAOgzZ49O2YP9fX1WmVlZcufrVu3agC0tWvXxszp27evBkDr27evgbu2gdknalr+LE3bNlPTfntP0za9oWmFc6XL5Ofna3feeaeWn59vQZPq9GFm/XhqGcmVyRGNFYlT3gMmoYIHqH9zcqh/eVTQvx190APycV7wAPVvby3qXz3oAXtrJYoHqH939WFm/crKSg2AVllZ2WGcciulevTogR49ehjKXb58OQCgb9++AIDDDjsM9957LwoKClpemzVrFlJTUzFmzJiYdVJTU5Gamrrb69nZ2TFzmldedbQCy1H2vwMo+wEIpAH+VP3Ptg+BLe8Cox8GktKFynTp0gUnnXRSh8vv7MDqPsysH08tI7kyOaKxInHKe8AkVPAA9W9ODvUvjwr6t6MPekA+zgseoP7trUX9qwc9YG+tRPEA9e+uPpy4z4Q9U2rBggVYuHAhJk2ahJycHCxevBg33HADxo4di48++ggAEIlEMGrUKPTu3RsPPfQQgsEgLr74Ypx++ul48sknhd9LZC9kwu6lzf8M+OURYMy/gdx9ne6GJDAJ6wFCTID6J16HHiBehvonXob6J7EQPVMqYZ++l5qainfeeQcTJ07EiBEjcPvtt+Pyyy9vs481EAjgk08+QVpaGsaNG4dzzjkHp59+Oh5++GFD71lfH/tMpua5vYSb48s7ETj8NWDFP4Bf/wtEmzoMr6+vx9q1azscCzuwug8z68dTy0iuTI5orEhcwnpAEhU8QP2bk0P9y6OC/u3ogx6Qj/OCB6h/e2tR/+pBD9hbK1E8QP27qw8n7jNhJ6UOPPBALFy4EBUVFQiFQlizZg2mTp2620HkAwcOxMcff4y6ujqUlZXhySefbHdrnggVFRUxryW0GdP7AuM/0H+eexLw4z+A6g3thpaXl+Ptt99GeXm5jQ3a34eZ9eOpZSRXJkc0ViQuoT0ggQoeoP7NyaH+5VFB/3b0QQ/Ix3nBA9S/vbWof/WgB+ytlSgeoP7d1YcT95mw2/fspHnZWTAYRNeuXduNcc2yRU0DShcAG14AGsqAfW4Ceo1vuRyJRFBfX4+0tDQEAgHH2rS6DzPrx1PLSK5MjmisSJxrPNAJKniA+jcnh/qXRwX929EHPSAf5wUPUP/21qL+1YMesLdWoniA+ndXH2bWF92+p9xB5yrjpPhsw+cDeh6u/2koA1bfD6z9N7Df7UDXAxAIBJCZmel0l5b3YWb9eGoZyZXJEY1V5XNXARXGgvo3J4f6l0eVsaAHzMmhB+RQZRyof3NyqH95VBkLesCcHHpADlXGIZH0L0rCbt9zAtdu34tFandg9EPAgY8D6/4DLLoKFRUV+PDDDzscCzuwug8z68dTy0iuTI5orEicKz3QDip4gPo3J4f6l0cF/dvRBz0gH+cFD1D/9tai/tWDHrC3VqJ4gPp3Vx9O3CcnpSSIRCIxr7najJkDgEOeBwLp0MpXIBgMIhwOO9pSOBy2tA8z68dTy0iuTI5orEicqz2wE1ZrT4UeqH/5OOrfXX3QA/JxXvAA9W9vLepfPegBe2sligeof3f14cR98kwpAUT2QnpiL23ZYmDrdGDU/U53QhTEEx4gJAbUP/E69ADxMtQ/8TLUP4mF6JlSXClFxOk2FihbAmhRpzshhBBCCCGEEEJIgsNJKQmKiopiXotGo23+diU+H2rSD8Brj/0JhYWFjrZSWFiI++67z7I+zKwfTy0juTI5orEicZ7wAKzXngo9UP/ycdS/u/qgB+TjvOAB6t/eWtS/etAD9tZKFA9Q/+7qw4n75KSUBB2dQu/z+dr87VZ8Qy7AscNKkJWV5WgfWVlZmDhxomV9mFk/nlpGcmVyRGNF4rziAau1p0IP1L98HPXvrj7oAfk4L3iA+re3FvWvHvSAvbUSxQPUv7v6cOI+eaaUADxTahfmnABMmAn4k53uhCiEpzxAyC5Q/8Tr0APEy1D/xMtQ/yQWPFPKAhoaGpxuwXEaGhpQljIGTVs+dbyPjRs3WvaZmFk/nlpGcmVyRGOtHu9EQoWxoP7NyaH+5VFlLOgBc3LoATlUGQfq35wc6l8eVcaCHjAnhx6QQ5VxSCT9i8JJKQnKy8tjXvPKXtpgMIhX5tSjacPrbS9E6gEbF90Fg0G89tprCAaDytePp5aRXJkc0ViROC95wErtqdAD9S8fR/27qw96QD7OCx6g/u2tRf2rBz1gb61E8QD1764+nLhPbt8ToHnZWVlZGbp169ZujFeWLYbDYdTU1KDLj1PgP+JtIJAObHwZWPsEsOcVwF5X29pHVlYWkpKSlK4fTy0juTI5orEicV7zgFXaU6EH6l8+jvp3Vx/0gHycFzxA/dtbi/pXD3rA3lqJ4gHq3119mFlfdPseJ6UE4JlS7bD+BaBmAxBcBvQ7BdjzSuDbM4Gx/wGyBjndHXEAz3mAkJ2g/onXoQeIl6H+iZeh/kkseKaUBVRWVsa81jy35/Y5vsrKSnzyySeozD0W0CLA4a8De/8ZCKQAYx4Hll5nyza+lj46+ExUqR9PLSO5MjmisSJxnvOARdpToQfqXz6O+ndXH/SAfJwXPED921uL+lcPesDeWoniAerfXX04cZ+clJKgqakp5jWvmLGxsRHbtm1Do5YBjH4QSOvZejF7T6DXBGDji/b10diofP14ahnJlckRjRWJ85wHLNKeCj1Q//Jx1L+7+qAH5OO84AHq395a1L960AP21koUD1D/7urDifvk9j0BuH1PgmgE+OZk4JAXgIz+TndDbIQeIF6G+idehx4gXob6J16G+iex4PY94gz+AHDgo8DK25zuhBBCCCGEEEIIIQrDSSkJiouLY17zyqMwi4qK8Mgjj6CoqCh2UM4IoLFC/+NkH4rUj6eWkVyZHNFYkTh6wD09UP/ycdS/u/qgB+TjvOAB6t/eWtS/etAD9tZKFA9Q/+7qw4n75KSUBOnp6TGv+Xy+Nn+7lYyMDBx00EHIyMjoOHCP84Df3nK+DwXqx1PLSK5MjmisSBw94J4eqH/5OOrfXX3QA/JxXvAA9W9vLepfPegBe2sligeof3f14cR98kwpAXimlAEiDcC8ycCkz53uhNgEPUC8DPVPvA49QLwM9U+8DPVPYsEzpSzA6ZP2VaCxsRFbt27tfCwCqUCX4UD5Cmf7UKB+PLWM5MrkiMZaPd6JhApjQf2bk0P9y6PKWNAD5uTQA3KoMg7Uvzk51L88qowFPWBODj0ghyrjkEj6F4WTUhIEg8GY17yyl7asrAwvvvgiysrKOg8eehmw4X/O9+Fw/XhqGcmVyRGNFYmjB9zTA/UvH0f9u6sPekA+zgseoP7trUX9qwc9YG+tRPEA9e+uPpy4T27fE6B52VlpaSm6d+/eboxXli02NTWhvLwcXbt2RXJycucJc04Axn8IBNKc7cPB+vHUMpIrkyMaKxJHD7inB+pfPo76d1cf9IB8nBc8QP3bW4v6Vw96wN5aieIB6t9dfZhZX3T7HielBOCZUnHw6zNASldgj9873QmxGHqAeBnqn3gdeoB4GeqfeBnqn8SCZ0pZQFVVVcxrzXN7bp/jq6qqwqxZszocizbscR6w8RUgGnG2Dwfrx1PLSK5MjmisSBw94J4eqH/5OOrfXX3QA/JxXvAA9W9vLepfPegBe2sligeof3f14cR9clJKgoaGhpjXvGLG+vp6rFu3DvX19WIJKTnAoPOA788HwrXO9eFg/XhqGcmVyRGNFYmjB9zTA/UvH0f9u6sPekA+zgseoP7trUX9qwc9YG+tRPEA9e+uPpy4T27fE4Db90yg6Btg1b3AoS8BGf2c7oZYAD1AvAz1T7wOPUC8DPVPvAz1T2Ihun0vycaeiJfpPQFIzwMWXAhkDACyhgDZw4CBZwN+ypAQQgghhBBCCPEa3L4nQUlJScxrXnkUZnFxMZ544gkUFxfLJ3cZBhz1FXDgI0DfE4D6QmDR5YAmP2Zx9WFz/XhqGcmVyRGNFYmjB9zTA/UvH0f9u6sPekA+zgseoP7trUX9qwc9YG+tRPEA9e+uPpy4T05KSZCamhrzms/na/O3W0lLS8OIESOQlpZmrIDPB6R2B3ocDAy/Aeh5JLD0OkByF2ncfdhYP55aRnJlckRjReLoAff0QP3Lx1H/7uqDHpCP84IHqH97a1H/6kEP2FsrUTxA/burDyfuk2dKCcAzpSxmzeP6qqn9bgOSMp3uhhiEHiBehvonXoceIF6G+idehvonsRA9U4orpSRoampyugXHaWpqQlFRkbljMfx6oMtwYMHFwJyTgJV3ONOHRfXjqWUkVyZHNNbq8U4kVBgL6t+cHOpfHlXGgh4wJ4cekEOVcaD+zcmh/uVRZSzoAXNy6AE5VBmHRNK/KJyUkqCsrCzmNa/spS0tLcUzzzyD0tJScwsPuRg4chow6VOgfDkQjTjThwX146llJFcmRzRWJI4ecE8P1L98HPXvrj7oAfk4L3iA+re3FvWvHvSAvbUSxQPUv7v6cOI+uX1PgOZlZyUlJejRo0e7MV5ZttjY2IiSkhL07NkTKSkp1rzJ0uuBYdfoB6M71IeZ9eOpZSRXJkc0ViSOHnBPD9S/fBz1764+6AH5OC94gPq3txb1rx70gL21EsUD1L+7+jCzvuj2PU5KCcAzpWxmw/+AlK7AgDOd7oRIQA8QL0P9E69DDxAvQ/0TL0P9k1jwTCkLqK6ujnmteW7P7XN81dXVmDt3bodjETc5+wMVPznah5n146llJFcmRzRWJI4ecE8P1L98HPXvrj7oAfk4L3iA+re3FvWvHvSAvbUSxQPUv7v6cOI+OSklQSgUinnNK2asq6vDsmXLUFdXZ92b5O4LVK5ytA8z68dTy0iuTI5orEgcPeCeHqh/+Tjq31190APycV7wAPVvby3qXz3oAXtrJYoHqH939eHEfXL7ngDcvucAc08BJn7sdBdEAnqAeBnqn3gdeoB4GeqfeBnqn8SC2/dIYhNIA8KxV6YRQgghhBBCCCEkseGklAR8FCxQUlKC//73vygpKbH2jbrsA1StdqwPM+vHU8tIrkyOaKxIHD3gnh6of/k46t9dfdAD8nFe8AD1b28t6l896AF7ayWKB6h/d/XhxH1yUkqC5OTkmNd8Pl+bv91KSkoKBg0aZP1jMHP3Byp+dqwPM+vHU8tIrkyOaKxIHD3gnh6of/k46t9dfdAD8nFe8AD1b28t6l896AF7ayWKB6h/d/XhxH3yTCkBeKaUA1T+Amz4H3Dgw053QgShB4iXof6J16EHiJeh/omXof5JLHimlAWEw2GnW3CccDiMYDBo/VhkDwOqf3WsDzPrx1PLSK5MjmisbZ97AqDCWFD/5uRQ//KoMhb0gDk59IAcqowD9W9ODvUvjypjQQ+Yk0MPyKHKOCSS/kXhpJQEPFNK32P65JNPWr/H1J8EaBHH+jCzfjy1jOTK5IjGisTRA+7pgfqXj6P+3dUHPSAf5wUPUP/21qL+1YMesLdWoniA+ndXH07cJ7fvCdC87Ky4uBg9e/ZsN8YryxYbGhpQUFCAvn37IjU11do3+/5CYMxjQGp32/sws348tYzkyuSIxorE0QPu6YH6l4+j/t3VBz0gH+cFD1D/9tai/tWDHrC3VqJ4gPp3Vx9m1hfdvsdJKQF4ppRDrH4I6H4Q0Hui050QAegB4mWof+J16AHiZah/4mWofxILnillATU1NTGvNc/tuX2Or6amBt99912HY2EaufsDFT850oeZ9eOpZSRXJkc0ViSOHnBPD9S/fBz1764+6AH5OC94gPq3txb1rx70gL21EsUD1L+7+nDiPjkpJUFtbW3Ma14y4/z58+0RadfRQNkiR/ows348tYzkyuSIxorE0QPu6YH6l4+j/t3VBz0gH+cFD1D/9tai/tWDHrC3VqJ4gPp3Vx9O3Ce37wnQvOzs/q/uRzQlirqmutY/4TpEtSg+v/pzlBaWctmi2cw9GThyOhBIc7oT0glcuku8DPVPvA49QLwM9U+8DPVPYiG6fS/Jxp4Snv/76v+AGHMjvjqfvc14hb7HAwWzgP6nOd0JIYQQQgghhBBCTITb90yiecGZ2x+FWVpaiv/9738oLS215w0H/A7Y8p7tfZhZP55aRnJlckRjReK88jhY2z3gQA/Uv3wc9e+uPugB+TgveID6t7cW9a8e9IC9tRLFA9S/u/pw4j65UkqCJ499EgP7DURGckbLn6X5S/HHmX9sifH53L1iKikpCT179kRSkk3SyegHNJYBkfo2W/is7sPM+vHUMpIrkyMaKxLXrH16IPF7oP7l46h/d/VBD8jHecED1L+9tah/9aAH7K2VKB6g/t3VhxP3yTOlBOhoL2SoKYTuD3ZH6IEQUA3upbWCtU8CmQOB/pOd7oR0APeTEy9D/ROvQw8QL0P9Ey9D/ZNYiJ4pxe17EkQikd1eS09Ox7FDj235vTHSaGdLthOJRFBdXd3uWFhGO1v4rO7DzPrx1DKSK5MjGuvI564oKowF9W9ODvUvjypjQQ+Yk0MPyKHKOFD/5uRQ//KoMhb0gDk59IAcqoxDIulfFE5KSVBSUtLu66ft1XoId6gpZFc7jlBcXIxHH30UxcXF9r1pRh7QWA6EW8fW6j7MrB9PLSO5MjmisSJxXtlP7ogHbO6B+pePo/7d1Qc9IB/nBQ9Q//bWov7Vgx6wt1aieID6d1cfTtwnt+8J0LzsrKioCL169drtemFNIfrm9QWqgaTcJDSVNznQpT3U19djy5YtGDhwINLSYjyK0Ao2vgw01QB7X2tLH2bWj6eWkVyZHNFYkbh+/fohPz8feXl52L59u1CviYhjHrCxB+pfPo76d1cf9IB8nBc8QP3bW4v6Vw96wN5aieIB6t9dfZhZX3T7HielBBAZzJSuKWiqaAKygc1bNmOP3D1s7tLlaFFg7inAIc8BGf2d7oa0A/eTEy9D/ROvQw8QL0P9Ey9D/ZNY8EwpC6itrY15LS2pdRZx5rqZdrTjCLW1tVi0aFGHY2EJPj9w4MPAshsBTbO8DzPrx1PLSK5MjmisSFzz/Lbb57kd84CNPVD/8nHUv7v6oAfk47zgAerf3lrUv3rQA/bWShQPUP/u6sOJ++SklATV1dUxr6X6U1t+nrF2hh3tOEJVVRVmzZqFqqoq+988ZwTQZQSwdbrlfZhZP55aRnJlckRjReK88oXkqAds6oH6l4+j/t3VBz0gH+cFD1D/9tai/tWDHrC3VqJ4gPp3Vx9O3Ce37wkgsuysedkisoHkvyaj9G+l6JIae4kaMUikAfjmFOCoL53uhOwCl+4SL0P9E69DDxAvQ/0TL0P9k1hw+56DNEWbMGvDLKfbcCeBVCC9HxAqcLoTQgghhBBCCCGExAEnpSQIBoMxr+36CEy3buErKyvDq6++irKyMuea6DUe1Rs/tbQPM+8znlpGcmVyRGNF4rzyOFgVPGB1D9S/fBz1764+6AH5OC94gPq3txb1rx70gL21EsUD1L+7+nDiPjkpJYHP5xOO+fTXTxGOhq1uyXb8fj8yMzPh9zsonV4TkFy+wNI+zLzPeGoZyZXJEY1V4nNXBBXGwuoeqP/4+3ArqowFPWBODj0ghyrjQP2bk0P9y6PKWNAD5uTQA3KoMg6JpH9ReKaUADJnSqV3S0foLyEAwLyL5+HIPY60s1VvoGnA3BOBSZ873QnZCe4nJ16G+idehx4gXob6J16G+iex4JlSFiCyJDEtKa3l55nrZlrZjiNEo1E0NDQ4uzzT54OW0g0NVdt37yNszqMrzbzPeGoZyZXJEY1V4nNXBBXGwuoeqP/4+3ArqowFPWBODj0ghyrjQP2bk0P9y6PKWNAD5uTQA3KoMg6JpH9ROCklQXFxccxrzR9asj8Zfp8+rG6clCoqKsL999+PoqIiR/uoSh2FD5+7qW0fTVXAJ/sBNZvirm/mfcZTy0iuTI5orEicV/aTq+ABq3ug/uXjqH939UEPyMd5wQPUv721qH/1oAfsrZUoHqD+3dWHE/fJ7XsCNC87KywsRO/evduN6devH/Lz85GXl4ch9wzB/C3zAQDrrl2HYd2H2dmupYRCIWzcuBFDhgxBenq6Y33UFy1H7YrHkHHks619LLwUiIaBgb8D+k+Oq76Z9xlPLSO5MjmisSJxO3tg+/btQr0mIip4wOoeqH/5OOrfXX3QA/JxXvAA9W9vLepfPegBe2sligeof3f1YWZ90e17nJQSQOZMqX79+uG6d67D3776GwDgkeMewY2H3Whnu95A04C5JwGTPtN//+1doGIF0O9UoOBLYP/bnO3Pg3A/OfEy1D/xOvQA8TLUP/Ey1D+JBc+UsoC6urqY15rn9jRNw6l7n9ry+oy1Myzvy07q6urw448/djgWtvQRCqG8NopQ0Y/AT3cDm14D9p8K5OwHVP4cf30T7zOeWkZyZXJEY0XidvaAm1HBA1b3QP3Lx1H/7uqDHpCP84IHqH97a1H/6kEP2FsrUTxA/burDyfuk5NSElRVVcW8trMZ9+6+N/bsticAYP6W+SgPldvSnx1UVlbio48+QmVlpeN9zFmXCd+KfwA9DwMmzAD8yUByFhCuMaW+WfcZTy0juTI5orEicV75QlLBA1b3QP3Lx1H/7uqDHpCP84IHqH97a1H/6kEP2FsrUTxA/burDyfuk9v3BGhedlZRUYGcnJx2Y3ZdtnjTFzfh0YWPAgDeOPMNnL//+Xa2bBmapkHTNPh8Pvh8PjX7+PYs4LBXgaQMa+rbWMtIrkyOaKxInFeW7qrgAat7oP7l46h/d/VBD8jHecED1L+9tah/9aAH7K2VKB6g/t3Vh5n1uX3PAmQ+FLdu4fP5fPD7/Y4asdM+cvYFKldbV9/GWkZyZXJEY1X53FVAhbGwugfqP/4+3IoqY0EPmJNDD8ihyjhQ/+bkUP/yqDIW9IA5OfSAHKqMQyLpXxROSkkQDAZjXtv1UZjjBoxD17SuAIDP13+Oxkij9Q3aQDAYxFtvvdXhWDjeR+5IoGKldfVtrGUkVyZHNFYkziuPg1XBA1b3QP3Lx1H/7uqDHpCP84IHqH97a1H/6kEP2FsrUTxA/burDyfuk5NSFpEcSMaJw04EAFQ2VOLjdR873JGHyB0JVPzkdBeEEEIIIYQQQgjpAJ4pJYDIXsj29tJ++uunOPnNkwEAB/Q+AMuuXAa/j/OAlhONAPNOBybObH2tah3w21vA/nc41pbb8cp+ckLag/onXoceIF6G+idehvonseCZUhYgO3934p4nYmzeWADAiqIV+HDNhxZ0ZS+apiEajTr+dIUO+/AHAESB5mu/vQssvQ6oXAVUrIq/vpm9WpArkyMaq8rnrgIqjIXVPVD/8ffhVlQZC3rAnBx6QA5VxoH6NyeH+pdHlbGgB8zJoQfkUGUcEkn/onBSSoKioqKY19rbS+vz+XDnxDtbfp86dyqiWmLvtS0sLMTdd9+NwsJCtftI7wvUbQGW/AUILgYmzAD2nwqse8Kc+mb2anKuTI5orEicV/aTq+ABq3ug/uXjqH939UEPyMd5wQPUv721qH/1oAfsrZUoHqD+3dWHE/fJSSkJOlpy1nw6/a6n1J+454k4pN8hAICfin/C9NXTrWvQBnJycjB58mTk5OSo3UfuSGDuyUCfo4HRDwH+ZCBnBFBfBNSXxl/fzF5NzpXJEY0ViYvlAbehgges7oH6l4+j/t3VBz0gH+cFD1D/9tai/tWDHrC3VqJ4gPp3Vx9O3CfPlBLA6JlSzXyx/guc8MYJAIARPUdg5VUrEfAHLO/b09SXApE6IHNg29fzPwPKlwPDrgFqfwO6jnSmPxfC/eTEy1D/xOvQA8TLUP/Ey1D/JBY8U8oCQqFQzGvNc3vtzfEdN/Q4HNb/MADA6pLVmLZ6mjUN2kAoFMKqVas6HAsl+kjrsfuEFAD0PR4o/xFYfBXww6VAQ/uPujTzPuOpZSRXJkc0ViSuIw+4CRU8YHUP1L98HPXvrj7oAfk4L3iA+re3FvWvHvSAvbUSxQPUv7v6cOI+OSklQWVlZcxrHZnR5/Phrkl3tfx+5zd3IhKNmN+gDVRUVOC9995DRUVFYvbh8wNHvAuMewvY80qgaI659U2uZSRXJkc0ViTOK19IKnjA6h6of/k46t9dfdAD8nFe8AD1b28t6l896AF7ayWKB6h/d/XhxH1y+54AzcvOysvLkZub225MZ8sWNU3D+JfHY/6W+QCA1894HReMvMDKti0hGo2iqakJycnJ8Pudm9M0pY+aTcDqB4GD/2tNfRNqGcmVyRGNFYnzytJdFTxgdQ/Uv3wc9e+uPugB+TgveID6t7cW9a8e9IC9tRLFA9S/u/owsz6371lAPB+Kz+fDXRNbV0vdNe8uhKNhM9qyFb/fj9TUVEeNaFofWYOB2k3W1TehlpFcmRzRWFU+dxVQYSys7oH6j78Pt6LKWNAD5uTQA3KoMg7Uvzk51L88qowFPWBODj0ghyrjkEj6F35P297JBZSXl8e8JvIozEmDJ2HCHhMAAOvK1uGtn94yt0EbKC8vx/Tp0zsci4TqI3MPoGazdfXjrGUkVyZHNFYkziuPg1XBA1b3QP3Lx1H/7uqDHpCP84IHqH97a1H/6kEP2FsrUTxA/burDyfuk5NSEpix0/HOiXe2/JyIq6Wi0Shqa2sd/0fHtD76HAMUfW1d/ThrGcmVyRGNVeVzVwEVxsLqHqj/+PtwK6qMBT1gTg49IIcq40D9m5ND/cujyljQA+bk0ANyqDIOiaR/UXimlAAieyFl9tIe/erRmL1pNgDgiROewDUHXwO/j/ODjlBfCiy9Dtj/dmDtv4HaLfph6BNmON1ZwuGV/eSEtAf1T7wOPUC8DPVPvAz1T2LBM6UUZufVUn/5/C/o+VBPnPXuWXh68dNYW7rW9U8uUIq0HkBoO7DqX8BefwYmzATS8/RD0AkhhBBCCCGEEGIZnJSSoLCwMOY1mb20Rww8AicNO6nl92AoiOm/TMc1n16D4U8Nx4DHBuDeeffG37AFFBQU4J577kFBQYF7+jh6DnDYK0DOPoDPB/Q5GhVrp5tWP55ejeTK5IjGisR5ZT+5Ch6wugcz61P/7kIF/dvRBz0gH+cFD1D/9tai/tWDHrC3VqJ4gPp3Vx9O3CcnpSTIzs6Oec3n87X5uzPe/t3beOqkp3DG8DOQm5bb5tr26u24dc6t+LHwR6OtWkaXLl1w3HHHdbj8LuH62PUz6zUJWbWLTasfT69GcmVyRGNF4mQ9kKio4AGrezCzPvXvLlTQvx190APycV7wAPVvby3qXz3oAXtrJYoHqH939eHEffJMKQHMPlNqVyLRCH4s/BFfb/oaH6z5AAu3LQQATJ0wFXdMvCPu/okB5pwATPxs9wkrEhPuJydehvonXoceIF6G+idehvonseCZUhZQX18f81rz3J6ROb6AP4AxeWPwt3F/w7Szp7W8PmOdeodt19fXY926dR2OhRv6CGcNx+YVH5tSP55ejeTK5IjGisTF44FEQgUPWN2DmfWpf3ehgv7t6IMekI/zggeof3trUf/qQQ/YWytRPED9u6sPJ+6Tk1ISVFRUxLxmlhn7d+mPMX3HAACWFSzDtiq1ZpvLy8vx1ltvoby83NV9VKUfhDXfPGVK/Xh6NZIrkyMaKxLnlS8kFTxgdQ9m1qf+3YUK+rejD3pAPs4LHqD+7a1F/asHPWBvrUTxAPXvrj6cuE9u3xOgedlZMBhE165d240xc9niXd/chTvm6tv2njrpKVx90NVx1TOTSCSCuro6ZGRkIBAIuLaPSH0ltO/Og2/izLb1K9cAWYOBQKotvRrJlckRjRWJ88rSXRU8YLn+TaxP/bsLFfRvRx/0gHycFzxA/dtbi/pXD3rA3lqJ4gHq3119mFmf2/cswC7xnbb3aS0/z1ir1ha+QCCA7OxsR41oRx+BtBwkZQ9AoPqXtheW3QisfVyuVme9hgqAFbcCP1wO1G6VyzXyfgZiVfncVUCFsbBc/ybWj6cW9a8eqowFPWBODj0ghyrjQP2bk0P9y6PKWNAD5uTQA3KoMg6JpH9ROCklgR3b9wDggN4HYECXAQCA2Ztmo6qhKu6aZlFRUYEZM2Z0OBZu6KOiogJf5x+IxhX3tr4YjQA+P1D0DRAqkqoVs9eazcD3FwB5JwJ7XwcsuBCo2yaWa+T9DMaKxHll6a4KHrBD/2bVj6cW9a8eKujfjj7oAfk4L3iA+re3FvWvHvSAvbUSxQPUv7v6cOI+OSklQSQSiXnNTDP6fL6W1VJN0SbM2jAr7ppmEQ6HUVJSgnA47Oo+wuEwNpclIRoNAzWb9BcrVgK5I4H9pwI/TTWn19UPAGOeBHqOA3L3AwZfCJQuFMs18n4GY0XivPKFpIIH7NC/WfXjqUX9q4cK+rejD3pAPs4LHqD+7a1F/asHPWBvrUTxAPXvrj6cuE+eKSWAyF5Is/fSztowC8e/fjwAYMrIKXj1jFfjrkkMEFwObHgBOOgpYM2/gS576aua5p+jTyal946v/txTgQkf6SuwACC4FNj2ETDyrvh7txmv7CcnpD2of+J16AHiZah/4mWofxILnimV4EwcNBHZKdkAgE9+/QThqLMzsp6l22j9zKdQEVD6PdDjcP31Pa8ANjxvwhtorRNSANBlBFC5yoS6hBBCCCGEEEKI2nBSSoKiotjnCEWj0TZ/x0tKIAUnDjsRABAMBfH91u9NqRsvhYWFeOCBB1BYWOjqPtrUH349sPYxoKkKSMnRA3ofDRTNBQQmC2P2Gqnf/Sl+Sen6653lGnm/OGJF4sz2gKqo4AFb9e9gLepfPVTQvx190APycV7wAPVvby3qXz3oAXtrJYoHqH939eHEfXJSSoLMzMyY13w+X5u/zeC0vdR7Cl9WVhaOOOIIZGVlubqPNvV7HgmULQKy92oN8PmA/qcBW9/vtFZ2oKK1VuXq1gs1G4GsobsnJGXrE2A7+jhjVDWyte3GejcpViTOCg+oiAoesFX/DtYykkv9W4sK+rejD3pAPs4LHqD+7a1F/asHPWBvrUTxAPXvrj6cuE+eKSWAE2dKAfoKqV4P9UJEi2DPbnti3bXrXG92ZSn5DvAFgB6Htr7WVAMs+APQ71RgyKX6RNWuRJuAjwYDR88BsocCH/QFjlsIZA0Gts0A6gv1rYA7s+pfQK8JQM5+QHIX4NP9gBF/Bwb/wdp7jBPuJydehvonXoceIF6G+idehvonseCZUhbQ0NBg6/t1S++GI/c4EgCwPrgea0rX2Pr+7dHQ0IDNmzfbPhZ297Fb/Z7j2k5IAUByFnDk+0Dtb8BPd+xSIKj/ve0jRLvsi7JVr6Ox6AcgYw9gyzT9WvV6IGvP3d889wBg4aXA7KPRtPl91EczEK781XjvJsSq8rmrgApjYbv+HaplJJf6txZVxoIeMCeHHpBDlXGg/s3Jof7lUWUs6AFzcugBOVQZh0TSvyiclJKgvLw85jWr9tKqtoUvGAzilVdeQTAYdHUfwvV9/h1PyvMDvzysvxZpAGYdCqy6D9j4CkqGPoiSn95Bw6aPgFH3AUWz9bjqX4HsYbvX7Hs8cMJi4PA3EFh8Gaat2QeNwbXm9y4RKxLnlf3kKnhAGf1bXMtILvVvLSro344+6AH5OC94gPq3txb1rx70gL21EsUD1L+7+nDiPrl9T4DmZWdlZWXo1q1buzFWLVvcENyAPZ/UV9McPuBwfHfpd6bVNkI4HEZVVRW6dOmCpKQk1/YhXV/TgAUXAvvcBJT/qB+AHsoHGisQPuBBROdORhLq4D9qFrD4amDfvwNLrwfGf9j26Xu79lG+GlXR3shdeSH8kz4xvXfRWJE4ryzdVcEDyunfolpGcql/a1FB/3b0QQ/Ix3nBA9S/vbWof/WgB+ytlSgeoP7d1YeZ9UW373FSSgCnzpRqZt+n98XqktXwwYfCmwvRK7OXqfWJSYQK9G13WhiYMBMIpLVeW/ukvkJq/Af6pNWym4BoA3DsfLHac08BJn5sSdtm4ZUvJELag/onXoceIF6G+idehvonseCZUhZQWVkZ81rz3J4Vc3zNW/g0aPhkndhqGauorKzEZ5991uFYuKEPQ/XT+wL9JwN9jmszIVVZWYmv1/dEzR5/0V/oOgqYNAs47HXhPpoimn5ousm9i8aKxFnpAZVQwQNK6t+CWkZyqX9rUUH/dvRBD8jHecED1L+9tah/9aAH7K2VKB6g/t3VhxP3yUkpCZqaYk8KWDoptXfruVIPfv8gHlvwGJbmL0U4Gjb9vTqjsbERmzdvRmNjo+3vbWcfhusPuwoY8dfdaq3bUo5Qxn6tL/oDQNYg4T6aUvKAOrH/8iDTu2isSJxXvpBU8ICy+je5lpFc6t9aVNC/HX3QA/JxXvAA9W9vLepfPegBe2sligeof3f14cR9cvueAE5v34tqUeQ9koei2qI2r2enZGPcwHEY1XsU+mb3Re/M3uiT1Qe9s3pjcO5gpCalmtoHcZA1j+lP5etzlNOdxIRLd4mXof6J16EHiJeh/omXof5JLES37zl3QhcRxu/z49HjH8VfPvsLykJlLa9XN1bj8/Wf4/P1n++Wk5Oag9vG34Y/H/JnpARS7GyXWEHmYKBmIwB1J6UIIYQQQgghhBAZuH1PguLi4pjXrH4U5vn7n4/ivxZj5VUr8Z8T/4Nz9j0HvTN7x4yvbKjEzV/ejAOeOQCzNswyrY+ioiI8+uijKCoq6jzYQqzuw8z68dRqzi32DQd+exuIdL6MUub9RGNF4rzyOFgVPOA1/cvkUv/WooL+7eiDHpCP84IHqH97a1H/6kEP2FsrUTxA/burDyfukyulJEhPT495zefztfnbCvw+P/bvvT/2770/rjn4GmiahvXB9dhcsRlFtUUorClEYU0hNpRvwEdrPoIGDWtK1+D414/H6cNPx2PHP4ZBuYPi6iEjIwMHHnggMjIyzLkpRfsws348tZpz03P6AcP+BHx7BpC9N7Dv34Hy5UCPw4DkbMPvJxorEmeHB1RABQ94Tf8yudS/taigfzv6oAfk47zgAerf3lrUv3rQA/bWShQPUP/u6sOJ++SZUgI4faaUEZbmL8WfP/szFmxb0PJa36y++OlPP6F7RncHOyNxUbMZqC8EVtwKpHbTJ6WG3+B0VwDU8wAhdkL9E69DDxAvQ/0TL0P9k1iIninF7XsSOH3Svgxj8sZg/qXz8erpr6JPVh8AQEFNAV7+8eW46jY2NmL79u2Oj4XVfZhZP55au+VmDQJ6HAoc/RVw+JvA9o+BaMTw+4nGqvK5q4AKY+FZ/ZucQ/3Lo8pY0APm5NADcqgyDtS/OTnUvzyqjAU9YE4OPSCHKuOQSPoXhZNSEgSDwZjXVNxL6/f5MeWAKfjm4m9aXntm6TOIasZ7LCsrwwsvvICysrLOgy3E6j7MrB9PrQ5z/UlA3xOAbR8Yfj/RWJE4FT1gBSp4gPo3J4f6l0cF/dvRBz0gH+cFD1D/9tai/tWDHrC3VqJ4gPp3Vx9O3Ce37wnQvOystLQU3bu3v/VN9WWLx7x6DL7e9DUAYNYfZuHYoccaqtPU1IRgMIhu3bohOTnZzBaV6sPM+vHU6jQ3HAK+ORmYMBNIypR+P9FYkTjVPWAWKniA+jcnh/qXRwX929EHPSAf5wUPUP/21qL+1YMesLdWoniA+ndXH2bWF92+x0kpARLxTKldeW/1ezh72tkAgDOGn4H3f/++wx0R0yj4EvjlIeCAe4HuBznWhuoeIMRKqH/idegB4mWof+JlqH8SC54pZQFVVVUxrzXP7ak6xzd578nom9UXADBj7Qxsr9puqE5VVRW++uqrDsfCDqzuw8z68dQSyu17LHDws8D656XfTzRWJE51D5iFCh6g/s3Jof7lUUH/dvRBD8jHecED1L+9tah/9aAH7K2VKB6g/t3VhxP3yUkpCRoaGmJeU92MyYFk/PHAPwIAIloELyx7wVCd+vp6rF69GvX19Wa2p1wfZtaPp5ZwbuYe+lP5JN9PNFYkTnUPmIUKHqD+zcmh/uVRQf929EEPyMd5wQPUv721qH/1oAfsrZUoHqD+3dWHE/fJ7XsCuGH7HgBsrdyKQf8ehKgWRb/sfth8/WYk+ZOcbouYxdxTgYkzHXv7RPAAIVZB/ROvQw8QL0P9Ey9D/ZNYcPse2Y0BOQNwyl6nAAC2V2/HzLXOTWAQi+AcMyGEEEIIIYSQBIGTUhKUlJTEvJYoj8L809g/tfz83yX/lc4vLi7Gf/7zHxQXF5vZlnJ9mFk/nlpSuandgcagVI5orEhconggXlTwAPVvTg71L48K+rejD3pAPs4LHqD+7a1F/asHPWBvrUTxAPXvrj6cuE9OSkmQmpoa85rP52vzt6ocN/Q4DOk6BADw5cYvsT64Xio/LS0Ne+21F9LS0qxoT5k+zKwfTy2p3MyBQO1vUjmisSJxieKBeFHBA9S/OTnUvzwq6N+OPugB+TgveID6t7cW9a8e9IC9tRLFA9S/u/pw4j55ppQAbjlTqpkHv3sQt3x1CwDgr4f/FQ8e+6DDHRFTWP8CkNoDGHC6I2+fSB4gxGyof+J16AHiZah/4mWofxILnillAU1NTU63YAqXjLqk5YDzd1e9K/WkhKamJhQXFzs+Flb3YWb9eGpJ5WbuAdRtkcoRjVXlc1cBFcaC+jcnh/qXR5WxoAfMyaEH5FBlHKh/c3Kof3lUGQt6wJwcekAOVcYhkfQvCielJCgrK4t5LZH20vbM7ImjBh8FAPit8jcsL1wunFtaWor//ve/KC0ttao9Jfows348taRyd2zfk8kRjRWJSyQPxIMKHqD+zcmh/uVRQf929EEPyMd5wQPUv721qH/1oAfsrZUoHqD+3dWHE/fJ7XsCNC87KykpQY8ePdqNSbRli88ueRZXfXIVAOCfR/4T9xx1j1BeY2MjioqK0Lt3b6SkpFjZoqN9mFk/nlpSuZFG4JtT0DhuJoqKi4VyROuLxCWaB4yiggeof3NyqH95VNC/HX3QA/JxXvAA9W9vLepfPegBe2sligeof3f1YWZ90e17nJQSwG1nSgFAYU0h8h7JgwYNI3qOwKqrVzndEjGDlXcAvScBvSfa/taJ5gFCzIT6J16HHiBehvonXob6J7HgmVIWUF1dHfNa89xeoszx9cnqg8MHHA4AWF2yGmtK1wjlVVdXY968eR2OhR1Y3YeZ9eOpJZ077Co0/fKknlNeZFp9kbhE84BRVPAA9W9ODvUvjwr6t6MPekA+zgseoP7trUX9qwc9YG+tRPEA9e+uPpy4T05KSRAKhWJeS0QznrnPmS0/f/DLB0I5dXV1WLx4Merq6qxqS4k+zKwfTy3p3PS+CEf9KFrxJjK/2heoLzGlvkhcInrACCp4gPo3J4f6l0cF/dvRBz0gH+cFD1D/9tai/tWDHrC3VqJ4gPp3Vx9O3Ce37wngxu17ALCpfBOGPDEEAHBQ3kFYdPkihzsiplC6CJhzLHDgY0DFSmDM47a8bSJ6gBCzoP6J16EHiJeh/omXof5JLLh9j3TK4K6DMarPKADA4vzF2FK5xdmGiDn0OBiY+Ckw9FKgap3T3RBCCCGEEEIIIe3CSSkJ3Pgo2DOHt27h+3DNh53Gl5SU4Nlnn0VJScfbwqzG6j7MrB9PLSO5JSUlePb9n/UcX8CU+iJxieoBWVTwAPVvTg71L48K+rejD3pAPs4LHqD+7a1F/asHPWBvrUTxAPXvrj6cuE+hSalAIBD3n7vuusvqe7Gc5OTkmNd8Pl+bvxOFM/Y5o+XnD9Z0fq5USkoK+vfv7+hjMO3ow8z68dQyktsmx+cHtNhfEKL1ReJiemDrB8D2T4T7Vx0VPED9m5Nji/5dhgr6t6MPekA+zgseoP7trUX9qwc9YG+tRPEA9e+uPpy4T6Ezpfx+P/bYYw8MGjRI+g00TcO8efMwdepU3H777UZ6dBy3nikF6J/P3v/ZG78Gf4Xf50fhTYXomdnT6baIWXx3AXDQ00BKjuVv1a4H6rYDCy8GknOAI9+zvAdCnCJRvwMIMQt6gHgZ6p94GeqfxEL0TKkk0YKXXHKJ4Uklv98duwTD4bDTLZiOz+fDmfuciQe+ewBRLYoZa2fgsgMvixkfDodRU1ODrKwsJCUJy8d0rO7DzPrx1DKS2yYnJRdoqow5KSVaX6qPSAhoCAKhfGDdU8D+dwK/PAiE64CkDKF7UBkVPED9m5Njif5djipjQQ+Yk0MPyKHKOFD/5uRQ//KoMhb0gDk59IAcqoxDIulfFHfMFtmEG8+UAoAz92k9V2r6L9M7jC0pKcG///1vJfbSWtmHmfXjqWUkt01Oco4+KRVn/U7jVj+EaFMtAEBrqgVmHwMsuwnIGQH0PBzI2hOoc8d/OVHBA9S/OTmm6R+J/R0ggwr6t6MPekA+zgseoP7trUX9qwc9YG+tRPEA9e+uPpy4T6Hte5FIBH6/3/A+0XjznaZ52VlxcTF69mx/a1siL1uMalEMfGwgtldvBwC8NPklXDzq4nZjGxoaWu4zNTXVxi7t7cPM+vHUMpLbJmfD40CPw4FeR8ZVv9O476eg/+R3sb20Ef3y8rDt4/OBA/4F+Hecw7b6AaDHOKDXEUL3oDIqeID6NyfHNP0jsb8DZFBB/3b0QQ/Ix3nBA9S/vbWof/WgB+ytlSgeoP7d1YeZ9UW37wlNSnkdN58p1czTi5/GNZ9eAwBI8ifhk/M/wXFDj3O4KxI3vz4DZPQH+p1i7fvMPRX9/7AM27fnt++BDS/pWwgHnNl+PiEJTqJ/BxASL/QA8TLUP/Ey1D+JheiklKHte/PmzcOSJUs6jNmyZQvmzZtnpLyy1NTUxLzWPLeXqHN8fxr7J/z54D8DAMLRMH737u/wY+GPu8XV1NRgwYIFHY6FHVjdh5n146llJLdNTnIu0Bhj+17xPOH6InHN0m/XA2m9gHpnl7qahQoeoP7NyTFX/4n9HSCKCvq3ow96QD7OCx6g/u2tRf2rBz1gb61E8QD1764+nLhPQ5NSEydOxCGHHILrrrsu5t7Rl156CZMmTYqrOdWora2NeS3Rzejz+fDY8Y/hjOFnAABqGmtw0hsnYUvlljZxNTU1mDt3rhJmtLIPM+vHU8tIbpuclBhnSkWbgB/+KFy/wzgtCvh8HXsgtSdQXyx8Dyqjggeof3NyTNH/DhL9O0AUFfRvRx/0gHycFzxA/dtbi/pXD3rA3lqJ4gHq3119OHGfhrbv+f1+ZGdno7q6Gscffzzeeeed3ZZj3XnnnbjrrrsQiURMa9YpvLB9r5lQUwhHvXoUFm5bCAAY3Wc0llyxBH4fz8RPSEq+B4rnAvv+o+3r1euBj/cBfh8C/JJPVYg2AXVbgawh+u+hAmDl7ej/u89ie6BmM7DmEWDsk0bvhBClcct3ACFGoQeIl6H+iZeh/kksLN2+BwA33HADbrrpJnzxxRc47LDDsGnTJqOliEKkJ6dj5nkzsWe3PQEAywuXY0l+x1s1icKk5La/fa9mI+DzA6F8+Zpli4Ef/6/199qtQMaAjnPS3LNSihBCCCGEEEKIORielPL7/XjooYfwwgsvYP369TjkkEPw7bffmtmbcpSVlcW85qZHYfbI6IFbxt3S8vuHaz5s+bm0tBQvvvgiSktLHeisFav7MLN+PLWM5LbJSY6xfa9mA9DjMFRs/1Gofpua1b8CpT+0Xqz8GcgZ0bEHkjL1FVVbpgPhkPC9qIgKHqD+zckRjRWJc9N3QEeooH87+qAH5OO84AHq395a1L960AP21koUD1D/7urDifuMe0/WpZdeii+//BLRaBTHHnssXnzxRTP6UpJAIBDzms/na/N3onPqXqfCB/1ePlr7UcvrSUlJ6NatG5KSJLd8mYzVfZhZP55aRnLb5MSalKreAPQ+CsmN+UL129SsXg+kdAVChfrFskVA94M698CIW4C1/wYqVwnfi4qo4AHq35wc0ViROLd9B8RCBf3b0Qc9IB/nBQ9Q//bWov7Vgx6wt1aieID6d1cfTtyn4TOlpk6dittvv73ltQ0bNuCUU07BunXrcOONNyIjIwP33HOP5WdKffLJJ7jrrruwcuVKZGZmYvz48Xj//fdbrm/ZsgXXXHMNZs+ejfT0dJx//vl4+OGHkZKSIvweXjpTamfGvTgO32/9HgDw659/bdnSRxIITQPmTQYmzGj7+re/A/a+HiiaA+x/e7upMZl/LtBtDNBlb6D/acCck4CJn6D/gAGde2DTa4A/FdjjHEO3Q4iquPE7gBAZ6AHiZah/4mWofxILy8+U2pWhQ4fihx9+wNFHH41HHnkEjz32mFmlYzJ9+nRMmTIFl1xyCVasWIHvvvsO559/fsv1SCSCk08+GbW1tZg/fz7efvttTJ8+HTfddJOh93PDoe0yTN57csvPH63RV0tFIhHU1tY6PhZW92Fm/XhqGcltkxPrv1hE6oEueyNas6k1NhwCGiti1mxc/FdE558PNJQAfY4Gyn4AIo1AICX2++xK5mD9PKsERgUPUP/m5IjGqvCZq4IqY0EPmJNDD8ihyjhQ/+bkUP/yqDIW9IA5OfSAHKqMQyLpXxRTH6nWpUsXfPbZZ/jTn/5k+SMEw+EwrrvuOjz00EO46qqrsNdee2HvvffGWWed1RIza9YsrF69Gq+//jpGjx6NY445Bo888gief/55VFVVSb9nSUlJzGtu3Eu786TUh2s/BAAUFxfj4YcfRnGxs4dWW92HmfXjqWUkd7ecXRdDVq4GMvoDqT3RWLm1NXb5TcCCi9rGr5wK/PIoiouLsWH5xyjvfjaQ1hvI3R+o+AkIbQMyBgIQ9EDWkISflFLBA9S/OTmisSJxbvwOaA8V9G9HH/SAfJwXPED921uL+lcPesDeWoniAerfXX04cp+aRSxatEibO3euVeW1H374QQOgvfjii9qoUaO0Pn36aCeccIL2888/t8Tcdttt2siRI9vkBYNBDYA2e/bsmLXr6+u1ysrKlj9bt27VAGhFRUUxc/Ly8jQAWl5eXvw3pxDD/zNcw1Ro/jv9WnFNsRYKhbQ1a9ZooVDI0b6s7sPM+vHUMpK7W86cUzQtXN8a8MNVmlb+k6ZpmhaefYq2ZvVKrb5ouaYtuFjTVj+kaev/p8c1lGvavLM0be6pWigU0qo/ntS2jzknaVrBV5q2+mFN0wQ9EI1o2pyThe9FRVTwAPVvTo5orEicW78DdkUF/dvRBz0gH+cFD1D/9tai/tWDHrC3VqJ4gPp3Vx9m1q+srNQAaJWVlR3GGTpTSgXefvttnHfeeRg4cCAeffRRDBo0CI888ghmzZqFdevWoVu3brjiiiuwefNmzJo1q01uamoqXn75ZZx33nnt1p46dSruvPPO3V5/4YUXkJGR0W7Otddei2AwiG7duuE///lP/DeoCG+VvIWZ5TMBAFf0vgITcyY62xCRZpj2BULohm2+g+DTIhiPh/GNT3+64n7aeyjAKORhGfIxGkEMxQQ8iAW4GjnYim7YiJ5Yi299N+NI7WF867u5pe5o7TVEkYQghmCr7xBhD4zTHsdSXIx6X67Vt06Ibbj1O4AQUegB4mWof+JlqH8Si7q6Ovzxj3/s9Ewpy1ZKGeWOO+7QAHT4Z/Hixdobb7yhAdCeffbZltz6+nqtR48e2jPPPKNpmqZdfvnl2nHHHbfbeyQnJ2tvvfVWzB5irZTKz8+PmePWGeLvt3yvYSo0TIV22lunaTU1NdrixYu1mpoaR/uyug8z68dTy0jubjl1hZr27e/1n4vmadpPd7fEhjZ+pG2Zdb0WnnWUpkWj+ovrntG0rTP0FVAFX2na3FO1mqpyLfjRxLZ9bHpL0z4aommlizRNk/BA4VxNW/Qn4ftRDRU8QP2bkyMaKxLn1u+AXVFB/3b0QQ/Ix3nBA9S/vbWof/WgB+ytlSgeoP7d1YeZ9UVXSgmfKRUIBKT/GHmM4LXXXotffvmlwz/77bcf+vbtCwAYMWJES25qaiqGDBmCLVu2AAD69OmDwsLCNvXLy8vR1NSE3r17x+whNTUVXbp0afMHAKqrq2PmaDsWnGmJufAsJof0PwS9M/Wx+nLDlygMFuLTTz81dCaXmVRVVVnah5n146llJHe3nPTeQLgaiDYB+Z8CeSe1xFYkDYe25X3UdD229bDy3P2Ayp+B4DKg62ggkIG6opX4dVtd2z56HKKfD5W5BwAJD/SeAITrEvZsKau1p0IPrtK/CbEicW79DtgVFfRvRx/0gHycFzxA/dtbi/pXD3rA3lqJ4gHq3119OHGfwtv3hg8fDt8uT9gqLS1FWVkZ9t5775h5v/zyS3wdxqCqqgq9evXCU089hcsuuwwA0NTUhP79++Puu+/GFVdcgc8++wynnHIKtm3b1jKJ9c477+Ciiy5CcXFxx0vIdnmvzh5l6OZHYV4x8wo8v+x5AMCHv/8Qk4dP7iSDKMeK24D+pwErbwMmfgr4OpiPbqwAFl8NNJQBR30BLL0R6HoAEMoH9v17a5ymAR8NAiZvBnw+OQ+s/Q+QPRTIO9GEmyPEedz8HUCICPQA8TLUP/Ey1D+Jhcg8CgAIL2Vas2bNbq9NnToVd999t2UTTx3RpUsXXHXVVbjjjjswYMAA7LHHHnjooYcAAGeffTYA4LjjjsOIESMwZcoUPPTQQwgGg7j55ptx+eWXC09IEf0pfM2TUh+t/YiTUolIz3HAxpeArKEdT0gBQEouUL4c6H+G/ntGP6BsEdD9kLZxPh8w6fPWFVYyZA8DqtcC4KQUIYQQQgghhHgV4e177bHryim7eeihh3DuuediypQpOOigg/Dbb79h9uzZ6Nq1KwB9y+Enn3yCtLQ0jBs3Dueccw5OP/10PPzww4beLxgMxrzm5kdhHj3kaGQmZwIAPl77MV577TWUlZU52lNZWRlef/11y/ows348tYzktpvT4zBgwwvAwLPE6mcOAgacqf+c3g/R397DR98X7x6Xs0/Lj1Ie6DIMqP5V9JbE2PaR/sdirNaeCj24Tv9xxorEufk7YGdU0L8dfdAD8nFe8AD1b28t6l896AF7ayWKB6h/d/XhxH3KH/qkEMnJyXj44Yc7nGQaOHAgPv74Y1Pez+lJOKdIS0rDof0PxdebvkZJqAT1SfXw++Oaz4wbv9+P1NRUy/ows348tYzktpuTkgMMuQToOV6s/qEvA2m99J9z9kHDgAvRuGUP88Y7YyBQu8WcWs1UrgKq1gL9rV3JZ7X2VOjBdfqPM1aFz1wVVBkLesCcHHpADlXGgfo3J4f6l0eVsaAHzMmhB+RQZRwSSf+iCJ8p1R533nkn7rrrLkQiETN7Ug6vnykFANd9dh2eWPQEAODrC7/GUYOPcrgjohrSHph7KjBxpnkNLPkzUDIfOHG5eTUJEcTt3wGEdAY9QLwM9U+8DPVPYiF6ppS3pzslcfuSxI7Yt9e+LT+vLFjp+FhEo1E0NjZa1oeZ9eOpZSRXJkc01urxNoVQIZDaw/K3UWEsqH9zclylf5tQZSzoAXNy6AE5VBkH6t+cHOpfHlXGgh4wJ4cekEOVcUgk/YvCSSkJiouLY15z+17afXu2Tkq98eUbKCoqcrAboKioCPfdd59lfZhZP55aRnJlckRjReIc90C0AfCnWf42VmtPhR6of/k4x/VvEyro344+6AH5OC94gPq3txb1rx70gL21EsUD1L+7+nDiPoXPlGpvQqampgYAUFJSgli7AHv16mWwNfXIycmJea35vCm3njs1oueIlp+j3aPIzc11rhkAubm5OPPMMy3rw8z68dQykiuTIxorEqeEB/xJQLQJ8Cdb9hZWa0+FHqh/+Tgl9G8DKujfjj7oAfk4L3iA+re3FvWvHvSAvbUSxQPUv7v6cOI+hc+U8vv97QpN07SYAvT5fAiHw/F1qAA8U0on75E8FNQUoFt6N5T+tdT1//AQORw9U0rTgHmTgZSuwIGPAandzKlLiCBe+A4gpCPoAeJlqH/iZah/EgvTz5QaP358u38mTJgQ89qRRx5pys2oQigUinmteW4vjnPjlaf5XKlgKIjfyn5ztJdQKISVK1d2+JmoUj+eWkZyZXJEY0XiDHnALL80VQHJXYDkHKCpEmisBMJ15tTeBau1p0IP1L98nBe+AwA19G9HH/SAfJwXPED921uL+lcPesDeWoniAerfXX04cZ/Ck1Jz587FnDlzpP+4icrKypjXvGDGnc+VWrx5sYOdABUVFfjggw9QUVGhfP14ahnJlckRjRWJk/ZAIBWINorFdkaoAEjvq09MNVUBG/4HbJlmTu1dsFp7KvRA/cvHeeE7AFBD/3b0QQ/Ix3nBA9S/vbWof/WgB+ytlSgeoP7d1YcT9ym8fW/OnDkYP348AoGA1T0pR/Oys4qKipjnSnlh2eLzS5/HFR9fAQD49wn/xl8O+YtjvWiahkgkgkAgYMk2QjPrx1PLSK5MjmisSJy0BxZcBIx5XN9yFy9Fc4DgckCLAD0OAba8pz+Jb//b46+9C1ZrT4UeqH/5OC98BwBq6N+OPugB+TgveID6t7cW9a8e9IC9tRLFA9S/u/ows77o9j3hg86PPvpodO3aFSeffDImT56M448/HllZWXE1mWh4/Qyl5u17ALC6ZLWDneifRVKSsHwdrR9PLSO5MjmisZaMdyADCNeaMynVvFKqqUrfule7GQjXxF+3HazWngo9UP/x9+FWVBkLesCcHHpADlXGgfo3J4f6l0eVsaAHzMmhB+RQZRwSSf+iCG/fe/PNN3Hcccdh5syZOPvss9GzZ0+cdNJJeO6555Cfn29lj8pQXl4e85oXHoW58xP4VhasdLAT/bN45513OvxMVKkfTy0juTI5orEicdIeSMo079ynuq1AxgCg6wHAin8A22cC9SXm1N4Fq7WnQg/Uv3ycF74DADX0b0cf9IB8nBc8QP3bW4v6Vw96wN5aieIB6t9dfThxn8KTUueeey7eeustlJSU4IsvvsBll12GVatW4aqrrsKAAQNwyCGH4L777sOqVaus7NdR3L5PtjNy03LRJ7MPAGBNcI2j49G8rNCqHsysH08tI7kyOaKxlox30o6VUmZQswnIGgz0OBTY7zZgsnUH8VutPRV6oP7j78OtqDIW9IA5OfSAHKqMA/VvTg71L48qY0EPmJNDD8ihyjgkkv5FET5TKhbLly/Hhx9+iBkzZmDFihXw+XwYPHgwTj/9dJx22mk44ogj4PcLz30picheSK/spT3utePw5cYvAQAFNxWgT1YfhzsiqiDtgdUPAD2PAHqOM/6mDUHgx1uA+iJg/IeAb6d/a+aeCkycabw2IRJ45TuAkFjQA8TLUP/Ey1D/JBaiZ0rFPVs0evRo3HnnnVi+fDk2b96Mxx57DIMGDcITTzyBSZMmoXfv3rj44ovjfRuiCDs/gW9VsXtXxREbCMS5UqouH5hznL5KKri07YQUAPh8QPOcuxYFQkXA91P0A9FVIRpxugNCCCGEEEIIcQxTlzANHDgQf/nLX/DVV1+hpKQEr776KiZNmoQPP/zQzLdxjMLCwpjXvLKXtl9qv5afV5U4NylVUFCAO++8EwUFBcrXj6eWkVyZHNFYkThbz5RqrASWXAuM/Q8wYSYw8dN26mcBBZ8DdduBH/+unzO1+XX9TxzErY1P9gVqNgIFs4CZQ53pwcb61L+7sFp7qvRBD8jHecED1L+9tah/9aAH7K2VKB6g/t3VhxP3admx6jk5ObjgggtwwQUXoKmpyaq3sZWOlpw1P5nP7U/oO7D/gS0/O/kEvpycHJx66qnIyclRvn48tYzkyuSIxorESXsgnpVSP/4fsPef9TOkAP2A811J6QbMPQk46L9AQzEQ2g7s+0/9CX1xEJc2NA2oXA3UlwJli4BaY2dfUf/m5Diq/wTFau2p0gc9IB/nBQ9Q//bWov7Vgx6wt1aieID6d1cfTtxn3GdKNTN//nwsW7YM0WgURx55JMaMGWNGWSXgmVKtVNRXoOsDXQEARww8At9e8q3DHRFVkPbA9o/1VUzDrpR/s28mA0e+D/gDsWNW3g78fDdw8PP6iqngEmD/u4CCz4Bxb8m/pxl8cRhQthDIHQlUrAT8qcC59c70QkzFK98BhMSCHiBehvonXob6J7Gw5EypZ555BoMHD0ZWVhYmTJiAn3/+GY2NjTj11FMxYcIE3HDDDbjppptw8MEH48orDfwfTcUJhUIxrzXP7Tl9Gr/VpGqp6J3eG4B+ppRT9xsKhfDLL790+JmoUj+eWkZyZXJEY0XipD2Q1geoj70ltkO0aMcTUoC+Iiq1p34IeiSkr0rKHAg01Rh7zx1IfyaReuDLI/Wfq9bof9cXAoG09ld4WdGDg/Wpf3dhtfZU6YMekI/zggeof3trUf/qQQ/YWytRPED9u6sPJ+5TeFJqxowZuPrqq/Hbb78hLS0N3377Lc444ww88MAD+OSTT3DEEUfgxhtvxMUXX4ycnBy88MILeO2116zs3XYqKytjXvOKGSsqKpAVygIAlNeXo7DG4KSCCX28++67qKioUL5+PLWM5MrkiMaKxEl7ID1PXyklQ/mPwJrH9UPMO2PUA8Bx3wP1xYAvAGQMAFK7y71fOwiPb912/RD2SAgoma/30bQjJ1wHnFMHpPaytgeDUP/ycV76DrBSe6r0QQ/Ix3nBA9S/vbWof/WgB+ytlSgeoP7d1YcT9ym8fe/444/H/Pnz8c0332Ds2LFYunQpJkyYAL/fj0svvRSPP/54S+yWLVuw33774cADD8TcuXMtat0+mpedlZeXIzc3t90YryxbjEajuP6z6/HkkicBAF9N+QpHDzk6ZnxtYy1+LPwRY/PGIjUp1dQ+GhoakJqaCr/f1PP6Ta8fTy0juTI5orEicdIeiEaAb88EJnzUeWwz2z8BNr4MRBuACTM6jw/XAj/8Uf870gAc+hKw6Epg4kzx99y1bdHxXXwNkDUEGHQ+8EEecNwCYNZhwF5/AX59CjgvDMw91VAv1L85OY7qP0GxWnuq9EEPyMd5wQPUv721qH/1oAfsrZUoHqD+3dWHmfVN3763bNkynHbaaRg7diwAYMyYMTj11FNRW1uL6667rk3swIEDcfrpp2PlypUG21cTJ8WnCn6/HyP7jmz5fWVR+59xaV0p7phzBwY+PhBHvHQERj07ChvLN7aJKasrQ3VDteE+0tPTLftMzKwfTy0juTI5orGWjLc/oG/Dk6GpCij9HkiO/Y9aG5IyW7frjX0SSO8jtsqqA4THovArIJSvb98DgOV/08+S6jYa0CL29KBAferfXagyFvSAOTn0gByqjAP1b04O9S+PKmNBD5iTQw/Ioco4JJL+hd9TNLC8vBxDh7Z9fPmQIUMA6JNQu7LHHnugqiq+p1ypRnl5ecxrXnkUZnl5OUpWlbT8fuOsG3Hw8wfjrm/uwhM/PIEbPr8Bk9+ejIGPDcRd8+5CMBQEAKwpXYNDXzgUC7YuwJL8JTjxjRPR46Ee6HJ/Fwx7chjOevcs3PD5Dbhn3j14funz2Fq5tdM+3n///Q4/k3jv06z68dQykiuTIxorEmfIA7ITRE1VgM8P9DxSImnHYtAue+m5cSI0ZtGwfn5V86RUWi+gfDkw4u9AIL01zuAEGfVvTo7j+k9ArNaeKn3QA/JxXvAA9W9vLepfPegBe2sligeof3f14cR9JokGRqNRpKSktHmt+fdAYPcDh5OSkly3r9Rt92OEaDSKbk3d0C2tG4L1+oTT4vzFWJy/uN34JH8Semb0REFNAUrqSjD+5fEIR8NtYtYH12N9cH2b1/w+PybvPRlnDD8D26q2YVPFJozNG4srxlzR0kdVVZVl//iZWT+eWkZyZXJEYy0bb38yEGkEAimdxwL6pNThbwC9xou/R1IG0FC60ws+fYWWwQkqobGI7DgvqqlK32q455X65FR6b6Bpp9WBBv9Nof7NyXFc/wmIKmNBD5iTQw/Ioco4UP/m5FD/8qgyFvSAOTn0gByqjEMi6V8U4TOl/H4/pk6dittvv73ltTvvvBN33XUXIpHdt6J0dC3RENkL6ZW9tM1sKt+EF5e/iJnrZmJF0YrdrmelZOGy0ZfhxsNuRHZKNs6adhZmb5rdJmZgzkD0zeqLlUUrEQqLne4/56I5mDhoohm3QEzGkAcWXQXsdxuQ0U8sfuXtwIAzga6jxBtbORXY9Cowecf20fnnAof+T9/aZxWhAmDlHfrf+/0TKJoN7PNXwJcEFH8DfD0JOF8zfKYUUQ+vfQcQsiv0APEy1D/xMtQ/iYXomVLCK6UA4Oeff8a7777b5ncAmDZt2m6riJqvEXcyuOtg3H3U3bj7qLuxtXIrvt70tf567mAM6ToEedl5CPhbV9B9dsFnuOaTa/DC8heQl52HW4+8FZcdeBlSAimIRCPYWL4RxbXFKAuVYWn+Ujy/7HkU1BTs9r5v//w2J6XcRGpP/al0opNSTVXi50k1s99twLArW39PygDCIWsnpcJ1+vsA+tP3/Gn6qjAASOvdGhfn+VaEEEIIIYQQkshI7V+ZPn06zjvvvJY/06dPh6ZpOPfcc9u83nzNbRQVFcW85pW9tIWFhfjXv/6FwsLCltcG5AzAxaMuxsWjLsaEQRMwIGdAmwkpAEgJpOD5055H/o352HzdZvzpoD8hZceWrYA/gGHdh2HcwHE4be/TcOekO/Hb9b9h+jnTcd/R9+GNM99AepJ+Ds/7v7yPcDTcbh9W36cTtYzkyuSIxorEGfJAWk+goaTzuGaaqoAkyUkpfwBI79v6eyBD315nEKExC9fqk15pvYCajUBgpydPpvVq/dng9j3q35wcx/WfgFitPVX6oAfk47zgAerf3lrUv3rQA/bWShQPUP/u6sOJ+xReKXXHHXdY2UdCkJWVFfOab8eKB5/LVz5kZ2fj6KOPRnZ2tqH8vtl9Ow8CkBxIxpn7nNny+/u/vI/pv0xHSV0Jvv3tWxzc6+C4+uiMeO/TrFpGcmVyRGNF4gx5ILUXUC85KZUc52eSlKGvZDKI0Jg1T0r1ORrYMg3od0rrtZSuQHJO6+/RptZVVGb2EAfUv3wcvwPc1Qc9IB/nBQ9Q//bWov7Vgx6wt1aieID6d1cfTtyn8JlSXoZnSjnP2z+/jfOmnwcAuHrs1Xjq5Kcc7ojsiiEPFH4NVPwEDL9eLP6b04AJMwz3CEA/Y6r/aUC3A9u+Xr4S6DoyvtrNbPsIqNkEDLoA+LAfcMhLwOALdo970wd0PxQ4foE570scg98BxOvQA8TLUP/Ey1D/JBaiZ0rF/3x0D9HQ0OB0C47T0NCA9evX2z4WJw87Gak7tkC9v+Z91IXqLO3DzPuMp5aRXJkc0VjLPvfmM6XsJNZKqR8uA6KdP5hBaCzmn6OfHZXWU18J1dHqrrKFQERuXK32IfUffx9uRZWxoAfMyaEH5FBlHKh/c3Kof3lUGQt6wJwcekAOVcYhkfQvCielJCgvL495zSt7aYPBIN544w0Eg0Fb3zc7NRsnDjsRAFBYU4gvfvnC0j6CwSBee+M1nPXOWRj0+CAs2r4orlpGezWSK5MjGisSZ8uZUmYs7AykA41BoGodsPTG1tdrNuiHkndCp2MRqQfyTgYGndf6WmrPjovKjIFID3FiZn3q31049R1gdx/0gHycFzxA/dtbi/pXD3rA3lqJ4gHq3119OHGfQtv3hgwZYqy4z4cNGzYYylWJ5mVnwWAQXbt2bTfGK8sWI5EIamtrkZmZiUAg0HmCibyx8g384YM/AADOGH4Gnjz6SfTp2seSPiKRCGasnoEz39fPtTpu6HH44g9fGK5ldMyM5MrkiMaKxBnyQDQMzD4WOOpLwN/JEXfRCPDtmcCEj8Rqx2LD/4Af/gikdNMnp87XgIYgML07cGaxPlHWAZ2ORfV6YN1/gDGP67+/6QNOWQd0GbZ77Js+IGc/4LBXgW6jhW/Bah+aWZ/6dxdOfgfY2Qc9IB/nBQ9Q//bWov7Vgx6wt1aieID6d1cfZtYX3b4ndNB5NBrd7eCyxsZGFBQU6EWSktC9e3eUlZUhHA4DAPr27YuUlBSj/SuJk+JThUAg0KGgrOTUvU9FSiAFjZFGfLDmA3y75Vv866h/4fIxl5v+XoFAAF9u+bLl9682foXtVdvRr0s/Q7WMjpmRXJkc0VjLPnd/kn6+U/6n+t8d0VDS9sl1Rknppv+d2gPIHKT/XL1e/1tgpVSnY1G7BcgY0Pa1tB6x4zMHAqF8AOKTUlb70Mz61L+7UGUs6AFzcugBOVQZB+rfnBzqXx5VxoIeMCeHHpBDlXFIJP2LIrR9b/Pmzdi0aVPLn+XLl6Nv374YP348vv32W9TX16OgoAD19fWYN28exo8fj7y8PPz4448Wt28vlZWVMa81Lzhz+7nxlZWVmDlzZodjYRVdUrvg3yf8GwGfPjlYWleKKz6+Ap/9+pnp71VeUY53VrzT8ntUi+KNn94wVCueMTOSK5MjGisSZ9gD3cYAVWs6jwvlA+nyk4K70XWU/gS8U9cC6Xn6a5Wr9J8FJqU6HYvf3tS37zVzzDwgObf92BG3AMNvBAo+l7oFq31oZn3q3104+R1gZx/0gHycFzxA/dtbi/pXD3rA3lqJ4gHq3119OHGfhs6UuuWWW1BfX4+vv/4a48aNg9+vl/H7/TjiiCPw1Vdfoa6uDrfccoupzTpN8yqw9vCKGZuamlBYWIimpiZH3v+qsVfhl2t+wWlDW1fV/Gfxf0x/n0XbFiHY1HYf7SsrXjH0+cYzZkZyZXJEY0XiDHsga2jrSqWOCC4DMvLkardH5iBgj3P1n7Um/al7P1wK5Ixo/wD0Xeh0LEIFQM7w1t97HQnEekTuqPuBrqOBpmqpW7Dah2bWp/7dhdPfAXb1QQ/Ix3nBA9S/vbWof/WgB+ytlSgeoP7d1YcT9yl0ptSu9OnTBxdffDHuv//+mDG33HILXn311ZYtfomMyF5Ir+ylVYVINIIhTwzBlsot8MGHzddvxsCcgabV//tXf8f93+n6TvYnoymqm3LBZQtwaP9DTXsfN2HYA1oU+GYyMHFm7Jjq9cDS64Bxb3f8JDtZvj4GKP0OOOhZoG4LkDFQ30aYkmusnqYB8yYDE2aI5zTVAIuuAMa9aew9iRLwO4B4HXqAeBnqn3gZ6p/EQvRMKUMrpaqqqoSW+Tm9tI24l4A/gD+O/iMAQIOGF5a9YFrtJflL8OrKVwEAfp8fd068s+XaVR9fhcZIo2nvRQD4/AA6mBuPNADfXwCMfdLcCSkAmPix/vfA3wFJ2cCaR4H3ugLF84D1z8vXi9TrT/eTIZAKRL39iF1CCCGEEEKINzE0KbXvvvvi7bffjvlkvV9//RVvv/029ttvv7iaU43i4uKY17zyKMyioiI89NBDKCoqcryPhoUNLedL/W/5/xCOxt5eKcoj3z+CQ144BPnV+QCAcXnjcONhN2L/XvsDAFYUrcCdc+/sqES7vRodMyO5MjmisSJxcXnAn6JPPrVHfRHQbSyQZewpoB0SSAMOfg5IygSS0oGKFfrr888B1j3ZbkqHYxGuAZKy5HrwJQHRXZbHfj62wxSrfWhmferfXaj0HUAPxJ9DD8hB/dtbi/pXD3rA3lqJ4gHq3119OHGfhialbr31VlRWVmL06NG44YYbMH36dHz77beYPn06rr/+eowZMwbV1dW49dZbze7XUTIyMmJea3464a5PKXQbmZmZOPTQQ5GZmel4H8cffjxOGHICACC/Oh+frPskrpofr/sYN395M6Ka/g/q0KyheOqEp5CalIpXz3gVyf5kAMD9392PBVsXSPVqdMyM5MrkiMaKxMXlgazBQO3m9q/VFwFpveVrijJ4iv53YIe/R/wfkLMvkLFHu+EdjkW4Vp/gkqG98QouBcKxD1232odm1qf+3YVK3wH0QPw59IAc1L+9tah/9aAH7K2VKB6g/t3VhxP3aehMKQB49dVX8ec//xnV1dVtBKhpGrp06YInnngCF154oWmNOgnPlFKXz379DCe9eRIAYGzeWHx/6fdIDiRL19lYvhFjnhuDivoKAMDfDv8b7jnqnja17p13L26do0+0Dus2DMuvXI7MFGf/UVKJuDzw63/185z6nbz7te0fA3XbgWFXmtNoRz0svgY49EWg8CsgGgbGPqE/qc8vqKmKn4HNbwCj7pN7729Oa3sO1Zs+4JS1QJe95OoQx+B3APE69ADxMtQ/8TLUP4mFpWdKAcCFF16Ibdu24ZVXXsENN9yASy+9FDfccANeeeUVbNmyxTUTUjvT2MizhBobG7FlyxbHx6K5j4kDJmJ4D/1JZ0vyl2Dq3KmG6v35sz+3TEj9bp/f4a7xd6Fge0Gb+7zliFtwSL9DAAC/Bn/FlR9fKbRlMJ4xM5IrkyMaa/nnnjUUqNkAFM0Btr7f9prVK6V27mHUfUBqLyC9L5A1CPhqIrDiH/oB5vUlADoZi3Ct/PY9QN+6GCrcpVZNzHCrPw8z61P/7kKVsaAHzMmhB+RQZRyof3NyqH95VBkLesCcHHpADlXGIZH0L4rhSSkAyM7OxpQpU/Dwww/j+eefx8MPP4wpU6Z0OAuWyASDwZjXvLKXtqysDC+99BLKysqU6KOivAKvnfEakvxJAID75t+HOZvmSNWqbqjGlxu+BAD0y+6HFye/iGAwuNt9JvmT8OoZryI9ST/I+o2f3sApb56CmsbYkwc792pkzIzkyuSIxorExeWB3P2B7Z8AP98DrHu67TW7JqX6HgeMuAXoPhYY8Dsgcw+g6hegcg1Q/Svwfi8AnYxFuEZ++x4AFM4CPuirP4lw51oxsNqHZtan/t2Fat8B9EB8OfSAHNS/vbWof/WgB+ytlSgeoP7d1YcT92l4+56XaF52VlZWhm7durUb45Vli+FwGBUVFcjNzUVSUpIyfTz43YO45atbAAC9MnthxrkzcEj/Q4RqzVg7A5PfngwAuHrs1Xjq5Kc6vM9pq6bhDx/8oeUpfOftdx7e/N2bwr3Gc59m54jGisTF7YHSRQCiwC8PA4e/CQRS9NeXXAfs/Rcge6h8zXjY8D9g6XVAr0nAfv8EZh0GnK91PBbbPgLqi4E9L5d7rzd3bIE+K6hvF3zTB0z4BOh3UrvhVvvQzPrUv7tQ9TtA5fr0gHug/u2tRf2rBz1gb61E8QD1764+zKxv6va95557DsuWLTPcTLz5quCk+FQhKSkJPXr0cHwsdu3j5sNvxtGDjwYAFNcWY8LLE/D6ytd3y6sP1+PrjV+3PF0PAL5Y/0XLzyfseUK79Xfm7H3PxldTvkJOag4A4K2f38LbP78t3Gs892l2jmisLZ97j4OBHofq29/C1a2vN1UCKbnWvW8sBl8InLZRP4i85Hv9NU3reCwKvgB6HmHs/QacqW//a6Zua8zQmD2Y8ATKDuvbXMtT+k8QVBkLq/ugB+Lvw42oMg7Uvzk51L88qowFPWBODj0ghyrjkEj6F0VoUuqqq67Cxx9/bPhN4s1XhaqqqpjXmhecuX3hWVVVFb744osOx8KJPvw+P9456x2M32M8AKAh0oApH0xp2ZYHAJvKN+Gg5w/CMa8dg36P9sP+/90f01ZNw+cbPgcAJPuTMWnwpHbr78qRexyJ/57835bfr/7kahTXFgv1Gs99mp0jGisSZ5oHkrLabl2L1LU+Gc9O/MlAWi+gsQJYfhPgSwKaqjoei7ptQJfhxt4vc7A+KdW8hW/xVa3XIvX6uVY7iNnD2/KH/LeHmT6n/t2Fqt8BKtenB9wD9W9vLepfPegBe2sligeof3f14cR9Cp8pVVFRgS1bthj64xY6OuzLK2ZsaGjAhg0b0NDQoFwf3TO648spX+LyA1u3Tt0x9w5omobvtnyHg184GD8X/9xy7efin3HOe+dgY/lGAMARA49AVkpWzPq7ct7+5+H3+/4eAFBeX4575t0j3Gs892lmjmisSJxpHkjOBpp2npSqBwJp8dWMhzH/BkY/DPQ7FWgo6XwsjDwO9/cN+llU4Tog2gTkndy64krTgHcygOCSlvDdetCiwMy99Z9LvtOfVhgHZvqc+ncXKn8HqFqfHnAP1L+9tah/9aAH7K2VKB6g/t3VhxP3KXSmlN/vh8/I/9HaiTvuuAO33357XDWcQmQvpFf20iYCUS2Kkf8diVUlqwAAz53yHG7+8mZUNeizvXt22xM5qTlYWrC0Td4DxzyAv437m9R7FdYUYugTQ1HXVIdkfzJ+ueYXDO1m89lHimCaB36+F+hztL6VDwC+OQ2YMMOcJuNh177aI55eVz8I9Dgc6HoAsOhKoKkaKFsADL9JfwLguLeBPX7ffm7ZEuCLg1p/H3oZcMgLxvoghuB3APE69ADxMtQ/8TLUP4mF6JlSQhsFL7roorgbGjVqVNw1CBHB7/Pjn0f+E+e/fz4A4IqPr2i5dvTgo/HeOe8hJzUHUz6Ygjd+eqPl2vFDj5d+rz5ZfXDTYTfh7nl3oynahNvn3o43znyj80QSm12376lCajdg85sdT0rFQ1ImMPcEYPJvgD9F3z7YUAY07njqZwdnTKG+0JqeCCGEEEIIIcRChLbvvfTSS3H/Oe2006y+F8spKSmJec0rj8IsLi7G448/juLi9s9PUqWPc/Y9B3t227PNa8N7DMcHv/8AuWm58Pl8+N9p/8PEQRMBAKP6jMLI3iOF6+/MzYffjB4ZPQAAb//8NjYEN0j12hFGcmVyRGNF4kzzQHK2vkpINTIHAeueREn+xthjEc+y5aRs/UypaKM+KZXeR3/dnwKMvFs/22oHu30ekXr976GX6X8HMo330V59h2p5Uv+KkyjfASrVpwfcA/Vvby3qXz3oAXtrJYoHqH939eHEfQqfKUWAtLTY59o0b2+Md5uj6qSnp2PkyJFIT09Xuo+AP4D/G/d/Lb9nJGfgvbPfQ3ZqdstrqUmp+HLKl/jiD1/gyylftvnsZO6zS2oXXH/I9QD0rYOPLHhEqteOMJIrkyMaKxJnmgdUXSmVdyIwfga65D/X/lg0BFtXNRmhl35IP6JN+kRU5qAddUuB9DygsbwldLfPI1IPHPgo0PsY/fdAivE+2qvvUC1P6l9xEuU7QKX69IB7oP7trUX9qwc9YG+tRPEA9e+uPpy4T6EzpbwOz5RKTBojjTjlzVOwcNtCvHz6yzhznzMte6/yUDkGPDYAtU21SEtKw+brNqN3Vm/L3k9FTPNA/mdA7WZg2J/031U5UwoAajYDax4Bxj65+7WFlwD9JgMDTjde/5vT9MmldU8Dox8Afvw7ULsJGHo5sOk1YFyMraHrXwDSegPRBmD+2cDe1wFjHjfeB5GG3wHE69ADxMtQ/8TLUP8kFqJnSnGllARNTU1Ot+A4TU1NKCgocHwsRPpICaRg1pRZqPy/SukJKdn77JreFVeM0c+uqg/X49IZl6KktgSFNYVxjZmRXJkc0VhbP/ekLDW37wFAchdEGyrbH4uGsvgmpJqJNuornfzJ+gqphlIgrSfQVNkS0ubz0DRgy7v6Ewp9O/5JD8V3xpSZnzf17y5UGQur+6AH4u/DjagyDtS/OTnUvzyqjAU9YE4OPSCHKuOQSPoXhZNSEpSVlcW85pW9tKWlpXjuuedQWlqaMH0YWUpq5D5vPvxmdEvvBgD49NdP0evhXuj3aD/87bO/4ZnnnkFpaSnKQ+WYuXYmvt/6vWV9yOSIxorEmeaBnbfvqbaQMzkbDXVl1nqg+UwpAKjbBhTPAwIZbULafB61vwGFXwKBVCBrT30b4JZ3gOr1hlsw0+fx1PKk/hUnEb8DnK5PD7gH6t/eWtS/etAD9tZKFA9Q/+7qw4n75PY9AZqXnZWWlqJ79+7txnhl2WJTUxNKS0vRo0cPJCcnu7YPo/Vnb5qN4147DhEt0ub1I/KOwIH9DsRTS55qufbB7z/A6cNPN70PmRzRWJE40zxQvR5Y9xQw5jH9rKTvpwBHTjNez2Sic05B0fDndx8LM7YZfnMasO+tQOEsYL9bgcZK4L1c4LSNwJK/ABNnAtjl8yibB8w+BpjwMdDvZKCpCpiWAxwzD+h1pKE2zPRXPLU8qX/F4XeAvbXoAbWg/u2tRf2rBz1gb61E8QD1764+zKwvun2Pk1IC8EwpIsOrK17F/331f+iT1Qcri1buNkHVzLBuw7Dq6lVIDjj3j5qZmOaBxgpg8TX6+UkNQWDZjcBhL5vVZvzsOvlUPB/IHAgsudacSal9/gaUfg+M+Jv+WrRJ38o399SWSak2bHlPn8Q7/DUgoz8QaQDeSdO3/p2xvTUuGgF+uh044N74eiTtwu8A4nXoAeJlqH/iZah/EgueKWUB1dWxz7lpnttz+xxfdXU1Zs+e3eFYuKGPeOpfeMCFyL8pH8uuXIbZF81Gn8w+LdeS/a0TUL8Gf8WLy180vQ+ZHNFYkTjTPJCS23p+UqQOSMroMNxuwuFw27GYfzaw8RVzthr6/EC0Xp+Eaqb5Z39An1jCLp9HYzkw/AZ9QgrQt/4F0vTJrJ1pKAZW/UuoDTP9FU8tT+pfcfgdYG8tekAtqH97a1H/6kEP2FsrUTxA/burDyfu09Ck1OjRo/Hf//4XVVVVZvejNPX19TGvecWMoVAIK1euRCgUcnUfZtUfv8d4fHnWlxiTPAaH5x2O+ZfOx4LLFrRcf3JRO09xi7MPmRzRWJE4Uz3g8+sTMOHa3c5TcppIJNx2LHx+IFILJJnw2FRfEhCuaz1Tqs21ZEDTJ5rafB71xUDqTtuKfT7gnDqgx2Ft8+uLhdsw01/x1PKs/hWG3wH21qIH1IL6t7cW9a8e9IC9tRLFA9S/u/pw4j4Nbd9LS0tDU1MT0tLScPbZZ+OPf/wjjjjiCCv6UwJu3yNmc8gLh2DR9kUAgPwb89E3u6/DHcWPqR5YegMw7E9A5WqgvggYdqU5TZrBN5OBI9/XVy4BwIcDgD7H6quTDno6vtrzzwX6nw6Eq4E9L2977bvzgYOfBZKzW1/TNOCLg4Bjv9MPOm/T5y7bDLd9BMw7HTjf3f+DwSn4HUC8Dj1AvAz1T7wM9U9iYen2vcLCQjz22GPYc8898eqrr2LChAnYZ5998Oijjzp+Gj0hicAxg49p+Xn2ptkOdqIoufsBlauA0u+AnuOc7qYtab31rXAt+IGNLwGpPeKv7U/Styy2t1LKn7z7lrzGciBn390npACgfLl+vlQzW97TYxf9Sc8jhBBCCCGEEIcxNCmVm5uLv/zlL1ixYgUWLVqEyy+/HAUFBbj55pvRv39//P73v8esWbPM7tVx+ChYoKSkBE8//TRKSkpc3YeZ9durdcyQ1kmprzZ9ZWofMjmisSJxpnogZ1+g4megfAWQMyL+eiZSq3XBtFcfbx2L5gmkaDj+4r4kIBKKPSml6e/R/HlUbJ7bepbUrvQ+Sp/gaqYxqE/0rX9GX4HWAVbr38pcV+hfYfgdYG8tekAtqH97a1H/6kEP2FsrUTxA/burDyfuM+6DzseOHYtnnnkGBQUFePHFF3HwwQdj2rRpOPHEEzF48GDce++9KCgoMKNXx0lJaef/KO7A5/O1+dutpKamYujQoUhNbWdlhov6MLN+e7UOG3AY0pLSAABfb/w65h5sI33I5IjGisSZ6oGcEcBvbwBdD9DPbFIIX+5+2KdPU+tYpPfW/47xlEW54oHYk1K+pJaVUs2fR+7S3wE9Yqwk2ylexw/se6v+Y13HS6ut1r+Vua7Qv8LwO8DeWvSAWlD/9tai/tWDHrC3VqJ4gPp3Vx9O3KehM6ViEQwG8corr+CRRx5Bfn5+y+vJycm4/PLL8eCDDyIjQ61Di0XgmVLECo577Th8ufFLAMC8i+fhyD2OdLij+DDdA2v+DQy5SH8an0rUbQd+mgoc8rz++zenAYe/qa9kam8bnQyLrgRSugK9JgB5J7a9tuTPwPCbgKxBra/NPRWYODNGrauApCzgwIdb+xzzhN577v7APjfF1ytpA78DiNehB4iXof6Jl6H+SSwsPVNqV7766iuce+656NevH26++WZEo1H84x//wNq1a/H222+3PK3v2muvNePtHCMcNmF7ToITDodRWlrq+FhY3YeZ9WPVOnvE2S0/X/XJVWiMNJrSh0yOaKwjn/vw69SbkAIQ9mehoXaXsUjOin9CCtBXNxV9A/RsZ4LS13qmVPPn0eEiaS0MrHkE0HaKyhoE7PsPIJQPbHo9Zqod+rcq1zX6VxRVxsIN3wFW5dID1qHKOFD/5uRQ//KoMhb0gDk59IAcqoxDIulfFMOTUvn5+bjnnnswdOhQHH/88Zg2bRomTJiAadOmYevWrbjnnnswbNgwnHPOOVi4cCFOOukkfPTRR2b2bjs8U0rfY/rUU08psZfWyj7MrB+r1qWjL8XYvLEAgNUlq3HSGyehoLpAKNes3kVjReI844GyKmxa/4s12vMlAZFafZJrV/zJgKZPSpWUlODpp55EY33d7nHN5H+u/122BAjtpKukDH2L4IIpMVPt0L9VudS/tfA7wN5a9IBaUP/21qL+1YMesLdWoniA+ndXH47cp2aAU045RUtKStJ8Pp/Wp08f7R//+Ie2adOmDnP+9a9/aX6/38jbOU5lZaUGQCspKYkZ069fPw2A1q9fPxs7s5+Ghgbtt99+0xoaGlzdh5n1O6q1LH+ZlnxXsoap0DAV2oSXJsTdh0yOaKxInJc8UPfp0fpYRCOa9s1k84ovvVHTZu7T/rUf/6lpwRUtPeSv+kwLL74hdq3PxmjaG2j9M+cU/fVQiaZ9N0V/LRptN9Uu/VuRS/1bC78D7K1FD6gF9W9vLepfPegBe2sligeof3f1YWb95nmUysrKDuMMnSnl9/tx7LHH4oorrsDkyZORlJTUac7PP/+MpUuX4qKLLpJ9O8fhmVLESuZsmoPT3zkdVQ1VyE7JRtXfq5xuyRCe8kDzWU5NVcDiq4HDY2+Fk2L534BtHwKnrtv92k93Av1OAbqN0X8v/QEo/ArY75/t1/riMKBsYevv/U4FJswAmmqA+WcBBV8A54YBf8Cc3j2Op/RPSDvQA8TLUP/Ey1D/JBaWnim1YcMGfPHFF/jd734nNCEFAPvtt19CTkjtTE1NTcxrzXN7Bub4Eoqamhp8++23HY6FG/ows35ntSYNnoTRfUYDAKobq1HbWBtXHzI5orEicV7yQFkwqI9FUxWQHPsfWGl8SUB097PFAOjb93acKVVTU4MVPy5GQ7ijsY7qB5oDQO5IPR8AAmlAfZH+c4wnBlqi/4pi47nUvzLwO8DeWvSAWlD/9tai/tWDHrC3VqJ4gPp3Vx9O3KehSam7774bM2bM6DDm008/xaWXXmqoKVWpq4t9fotXzFhbW4uFCxeitra28+AE7sPM+iK1+mT1afm5qLYorj5kckRjReK85IHy8nJ9LBorgeQc84rn7hf7mi9Jn5SKRlBbU401q1eioamDWlpEf5IfoD+Fz7fjPyD4k4CGHefjae0fYGhY/5FG/emE7dRK/uF8uVq79lG6EGiqlssxKZb6b4XfAfbW4neAWlD/9tai/tWDHrC3VqJ4gPp3Vx9O3Kfh7XtTp07F7bffHjPmgQcewD/+8Q9EIu3/l/hEgtv3iNVc//n1+PcP/wYAzL9kPsYNHOdwR/J4ygPfnKZvhStZABTPBfb9uzl1tSgQaQCS0ne/tuYxIPcAYNW9QP8zgOyhQO1mYNif2q/12YFA5kBg20dArwlARv/WbYbTcvRVXmdXAcnZ5vQO6NsPC78ETlze9vVoBPh8NHDSSuO13/QBh78BDJKf3LIDT+mfkHagB4iXof6Jl6H+SSws3b4nQn19vfDWPkK8Tt+svi0/F9YUOtgJEaZsMfDzXeaulPL525+QAgBfsr6yKbhEf3peqBDwp8SupUWBtN47fg63rpQCWn+OsVLKMI0Vep+70lQBhDt4UqAoZtQghBBCCCGEKIPhSSmfz9fu65qmYevWrfj000+Rl5dnuDEVKSsri3nNK4/CLC0txfPPP4/S0lJX92FmfZFaO2/f23lSykgfMjmisSJxXvLA1t82on7F/UDB5+aeKdURzWdKNVWhcevnwA+Xorq2oYOEKOBPBfqeCJR8B9Tt9F+uAmn61r5oBPhqgn74+U6Yqv/iAnz4+iOIhOvlc3ftI9L5pBT1by38DrC3Fr8D1IL6t7cW9a8e9IC9tRLFA9S/u/pw4j6FJ6X8fj8CgQACAf1JTVOnTm35fec/SUlJGDRoEBYvXoxzzz3XssadoKOVX82TdLEm69xCcnIy+vTpg+TkdlZDuKgPM+uL1Np5UqqgpiCuPmRyRGNF4rzkgQFJq5BW+P6OF0xcKdUROx107o/ok0iB5BirqgDAF9BXRE36FBj9MBDdaQIrkAak9tBXShXPAyp+apNqXP8asMvnn1H0Lk5Pvw8+raMDsNpntz7CnR+4SP1bC78D7K3F7wC1oP7trUX9qwc9YG+tRPEA9e+uPpy4T+EzpSZOnNgitHnz5mHgwIEYNGjQbnGBQADdunXDUUcdhcsvv7xlEiuR4ZlSxGpWFK7AqGdHAQAuG30ZXjjtBWcbMoCnPPCmD9jjPOC3t4AJHwP9Trb+PTe9pk8mfXcukD0MqFoLHPk+MOCM9uPri4FAun5mVKQR0JqApEz92if7Akld9HOmtr4HHPg4MPy6+Hv84Y/6BNfxP7S+tvxvwC8P6Suzzgoar/2mD9jvNmDkXfH3aQGe0j8h7UAPEC9D/RMvQ/2TWIieKSV86NPcuXNbfvb7/bjkkks6POjcjbjh0PZ4iUQiqK2tRWZmpqMTjlb3YWZ9kVp9s9s/U8pIHzI5orGqfO4qEIlE0Lj/40jZ5xoECr7QVyTZQfPT9wLp0BrK4AMQbaiIvdw1rVfrz4EUADudP+VPA1K76xNSAFC6AEDrpJThz1vTAOzyX8l+eUi/FG3c9UqntOkjaygQbZTLof5NR5WxcNt3gJm59IB1qDIO1L85OdS/PKqMBT1gTg49IIcq45BI+hfF0JlS0WjUcxNSAFBSUhLzmlf20hYXF+Oxxx5DcXGxq/sws75Ire7p3RHYMbmx8/Y9I33I5IjGisR5yQMPvl+B4pIS4PStQN/j7Xljf7I+KRNIh69B3+Nd3pBprFbz9r1mtryjH9y+g/j0H+O8QcgvAW7TRyBNfzKhTI5JsdR/K/wOsLcWvwPUgvq3txb1rx70gL21EsUD1L+7+nDiPoW373mZ5mVnxcXF6NmzZ7sxXlm22NDQgK1bt2LAgAFITU11bR9m1hetlfdIHgpqCpCXnYftN2433IdMjmisSBw9YDHbPgJqNgHrnwWq1ui9/K7eWA9fHwPk7g+sfVw/EyujHzDmSaDPUXpdo/e48FK9t+O+b33tTX2SKpq1J/ynrtvtzKmOaNPH7MOB7gcDB/9XPIf6Nx1+B9hbi98BakH921uL+lcPesDeWoniAerfXX2YWV90+57QpNSll14Kn8+Hf/3rX+jduzcuvfRSoSZ8Ph/+97//iXetKDxTitjBgc8eiOWFyxHwBdBwawMC/sRaHksPWMz2T4FvTgbyTgHyP9ZfO9/gf1OoXANsfFHfWpd3EtDvFCBzEJB3Ynw9tjcp9UE/IJQP9DwCOOrrHVsJDTDrcKDL3sChL8XXo0VQ/8Tr0APEy1D/xMtQ/yQWopNSQtv3Xn75Zbz88suorKxs87vIHzdRW1sb81rz3J7bF57V1tbihx9+6HAs3NCHmfVFazWfKxXRIigLlRnuQyZn59jCmkIc8MwBOOLFI1DbWBszLhb0gMX4d2x/05rQsO+9Lb0YIme4fkZV5iBgwkz9jKlIqOWy8D1qGhAqAIq/bX6h7fXGCoS7H4Efhi5EODVP3364+iGgoZ0DzzUNaKxs81KbPgS37xnVf7xx1L+7+nDiO8CsXHrAOqh/e2tR/+pBD9hbK1E8QP27qw8n7lNoUmrTpk3YuHEjhgwZ0vK7yJ+NGzda2rzd1NTEfhy5V8xYXV2Nr7/+GtXV1a7uw8z6orX6ZPZp+Xlb1TbDfeyaU1FfgZeWv4SC6oIOY++YcwdWFq3Ed1u/w+/f+z0WbluISDQi3Ac9YDHhHe837BqU9760pRfjRAGfX/8TSAci9S1XhO/xLT8waxzw7e/035sPOo80AG8lA43laEA2vv76azSGffo9/Pi3HQer70L5j8B7uW1eatOHP03vsfKXDluS+XxEY6n/VvgdYG8tM74DzIilB3Sof3trUf/qQQ/YWytRPED9u6sPJ+6TZ0oJwO17xA4e+f4R3PzlzQCAJ098EtcefG3cNRvCDTjkhUOwomgF9uy2J1ZetRLpyem7xb224jVc+OGFu71+4p4n4tMLPhV6L3rAYn59FlhyNXDejqeAfpAHnJFvvN6iK4HgUuCEJcDWD4HGMmDoZXI13vQBGQP1ia3Jm4AFFwGbXgXGfwjMOx04ZZ1+BtaBDwPTcoFog75aauxTwLCr2tYKLgU+Hxt7S+KckwB/ErB9pvFtixZC/ROvQw8QL0P9Ey9D/ZNYmLp9T4aGhgaEw2GzyxLieiYNntTy85zNc+KuF2oKYercqVhRtAIAsD64Hjd8cQPC0bb+/KXkl3YnpADgs/WfYWXRyrh7ISYw6ALg1F9bf49nQgoAok2Ab8eWwF1WSklTuxkoWwJoO5660lC24z0agR1PlURTpf4eSdlAuJ1Vp76k2PXLfwQKPhPavkcIIYQQQghJHAxNSs2fPx933XUXKioqWl4rKyvDiSeeiKysLHTp0gX//Oc/zepRGYLBds5B2YFXHoVZVlaGl19+GWVlZa7uw8z6orUO6H0AuqZ1BQDM3TwXUS1qqI/NBZsx9qGxyPhXBu7/7v42155d+iz+9PGf2vR271v3dljvpeUvCfVBD1hMchaQNcS8HroMB7IG6T8H2p4pJVzfF2h9ml7FT4AWBgacpZ8z5U8BmipQ19DU9nzBpEwg3M4e9WjTbi8191FRWa3XLZzV6W3JjI1oLPXfCr8D7K1lJJcesA7q395a1L960AP21koUD1D/7urDifs0NCn1yCOP4JVXXkFubm7LazfddBO++OILDBkyBLm5ubj//vvx3nvvmdWnEvgkHmXuVvx+P7p06QK/3/RFdkr1YWZ90VoBfwATBk0AAARDQawsWmmojytnXYmldUvbvNYltXW55Is/vojyUHlLb43JjR3We/2n1xHWwkp87iqgggdM6WGfvwKHv6H/vMtKKeH6/p0eE9tQAkTDQEZ/oPJnfVtfYzl8/qS2y3UDGTEmpXasgtppR3lLHwgDOfsCPY/s9LZkxkY0VoXPXBVUGQs3fgeYlUsPWIcq40D9m5ND/cujyljQA+bk0ANyqDIOiaR/UQydKTV48GBMmDCh5b9+19XVoUePHhg/fjw+//xzVFdXY+TIkRg8eDBmz55tds+2wzOliF08+cOT+MvnfwEA3D3pbtw6/lap/LK6MvR4qEeb1yYNmoRZU2bhog8vwps/vQkAeO/s9/C7Efrh1OdPPx9v/fxWm5yAL4CRvUdieeFyAMD0c6bjzH3ObPc9N5ZvxB/e/wNW3LICdWV19EAiUr4S2PIOcEDHq+Z2Y1pXfeVTaDuwz81A9Xog72Rg+V+B/qcBfY4BajYD+98GvOkHoAG5BwA9jwAO+k/bWoWzgdlHA+fUAUm7nHtW8j1Q/A2w9QMguJhnShGiIPQA8TLUP/Ey1D+JhaVnShUXF6Nfv34tvy9YsAD19fW45JJLAADZ2dk45ZRTsGbNGiPllcXtSxJFiEajCIVCjo+F1X2YWV+m1knDToIP+oq8xxc+jspQpVQfi/MXt/x86ahLsfjyxZg1ZRaS/Em4YP8LWq59tfGrlt7Wla5rU+MPI/+Azy74DPcf07r1773V78Xs47rPr8OCbQtQ11gn1GOio4IHTO9hl5VSwvW1sD4hBQB12wEtAqTkAE0VQGoPoLESUfgRCoWgNZ8tlZQJRHZZKdVYCYR2nJG1/rnd+6jdqm8HbO8sql2QGRvRWBU+c1VQZSzc+h1gRi49YB2qjAP1b04O9S+PKmNBD5iTQw/Ioco4JJL+RTE0KZWWltbmEYHffPMNfD4fJkyY0PJaVlYWysvL4+9QIYqLi2Ne88pe2qKiIjz44IMoKipydR9m1pepNbTbUJy///kAgLJQGR6Y+4BUH4u3t05Kjek2BmPzxiLJrx8gPWGPCUj26wdbz1g3A/XhehQWFmJV4SoA+uqoX//8K1474zUcO/RYTNij1c/ritfF7OPjdR+3+Z0eSMAedjlTSrh+z3GtPzft+E5o3tKXlAmEq1FTW4sHH3wQDd2PAZKyWs+U2nmR7rIbgAVTdvx8fZs+HnrwPvi/PxcoW6RPegFtc3dBZmw6jI02tRysLlKT3wHu6sOp7wAzck3zgGScFzxA/dtbi/pXD3rA3lqJ4gHq3119OHGfhial9txzT3z++edoaGhAU1MT3nnnHYwYMQJ9+vRpidmyZQt69eplWqMqkJOTE/Na83lTbj93Kjc3F+ecc06b88Tc2IeZ9WVr3T7h9pbVUl9t/Uoqd1H+opafJwyd0OZaZkomThx2IgAgvzofT/zwBCKpEdRDXyEzafAk7Nltz5b41KRU9MnSPZ1fly/cBz2QgD2kdgM2v6n/AZDbJROXHN8b3ZpWAgsvaz+nbDFQ8IX+86ApQP7HQH0J4G9+ol8asOIfyCqejnPOOQfaYa8C/U7bMQFWD7zlB6I7Jpl2PeR86Y0t9/n7352iv5aU2fp0Py32E15lxqbD2BX/BL47V7gmvwPc1YeT3wHx5prmAck4L3iA+re3FvWvHvSAvbUSxQPUv7v6cOI+O3gGd2wuv/xyXHHFFRg2bBhSUlKwadMmPPjgg21ifvjhB4wYMcKUJlUhPT095jWvmDE9PR377LOP021Y3oeZ9WVr7dV9L/TM7Ini2mIU1RUJ50a1KBZt1yeluqV3w4i+u/vvnkn34ON1HyOqRfHgdw9ieI/hLdeGdx++W/zAnIEorClEYU0hhu41FCmBlN1iclJzUNlQ2fK7EQ9sCG7A5orNOGrwUcp7SAUPmN5DUibQVAmseRQYdD7Sy+di4MY/ARt3XB/7hB6zM8ElrT/vdbU+UVQ0p3U1047tev5wld5rpH7HZJIPwI6VTtVrgZwRrZNNzVT82HKfew/uC6zEjpwdcdHG1smvXZAZmw5jQ4X6GVmCNfkd4K4+nPwOiDfXNA9IxnnBA9S/vbWof/WgB+ytlSgeoP7d1YcT92lopdRll12Gv/71r6irq0NFRQWuvPJKXH/99S3X58yZg40bN+Loo482q08lqKuLfWZO83nxBs6NTyjq6uqwbNmyDsfCDX2YWd9IrV6Z+irDopoiLF26VCj33VXvorhW32K6T/Y+CIVCu8Xs33t//H7f3wPQtwde88k1LdcOG3DYbvEDcwYCADRo+GLBF6irq4OmaXjlx1daDk1PTUptkyPjgZrGGox9biz2fHJPHPPaMXhq8VPCuU6hggcs6yGQBgBoLFuJsD+79fXGdrZihwqAE3Y85dGXBPQ6EmgoBsLNPelfL417/U3vNdTY+oS9Qv1MM/xw+Y7YXSalUvXD+uvq6hCdMaz19ebJq53Ov9oVmbHpMDa4RH+KoGBNfge4qw+nvwPiyTXNA5JxXvAA9W9vLepfPegBe2sligeof3f14cR9GpqU8vl8eOCBB1BaWorS0lI8/fTTCAQCLdfHjRuH8vLyNhNVbqCqqirmNa+YsbKyEjNnzkRlZWXnwQnch5n1jdTqndkbANAQacB7H7/XaW4kGsHtc25v+X1I8ZCYOdcdcl3Lz9uqW5+QcVj/dialugxs+Xn619NRWVmJz9Z/hos/uhgXvH8B3vn5HQRDwTY5MvvJn1nyDJYWLG35/Z1V7wjnOoUKHrCsh1R9MrSxugBV9Umo736M/npD288Y0Qjw891Aanf9d18ASMrWJ42az6by+YHMQQh2OU7vtboW2PYRsH1Ga0zp98D2j4Hf3tZ/3+8O/e+Ubi336dd2TGRlDmmdlAoVxrwFmbHpMLbnEVI1+R3grj6c/g6IJ9c0D0jGecED1L+9tah/9aAH7K2VKB6g/t3VhxP36dPcrh4TEHmUIR+FSczkgvcvaFmJtPbatdir+14dxi/NX4qxz48FoB9oPueiOR0uoT3+9eMxa8Oslt/7ZPVB/o35u+U88cMTuO5zfRLr9OGn46XJL+Gvs/6KF5a/sHvRRwBUA33y+qBge4HIbeK4147Dlxu/bPl9v1774ac//SSUS0ymqQpYeClw5Hv6CqbyH4H0vsDA3wOIAoOntMZWrgY+2Rc4sxh4vxdw4gqgdhMw73TgzBKgajUQXAb88hBw8mr9iXwA8OYOffU/A9j2gf7zwHOALe/qP5+vAe+kA3vfAIz6V2tO9jDg1HXAB/31p/SdsBjoNsba8Vhxq37G1uSNnceC3wGE0APEy1D/xMtQ/yQWIvMogMEzpZoJh8NYu3YtKioqEIlE2o0ZP358PG9BiCdpXikF6Fv4OpqUWlawDPfNv6/l97NGnNXpnu5pZ0/Dme+cia83fQ0AMc9yat6+BwAfrvkQi7YvwkF5B3VYOxyNfQj1zhTVFGHeb/PavLbrqitiI0nZLU+bQ7gOCOzYlpnaA6hZ3za25PsdORn6376A/mQ9AEjrAaSN1ye1oo2Av52vmeYJKaB1S18zxy0Atkxv/T3vFGD0jjMLfX7An9J6QLqVhOta748QQgghhBBiCYa272mahttuuw09evTAyJEjMX78eEyaNKndP24iGIz9f5i98ijMYDCIN998s8OxcEMfZtY3UmvnSan3Pn+v3dxwNIxrPrkGY54bg+m/tP6f+P1z9u/0/bqkdsGsKbPw3PHP4eSuJ+PvY//ebtyEPSagb1bflt/zq/Px0dqPOuy9KdzU4fVmHvzuQTRE2k5IFFQXoDHSKJTvFCp4wJIefD79D4CGhlqUlBSjNvswIJDSOlnVTPNEUmDHwx+Su+iTWm3wA5EGBCuqOu512y568iUDmq6hYDCITfnlKK/f8T7HLQT2ubn1MPV2EB6bojkdx4ZrgMpVwjX5HeCuPpz+DognVyZHNJYe0KH+7a1F/asHPWBvrUTxAPXvrj6cuE9DK6Xuvvtu3HvvvcjNzcWFF16I/v37IykprkVXCYHbnygggs/nQyAQcHwsrO7DzPpGavXOap2Uqtaq281966e38PSSp9u85vf5sW+PfVEYKOz0/fw+P87a+yx0+a0L+mX3azema3pXrL12Lc5991x8uvFTod7DmthKqR+Lfmz5+eB+B2PR9kXQoGF71XYM7jpYqIYTqOABy3rYsZvbp4Ux1387jhl8MjLDv+y+minaCIx7R1+5lDVU3+a362Ho/gAQbYTPn7x7r/v+E1h1r/5zel/90PRm0vsCtb+13qcvqk+MAUBGHpCc3eGklPDYfH0UfCcGY8eGq+VrdsTSG4C+xwN5JxivoQAq6N+OPpz+DognVyZHNFaVz91pVBkH6t+cHOpfHlXGgh4wJ4cekEOVcUgk/Qu/p5EzpQYNGgSfz4clS5age/fuVvSlFDxTitjNZ79+hpPePAkAcNv423DXpLtarm2t3IoHvnsASwuWYuG2hW3yDuh9AH686kfT+1lbuhbDnxq+2+sH9j0Q6UnpGNx1MF6/6HWgGvDn+FFWWIbctNwOa456ZhRWFK1Asj8Z1xx0DR7/4XEAwLeXfIsjBh7RYS6xiLmnAhNnAt+cBoz/SF85FVwKbJsJjJzaGrfqfqDXeKDn4a2vVW8APt0P+P2OQ8x/fRZYcjVwbrhlBVbLmVIj/g9Yfb/+c5e9gaq1+s/na0A0DMw/Gxi/Y4vfvDOBI95t3Qb4y8NAt4OA3hPiu9c3ffr7xeKbyXrfR7zX/hbEXej0O+C9bvp9j/hbHE0Toi7830HEy1D/xMtQ/yQWomdKGdq+V1RUhNNPP90TE1I7wzPh9TEIh8OOj4XVfZhZ30itnVdKFVQXtMk96c2T8NTip3abkAKAvx7+V6n3E43ds9ueyE5puz3rqjFXYekVSzH/0vl49fRXkZKkr2aJRqN4aflLnb53WagMANA9ozt6ZvZsfb2urNNcJ1HBA5b1sGPySNM0hCMRvb4/VV8ZtTPRRv1sp53JHto6IQXoq6i0KDRg914jDUBaHyBzEBDI3KWHQMtT9jRNQzTaBK3NV5UfaKoAtrzX7i2Yp38N8KcB0QZzxjvaBPgSf0WxCvq3ow+nvwPiybXiO0CVz91pVBkH6t+cHOpfHlXGgh4wJ4cekEOVcUgk/YtiaFJq8ODBqKqqMrsX5SkqKop5zSt7aQsLC3HvvfeisDD2I9nd0IeZ9Y3U6pXZq+XnF5a/gAdmP4Di2mI8/P3D+Ln4593iZ/1hFpZcvgTn73++1PuJxhYXFaN/Y/+W3/fpsQ+uPfjalt99Ph+yk1snrRZu333CrCnShKZI63lTzZNP3dO7o3t66wR3aV1puz1EopE2+U6hgges7qGhob61vj+1/e17u05K7YrP336vxy/Wt99l9AeSc4Aeh+yS5wOgteT+um4dCnf+t7dojv6Uv/lnt/u25unfpx/2HmkQqtnpd0C0EfAnd9qT6qigfzv6cPo7IJ5cK74DTPGAC6D+7a1F/asHPWBvrUTxAPXvrj6cuE9D/9n22muvxZ133oni4mL06tWr8wSXkJOTE/Na855Lp/eYWk1ubi7OOOMM5ObmuroPM+sbqbXzpBQA/H3+3/H3+e0fRg4AI3uPbFldJfN+orG5ubl49uRnsTK8EofvcThG9x29W0xqUmrLz0vyl7S5Vt1QjVHPjkJxbTG+veRb7N19b4TC+qqa7hnd0SOjR0ts8wqqnSmqKcKY58YgokWw5PIl6Nel/TOw7EAFD1jdQ3JySmv9aFM7B52LTEoFdu/1sFeB7mOBLnvpNb84CEjpFrNEbm4uMvv2RfLO9xmpbRvUVKNPZCVl7v5+ndBp7I4JOZGanX4HRBuBVfcAe/+5075URgX929GH098B8eRa9R0QtwfiYcNLQN1WYP/bza8tAfVvby3qXz3oAXtrJYoHqH939eHEfRqalDrllFMwd+5cHH744bj99tsxevTomBM2AwcObPf1RCQ9PT3mNa+YMT09HSNHjnS6Dcv7MLO+kVopgRQEfAFEOjjQeWe6pnc19H6isenp6Thy7JE4EkfGjNlZ+xvLN2Jb1Tb076KvrpqxdgY2lm8EAEx6ZRJ++tNPLbHd07uje0bblVJRLYqC6oKWyad/zv4ntldvBwDcPud2/G/y/4TuzwpU8IBlPexYphsIBFrrh1LaXykVSEXH6Cul2vQ6eIr+d3IXIBlAYwWQkgucUQD8+t/dKqSnpyO9Sxdg5397tV3+K9yCKUBKV+DQF3d/v07us+NYDShfBlRvQHqvIzqtKfQdMPSPHfeVAKigfzv6cPo7IJ5cq74DTPGAUUrm60/DdHhSivq3txb1rx70gL21EsUD1L+7+nDiPg1t3xs0aBCmT5+OjRs34pJLLsGoUaMwePDg3f4MGTLE7H4dJRQKxbzWvOfS6T2mVhMKhfDTTz91OBZu6MPM+kZriU5IZSZnIiXQumpF5v1EY0XidtX+rbNvbfm5rqmu5eeK+go8vvDxlt+7p++yUqquDGdPOxv9H+uPc6adg0g0gkXbF7VcX1WyqtP7shIVPGBZDz4/EI0gEom01t+xha0NkQbh7Xsd9tpUCSTnAul9gJF37nY5FAqhqqqqba5vp6+tT0cCTVVAuK5NTqdjE6kTiw0uBTa/JqX/dr8Dml8LZMTuKUFQQf929KHCd4DRXKe/Ayz530E7bet1Eurf3lrUv3rQA/bWShQPUP/u6sOJ+zQ0KXXhhRfiwgsvxEUXXdTyc3t/pkyZYna/jlJZWRnzmlfMWFFRgffffx8VFRWu7sPM+kZrHT/0+N1ee+HUF/DaGa+1eW3nVVKy7ycaKxLXov0d/5HkvdXvtby286QUADyy4JGWn7tntD1T6sUfX8T7v7wPAJi2eho+WPNBm/z05NgrFu1ABQ9Y1kNSBhAJoampsbW+4TOlAmK9psZ+YEZFRQUKCgra5h7ygn5AOgBU/KT3tuWdNjn/z951hzlRdf3fJNnel7LA0pFepItIV0RFAUVR1oJib6/lVewoNnztvq/dTwTLgjSpovSOSu+977K9902Z74/JZGYyM8nMZJJMsvf3PPtkyjlnzr1zzt6bk3PP9do39WXKaHu9DbS4QZX9S44BlaeZT3utvE4hAiPYfyD0MMIYoJU32GNAOM+DiP0HVhaxf+OB+EBgZYWKDxD7Dy89gtFOig5369EB7FaGJSUlsmsrG8pWmA6HAzabDRaLBSaTpphmSOihp3ytsrZd2IYX176IcZ3GYVzncai0VqJfi37449QfuP6X6110vdJ6Yf8j+zU9TymtEjrWB6JSolD3FBPEyPl3DprFN8OMjTPwxqY3JPnev+Z9PDXoKUS9Lb0c7IWrXsBPB37CpYpLAIChrYdi832bPbbLnzCCD/hNh78fAHq9A/rvB2AdvIiRDxrYOhEYtoSj23430P9zIFK+zh7O/wpsuwOOO+zyumZSwLV/iYudbxoHDF/GFMx0Hrt468uAld2BGmY5J5K6M8t6MmiApkGv6AzrmEOe+6bsCLCyu2fdNo0HWk0ELLFwtLxFsf1LjgHO56HbS0Dvd+X7LARgBPsPhB5GGAO08gZ7DPDLPOjvB5gg9Ji/9ZWrEsT+AyuL2L/xQHwgsLJCxQeI/YeXHnrKZ+MoZWVlSExMlKUL/f2pA4hgGp9RYDKZEBnpJUMiDPTQU75WWVe1vgpbpm4RXW8S20RwnhItzJRS8zyltGpkWkwW1IEJSjX/qDkKny9EaW2pLH2LhBaINEciwhQBq0O8u97RwqPIr8p3nbPBqWDBCD7gNx3McYC9ChRFCeW713FSsfueV12j02RvmUwmgP1zyTVzASlAsHQPNdmgKk4Kn3fpD6DxIKZ2FYv6UmW6maMBe63v/e3MGoPCJblGhhHsPxB6GGEM0Mob7DHAP6C4ZbBBRPD7ITB6EPv3XY9whVH6gviAPjzEB9TBKP0QSvav+Jm+MOfm5uLLL7/Ev/71L9x///2u6wUFBfjnn3+Cvt5Sb5SUlMjeayhbYZaUlGDBggUe+yIc9NBTvi+ypHj59ZcAIDUm1SuPr7opoWNt38x+AXfi611fo7SuVJavVVIrAMDGezdK3l9zeg1sDpvr/FLFpaCmBxvBB/ymgyUWsFWj3mr1LF9JUMo5vHjUdWIREN9WVkJJSQkuXbok5HXusueCrZI7tpYDgPB5G68Htt4u5Mn507tugCsopcb+JccANhgVBkEpI9h/IPQw8higJ48/xgD/zIOMUVOK2H9gZRH7Nx6IDwRWVqj4ALH/8NIjGO3UHJT68ssv0a5dOzzxxBP4/PPPMXv2bNe9/Px8XHnllfj555/10NEwICsdmX82dXV1Qf+n42899JTviywpXveglHumlJrnKaVVI9M9KLU3d6/HTKlWiUxQanCrwdhy3xYMaDEA7456F10adwEA1NiEwe0aWw2qrFVe9fAXjOADftPBEgfYqgCaFsp3/9/nsAEms5ifD6cdeNQ1KlV8DQCsFS5e9o+T67azS7OrmWLpgCsDSvS80n3cMU0Dh95k5NvtnvvRWU/L5/4Oo6CUEew/EHoYeQzQk8cfY4BfYJAdnYLeDwHSg9i/73qEK4zSF8QH9OEhPqAORumHULJ/pdBUU2r58uUYP348+vfvj+nTp2PVqlX4+uuvYbdzE+4+ffqgRYsWWLlypa4KBwNK1kI2lLW0BMEHTdMwvcnFk5+78jl8cO0HQdSIAesDTZs1Rf4j3HK7y1IvQ8vElth4bqOIhwKF2ldrBbsHshgxewQ2nd8k+azT/zqN9inhtbunIXD0YyC1D3DsE2D4Mu66s66TCxtvAkYs9ywraxmweTxT60ktMingljwguqn42ex9PhI7AzceA7JXAptuFD5z/RjAXgWM3sqcWyuABbz/43L6bRoPdHoCKD8GdH7Sq8oex4CS/cDRD4DIRkD/z7zKIiAIRfh1HvTPw0DxHuC6nfrKJSDQCeR7AEFDBrF/AjkorSmlKVPqgw8+QOvWrbFhwwbceOONaNq0qYimZ8+eOHLkiBbxBAQEHkC5/WLsvnwv2IgwR2BI6yGu81PFpyQDUgCQFp8mGZACgMQo+X9c/BpTBDqCzZRyh5YsUcrHGnw0DZz+XhmtKQoo3gvUS6UZ00DBNu60rkC5DpQJipcMST6bVcHOLHcMg0wpAoLggWSrExAQEBAQhCM0fWvYt28fxo4di7i4OFma9PR05OXlaVbMiMjNzZW911DW0ubk5ODNN99ETk5OWOuhp3xfZCnhTY5O1vw8pbRK6Pg+sPnezXh8wONen98hpYPsvaRo+Z3dghmUMoIP+E0HZ1CqtrZWXn7VRSBCPmDognP5niZdTVFM3aq/H8DxEye880YkAH/0BeqKAADvvfWKPE+t0HY86kaZANqhrA3OguvSNaUcgCkiLIJSRrD/QOgRSmOALzz+GgP0hzGW7xH7D6wsYv/GA/GBwMoKFR8g9h9eegSjnZqCUg6HAxERER5pCgoKEBUlvcV7qCIhIUH2Hpu94p7FEm5ITEzEDTfc4DH9Lhz00FO+L7KU8FpMwk001TxPKa0SOr4PUBSFT6/7VETTKKaRqwZWekI6Zl49U/6ZkcbMlDKCD/hNh8hkoL4UlogIoXz+/7WKk0CjAQqEmbTr2vERwMbUleoUd1Ket+V45jPCWVfNmQV125A4MQ9bLN8tKCWvGw1mxy+HqjZIjgFKMqVOfQvUyP/wYRQYwf4DoUcojQG+8PhrDPALDFDXk9h/YGUR+zceiA8EVlao+ACx//DSIxjttHgnEaNz587YunWr7H2bzYZNmzahZ8+emhUzIjxlhjUUZ4yLi0P//v2DrYbf9dBTvi+ylPDa3b7oqnmeUloldO4+YDFZMLLtSGw4t8FF07lxZ6y+azVOl5xG18ZdEWGWD267L9/r0rgLjhUeAwDkVQYvC9MIPuA3HaKaACX7YDGb5eUr2nkPruV7mnQ1RQIruzNi+n0i/783sSuApVzQ7OIiAECHtm0Adx5rOVNYvTYfGLYE2DwBADzrRpkAOFS1QToo5QCoCICulmf852Gg21mgt3yg1ggwgv0HQo9QGgN84fHnGKAvjLH7HrH/wMoi9m88EB8IrKxQ8QFi/+GlRzDaqSlT6s4778SePXvw9ttvi+7Z7XY899xzOHPmDO655x6fFTQSamtrZe+x9eLDfYe+2tpaHD9+3GNfhIMeesr3RZYc781dbnYdD2gxQBGPL7opoZPyAffleR1SOiAuMg690np5DEgB4qAUX1ZFfYVHXn/CCD7gNx2imwK1+bDbHfLyHVZmKZo3OINSmnTlBb1yC0rkeSNTgJt52UXlTNAyJ+cij8dpj1lLmM/KM0BMuovFs24mgKZVtUFyDKDtgFlBTam4tl7lBxtGsP9A6GH0MUAvHn+PAbrBIF90iP0HVhaxf+OB+EBgZYWKDxD7Dy89gtFOTUGpJ598EsOHD8frr7+Ozp07Y9Ei5tfpSZMmoWPHjvjvf/+L0aNH4/7779dV2WCjtLRU9l5DccaSkhLMmzcPJSUeivqGgR56yvdFlhzvFzd8gbt63YX3r3kf/Vr00/w8pbRK6KR8wH2HPE81pNzhXlOqZWJL13G11UPGiZ9hBB/wmw5RTYC6Alit9fLyHfUKg1Jm7bryglJ/79wr5k3qwR3HpImW9fz1198cDxsIOv4p82ktB6KbuGiXzP9BLJ92Lt2jKAAO723gPV96DGAzpbwEpZT0a5BhBPsPhB5GHwP04vH3GBBuIPYfWFnE/o0H4gOBlRUqPkDsP7z0CEY7KVqj9dTX12PGjBn4+uuvBQonJibi0UcfxYwZMxAZqWCJRwiA3cqwuLgYKSkpkjQNZStMu92O2tpaREdHw2w2h60eesr3RZYWXjU8SmmV0En5wKIji3DrgltdND9O+BF3X363onb8fOBn3P0bR/vWyLfw2obXAAAP9HkA3437TpEcvWEEH/CbDjQNbBwL2hSB6v6ZnPxN44Dhyxiac/MAOIC2GZ5l5W8G1g6H/Xabel0PvwfsfwkAUNtvFiIuu0fMuyAF6P4y0O15YONNwKUVrlu1A35GRPs7GJ61wxldotOAW3KBfx4BekwHKk8Da4cBAOzjL8Ec15yTvf1u4NzPwOjtQP5G2LtM89wGhw0tG0cguwTSY0DeBiB/K1B+FLgqU7rNmRQw6Aeg/b3K+ihIMIL9B0IPMgaop/PrPGjnY0DhDuD6vfrKVQli/4GVRezfeCA+EFhZoeIDxP7DSw895bNxlLKyMs81krU+IDIyEu+88w7efvttHD9+HMXFxUhMTETXrl2D+pL8iXBtlxqYzWaPtbXCRQ895fsiSwuvGh6ltFrbMLrDaMG5e+aUJ7gv3xNkStmClyllBB/wmw4UBdA2UKZYefmOesASo0AYk4irSVdeplR0TCLg7X8vP8Poiv9DtNnM8bC/u6T0dp7bAJMFaDrUxWJemg5k8HaMyd/MfDp33/PaBtrLbjNKl+9pS14OKIxg/4HQg4wBvuuhLyhDFDoPfj8ERg9i/77rEa4wSl8QH9CHh/iAOhilH0LJ/pXC5xkwRVHo0qULBg8ejB49eoR14IYs32P6YMmSJR77Ihz00FO+L7K08KrhUUqrhE7KBxKjEvGvgf8CACREJqBH0x6SvFJwD0qlJ3B1gIK5fM8IPuBXHWg76m0Oefm0lVmK5g3OmlKadOUFmXbs3OOdl0dfVW/G7l07OJ7IZGD8eWZpIsDswke5/x7jtNn6Mok20J7b8Nf9gmCTdE0phcv3KOMHpYxg/4HQg4wB6un8Ow8yRk0pYv+BlUXs33ggPhBYWaHiA8T+w0uPYLRTc6bU4cOHsXPnThQWFgIAmjRpggEDBqBbt266KWc02O3yXygaijPabDYUFxfDZrOFtR56yvdFlhZeNTxKaZXQyfnAf0b/Bz2a9kC/Fv1EdaI8oXOjzjBTZthpOzqmdkTvZr1d92qsNYrl6A0j+IBfdaBtcMAsL19poXNnoEebrtwX0LKKWmne5J5ArDNQyQvm2OkI1FSVMTxlx4Ds5cCQhcD5ucDgn7hMKSksTAbGnXHpzmRnOOTbYC0HzswC+v+Xa7XUGOCwAuZo+aBU/hbp6waEEew/EHoEdAz45xFg4Ne66WG0MSCcQOw/sLKI/RsPxAcCKytUfIDYf3jpEYx2qq4ptXbtWjz77LM4fPiw5P1evXrh448/xsiRI3VR0AhQshayoaylJSCQgz98YP3Z9TheeBwZPTMQExGDqLejAABDWw/F5vs26/IMAjesGQLEXwZcOZu7xq8pdeQDoPEVQNNhnuU4a0ohQ8ME5fjnwO4nmeOrfgXaTBLT0A4uGLXtTqB0H1B2BBjxB1MvqtNjTLBn7TBgsgOYa2J02XoHMGgWYIkFspYCmycwMjJopq4TAMS2AqovAtftBrKWAb3ekNZz+z3AuZ+A28rRslkisotlakpdXALUFzGyhi8Vyzn6IbD3eWDQbKD9FFVdRRAGyKS0+YnB4N+aUk8ABVuAG/brK5eAQCeQ7wEEDRnE/gnk4JeaUgsXLkRGRgZsNhvatm2LoUOHokWLFqBpGjk5Odi8eTP279+PMWPGYP78+ZgwYYKv7SAgIGjAGNVuFEa1GwWA+fXFRJngoB1BXb4X9nDYXDvnucD/7aK+BIhM9S6nXqcdO2xV0tf5S90oM2BiApYwRzJ1rwBXIXPXdvIOO5MpxS7fM8fKPJTmPcNDvSi7M2OPtoPJ7pIJLNBWQZ0scVvY+lfB/eWNgMCwoDz4FwEBAQEBAUFIQ3EBi5KSEjz88MOIiIjAnDlzcPr0acyZMwczZ87Ee++9hzlz5uDMmTP44YcfEBERgYceeghlZWXeBYcQ8vLyZO85HA7BZ7giNzcXM2fORG5ubljroad8X2Rp4VXDo5RWCZ2/fYCiKMRGMEGEGlsN9ufuxzN/PIPbFtyG1ze8DpsjMF/ojeAD/tWBRnVNrVC+KYJZggYA9cVApPQupAIkdgF6ve2zru/Nv+Sd12QGzDFA1+dQVFKO7RuWSPM46gTL94pLSrl7/MCbq5A+U1xZvg1OW+cVOpe0f3utM2gm86WaDZIFyIZ9gRHsPxB6kDFAPZ3/50HBrytF7D+wsoj9Gw/EBwIrK1R8gNh/eOkRjHYqzpT65ZdfUFJSgu+//x533y29pTtFUZgyZQrsdjseeOABZGZm4tFHH9VN2WDDUxV6yvlLPPsZroiPj8eIESMQHx8f1nroKd8XWVp41fAopVVCFwgfiI2IRWV9JSrqKnD9L9cjpzLHdS8mIgYvDnnRb89mYQQf8LcOERERQvnRTYHafKaGU32xskypxM5Aj1cQX1mpQVcueDN8xCjvvNYKwFoK9PkAsacXYXDSJlS687S92xmU4pb9RSc24+7nruWO64uZT2emlGx/V2c71eUypSTt31oBxDeW1z+mhVOO8YNSRrD/QOhBxgD1dA1hHkTsP7CyiP0bD8QHAisrVHyA2H946RGMdiquKTVhwgTs3r0bFy5c8GpwDocDbdq0Qb9+/bBkyRI99AwqSE0pAgLvCIQPtP20Lc6XnZe8lxKdgvzn82GRK2JNoAx/XgEk9wKu+I67duANoOVNQGo/YONNwIjl/tXhyAfA/peYXfNi073Ts7WgMmim+PjOx4DBPwuv/3Uf0OdD5pOtj8XnTerG1KTi44ZDwLmfgd4zpZ+7sgdQdhi4ORctW6Uju8gubf9H3gcaDwaOvi98NovcdcD6a4C+nwJdnvLeXoLwAqkp5R27ngTyNwE3HNBXLgGBTiDfAwgaMoj9E8hBaU0pxcv3Dhw4gKFDhyqKgJpMJgwbNgwHDx5UKj4kUFdXF2wVgo66ujqcOXMm6H3hbz30lO+LLC28aniU0hrlvbPL96RQUluCiLcikF+V71cdjNAX/tbBbrcJ5UckAmdmM8cqfwXTpGtUY6D5GNSZGyvjtXBZrHU2CtUl51FX66z31CbDecck2v1OINc9IAUwmVK0Q74N7DK/33t61s9Rz9WUOvA6cOwzNwJnQCLQmVL1papZjGD/gdCDjAG+6xGOMEo/EPvXh4fYv3oYpS+ID+jDQ3xAHYzSD6Fk/0qhOChVVFSEli1bKhbcsmVLFBYWalLKqCgpkS/c21DW0hYXF+Onn35CcXFxWOuhp3xfZGnhVcOjlFYJXSB8ICYiRnStWXwzwfnio4v99nzAGD7gXx0o1NXVCeW3vk0U0FEKTbp2uA8YsVI5b6+3XIGp4pIKxJZtReWZ35l7bKCHMjNL93jJwcXFxZiTdQ9qmk6QEcwsySu/sAWlf94m1sPuLMJeV8AUUYeM/bNLBmmayfYo3iW+DwDH/+u5nXqivgRYqKA2mBuMYP+B0IOMAerpGkJNKWL/gZVF7N94ID4QWFmh4gPE/sNLj2C0U/HyPbPZjNdffx3Tp09XJHjGjBl46623YLMZv0aGN7BpZ0VFRUhNla6l0lDSFm02GyorKxEfHw+LJXjLpPyth57yfZGlhVcNj1JaJXSB8IGhPwzF1gtbBdfev+Z9TFs7zXX+wlUv4L1r3vPL8wFj+IBfdcikQKf0QdmV6zn5Dhuw6SZg5Cpg0zjpJWh+0FUx7/H/Aae/A244AJvNBsv8CNiHLod5y01A52eAfh8D/zwC9JgO/POwa/khKz/xxKswnfpCKHPYUqZY+6lvYU/uC/Nfd8I2ycrpcewzYM/TLvKWTwDZJZC2/4MzgPSbgINvANYyILYNMPhH7v6lP4HjnwI5fwRuGVddMbCokernGcH+A6FHQMcAD8v3yBjgxK4ngfzNwA379ZWrEsT+AyuL2L/xQHwgsLJCxQeI/YeXHnrKV7p8T/FTFMaufOYxMoJpfEaBxWJBcnJysNXwux56yvdFlhZeNTxKaY3y3uMixJsNpCem48hjR9Dty24AIFtzSi8YoS/8rQNFuck3Wbgd4lQiIPbf8VGgw1QXDwCY6Rqg1a1Anw8YGsq5fI+3/NAlP2+NWGbLcUDFKYB2wGyJEsgGAFSeUt4QXnF1SI6LDsAcpVyeHqC1/ZppBPsPhB6K5VecAmJbeXx/imTRtOTSWDIGGAtG6QfD2L+fZRH7Nx6M0hfEB/ThIT6gDkbph1Cyf6VQvHwPALZu3Yr3339f0d/WrVu9CwwxlJWVyd5jA3DhFohzR1lZGVauXOmxL8JBDz3l+yJLC68aHqW0SugC4QMtElqIrjWNa4p2Ke1c5/ty9/nt+YAxfMCvOnR/FeV95oSW/ZssruV7LG1NaTYQ2xIwmRkaygwU7wayuSLtrPzq9s/KCKYAOEDvuFcgGwBgl15nTzusUhfBLT2igXM/ud2nGf0CCm1+agT7D4QeiuUv7wjkbdRHlk684TwGBBvE/gMri9i/8UB8ILCyQsUHiP2Hlx7BaKeqn77Xrl2LtWvXeid0Ity2hbRaJb5sONFQnLG+vh5ZWVmor68Paz30lO+LLC28aniU0iqhC4QPtEpsJbrWs2lPRFui0Ta5Lc6VnsOxwmPYfnE7Brca7BcdjOADftXh8rdQV1CArKzNIWv/AGC3VjEF010wAVXnRbRZWVmoGngLYvEIc7HVLcBFZ10yZx0oyl4pkI3qS4LglgBSQSnwMqUkg080VP5GpAO0+akR7D8QeqiT77kvyRgQPiD2H1hZxP6NB+IDgZUVKj5A7D+89AhGOxXXlJozZ46mB0yZMkUTn5GgZC1kQ1lLS0Agh0D4wP/t+T88uPxB1/nItiOxfsp6AMDL617GzK0zAQCfX/85Hh/4uF90aLBY1RcYugjY/ZSqmlJBwcJUoNsLTAZS9xeZa7ufAcoOA7lrpOv3ZDp/RBl7FFjZlaGpOg8c/RA48Tlzb7KDWWK19wXg6PsC9pbPxCE7vwrpzRohK8dtk499LwNt7wT2vwTYa8U6ZC0Dzs8Dzs9lri9qDEzUuFFI5Tkgro33XRJr8oDfmgWuhlW44MIioPVE7jyTAkb8DrS4XrvMTAqYbOcClyEK/9eU2gTccEBfuQQEOoF8DyBoyCD2TyAH3WtKhUNwiYCAILTROqm14PzaDte6jvmZUcU1wd0VIyxRshfYcQ8QqX7HtoCj63NAwTagyRDuGmUGanLkebq/Chx5F0jqwrtoEtZeKj0ApFwOxKYz530/5YqdWxIBVMkId3BBIlOk+DZtA0wR3Hldkbye3rCsHTAhG4gVL3V1e6j2ZzRkbL2VBPIICAgICAgICHREaP8sF2Dk5+fL3msoW2Hm5eXho48+Ql5eXljroad8X2Rp4VXDo5RWCV0gfKBNUhvBeeNYbnlWagy3M6Y/g1JG8IGg2b9V/dryYNj/mb9/ci6v42ULUSag0UB5+T1eA8ZfFApji6M7UVToHAMOvc188opbs3ZPO+zA/teEcmgHXMMtPxtm17+YLBnaLgxK+QpFS+e1BVaMYP+B0EM3+fVlyM8+ScYAXRD8khDE/gMri9i/8UB8ILCyQsUHiP2Hlx7BaCcJSqlATEyM7D22fla41dFyR2xsLAYMGIDY2Niw1kNP+b7I0sKrhkcprRK6QPhA+5T2gnPZoFSt/4JSRvCBoNm/tVw/WX7ijY2NRUJKU+Ykm7fMkDKL6j0J5JsjxdlFlAWgbbAn9QYARLNjQF0BS8CRuuzeARx+WyiHv/uew8Zdz9/kvGYHGl8FRKcJ72uGgqFdY90HI9h/IPRQJd9TX/51H1JOvuhdlowMMgYYC8T+AyuL2L/xQHwgsLJCxQeI/YeXHsFop+KaUg0ZpKYUAYF3BMoHqBncgLdxykYMbzscAJBflY+0D9Nc97676Ts80PcBv+nR4HBmDnDoLaDytPGXL229A7jwK9BkKDB6M3Nt/ytA5RmmdpM3/TMphqauGNjzDFBfwmReXbcHSO0D7HoKOPFfYOC3wD8PAQBaTktn7D8tCVkflwmfseffQMdHgT3PAvGXARcXARPOA4dnAvtfBq78icmUOvcL83lxMXBbORCRoLzNBTuAJlcyut+SD0Q38UxfnQ0saWn8d2k0sLbBPx++Eki/QZp+443Mks1hiz3LvMPG7RQZovB/TanNwA379ZVLQKATyPcAgoYMYv8EclBaU4pkSqlAsCvtGwH19fW4ePFi0PvC33roKd8XWVp41fAopTXKeweACN4yp+ToZNcxP1MKAB5a/pBfnm+EvgiK/befAtjkaiaplOVH3vr6elRYo5kT3vI6wATYqtXJN0UA9jo4aCYQarU5s5gcdU4CCuhwPxDdjONhf+fhZzzRDoY2ezlQeQqITHaymwBTFFB9gduVj935b4H8wC2JNbzdJo+8550+f4s6+U4Ywf4DoYcm+dZyoL5UdNnhsJMxIExglH4wpP37QRaxf+PBKH1BfEAfHuID6mCUfggl+1cKEpRSgeJi+SVBDWUtbVFREWbNmoWiIh8K8YaAHnrK90WWFl41PEppldAFygfWT1mPFgktcEePO9ArrZfrusVkgYlXr4f2UyFnI/hA0OxfQ92jYNj/vsNnnGe8IY4yA/ZqEa2k/JudBdFNEYC9GnVWxpZKS0uZ6w7nIE1RwMDvgAlZXE0ptgYVP4DHX75XX8r145kfmADX/leYpYJa4bALz6svStPxEe9cCqsyWdoI9h8IPTzKLzvqdsHZh3unAVtucbtHob6+ToGu0u+BjAHGArH/wMoi9m88EB8IrKxQ8QFi/+GlRzDaSZbvKQCbdlZYWIhGjRpJ0jSUtEWr1YqSkhKkpKQgIkLHwrwG00NP+b7I0sKrhkcprRK6QPoATdOS69ZH/zQaa8+sdZ3XvVqHSLPEbmc+wAg+EDT7/60lUJOtaslXUOy/MAtNN7QHmg4DrnHWbTr4JpC7Bhj0A5BwmTL5DjuwYQwcUU1gujAPtqt3wJI2CNh+F7PU7opZQIf7APDsPwXI+hzA8BVA+lhGzq4nmR0Bl7Zliq1TZmD0VmAub7nWsGXAqW+BSyu4a0r72V4H/BrN0GdSQHIv78ucCnYw2VUql40Zwf4DoYes/Ezn/x323WRS3Lv++0Fmh8Yxf3P0m8bBQQOF3f5PXtdMCrjDCpjEgUkyBjix60mmBtsNB/SVqxIN3v4DLIvYv/FAfCCwskLFB4j9h5ceespXunzPh59mGx6CaXxGQUREBJo2bRpsNfyuh57yfZGlhVcNj1Jao7x3FnKFFBdNWoSk95Jc58U1xWgW30ySViuM0BdBs3+T+gBfUOy/eTsguinQ7h7uBmVigje8jCSv8k1mIH8DTLQDuPwdWMwA6oqAqgvyPJYYADXAwde5oBRNw1UU3VoBxDQT7OrH6OchMOSwMUGw9lOk77vLKlXwxZ228T6VB6WMYP+B0EOTfHsNULJPdNlEUWQMCBMYpR8Maf9+kEXs33gwSl8QH9CHh/iAOhilH0LJ/pWCLN9TgfJy+Z2n2ISzcE88Ky8vx+rVqz32RTjooad8X2Rp4VXDo5RWCZ0RfCAxKhH39r7XdV5UrX/aqRF8IGj2b4kDOj2hjyw/8bp4rjnJ1HtiQZmZZXe8JYiK5NNMKvqJk2dQVVkG7H0OKHDWY6K53fw4u3cOq/ZanhDn8r1uLwK2SqaOVE2u8DkmizBLig9rOfDXvR501LBjHxvIUslrBPsPhB7q5Dvfff4mbmmnCxSsNqsCWdL/N8kYwEfwd3Ui9h9YWcT+jQfiA4GVFSo+QOw/vPQIRjsVBaVGjRql6e/qq6/2t/4BRV1dney9huKMtbW1OHHiBGpra70Th7Aeesr3RZYWXjU8SmmV0BnFBxrFcEtsR8wZgSGzhmDLea6oc15lHq77+Trcv/R+OGj1a9+N4ANBs39zDJMNoocsP/HK8lAmpn4TL1NKqfyqds8iv7AY9bXVTB8ATHCLV8ycs3+nTdl54wXtAGACYpoztabMUeKi8VKZUmzRbG9bLLtnSimBK1NKHa8R7D8QemiSb5eeIzhsVmP4gA+0QR0DbFVA4V/6ytQIYv+BlUXs33ggPhBYWaHiA8T+w0uPYLRTUU0pk0lbQhVFUbDbNUyWDQYlayEbylpaAgI5GMUH3t3yLl5Z/4rg2uj2o7H67tUAgIxFGZh7aC4A4Ndbf8Wk7pMCriNN0yivK0dSdJJ3YiPh+OdAQkegxZhga6IeRz8ETn4FjPkHiJKuDSiJTIrJcIppDiR1A7J/B45/wgSner8HdP4XAJ79N4lB1qc1QGxLYIKz4PjfDwG93gSylgK7/wW0nAB0fwlY1Yd7ztUbgHUjxc/PoIHaAmBxU/kaU7WFwOImXE0pls8TLv0JbLwOmFgERKV6pjUiqrOZzKS2Gf6Rf/oHJpDpvmRSqqbUsGVAy5uAhalAfYmw75W8j0wKuL0O0Ln+XaDhtzEgazmweZyyWmkEBEGCUeZABATBALF/AjkorSmlKNrkcDg0/YVDQIqAgCC00LNpT9G1wupC1zEbkAKA1ze+jmt+vAbLji/zKPN44XHMPzwfNoeGZVJusDlsGPLDEDR6vxHmHpzrncFI6PxEaAakAAAmZmmVll3uHFaGz2EDzNHcdcnfdJzXqvmTMgcACrDEc0sIbW4ZZ5708pbNtLiJ5/ueZGpZ+mcE5K4Dtt/pP/lZvwEXF8nfz5TIXtOQeUmgAN4yBQkICAgICAhCGqSmlAoUFBTI3msoW2Hm5+fjv//9L/Lz88NaDz3l+yJLC68aHqW0SuiM4gNjO40VXauyVklQAscKj2Hd2XUYP2+8rLwaaw0GfT8Ity+8HU+tespn23h789vYfnE77LQdr254VZMMYv8aeCgTU+eJt8OZUvnVVaVYt2EzSksKeEEpmpHphMvuaZrJqOKDdtJGJDh1MYuXQXoqdO4pKFV+3KPu8jJtjE7eAl67nhKcGmUMYOsc+EuPunobzp09pU6+e1DqwHTXoSF8wAfa4I4BxpmqGsX+yRigD09o2L+xQHwgsLJCxQeI/YeXHsFop3FG+hBAVFSU7D12NzC5XcHCBdHR0ejWrRuio6O9E4ewHnrK90WWFl41PEppldAZxQdMlEm0415lfSWqrdVYdMRD5oMMzpaeRWltKQDgy11fgrJQPtnG5vObXcdnSs5okkHsXwMPW8eJivBOy0dKX1hMNJq3aIlIi4kLStHO7CcnXHZvrwOauWWTOaxMMIwNYlEmcVDKLD++eMxmurRK/p4n0HamDRcXe6Y78V/BqVHGgPhzH7r08QeiClYhLbpEoXw2Y85tMn7oLcAcCwAK+kx6eR8ZA8AL/ga/VolR7J+MAfrwhIT9GwzEBwIrK1R8gNh/eOkRjHYqqiklh9raWuzcuROXLl2SLQJ+zz33SF4PJZCaUgQE3mEkH2j+UXPkVnK7myVFJeH27rfj2z3fyvLQr0v/K9x+cTuumnWV6/zC0xfQKqmVZt16fdULB/MPAgCaxjVF3nN5mmURqMCp74B/HgIm2wUZTl7x5yAguQfQdDiw4x6g2wvAkf8wS/D6fgJ0ehwAz/5TgKzVTwIn/sfVEdpyKzA4E8hdC2way+wK2Pw6YOtt3HNuPAas6CJ+fgYNVJ4BlnWQrkt05H1g3wsc7ZI2QPUF7zWlLixknj9sCdBSPlMQmRQwqQqwxHqWF2gorZ3Fx+5nmdpeEfHa5fOX7bE1vNg+3PNv4NjHwnpTHR4ASg8AY/72/Kzbaz0HJkMAfhsD2PpnpKYUgYFhpDkQAUGgQeyfQA661pSSwhdffIEWLVpgxIgRyMjIwH333Sf4u/fee3HfffdpFW9IWK1W70RhDqvViry8vKD3hb/10FO+L7K08KrhUUprlPeuFWV1ZR4DUgBgdwiXMR0tOIr/2/N/GP3TaMH1dze/iw83fIhj+cc06ZJflS84zi7PVi2D2L8GnooTzCcvIKVIvikCDlsdysqdS0CrnMXLaVo+uNV4sPCcrSPlondmSvX7TPAcF1rf7sbvtsSuNh/IXsHJ5iO5F5B+k3x7XDJtQGo/IEJ+guDCaq49RvtfoEqP458ANTn+k2+JB2LShdcoExwOuzF8wAfaoL53A/3ybhT7J2OAPjwhYf8Gg1H6gvgAgP2viK+pfB7xAXUwSj+Ekv0rhaag1OLFi/Hkk0+iVatW+PDDD0HTNMaPH493330X1113HWiaxsSJEzFr1iy99Q0qioqKZO81lLW0hYWF+Prrr1FYWOidOIT10FO+L7K08KrhUUqrhM5IPqAlAbTGWXi6oKoALT5qgW5fdsODyx9EtbVaQPf1nq/x/Obncc1P18ChsLDxt7u/RcaiDJwqPiUoug4AY35WXzic2L8Gnu7i+l2K5JsiUFdTidVr1zPn5zOBq36Fq3i5Ey67pyig7R1AixuFciiKWcYHOGtK1THFzScWcddYJHYS8rrXfcpZA2xyBp4cbhMGipIpwO4G2g6YorzXlAKAOq6eolHGABaq9XAP4imRf/oHoL5MWSFzUQDFBJvNKu4zazmznNQF6XdGxgCA87PgL98ziv2TMUAfntCwf2OB+EBgZXnkPfyuz8/TyweI/YeXHsFop6ag1KeffoqmTZtix44deOaZZwAAvXv3xgsvvICVK1fi559/xpIlS9CmTRtdleVj48aNoChK8m/nzp0uugsXLuCmm25CXFwcGjdujH/961+or1c3KWWRmiq/bbbJZBJ8hisaNWqEBx54AI0aqdhSPQT10FO+L7K08KrhUUqrhC7UfYANPs07NA85ld6zKbIrs1FRV+GVLrcyFw+veBhzD81Fx/91hN0tCHC44LBqXUPB/leeWAlqBoXRv43G/fffH3z7j0zSJp+KQFSECaOuuZY5T7saaHwlMHoH0HqSi0xk94LghPO49ICT2MJkSpkiuGAUPyjV600gqTt3ztaUYoNNfNn8IEuNcymozYNdbp0EnPiCkWmKFGdhSYGXxRW0MeDUd5KX1euhILBhrRTK/3sqsOdp4I9+MiI9yKRMsJgg7rOtk4A9z3pVhYwBULfc1s8gc6DAyiL2bzwQHwisrFDxAWL/4aVHMNqpyXIOHDiAcePGITaWqzFht3MT24yMDFx99dV48803fddQBoMHD0ZOTo7g74EHHkDbtm3Rv39/l05jx45FVVUVtm7dinnz5mHRokX497//remZkZGRejYhJBEZGYn09PSg94W/9dBTvi+ytPCq4VFKa5T37ivS4tJw6slT2PvwXtG9GiuTKeWeyeQJcrv68cGvbaUXQsH+n1vzHAAm6La7cnfo2r/JAhNFo1GjNOacDSY1HghEyf9QIQQbTHIGnkxRgL2aOXcFpSxAy5s5FsrCY3eOr+wSRMgEpc7OZj7zN8mrUnoIqDjlzJSKFGZK2aqAOomMYJ4uQftf8M9Dkpf9oseCBLH86mygZJ96WZQFJjjEfWarYnaD9AJD+IBGPfSDcZbvGWUsDIUxQA9ZxP6NB6P0BfEBfXiID6iDUfohlOxfKTQFpaxWK5o0aeI6j4mJQWlpqYCmV69e2LNnj0/KeUJkZCSaNWvm+mvUqBGWLVuGqVOnuir/r169GkeOHMHPP/+MPn364JprrsFHH32E7777zrWdtBpUVMj/+swuF/KhbnxIoKKiAhs3bvTYF+Ggh57yfZGlhVcNj1JaJXSh4AMdUjugQ2oH9G7WW3SPzZRyX67nCVX13oNS7rWqpFBnk94oQg6hYP/HCrmaW8v+XhbC9k/Baq3HgUNHmFN7tTBg5IQiu2cDUOYowOaUY7Jw9xoPAiJTWIk84U4bYp9r4j3fzrcd55CeKFEw3UVice68Z2f0oO1AbSGzPO3gDGD9aAmeCCYogyCNAQU7ZG+59HDYgHVXKxCm7P8TbWJ2nKk98JHzgocdEF2QWTpZdgjb1y303Gcy9mMMHzDKGBD84BSZAwVWFrF/44H4QGBlhYoPEPsPLz2C0U5NQakWLVogJ4db3tKmTRvs3SvMPDh//jwsFvHE3V9YtmwZCgsLce+997qu7dixAz169ECLFi1c18aMGYO6ujrs3r1b9TNqampk7zUUZ6yursaePXtQXa38i3so6qGnfF9kaeFVw6OUVgmdkXyAlvni2SGlg+u4ZWJLwT22ppSS7CcWSmjlglxjOnC1pMrqyhQ/Ewgt+weAWedmobBM/bp0Y9g/BYfdihOnzjCnJfuERcmdcNm9+6dTBvPhHHJNkUymjMnCy55yBotYGnapn8POBFwAXlArjhPt4GXbsLwJHT00x+wMStm4TKmlrYBdjzP1qRwSAVLKAixh/CUoY8Cpb2RvufSgbUDeeu+y+O/FXgcsaipJ5jAzO/RRl1Y6L3gKSvFkOuqAqgsiisF5tzG6luwHinZBaXDMGD5glDEg+GMLmQMFVhaxf+OB+EBgZYWKDxD7Dy89gtFOitZgPRkZGThy5Aj27dsHAHj22Wfx2Wef4Z133sFNN92ErVu34oknnsA111yDVatW6a2zJG644QYAwO+//+669tBDD+HcuXNYvXq1gDYqKgqzZ8/G5MmTJWXV1dWhro6bmJeXl6NVq1YetzIkW2ESNHQYyQee+P0JfLHzC9H16cOmY8bIGQCYAuOrT3P/G7bctwVDWg/BlCVT8OP+HxU9Z8t9W9CnWR/kVuaiQyoT8Kqqr8K+3H0YmD4QEeYI/HnqT1z3y3Ui3jt73olfDv4CADj+xHF0atRJRBPKoGYIsxreHfUuXhr6UpC0cSKTAjJUDnn7XwPgAJpdA6wbxVybVAlY4gRkLvtPAbKKaWDjTcCI5czNTeOB4UuBY58wdYQunwlUXwCaDgda3wbMNQO3lQHHPgNOfgncksPoCgC31wDn5wF/3QeMOw3EtweylgKbJzBBpTaTgbNzGNre/wEKtjLHw5dJt2d5Z2Z3vri2QOF2oNVEYOutjNz0cUDuamAsr85ZJgWk9AFK9jIBrVtLgYh4dX3oK/66HzgzS/ju2P5hr9mqgflxnt9vJgVcvw9IuVyeZ8MNQM4qIKoxUFcINB8D5PzJ7KhYuF0oL4NmZA5dDLS6GTjwBnBohvBep38BJ/7LXdtyG1Pk3F4FxF8GXDmboZtUDVhitPWPQeC3MSB3PbD+aiC5J3DDAf3kEhDoCCPNgQgaCLTMafwEYv8EcigvL0dSUpLHOAoAaEpluu222/Dyyy/j3LlzaNu2LV566SUsWrQIr7zyCl555RXQNI2kpCS8//77qmW/8cYbmDFjhkeanTt3uupGAUBWVhb+/PNPzJ8/X0RLSWwlTNO05HUWM2fOlNRhwYIFgjpafLBZVDU1NZg7d65H/QkIwhFG8oE+9j4YGD8QVtqKvVVcFid9hsbcXEa3a2zXYDW4oNRXy7/Cf+z/EdB7w5fLv8SfpX+i2FaMB5o+gJFJI/HqhVdxtu4sAOCxZo8hioqS5M2/kO86nr9sPjpEd5CkCxfM/Wsu2ma1DaoOkwENttkNAND48EawC9t+nb8YDrclfPxM2rlz52IofQlbnM8aSmdjy9y56ETvRT8Ae/YfQjIuIvtkFLK2OzAZwPwFi9ANe9EONiybOxfsTyYLfv0FN+AFxAFYvmwJKqnmaEtvxZUA4KjHmbNn0d5Ju3/fHjRCNgAKWzJ/kSwQPYk+C9uxr3EItyAF2bh0fjMGIRJHKvsi8vhxNEcZfuf10WQAZ0vi0A4AaDsWLchEPZUgkutPDKDP4jII391kADQozHNes9C1uA2e3+9kAPtWvQcz6nGIuhWRdCUmusulnT+k1Tkz+3L+BAAUFuajsZu8uc73tGXLFmRRtehBH0RPt3vHTxxHZ961q+gLaIZDiEQ1zhSY8fc5hm7D/BnIpS5X2zWGgr/GgDT6MEYBKC0txSoyvyIwKIw0ByJoGNA2p/EPiP0TyEFxthWtE4qLi+n333+ffuSRR+iZM2fSWVlZmuQUFBTQR48e9fhXU1Mj4HnzzTfpJk2a0PX19YLrr732Gt2rVy+RngDo9evXy+pQW1tLl5WVuf4uXrxIA6BPnz4ty9O8eXMaAN28eXMNrQ4d5Ofn019++SWdn58f1nroKd8XWVp41fAopVVCZ1QfOF54nB4xewT9/OrnRffGzR1H4w0o/ot7J45u9VEr2fvnS8+Lrt0872bRtfe2vEe/tPYl1/ma02tUtSkU7L/P131E7Q6EHh55foFyWje6Rd88z/D/App22EU0rP2npzifsfEm5tPhoOn11zHHRz9l+I9+StNbJ9P0xSWcXrZamq7Jp+nSo9y1X0DTNQU0/VtL5jh/K3Pv1Czu/vYpzOeSdjR9YAZzvPkWmrYLx0P6zE80XV/O8R35kKb/epCmz86l6UVNafrgWzS980lRHwme8QvogouHAj8G/P2QSK/6Ff3oYz8M5PSoLxPr7o5fQNMbbqTp31px51LtVfrH0l9YxBzvn87ds9cznzv/5bqWn59P05tvFb47VsbCxpIqkzGApumcdUwfreypr1wNIHOgwMoi9m88EB8IrCw1cxotz9PLB4j9h5ceesovKyujAdBlZWUe6TRlSl24cMFVaJxFSkoKnn/+eS3iBGjcuDEaN3b/PVIeNE3jhx9+wD333IOICGGdjyuvvBLvvPMOcnJy0Lx5cwBM8fOoqCj06yeztTOY5X1RUeLsBnf5fLCZV54ysMIBkZGRaNu2rSF2HfCnHnrK90WWFl41PEppldAZ1Qc6NeqEDVM2SN67vfvtWHZcZpmTBMpeLMNdC+/CvKPzJO/ftuA20bXfjv0munZT55uw/Phy1/nh/MO4pv01ivUIJfvng/aSpaqHHh55Jjs0yY+MjERa83SArfcokYEk265LvwM5fzhPeLvwOeq4GlHstegmzB+LiGSAtnLnfz8I3HhEeI3dfa/Ha0DBFqcsZ32qwr3MLoEAsONuYOxRjk+w+56JqbVUeUa6Dbwd/iIjzEEYAyT62xSJ+PgYTg/aIaKRBEUpLFquAlLPPsJminNLKzz2mdSuhyBjgNFA5kCBlUXs33ggPhBYWaHiA8T+w0uPYLRTU1CqXbt2uPfee/H999/rrY9qrF+/HmfPnsX9998vunfttdeiW7duuPvuu/HBBx+guLgYzz33HB588EGPaxrlkJSUJHuvoThjUlISrr/++mCr4Xc99JTviywtvGp4lNIqoQtFH7il6y3o2bQnDuYflLzfOqk1LpQxRYsndZ8Es8mMEe1HyAal/sn+R9FzI82RiLZEu86f/vNpPDXoKcV6h4L9OyS+qJfXlSMpWv7/qB56eORxs0019n/VkOGAhxKJLrs3O98rW64xIgmIdRbVtzhrMZnMTJFt/hJAfoCKRWwLhi5tFHD2R8DuLGpu54JEOO9MkzfxJg6UmSnMvfoKYb2JCwu4Y9rG7b5HmcAET9xqU7BtcHBBsMT4WH1sr74MOPIe0Humd1qJvrFYzEhvkQ6w47LSoBTA7WboK87MYQWK7x14VXQvKSlJZIM8pSSvkjHAWCBzoMDKIvZvPBAfCKysUPEBYv/hpUcw2qlp973U1FSkpqbqrYsmfP/99xg8eDC6du0qumc2m7Fy5UpER0fjqquuwqRJkzBhwgR8+OGHmp5ls+n862oIwmazobi4OOh94W899JTviywtvGp4lNIa5b3rjWhLNB7q95DkvYTIBJx96iwe6PMAxnYci8+v/xwAMLm79AYJAJCekK7ouRGmCFW7/LkjFOxfagfEwmp1O/AZyf7LyhW+L/cJmTka6OC0MbOzkLVkppQbX7eXgKTuYIqsX+u8yO7sZ4UIJguXwcVmSrnDzmuDg58pRTFBHfcd5thAD+95tvpq5e8kaykvY8gN1ReZoJQSSGSm0TSNuvp6To9gBKWK/nZ7Nu8dsjsg8vaSYXTl0SiYvBvJB8JxDFALo/RDKIwBesgi9m88GKUviA/ow0N8QB2M0g+hZP9KoSkoNXToUPz1119666IJmZmZ2LZtm+z91q1bY8WKFaiurkZRURH+97//SS7NU4LCQvkvVA6HQ/AZrigoKMD//vc/FBQUhLUeesr3RZYWXjU8SmmV0IWqD7RJaiN5vXez3jBRJnw37jusyFiBJnHMsqqq0ip0gHRRcrvCL7sR5ghM7iEf3PKGULB/WmJj1293f+t3Pfxl/z/94rlwJ2v3rmazS8RoGxMw4oOyMEvi3K/z0ftdILaVM+DBBoec9sVmTLG46SQT4Dr9PZB8OZOJJbVEjR+4OTgdKNnPBJzYTKlItyw2WhzwKSnKU/5OctcB536WvqcmiCQRlLJarTh67BhPD4XyaIcgUOQTTn7FyXRH69vZB7ouifpMQR8YyQfCdQxQAzIHCqwsYv/GA/GBwMoKFR8g9h9eegSjnZqCUjNnzsShQ4cwY8aMoEcKA4mUlBTZeyaTSfAZrkhNTcWUKVOCninnbz30lO+LLC28aniU0iqhC1UfuLbDtejUqJPg2vWXXY8Fty2QpE9NTUXfy/pK3iuuKVb0zEhzJNqltHOdt09p74FaWgej27/U8r0/T//pdz38Zf8Tbr7VIw1r95SFzYayMMEPh024TA9gAkj85Xvxl0kLpUxMIMoVRHFm1ljLhHTmaEZWoyuAjo84g14SYzOvNhTaTAZsFcA/D8OVKdVirJCetgPNxwiCOElxZkyZMgVNCn9i2uAJ1VmAtUL6XtkRz7wCiP+nWCwWXNahA/fulGY/0Q7ILlPUiu0Z4muuLChOdmpqKpMhxuLsj0BNrkfRRvKBcB0D1IDMgQIri9i/8UB8ILCyQsUHiP2Hlx7BaKemmlL/+c9/0KNHD7z55pv49ttvcfnllyMtLU20jpSiKEPUndILWjOswglRUVFo27ZtsNXwux56yvdFlhZeNTxKaY3y3v2BKEsUDj56EMU1xWgW38w7fVQUnh72NBafXizKjKrn1/rxgAgTs2kCW7Oq2qpwu1SeDka3f6nle4lR6mr5Gcn+W7ZsBexVIJRdomeOZDKN+JlS7Bjpvnxv3ElpWZSZy5RqOQFI6cNcry91IzQxz7CWAZGpgCUOsFVyt085M9SOf8ZrVGOgZJ/zOSbmGe6BRNoORDYCrOWuS5H7n0Hb63YCmS8AHe5i6l7JIUtc5N+Fc78wn1vvAIZI12hzQWKZm8lEIT4+HmDHZVXL9yTa6R441Au8Z0VFRQGFO4T3z/zgkV1koxWngL3TgGGLlfOoka+DzHCGUfohFMYAPWQZaQwwwns3AozSF8QH9OEhPqAORumHULJ/pdAUzpw9eza2bdsGmqaRk5ODP/74A3PmzMHs2bNFf+GEyspK2XvsUhWpJSvhhMrKSmzbts1jX4SDHnrK90WWFl41PEppldCFsg9EmiMVBaQApi/oCzTWZ6zHoJaDND0vwswEpWIjYgHAa1DK5rBhT84e1NnqXDoY3f7ZTKnESC4QVVQjvcOYnnr4y/537d4NGhQw/oIkjcj+qQimQDjNy5RqNBC4/F2gJpsJCJm87WrCy5RKuAxwBjNFQSnKxASwyo8BpQedwSxewPScxNJD2g60zQCSujkzsmhxthEbUONdd9SVcEvmHV4ypTw2zRmQY3cM9ASb0z/OzHZdstvtyM/P596de6Dp4AygaKeEMKmC7josN6jJc5MrzpTyaGcx0vXoRDZadd5zsE+KRwfacB8DlILMgQIry0hjALF/BsQHAisrVHyA2H946RGMdmoKSp09e1bR35kzMttLhyiqquQL3TYkZ9y6dashnNGfeugp3xdZWnjV8CilVULX0HygU3wnbLlviyuwxEdqjOd010gzE4xQGpR6ce2L6PdtP1z787UCHYxs/3w7iAXTTqWZZL7o4S/7X/f3WeSNzAbiWknSiOyftgL5m5lldGymVMJlQPeXmFpLgPegFJspRdsBUxS3JM9WJaZjA19s4XJ+gESqoDbtAFL7A+njnUXHZ0JUl8lhZ2RXHHddslkaY+vWrcyJ1NK8yrPccbPRQCuZZY9slpjXwByP5q/7XJfsdgfy+EEpd91P/I/rZz7qiwWZX5K8WvCbW1CbLeJe+LfrkrSdOd9NZDJwYDpQKZw3VVZU4MLO2Txe78XRyRjgP5A5UGBlGWkMIPbPgPhAYGWFig8Q+w8vPYLRTooOd+vRAeXl5UhKSkJZWRkSE6WXn7Rs2RLZ2dlIT09HVlZWgDUkIAg+GqoPHMo/hJ5f9RRcax7fHDmVObI8jukOUBSFoT8MxdYLzBf8U0+eQodUcQF1B+2A+U1ul7ZtU7dhxYkVuL/P/ZL0RkHnzzvjRNEJpESnINIcibyqPLRNbouzT531zhyCENl/pjN4MHw5UJMDXPYgR7znOeDYR8DYo0BSF3mhB15nlu0V/QXUFQMnPgcuexgo3g1cWsHRTSwESg8A60YBXZ8HQAPt7wdWdgUyaODXGGFx9CZDgMSuQJtJTOCGDaBc9ghw6muGB2Cyfw68yiw5KzvMXBs0G2g/hWnfDQeAZKHtI5Pi+NePBiJTgCHzxW3blgGcn8sUc58gnX3mwm8tmD4EONlrhgDxHYAr5zDnlWeBZe25+7+1ZPq85+tC3Vhk0Nz5pEpmySNNA3N9qIfRYzpw6E35+xk0sCBZWBPs8pnAfudOi2WHgSELgdYTufu2amB+HNeuvA3Me84w3tRN5AMbrgdGrvJdcO56YP3VjK3dcMB3eQQEfkBDnQMRBBH88TbIIPZPIAclcRRAY6bU1KlTsWzZMo80v//+O6ZOnapFPAEBAUHIoEfTHvhq7FeCa5HmSEwbPE2Wh62/lxCZ4Lp22f8uQ2ltqYh2x0VhDZqrZl2FmVtn4qk/nvJBa/+DXb5HURQszkwhm1Tx7XCHVKHzjo8wn2YFmVJwMMsALbFAbS6Qu5rJfGp5M4/OxGUeleyDKFOq+fXugp11lCKES9dOfS0kY2stmaOF11zwMoWgaYgyew68zgQZ0scx5/zC33KokQ/wcs/yku3E2l5Sdwletk2+Tu4lspiSegjPmw5zf7iXc++ZUYZFzh/B1oCAgICAgIAgBKC5ptS+ffs80hw8eBBz5szRIt6wKCqSr4fSULbCLCwsxPfff4/CwsKw1kNP+b7I0sKrhkcprRK6huwDzeObC2iiLFF4fODjXmV1TO0oOD+cf1hEk1spvTvXypMrDW3/bBIuRVOorWaydNQGpcLC/vmFzlmwQSqTl80zKBMTbHFYAbPbMtGhC3knJk5mYlfgXCawshtPjlnAyiznczivSwRiDrwOLEhy1sMS1qeqqCjjNjCRWhYoAA1ccMuSOv09U0fKZJZmkUJcW9Elq9WKkydPcu/EW1Dq8DvMpyUOiGripqZDmQxvqJAoWF9+zHUoaT8un6DdPp08znkHx+s9SGU4HwgjkDlQYGWFxRgQZiA+EFhZoeIDxP7DS49gtNNv+zbW1tbCYvHTbjZBgtksP4lmMx/cdyAMN1gsFjRp0iTo79bfeugp3xdZWnjV8CilVULXkH0gJiJGQBNljkKMJcadVYTLm10uOLc6rCKaWlut6BpfF084mHcQhdXqBxQ97J+fKcUWdlcblAoL+8/5U5wpxRYs91pTylno3FHP7ernWnFPAbEtOTr2GZSJKaQukOM+dpmYelEmCySDUgXbmLpLtJ23AyADM0WjSZMmQl3OZQr5PQV5TBFMe9RUDuj+iugSRVGIio7hvRPns3h1p1Bfwh3XOX9UKvoHqCuQ1tfXTKnzmeJrNGfzjK4y/x/LjjjphTqw7ePa6f3/K2uvMXnyO/S505IxQBnIHCiwssJiDAgzEB8IrKxQ8QFi/+GlRzDaqflJckZH0zSysrLw+++/o0ULD1tFhyCSk5Nl7zUUZ0xOTsa4ceOCrYbf9dBTvi+ytPCq4VFKq4SuIfuAewDqYP5BJEZx66bbJLXB+bLzIll39boL9y+733VutYuDUnV2+R3OEpPk12YvOrIIty5gikyff/o8Wie1lqV1hx72Tzu/4JtMJiTGJiK3KBd2h90Ll+96GMb+Y5ozy85O/x/Q/Fo3YjZTSmGhc3b5HgCU7GbOKQpody9w+G0mEGXyELSg3H5/cmVKWaSDQ/XOAA5tF+2+FxsTxfRFJuAK4my/k9nJjwVtdwbUJIKQjnrAXgd1ASAxrcViQetWrQB2XGYDS2dmA4N+YI6Pfwb0+5Spu9HRQ+biPw8DA78GLPHK1IlIlCiW7h3J8RHeidwCeey8w9P8Q/Qc1l4zKaD7Q8polcr0gIYwBpA5UGBlhfQYEKYgPhBYWaHiA8T+w0uPYLRTcaaUyWSC2Wx2ZQu98cYbrnP+n8ViQdu2bbFz507ccccdflM8GLDb1X2hCkfY7XZUVFQEvS/8rYee8n2RpYVXDY9SWqO8dyNAqi+iLdEiuihLFBZPWox7e9+L1Xevxuq7VuO6y67D8snLXTSR5ki8OYIrjCy1O12NtUZWl4LKAtl7bEAKANp82ka+QRLQ432zy/dMlAkm51CjNlMqpO2fH+zRmilVX8bUkarN55bv8bPpur3ACuSyodwDULZqiANVJl7ASSKbid1Vz+FcvlfGLSt12K2oqODtuscWC+e3l33PUu+75hITFFOTKUU7RG2gaRpWq5V7J7TbuxFNjD087+JCoOKUZxo+zN6zIF3g1fOiFzUFcte6qeXeR0Id7DbmvqudCib8rL0qgd/HAD330jHAvjxGGQvJHEgfHjIHUg+j9AXxAX14iA+og1H6IZTsXykUB6WGDRvm+qMoCq1btxZcY/9GjhyJiRMn4ssvv8Tbb7/tT90DjoIC+S+ADWUtbX5+Pj7++GPk5+eHtR56yvdFlhZeNTxKaZXQNWQfcF++lxqTCgC4uevN+GH8D+jUqBNGdxiNVXeuwo2dbhTQskvbAOnle0+sekJWl52ndyrWW81Gq3rYP7t8j3bQKClillGpDUqFtv17CEqxASRvSzzjWjNL0E5+AVRJ7FoY4czs4S/fi0wW0tSXivnYWlWUBTj+ifg+zQv0uC39q6wow8cff8wS8nh4fs8GWqQypVxQ83+C5oJtNA2svgpWqxWHjxzm3gn/+eUnmIwsANg41nnRSzCHMgHVSncMUhNQ4yZ0lL0asFcL77vv1ucQBqbzC5j22VddwUrx+kjWXpXA/2NA8ANJeoLMgQIrK7THgPAE8YHAygoVHyD2H156BKOdipfvbdy40XVsMplw3333Yfr06f7QybAgy/eAlJQUTJ48GSkpKWGth57yfZGlhVcNj1JaJXQN2QfcM6XmTFC+yUMkbwc2qUwpPn67/TcsPLIQvxz8BQCQZ8tT/Jy9uXvRt3lfRbR62D+7fM9sMiMlJQV5JXmqg1Ihbf89XgN2OQOK7oXOlSK6GbeULqqxZ1r2GZ2fAg68xl13D4IwWnI767FIvwnIdmbxVZ1jPmmrKKAWEx2JyZMnArveYGpPueAA4AxgscEoiSArAKBkvzODSyFoB1dfi3YAhdthaXQl2rVriSjXO+FNhLfdzmSXAcCl35U9gzIByzt6p1ML9wwub6i6IDhNcc47Ist3swK9imDtFbveEN4oPQQk9xDRTpkwMDTGAAOMLWQOFFhZIT0GhCmIDwRWVqj4ALH/8NIjGO3UNFMO9yioHKKjxUt0WDQUZ4yOjkanTp2CrYbf9dBTvi+ytPCq4VFKq4SuIfuAe00p9131PCHCxMuUkqgpxYfdYcfkHpNdQamz5RLZMzJ4ctWT2DZ1m3dC6GP/bKaUyWRCbEwsUKI+Uyqk7b/T41xQSpQppdBHTJFMYKfdFKDRFdI0w1cwdGxGk8mtbpG1AqJABkU5Az1uBdDNMYCdt1zUXi+iibCYmL7YBeDE59wN2g7QznY6vGRK5a5h/hSDBpchxNUqS4pPBNhxmZ8pVbJPRga4Nq4Z6nZfxb4vqpaR+TZfio7m7dDosAmLt8vyRHPviI/fewIZtIi27eEbgMs9t0nzGEDTSpK7lMEAy/fIHCiwskJ6DAhTEB8IrKxQ8QFi/+GlRzDaqWn3vaysLCxbtgylpaWS90tKSrBs2TJkZ2dL3g9VVFVVyd5jl8aoWSITiqiqqsI///zjsS/CQQ895fsiSwuvGh6ltEroGrIPuC/faxrXVLE8NZlSVdYqtEpq5TrPLpX+H3u88Ljo2v7c/Yp10sP+XXZAA9VV1c5DdbYRNvYvypRSGpRid6pziINNLNLHMkEmV+DLbViXDAzxakrx0eJ64blDHJSqrynDP//847zPC6LSDrgCP3ue8fBshdh+Ny+4xQtKOYNP9vpKFBQWwrZxouC6PFh7dNIVbBXeFu1Q6AGWOOW0eRuU00pAYHNnfgA2T1DE43pHCuX7zwfCazwgc6DAygqbMSCMQHwgsLJCxQeI/YeXHsFop6ag1DvvvIP77rsPMTHS9TBiY2MxdepUzJw50yfljAZPhUMbijOWl5dj9erVKC9Xv/NQKOmhp3xfZGnhVcOjlFYJXUP2geToZHRv0h0AMKn7JKTEKE939VZTig+appESzcnOr5Be6/38mudF1+7qdZdinfSwf1cAigbKyso0yQgb+3fPlFIKU4Qz8EN7L4rOBpgoE9CB29HRxS/Qh2KusYGYDg8wgR93+3PUiQJXpvM/YfXq1cxJbS53g79MLW8982njZV1lUkzmlVKc+xk4P5dVhMsuO/cz8zhrJS5dugTLpcXO53sJSp38ipMlBfcC8R7h51+Crdxco4Jvc3a3TQ+qxDt6Apy9AgBqCz0+irVp//mADuOBgX55J3OgwMoKmzEgjEB8ILCyQsUHiP2Hlx7BaCdFa7CeTp06oV+/fpg7d64sTUZGBvbs2YNjx475pKARUF5ejqSkJJSVlSExUXoL9pYtWyI7Oxvp6enIylJaLJWAIHzQ0H2gqLoI+/P2Y0TbETCp+IL70/6fcM+SewAAn1//OR4fKNy6nprBfSGrfKkSNGgkzEwAALRKbIULzwhr0ABA32/6Ym/uXsG1B/o8gO/GfadYL1+R9mEa8qvy0Ta5LZrFN8NfWX8BABzTHWGZ3i1p/+zOdKO3A02u5IitlcCCBNFSKhEKtgP5m5haQAO+BBYmc/fceWtygN9aAHfYgJosYGlb5vo1m5iAzPl5HG2LG5kv+v2/AJa2ZoJYNc76ZJdWcHQjfgdKDwL7XuCudZ0G9PkP07aoJkCdcwOQW0sBSzwwzxnEusMKbLiWyRRqPxU4MwuYWAgskqiNJdUPmRQQ3x4Ydxo49hmw/yVhUCahE9BkMHBmNkNTcZp5njdQFukMrhsOAb/3EF+XQlw76cLzeqDnm8DB6VyfsLYCAH0/BfY8zRw3uYqp6eXJhjIpYPw5IK4Nd86nz9vILAudH8u9Vx8g8oFMCri9DjB7Cah6Q94GYN0oIKkHMPagb7IICPyEhj4HIggC3P+nBxHE/gnkoCSOAmjMlMrOzkbbtm090rRp0ybslu8REBAQyKFRbCOMajdKVUAK8Lx8j19jqluTboiLjENcRBwszuyVi+UXUWerE8m8Il1cf6jeoSJLRQewv3eYKBMoXmaJ2iV8YQH3ZXJKg3K2SuDAdAiymuQf4pRtEmZmOWxMcMf9+TTN6UE7AGsZc96RFxQ9+gEvW8klkJfx5BBev7iIO914AxNMaDKUCUgBwJH3xGoneKi/VnnGeUCLM5kqTnDHq/oAp76WlyOADvbnbddEX3DQfQMZvr68/hYUmfeACwuAPwZK31s3Eih2FlA/+r5SDVUiiDVIdz8D7J3muxzaARx8S3jtcHitBCAgICAgIAgmNAWlIiMjFaX5hduv4cXFxbL3GspWmEVFRfjxxx9RVFQU1nroKd8XWVp41fAopVVCR3xAGzwt36vhLX9KT0gHwBSRNPMCFGV1wqVxxwqP4evd4i/o3upV8aFHG9lC57SDRkFBgeu6muTcsLF/rcv3aguYrB529zlPYG1CUF8KzJI8cyyQ0seNnoJrCkA7gIItYpl5G0RFw2uqq7D0l4+Ykzpef9iqmV3vWLCFzPl6e1meKgvaAaklc6dOnXI+w6J8aaBsPyr8vzV8JdDxMWW0viCTAqouoqiY18dSvlOwDTj6MXN85D9A2VGXvQIAavOAssOyjykrly9LwIdmHwjmUo7yY0DFKeX0ueukr9N2V7DQ1bf7X9ZBQe0gcyB9eMgcSD3I94DAygoVHyD2H156BKOdmoJSvXr1wvLly1FXJ/6FHgBqa2uxbNky9OzZ0yfljIZwC7JpgclkQlxcHEwmTaYTMnroKd8XWVp41fAopTXKezcC9O4LT5lSp4q5L1T8YurXtbvOdeyeKXX7wtshBTVBKT3ayGZEUaBgMWsLyoSN/YuynBSOJcndnQf83efknsHTjZ+ZRdsgmWnFz5TiZ+N4GecoikZ0TIL4xuorxdcA4XOzlkjTVJwGqj2l+9NM1pgbLBZnQLe+WLjs0BPkgiReC6U7EZkiru9liVfGqxZLW8MkeB8SuuesAY45g4T7XgQKd7jslQHl8Z1SCm1auw8E8wsK7dWeBVh/jVcSYd8GD2QOpA8PmQOph1H6gviAPjzEB9TBKP0QSvavFJq+KUydOhX33Xcfxo0bh6+++grt23NLA06fPo3HHnsMly5dwptvvqmbokZASop88WL2pQXbSP2NlJQUTJw4Mdhq+F0PPeX7IksLrxoepbRK6IgPaIOnoNSenD2u437N+7mOE2O5Ndm1tloBz4G8A5LPUROU0qONNufOaZERkWiU2AhgNuBTtXwvbOxfVKRc4RfllN5A+jjgwnzgyh890/KDP/xj2uYMQLnpRVGcHmyRcveMpJbjmdpNRz8AopsBtbmIjozAmBtuApY+KZRXfdG7XondJIpzU8Dyy5hDqdoY+VtlC3q3bdsGOCN5Sx6yOwIqtEt+v7EwR0sGzfSAcN4hpaNDFHB02WsmAFCATX73nETkKdZDkw8EM1OKpiH47fW3FsDNlzQI4t63sG+DBzIH0oeHzIHUg3wPCKysUPEBYv/hpUcw2qnJcqZMmYJJkyZhzZo16NKlCzp37oxRo0ahc+fO6Nq1K9asWYNJkybhvvvu01vfoCLcUxKVwOFwoK6uLuh94W899JTviywtvGp4lNIa5b0bAXr3RVwE96t7Zb3wi+2Gc9x28r3SermO+YEs96CUHNQEpfRoo93BBDrMlFmwZE/N8r2wsX9zlPBcU9att0wpflDK+XtTSm/AUc/UXyr6RyiLH6hyZQm5vZvEbkDaKOY4llk+StN21FntUAy+Xg6J7GpvyxLXDgVO/E/ylt3u1CMmXbk+clCaKQVIvD//BV4cdl5f15dIE7kFBFl7BeDV1uiLC5XpodkHAjRmOKwSwUu3TKmaHN8fw+/bIILMgfThIXMg9TBKXxAf0IeH+IA6GKUfQsn+lUJzOHPevHn4/PPP0bFjR5w8eRIbN27EyZMn0alTJ3zxxRced+YLVeTnS2+/DjSctbR5eXl47733kJen7NfVUNVDT/m+yNLCq4ZHKa0SOuID2pAYxWU9lddxgWoiMwABAABJREFUtfre2vQWMg9yP8c3iW3iOnbUc32cXcFtKHEo/5Dsc/jL/OYenIvhs4fjj1N/SNLq0Ua7M/uGttOCnVjUZEqFjf2bosTX1IIN3nR5FujwoPx9gFu+1+XfzPKucz+70VIQLAlkAzJ1hRAEv2gbJze6GTBqLaqrqvDFF58r0zn9JmGWmF0qgCoRNFkzVJH4AwedO7G5F5LXAsVBKV4tLtW86pGfz7O5w+/K6AOg3Fn43WF12asS3ZQGWDT7gD8zpRy8rLdLv3M7TnIPh+KsRI/gZAj6NoggcyB9eMgcSD3I94DAygoVHyD2H156BKOdPuXYPfbYYzh8+DAqKyuRlZWFiooKHDp0CI8++qhe+hkKSUlJsvfYelPhXncqOTkZt956K5KTk8NaDz3l+yJLC68aHqW0SuiID2iDVFDqQtkFTN8o3IWrXUo71/Gx0mOu45fWveQ63nVpl4AnLS7NtRvgpvOb0Pebvqiz1eGu3+7C5vObcdPcm0TZWYA+bWQzpSIjItG0cVPXdTWZUmFj/1prSglYnMN12kjgim89P4PNlMpaCpz+TkoYhF/YHUCjgUw2FV9/2s49d+hCIKkboiItGHvDDfJ6Wvj1ptjnsI+RypSS6IuCrfLyeWjbpq1TTx0CH2oKV7vr7MeglKd5hwC1zh/N9r3oslcAQOVpj2wREe5LSwEc+8S56yMH7T7gx6DUvAig6oLzMRLZezIF8lXBYQN2Puw6FfRtEEHmQPrwkDmQepDvAYGVFSo+QOw/vPQIRjt1+HkRiI2NRWxsrB6iDI2YGPltoBuKM8bExKB79+7eCUNcDz3l+yJLC68aHqW0SuiID2iDe1DqQtkFtPm0jYiuRUIL1/GO7B2u4325+wAwu90dzDso4Hmk/yOYsWmG63xv7l68v+191854NocNCTMT8MbwN/D6iNdddL620eawuXYSjDBHIDY6Fihk7qnJlAob+9cjKOXikeHlZ0qxz7NzuzfCHMM7l1i+J6p7BecXfSeNORqACRYzhc6dOgFHZdRM7QPkb2YFCO8V75ZSXEaQd6SkpAAlEs9Rg6YjgPyN3G6BXiFRU8qPgZeYmGhlhGytLGspZ6/7AW/9aza72yaY4GStMDPcsGMAm30nGRiUqKWmFjl/Aqe/d50K+zZ4IHMgfXjIHEg9yPeAwMoKFR8g9h9eegSjnT6N1nv37sW0adMwbtw4XHMNt2vJ+fPnMX/+fBQXF/usoJFQXV0te4/99V9NFkAoorq6Gvv27fPYF+Ggh57yfZGlhVcNj1JaJXTEB7QhIYrLLCmrK8PaM2tFNGM7jhWcUxJfNKcsmYKP//pYcO3VYa+K6A4XiLeHf2PTG4JzX9pI0zSS30t2ndsddlRVVQnuK0VY2P9lDwPRjb0rLi+Z+aC8BaX4mVJOmpTe3DVzjNt9/pd4isuu4st32NyCXSbYrPU4fFh+mSgnRykoZnljbEvmdFkHxZyurYrliqwrQXIv7zR8FO+E6B34MVPKqx1fWMB8xrbirmVS2LdvH3Nc53k7Z5tdRve89cDFxa5TekEKDuzeosEHaODIB0CpB5sBgJU9gJJ9nmk8gf8ObDWAtdKZQafwC5Jcva5zworm7P+CYIPMgfThIXMg9SDfAwIrK1R8gNh/eOkRjHZqDkpNmzYN/fv3x4cffogVK1ZgwwauIC9N08jIyMBPP/2ki5JGQXl5uey9huKMZWVlWLp0KcrKysJaDz3l+yJLC68aHqW0SuiID2iDxWRx1Ys6X3oeRdWev0QCwHtDuJom13a4FnaHHT8f+FlEZ5GotRNl8V7fyJc2Lj2+FFVWLgh1ougECgsLXedqMqXCwv4jJJZfqfkl0X1ZkiyvxPXWk3hynJk0k6rgypRil9MVbmc+20wWyuEv3wMAyoT6+lqsX7tKXl+pjCtPiGvL1J5K7MqcVyrfTu/CxQvqniUJt6AMGxyTQ11xQJfvYe80z/fLj0rqsHTpUuagVCKlJ2upK2vNZrXKyz49y3VIWUuxetUyoQ/U5AieS9uYTDyRD+x/ESjY5rkdZYdF2VnK4HwWv/17/w1sncTdc8eqvsLz3c8AxXulac8Lg1Ls/4Jgg8yB9OEhcyD1IN8DAisrVHyA2H946RGMdlK0Buv54YcfcP/99+Omm27CO++8g7lz5+K9997jdsIBMHjwYMTExGDdunW6KhwMlJeXIykpCaWlpbL1HVq2bIns7Gykp6cLivqGG2iaBk3ToCgqqCma/tZDT/m+yNLCq4ZHKa0SOuID2jHsh2HYcmELAODhfg/jm93fCO6P7TgWKzJWuM6PFx5Hly+6AADu7nU33hr5Ftp+1lbA88edf2DMZWNAzRDqmBSVhLI68SBDvy7cIU9rG+/+7W5BgCwhMgEDWgzA+nPrAQCVL1UiLjJOjl2oU6jbfyYFdHsB6O1WGNlhY+rhZCgYfjdcD+T8wdBmUkD3V4HL35KmzaQ4mbnrgahUYFUf5jyqEZM1k0EzX9jrS4HhK4BfnUHKpiOAmOZMQfPjnzDXOtwPtLuX2QEvg2Z4FqbAMfovUPumgSpwLtOLbgbU5jLHfT8B9jwDNLuW2XWQpoFLnO2KkH4Tk8VVXwyMWsO0QSHotveAOvejYnpJdHwMOPkld87W1pJDr7eBuDbAjru5a4KlkUHC2KPAyq6uU8cddpjm8bLnWPvJoIHFzYBWE4GTX4JOHw8qeylHAwDbJgPn5wEtbgBGrGSuZVJwTLgEKqYZ5wOZFHD1eqbOGYCWqRSyS8D5QCYFTCwCFjUGBnwFdORqM4mQSQEj/wSaXyu+l7cBWDcKSOoOjN4GRCZxPDceBxI7MRlN2+9k2rD9HqDqHBM8jG0FDP6Zo+f3A//ZrN26+yTfHjNo1/8C0zyzMv/1E8gcSB8eMgdSD/I9ILCyPPK6/y/T8Dy9fIDYf3jpoad8No5SVlaGxMREWTpNmVJffvklunbtikWLFqFHjx6IjBT/MtqlSxecPHlSi3jDItzXySoBRVEwmUxB7wt/66GnfF9kaeFVw6OU1ijv3QjwR190adzFdbz94nav9JFm7n+u1WEV7NrHonPjzpK8UgEpd/jSxnp7veC8or5CIEdNplRY2H+Sj2vy3TOlbFXSdO5oNkpYAHzoEmCSs6j9hQVA/iaAZ0fI3yiu+XT6e1GmFACYqk6DanIld50NSAFAQkfmM64VAMpzQOq2ClawpmwjyYBU34/F1zzCzR6bDvPyUDNQKqzd5tdMKaXIWy84NZk8TO9q8wAr0/eUVIFwGZikJqf8HfAk4b78VAWkbH1hstsFp1zBO6C5e1XndN0BkP1fEGyQOZA+PGQOpB5G6QviA/rwEB9QB6P0QyjZv1JoGlmPHDmC0aNHw2KRrx2RlpaG/HwtqdjGhacaWQ1lK8zi4mLMnTs36PXC/K2HnvJ9kaWFVw2PUloldMQHtIMflDqYf9ADJYPKCm7HPKvdKrmDXkp0CgDgl1t+Ua2PL210D0oBEGwpqyY5NyzsP+1qCWo1y/fc5HV/SZpOCvyAWGQKYOFlqDnE7wkVJ8TBA8oEXL/PeeKcMmy/EzW1Tn42CMXC7qw/oOQ9s8+iTPDrLm2e4K7nOS/+QlESS+IM8D+v8RXCc/eMM9H7YM5tVTnyMt14fvvtNwkfcNJUcXW9dBsD5scD9WVMlhQAj37D95OSvUCF80fRgm1Atcwyz0wKOCiTdSgD9n9BsEHmQPrwkDmQepDvAYGVFSo+QOw/vPQIRjs1BaUsFgvq6yUmtDxcunQJ8fHxmpQiICAgaEjgB6Wk0DqpteA8whThOrY6rIIaTixiI5gdUTN6ZmDWuFmi+/5Cna1OdE2qMHvDgUSwRc0vT+6ZLBEJ0nRSMEdyhbzldiGjTEAriS3uW9/u5DEBKZeLZbDH/T8X8p1la0nKBJmucLPF7OVMgWvaAVSdl2mIF8S108YnhRoPQRoAgAlodQt3mkHrmomjGaIdHt3hpqMziGMpk9oRUYZHksRJIxf4UdM3krRevuC4fIlHV3bYmb3H3qOAI/+R5j84Xbl+BAQEBAQEBH6B2m1yAAA9e/bEhg0b4HA4JNOYq6ursXbtWvTr189nBY2E1NRU2XtsPxghrdufSE1NxeTJk4Otht/10FO+L7K08KrhUUqrhI74gHZ0atRJ8npcRBySo5Px1kjhr/lNGzV1HWeXZ2Px0cXurIIi50NaD/H4fLPbF1pf2lhjE9bW6d+iP1KiU3DwDJMBpmb5Xsjbf6NBMkEkNUE63pftkX8C5mgVvABKD3h+Zv/PgZS+wMWFHF1CJ6DDVCB/g1sgirOTmBgm6CkKJEQ1ch7QkAxq8HcBZHWqzgKimwBL23ptjiRob0vIPDILTymLZ3nNr2WWhAlggF+GvQV/3O/bxNmVEkyCs5tvvhmIcZ8H0UDeRmDdSNcV1WPABaftlR0GWozxrs/2u7g6Ua5bHt4BZQKOvM8c52/1LNsLXP8LMjMU0fsLZA6kDw+ZA6kH+R4QWFmh4gPE/sNLj2C0U5PlTJ06FcePH8ejjz4qypgqLy/Hvffei9zcXDz44IO6KGkUhPuOAkpA0zQcDkfQ+8Lfeugp3xdZWnjV8CilNcp7NwL80RfN4ptJXi+aVoRzT59Do9hGguv8INLunN34atdXIl7+OvCEKHFgJC0uDYNaDgIA2Gm7oD2+tHHjuY2C8znj5wjO/WXLWnj8bv9jdgAR8kUdFYGfKSVVBFop5LKzOj4qXPrFX1LnsElnRwGgrWw9KBq4jFfA+rJHnZdpoI7bdRGd/sV88rL8BM/0pS6TIIjkY1aeXEYZi/gOXICnkbPfpHSPSfdND9XwZpvsLnXOz6K/FIgUynQ47KBPfOG2QyINVGf7oBeAMz8wn1I1pAr/Fl8TLLF0vm+HxC6CFCWkAYD6Eu/6eAD7vyDYIHMgfXjIHEg9jNIXxAf04SE+oA5G6YdQsn+l0ByUmjx5Mr777js0btwY33//PQBg4MCBSE9Px8KFCzFlyhTceqvEkoAQBr8uijsaylra3NxcvPXWW8jNzfVOHMJ66CnfF1laeNXwKKVVQkd8QDviIqR3o4uyRAkynlgUFRSpkh9tEWfXRFmiBMsAfzn4C8pqmSLoWtvoPng1jWuKFHsKzpzhvsSqyZQKW/tXs3zPYQfaT1VOL/9QFbQ0kxVFuwWleFOGmtIsjrbTkxwJmxlWsg8o3MF7vJNXKigFk29BKa/Ftt3QehLvxN0evfQT3x87PS5Px+4QFzAoDEq5glNK+lso85NPPgG16wkm2yhruSyX2AdoeK4H5XxOIi9jdI0zu3Pj9TxCDzKkglIuNomp7tEP5ek9IDc3Fz988BBz4mOAyxeQOZA2njMlZ/D9nu9RWluqSj6ZA3Eg3wMCKytU5kHE/sNLj2C0U3OO3S+//IJvvvkG7dq1Q3Z2Nmiaxq5du9C6dWt89dVXmDUrcDVMAgVP2xiyWQnBrsbvbyQlJWH8+PFISgr0hDuweugp3xdZWnjV8CilVUJHfEA71PZZ45TGquijzFGS1yLMXIDg7t/uxpQlUwBob2NRjTBYNmPEDCQlJSGtaZrrmppfXYj9g8mU8pa9owS2CuG57C5zlDNI4MyUgnSmVGzeQt51XpuTujKf7sXAXUEp3o5/bMYfRUFVofOB36L2yt+4c36mVPlx7/zpN8rf89bXlBmcrgZapuB1+Z5D+KlMqOBszJhrueubx3HPdbN5oQ/wdsIDgLNuy+74iGrCHRft9KqP82HMp92ZZVUrtcGOhE8e/5+8Hh6QlJSE+1sxP8TCoXznQr1B5kDqeWiaRq+veuGB5Q/g3iX3qpJP5kAcyPeAwMoKlXkQsf/w0iMY7dRUU4rFgw8+iAcffBA1NTUoKSlBYmJiWBc3j42Nlb3XUJwxNjYWvXv3DrYaftdDT/m+yNLCq4ZHKa0SOuID+uK9q9+TvZcQp6LYNYBIc6TomlQW1tLjSwFob+Pp4tOu43t734tH+j8CAEhKTAKc3xXVZEqFtf0PXaSMDg4FRawVoLbQ7YJcQIW3fI+2ui3fk2ubm6ybLwG/tXATK5EpxV6z18rIlXpUFHDZg4jmZ6nwM6UuLpDn7fwUcPwzprD7jnuYa+7BHH5f93gNOPSW+H7aCObY16WZukJhppQro0hFEXMnenTvDpwEt8OiDAQ+4N6/O+4G2t3lzqBcJ9mHOv+Xbb1dfK82X8J2NTzLVoVYSkktLv+DzIHU89gcNtemIGrHOjIH4kC+BwRWVqjMg4j9h5cewWinLj/zxcTEoEWLFmEdkAKAmpoa2Xvsr//BXmPqb9TU1ODw4cMe+yIc9NBTvi+ytPCq4VFKq4SO+IB+ePGqF/HCkBdk79fWqvgSD8BsMouKmcdYYgTL9/jQ2kb+LoDN45u7ZFVWcl/k1NhHWNs/fwc3T6Ad+mRKNRogPHcVQJd8qHRNKUlSiUwui8RyVNb++DWy2Gv2GiheXujkEbwLfqaUp6V8vZwBJlbfbi/C0/K9446REIEyAZEpwKQqzxlXSjDoB9/4+ZCzu9iWwvsrnEvkNCyXPH78GHNgrfBIF9gxwPm+3Hep5N+rOitxz01HJTr/8yjwG7/+X/DGOjIH0oeHzIHUg3wPCKysUPEBYv/hpUcw2unTTLeqqgqZmZmYNm0aHn74YUybNg2ZmZmoqpIoVhkGKCsrk73XUJyxtLQUCxcuRGlpaVjroad8X2Rp4VXDo5RWCR3xAf0QFyldY4qvw0RMVCUzyiJcwldYXShYvucuX0sbrXaurgsb8CotLRWsSVeTKUXsH86gjw6ZUu5LOJN7iGkSu/AKnbPL1LxMExz1EoEriQBT+/uZz5K90nRKf1110pWVlXPX+EGpPu97YhZ+dn1OuGTMTY/lK1bKi7LEyus87jRgr2OO+fW23NFGz51tZIJMbe90HjjtstpZC0wyiONZ5u+/S/WH2N5pW7XH+9rhqS6VpyAbBdQ5lxaz76yu2POjyk8AVReF1+oKvGoYKJA5kHoeqQyOkBgDDAbyPSCwskJlHkTsP7z0CEY7KVqj9cydOxdPPPEESktLBQZIURSSk5PxxRdf4I477tBN0WCivLwcSUlJKCkpQXJysiRNy5YtkZ2djfT0dGRlZUnShAMcDgesVisiIiKCuu2nv/XQU74vsrTwquFRSquEjviAb2jzaRtcKLsAAJgzYQ7uufwerzpEv8cVMP9+3PeoqKvAFzu/wHvXvIdbugozcVL+k+Iq7gowRciHtxmOBUeEy53o12nNbVx+fDnGzWNqzbw18i28OuxVOBwO3JR5E34//TsAIP+5fDSJa+JJjKidDdr+V/YE0kYB/T/zTptJARm0+NqIVUCL67hr2SuAtJHCjKZMCrhiFlBxHLiwEBicCay+ArjxGJDYWUjHx43HmeLfyzow5xk0YK0EFrgtMc2gGd5rdwDH/wucn8tdA4AmQ4CCrUKezs8Axz8RXrPEA5Mq4KjOhWlJc+dFXk2qoYuALW4B29jWQPUFYFIlMD8emGwHiv4BGg1kghmbbgJy/mBoI5IBaykAoG7sBUStbC1uhzvc+2SyHZjrDCSySwalcHsd8Ku43puu6Po8cPQD4LYK4TuxxAM2t6VobNu2TQbOz2NsJLIRMHQBkEmh7voTiFrVCej9PrBvGkM7fDlgLQe234mWTwDZJUB6CpBV7Hy3bPsHfgf886DwOSw2jgUu/Q6MWgs0u5q5Ni+KCXjykdQdKDvMycikgHFngfi2wKF3gAOvMjrnbRDyDV8BbHJmtQ39Ddhys7if+nwE7P03p9sfA4GKky5bkMSEbCC2hfx9P4LMgdTz2B12WN7ilqyrGevIHIgD+R4QWFkeeaXGfJXP08sHiP2Hlx56ymfjKGVlZR7rc2t6yvLly3HXXXehtrYWjz32GObNm4cNGzZg3rx5ePTRR1FbW4u77roLK1d6+JUxBBFM4zMKTCYToqKigt4X/tZDT/m+yNLCq4ZHKa1R3rsR4K++mDtxLuIj43F52uW4o4fngD6rAx9WuxVPDXoKJ548IQpIAeJi5w7aIZkpRdO05jZaHeJMKZPJBLOZy/RRkylF7B/6ZUrxkX6j9BI7/g5tbPaTt2fHt4doKuGekWDm7f4YmQpclSkhSCILpt/Hso81gb9Mj2dTUvq6irrz6mU1HsR8mizCjKWUy12HUVFuu1be5nnZGk8J7tAc7YEsELU3nH1T51YA3D0gJYeLXEH7qMpDzAEbkHLBQzuKdzlJJGi2TQZOfsVbOuetWLvE0kxWrqfML75NSAWk+M+21wFVF4CaS54DUgDgqPN8348gcyB9eEJiDDAYjNIXxAf04SE+oA5G6YdQsn/Fz9TC9PbbbyMhIQF79+7F//73P0yaNAnDhw/HpEmT8Pnnn2P37t2Ii4vDW2+95V1YCKGkRH7734ayFWZJSQkWLVrksS/CQQ895fsiSwuvGh6ltEroiA/4hsGtBiP/uXzsfXivZGFyKR34qLZ6Lj5scltiZTFZRIXOAeCf7H80t1GwfM8Z8CopKUFOTo7ruprkXGL/YL5sm3QOSsk/jKnJZIpQHpQyWbwv3+PvuMcGFnq97cbiJUDDyrAx5QFK6uSWuErIcRUkl3kG/9ndXnIdupbvXencMS5CYd1MiuKyy0weglJK62j5AnZZmw47xW3bIbUjnkbYqphsrEpevSdv/xv4OytecNsooPIM8ym1LE9RTTbnsy8sAJa2URgwDN4yFTIH0ocnJMYAg4F8DwisrFDxAWL/4aVHMNqpKSh18OBB3HHHHejUqZPk/S5duuCOO+7AgQOeCqmGHsJ9nawSOBwOVFVVBf2fjr/10FO+L7K08KrhUUprlPduBPizL2IiYhTtXMLqwIe3oJR7AOrlIS9LFjo/XXIa2eXZOFlyUnUb+ZlSbGDN4XDAbtf2hZjYP4CKE8p3p7tdgo6yAPEdlPHTtLNGFD8opWCa4Cko1ecD4TlbiLzHK8xn30/FPFJocT2rJCNG7l1I6Wtx7pwr61u867xaW1XVzgKfqX086+YJ7rW85J7rL1Q76yIpqiHlGfm1yeKLNA3Jdnir2VTP1ujUUFcMACpPCfnZoFTpfjGtEhs+8bnzwDnPUzTfC94uU2QOpA9PSIwBBoNR+oL4gD48xAfUwSj9EEr2rxTin8kVIDExUba2Eovk5GQkJSVpEW9YpKamyt5j09uCnc7nbzRq1Aj33CNf6yZc9NBTvi+ytPCq4VFKq4SO+EDgdZj5xUwcK2R2xPJWp6lZfDNcLOcK9z424DE8uvJREV1RdREGLBuAWlstbIdtWHp8KSZ0noBXhr3iVS+pQueNGjVC61atsfc4U+BazfI9Yv9O2DwHHF2QCoBMtoqvycIZlDJFchlScplS0c2AWraAvczyvY6Pi4MW7kuw2GCJ18CBMADQqFEjRXTMM2j5e+7Xo7nd1e64IwNY+JjCAAWAuHZuO71RTI0jOQRi+d4FZ804pUGpynO8gJEQN988EVjuviuoTN+wwSG5vmP1KdwOWBKkaTyhyLks8MQXwNH3geSe8rRKlr9WnXfq5dTXvZ6VHOpLAHMc4CW7VW+QOZA+PCEzBhgIRpgDBUIP4gPq6Ij9h5cewWinJsu56aabsGLFCtlfv202G1auXIlx48b5pBwBAQEBgTwWTVqEZvHN0K95P9zb+16PtNEWbhlRz6Y9YTaZcbL4pIjuX3/8C7U2JuPmtQ2vYdelXXh1w6tYd2adV30ENaV49ar42V96ZJzmVubikx2fuAJyYQ+9a0pJPwQADUQmAzEtwE0PZKYJcbwC4KLgCv+cFt53uNcFYn+F8xagkbnf7BrheYRUgMNpc5SJKaYtEk2JaQXXFdhsUndg/BnhtS7PAsm9PDAFMNNGaVBq7VAgZ5WcEOnLxz4SX7N6qVnF1msq2Svs/+LdwMUlXpQEV+uqeDfz6b5TngAqprp/TVFOCwCLmzN1sQgICAgICAg0Q1NQ6oMPPkB0dDSuv/56/P3334J7f/31F66//nrExMTgP//5jy5KGgX8bc3d0VDW0ubk5ODtt98W1IgJRz30lO+LLC28aniU0iqhIz4QeB1SbCnIeiYLOx/c6bUO1eVpXAHnDqnMci41QZ1rfrrGK029ncsuYDOlcnJycPwYVwtGTaaUXF/f89s9eHb1s7ji/65QzKNGvhY6v9q/DkuvvIKimCyRnm8yO9h5Wb5XX29ldnADIJ5KeAi2uLeFPefXCwKACW6797jpkZOTgzPVHVBlThc/Y7wz66W5c8dBfqYUu7ublL4tbgQ/8PLBB+wcxovNUhYgzSk3wz0ry0NfBKTQuRNabIjtN+fugl988YUUEVfMXHDZPfjo1lbXklQ32zn7C3DAe1amC3nOYLmnouSKakppAc0UO7+4yDupziBzIH14QmYMMBCMMAcKhB7EB9TREfsPLz2C0U5NI3Xfvn2Rm5uLdevWYfDgwYiOjkZ6ejqio6Nx1VVXYf369cjJyUHfvn3Rvn1711+HDgrrWhgUCQnyKeZsJoCSejChjMTERFx77bUet3QMBz30lO+LLC28aniU0iqhIz4QHB3MJrOiPn+4/8OIi4hDakwqPh3zKQCgpEZdAcNX1r2C8rpy2ftShc4TExORlpbmuq4mU0qqr+0OO9acWQMAKK8rFzxTjkeNfK10/rX/QEzynJlS5kjmT6bQuS39VgBgdlSc5NyNzv1LvyjDiNcnsS2FtGwh7pps4fVY92CTsF8TExNR2CsTEQktxXRsFperlpbS5Xs0E2DqzgRFRo4aA0dcB+/L9xIuC1A2mw+w13inOfgWUC2/lffQIVeJL26eIE3sCkpJ9P2aYVzGnFTASO/6nf4KSrmW+nlZIltfAtgVLgdUCDIH0ocndMYA48AIc6BA6EF8QB0dsf/w0iMY7dRUU8rhcCAiIgKtW7cWXG/evLng3P3LR6gXCo+Lk9vtp+E4Y1xcHAYOHBhsNfyuh57yfZGlhVcNj1JaJXTEB4ytQ4+mPZD1bBaizFGIiYgBANxz+T34bs93imW8u/VdJEQl4NZut6JZfDPERwp3I5MqdB4XF4dGqY2APOa6mkwpqXb+dOAnwXlFfQVSY1I98qiRr5XOr/Z/ZjYw6Af95QrgDEq5IJ0pZRm+AMikmKCUi9VDptSFhUA9r+h1XCs3UoUBA5YusQsjhn0nh1YL6dhd7wBmKSIAgAYmVcvvYsgPolEU0G0acPgd9B80DMApoESieLZQgLI2sEjuBZQGeCOYNRIBJXccnO7xdq+ePYALCp/H7vbHzvusvGB2wRZg/8vOEwoo2MYc2niBM6U1nRRBg09GJgN1BZ5p+EsQPWFVX6Dzv4Auz6jXQwZkDqQPT8iMAQaCEeZAgdCD+IA6OmL/4aVHMNqp6eejc+fO4ezZs5r+Qhm1tfI7ILEBt1APvHlDbW0tTpw44bEvwkEPPeX7IksLrxoepbRK6IgPGF+H5OhkV0AKAN69+l3Vz35p3Uvo+L+O6PJ5F9TZ6gT3pAqd19bWorKSqy+jxj6k2vnmpjcFNO6ZW8T+NYIycVlLABfAccsAqq2tRVnjicIUfbmglDkaKNnNXc6Q6JtO//KuW8dHOZlOfdh3YrXx9Gh1CxDdlDtng1I0DVg4uxfDKbvleOc50x7unXtbvudpEi6R5TZmp2d5BsW5c6eVE7OZUkV/MZ97nhber3ZGt6ylgNVZWN1e46cljRpkVojr7Ymw9Q7mM6kr8/nHAGk6a7nOQTYyB9KLh4wB6mGEOVAg9CA+oI6O2H946RGMdoZ3iXydUVpaKnuvoThjSUkJ5s6di5ISdct+Qk0PPeX7IksLrxoepbRK6IgPhJ4OjWMbo08zbdvdZ1dk48/TfwquSRU6LykpwcWLXBFiNZlSUu0c0XaEgMY9KEXsXyPcg1IymVIlJSU4ffosbHYJWpcsZxCg11tA4ys9P9cS46UYOJigEiUMSrHvpEZuwtT9FWb3v5Grga7PeZbPyr7sIcG5652XeMtqcs8y48HkVustupkw8BLVBOj2EnfefIyXZwUPe9bNUk68427P9yvPiK9tu12dQkpRV+gfuZWnhOdStbUAKCqUrxJkDqQPDxkD1MMIc6BA6EF8QB0dsf/w0iMY7aRonazHZrPh4MGDAIAePXogIiLCC0fooLy8HElJSSguLkZKSookTcuWLZGdnY309HRkZcnXZAh12O12VFdXIzY2Vrh8I8z00FO+L7K08KrhUUqrhI74QGjq0O2LbjhaeFQT78LbFmJit4mu81fWvYJ3tzLZV2vvXour218Nu92OSfMnYfGJxQCAc0+dQ5vkNorkS7Xz8q8vx4E8Lkiwfep2XNnqSo88auRrpfOb/WdSQFwbYPw5/WRK4dc44PJ3gS5PMedVF4ClbYDbKoAIbpmm3W6Hfcf9iKg6BmqMMwvGWg4sSAJuK2d2v6NpYK6JyYw68SWTJXOHl0yRTLdsFjarKtMEdH4aqM0Fzs8Fer8HdHvB9U7izn8B0wFnUKflzcCwxerbfmEhsPU27pm2GmB+LCpuKmfe+bnZwN8PSGd6AcDKHkCz0UC/T7hrK7oCLW4A+n4Ex6lZMP1zP3M9uhkw4SIwL4KRtzgN6PwUsN9Z3LvfZ8Dup5jaVqJi4TKISPZc6Fsr4ttLB49k0PIJILsESE8Bsj7X+MwuzwKXfgfKQ2xnzQyasWG+jRT+AyR2Apa1B7q9wPzpBDIHUs9jd9hheYurWkK/TofGGGAwGGEOFAg9QsIH3P/naHieXj5A7D+89NBTPhtHKSsr81ijSnGm1NmzZzFr1iycOHFCdG/FihVIT09H//790b9/fzRv3hzz58/XprmBEUzjMwrMZjMSEhKC3hf+1kNP+b7I0sKrhkcprVHeuxFghL7QU4fS2lLNvO9vf19wLth9z5kpZTabBT9SqMmUkmonPyAFCLOz5HjUyPeFzm/o/b53Gl9BmQBThPAcEC3fM5vNiIywgJJaEhXh3AyEooA7nAEVSxwQI7FDnlI4a0iBMgFNh7m+2LPvxGTml8bU+hubW1ucmUzK37lUphQn03TZVM/PU3xPBv4ISAGArco/cj2CUrZ0LhSw+goga6lfRJM5kD48ITMGGAhG6QviA/rwEB9QB6P0QyjZv1IoDkp99913ePDBBxEVFSW4furUKUyaNAkFBQVo3bo1unTpgpKSEtx5553Yu9dL8ccQA1m+x/TBsmXLPPZFOOihp3xfZGnhVcOjlFYJHfGB0NRhQpcJmnn/yf5HcC5V6Ly0tBSXsi+5rquxDyXtdN99j9i/Rtx4DOjAD55IL98rLS3F+fPnYbPbuYtSbWZrUrW9Cxh7WLkeSd2E566lbibBc9h3UlNTB1icwTB+kXM1ENUxYtrseufe3ilFeaQR2g0tfp6Al5bRqQGBtnunMSrqS4Hs3yVu6Ps+yRxIHx4yBqiHEeZAgdCD+IA6OmL/4aVHMNqpOCi1detWXH755WjTRrjs4rPPPkNtbS0ef/xxnD17FocPH8aCBQtgt9vx+eda87eNCbtdfqLUUJzRZrOhoKAANpvCZQUhqoee8n2RpYVXDY9SWiV0xAdCU4eXhryEq9tdjQf6PKCJf8fFHa53LlXo3Gazoa6uTpLXG6TaeXW7qwU07plSxP41IjadKUzOgs2QcsuUstlsqK2tFcZRIpOAmy9BEiYzYIlVrkek1BJ5NpDD1bFi34mdppkgxvhzzNI+TZDOlHK988aDPLO3ug1oOkT2tthuQiTgpHRnRAKg3LmKYPtdwKaxwnt++J9A5kDqeaSydMkYoB5GmAMFQo9w9AFfaL3REfsPLz2C0U7FNaVatWqFESNG4KefhNtxd+zYERcvXkRBQQESEhJc14cPH46cnBzJ5X6hBiVrIRvKWloCAjkQHwh9UDPEX5ZjI2Jx/unzaPJBE1m+t0a+hVeHvSrg3//IfvRKYwpYZyzKwNxDcwEAp/91Gu1T2mvW8Y6Fd+DXw7+6zpfesRTjOo/TLE8v+LWm1FW/Am0m6SdTCWoLgMVNgcl2cXDi4Ayg4jQw+Ef9nsfWlGoyBCjYytXJWNkDaHYNU2vIVinOpDr+X2DfC8DtNdqfffE3YMst3DMddmCeRb6GlBKs6Aa0uB7o+xFzzrYvuhlwSw5XC2RxGtDpSeDAa8x9tqaUKVL3HdtUwxzD7IinELrUlGp/H3DmB43MQUJEEhMQ3fkod42tMTVoDvM+u78EdJsWPB0JYHPYEPEWbyn56/p+eSZzIIJAIqciBz/MaYExt+xCvxb9gq0OsX8CWeheU6qwsBCtWrUSXCstLcXp06dxxRVXCAJSANC7d29kZ2erVJuAgICAwEiwmCyurCc5vLbhNdRYhV9e+TwUbykSTdM4nH8YX+38SlM9K5tD+KuN+/K9sIM5Vl2mkV5wBaIksnp6TAeunOOf5zYbLX09rrU4IAUwmVyCXQO1wO3LaUCXzsk9ywDZVCoCUroh1AJSAGAtEwak+Li0omEvxSQgIPALbl1wK14pAvp/1x92RwgveSYgcEJxUMpisYjWFbI1o/r37y+ij4+PF10LdeTl5cneczgcgs9wRW5uLv7zn/8gNzc3rPXQU74vsrTwquFRSquEjvhA6Oswou0I0TWLyeIqWu4JRTVFgnOWJzc3F8ePHHddL60txeifRuOx3x/D/cvu9yjTvZ00TWPR0UUCmj9O/eGRZ+7Bufh4x8eos4mXEIaE/d+Sy+ziFmi4Cp0Lv1Dn5ubiP++/j1wP46FPSHX/xVe6XhP7TsrKK3UISrmDabPPPubUW50M3wMY1oTLfZZBoBMuLPDL8j0yB9KHJyTGAIPBCHOgQOhhdB/YfnG767jWVqv5eXr5ALH/8NIjGO1UHJTq1KkT1q1bJ7i2evVqUBSFwYMHi+gvXbqE5s2b+66hgRAXFyd7j80EoML8F7H4+HgMGTIk6EFHf+uhp3xfZGnhVcOjlFYJHfGB0Ndh5tUzMb7zeME1M2VGlDlKhoNDbqVw4GIzpeLj49G/HffDxZYLW5BTmQMAWHx0sSjziQ/3dv527DcRzf/t/T/Br4R8nh0XdyBjcQb+vfrf+H7v917lA0BJTQnOlpz1SucOv9l/REJwavtQ0juu+M3+Oz3BfCb3Ai5/xys5q0dUdAz4taZ0gfMd+tROnh14lSFV6NwXJHb0XQaBb1jVx+2Cvv8XyBxIHx4yB1IPI8yBAqEH8QF1dMT+w0uPYLTT4p2EwcSJE/Hqq6/i4YcfxuOPP45Tp07hq6++Qnx8PK677joR/bZt23DZZZfpqmywQQYjpg+uuuqqYKvhdz30lO+LLC28aniU0iqhIz4Q+joMajkIS+5YAvObZjic2Sc1thqYTd63hBUFpcxcUGp4r+H45tQ3AIALZRcEdKeLT6NzY+ld09zb+d+//ytJV2OrQXxkvIjn23XfumieX/M8HhvwmEf5pbWlSPswDVaHFWvvXour218tSSeF8LN/6UCY3+y/7d2AtQKIawV0f5m7TlGQCtS49Dh1xA+ZUgz0HAPk4bSXhE5ABa8Gpw92FGEv18xLoBNK9vlVPJkD6cND5kDqYYQ5UCD0ID6gjo7Yf3jpEYx2Kv759ZlnnkHPnj3x3XffoU+fPrjttttQXl6O6dOnizKIdu3ahVOnTmH0aJnaECEKrTtIhRPq6upw7ty5oPeFv/XQU74vsrTwquFRSmuU924EGKEv/K2Dg/clv7K+UhFPflW+pIy6ujqUFJXIyjtfdl5Wpns7S2pLpOl4S/P4PGZetk+1tdqr/KYfNHXt5ndD5g2ydA0CMtlZfuuLxgOBK2fL3BQHpVg9rDYdamnILK/ScwzwipuOe6dRitzVqshpSvHvkwS+4NIqwKrs/6k3kDmQPjxkDqQeRukL4gP68BAfUAej9EMo2b9SKA5KxcTEYNu2bZgxYwauu+46ZGRkYMmSJfj3v/8tot2zZw/Gjx+PceOCvyOSnigpkf5CBDSctbTFxcWYM2cOiouLw1oPPeX7IksLrxoepbRK6IgPNBwdLk8T16wprC4UnKcnpANgdN28abPrekV9hYBuzM9jBOfV1mrcv/R+PL7yceQX5mP2nNm4Z/E96P5ldxzIOyCpT42NK8jM75tIc6THdrj3IxuQAoB6e70snRTCzv5lglIBt72B/wd0fkpWj6pq/xXj1nMMcGHYUuFNA/yqvPDSzcFWIczhDHpuvAEo3qWLRDIH0oeHzIHUI9jzj0DpQXxAHR2x//DSIxjtpGjaDxUYwwzsVoZFRUVITU2VpGkoW2HabDaUl5cjMTERFkvwfl31tx56yvdFlhZeNTxKaZXQER8IHx2oGcIvyvTrNDac3YBRP45CYlQifs/4HUN+GCKgee7K5/Dhjg8BAJ+M+QRPD3rapev8/fNx54o7AQA3dLwBv5/8XSRf6tmfXPsJOsR3wLjFnn/geGvkWxjeZjiGthkq6JvHVz2Ob/dwS/gc0x2C1HL3fpRqtxSdFMLO/u31wK9RzNb2PBjB/vl6JBUugHnXIyI9VeHiYmDLRKGMTArF1xVpb+fK7kCzMUC/j2Gz2WDbfh+is37mnpFJMce/tQAuewToOZ251u8zYPdTgCUeoCyAtVR7uxSiovcsJOyb6rOclk8A2SVAegqQ9bkOioULIpKAHq8Ce58Hrt4ApI3wWSSZA7nBWgGcywQ6PizLY3PYEPEWt2kH/TpN5kAaYLQxoKH6AH++UvlSJeIi47zy+KKbNzpi/+Glh57y2ThKWVkZEhMTZemCUD01dBFM4zMKLBYLUlNTg94X/tZDT/m+yNLCq4ZHKa1R3rsRYIS+CIYOI9uNhO01G0pfKEW/Fv0QbYkW3M+v5pbvNYltItA1OTHZde5pOWBBVYHgfO3ZtSijy7zq9tqG1zBs9jCcLj4t6Jv0xHQBnXtRdWL/HmCS3nHRKH3B6mGuueCd2Bt4WXF8+N5OJgBlsVgQPUi6HposKAswaBZ3ntTdBz1kkH4TACAhDHdLNhzY338pE5C9Athyq0/iyBzIDeXHgZ2PqH4eGQPUwyh9QXxAHx7iA+pglH4IJftXChKUUoGyMvkvR2zCWbgnnpWVlWHVqlUe+yIc9NBTvi+ytPCq4VFKq4SO+ED462A2mUFRFKIt0fjngX8QGxHruneiiCvSnBCVINB17+69rvOKOuHyPT7WnFkjOLfb7TiwX3rJnhRm7Z0l6Bv3XQP/PP2n4NxbP54rPaeIDghD+5dZVmYE++frUVsnHVBShbM/Sl72rZ1c/5WVlWHNmjUeaJ24nbett8kskGF3KLSrPh96p2k6jPmMawsA2Lt3rzwtgT5w+RMFVJwCLi4CbFWaxZE5kD48ZA6kHkYbA4gP+Majlw8Q+w8vPYLRThKUUgGr1Sp7r6E4Y319Pc6dO4f6eh2+CBhYDz3l+yJLC68aHqW0SuiIDzQsHXqm9cTTVzztOv8r6y/XcZfGXVzH9fX1yM/jsqjca0qlRKe4ju9cfKfwITRQWCisVeUJFpNF0Df8GlEAsPn8ZsG5t37MqchRRAcQ+w+WHna7DvUr3IKXLPQcAy5cuOiBghbr4VZ8nKY91J7iZ7V1Fdf5lH8s03f5+QVeCAl8RuVZ8bWK05rFkTmQPjxkDqQeRhsDiA/4xqOXDxD7Dy89gtFOUlNKAZSshWwoa2kJCORAfCB8IFdbyR1vb34br214TXAtNiIWVS8LMwA2nduEEXNGAADS4tKQV5UnKd/9uTd3uRkDWgzAy+tfVqT3+M7jseSOJa7zNza+gRmbZrjOf7r5J9zV6y5Zfvfn73t4Hy5vJi7qLoWwtH+27pGRsf814PDbvumZvxVYO1RUU8onmSt7AmmjgP6fMef1ZcDCZImaUunAZQ8BPV9nrh/7DNjzNHDVPMAcDWyewFxP6Q2U7JN+liWOy7rJoBnZntB0BJC/kalldeprYMh8YOskjQ3lQGpKySAiEbCWM8fXbAGKdzPv+Pr9QEovZulZbCvAEutRDIEHFO0E/hzo0WelakrpibAcAwgMC081pYIBYv8EciA1pQgICAgINOGdUe+4joe2HipL515XCoDkjndmk9l17B6QAoBLFZck5ZsoE6ZvnO5RVz6WHhfubOZeQ8obvO3WR2BA6LF7nckPNRNGrAR68AK2nvTk/zaYvYz5bHM7+Mv3YKuW5zdJZ3rJgtUlgl1mG/wdABsMKEpsCyu6MMX2CQgICAgIGihIUEoF8vPzZe81lK0w8/Ly8PHHHyMvT/zFMpz00FO+L7K08KrhUUqrhI74QPjocH+n+/Hv2H/jtUGv4ddbf5WlkwpKRbgVyM7Ly8P3c7/3+Lzjhcfxd9bfout1dXWqA0v8vnHnrbPVydICgN1hF9xn+Yn9czCC/fP1qKzSXpfHG3xqZ1xrILoxAEbX/30ulzrkFqCoK5K8Z7N5SKGPb69ON+eyPZhjAADLly9Xx0+gHWuGwPVeBcEpdYFBMgfSh4fMgdTDaGMA8QGAhjDrLxg+QOw/vPQIRjs1BaVGjRqF6dOV/3odLoiJiZG9x24zTunxq62BERsbi759+yI2Nrhp5v7WQ0/5vsjSwquGRymtEjriA+GjQ2xsLG4ccCOeH/w8mic0l6WTCkoVVAvr08TGxqJN+zYen2d1WDHo+0Gi6zGRMWgU2Uih1tzz2L5xD0rVu+2yxqelaRp2WhiUYmtSEfvnYAT75+sRESG9S6Ae0HMM6H15b+HFm6WzA1G6X/KyySQzXRu9FYgS+ogjsrFnhfI3CU7bt1cZ1CLwERL/I1T+3yBzIH14yBxIPYw2BhAf8I1HLx8g9h9eegSjnZpy1v/++28MGiT+AhHuSEhIkL3XUJwxISEBI0aMCLYaftdDT/m+yNLCq4ZHKa0SOuID4aODUvkxFvlAPV/W8+Ofx4wjM2Rpaqw1ktf7pffDgmMLvD7D/Xms7t6CUp5oAcBqt4ro5EDsP0h67Fewq51G6DkGDB06DOCbcgw/2Mv7lTupG1B2hDnm2ZLJLBN8s8QBLScAOdzOkqZ+HwM77lGsX/fu3YGtiskJ1MK9dCt/Jz4X1P1GbJQxwN+yFPPy+pjMgfwLw40BISC/IXwPIPYfXnoEo52aMqW6du2Kc+fO6ayK8RHsSvtGQH19PbKzs4PeF/7WQ0/5vsjSwquGRymtUd67EWCEvjCK/UtlSknJKszzvIOe+y55LLac3yJ5PTUmFTd2ulHy3tpTa/HaqtdQUF4gXr5nFy7f47fTfekewAWqlPRHVT2zjCyvKg8OOkzS1yeIi5Uawf75etht8rvi+iT/1jpdx4BLOTnSN90n8CZpn5LfkoYCWt4suGKNSFOmWKcnAABFxUVeCAn0hYcvbXZl9maUMcDfspTzcg4ixyO1rxOZA6mHUfqC+IA+PMQH1MEo/RBK9q8UmoJSTz75JJYtW4YjR47orY+hUVxcLHuvoaylLSoqwv/93/+hqCi4k1h/66GnfF9kaeFVw6OUVgkd8YHw0UGpfCVBqaKiIvww6wePNGxGkjtWnlopeb15fHOM7zxe8t7oX0bj7X/exnN/PIeyujLBPfdMKX47pTKlNp3fJKKTQklNCUprSwEANrsNuy7tkqQLOcSmiy4Zwf75etTU1ADxHXyUJg4S6D0G/DB7tvTNVrcCqX15F/j/P3k1pewe/q/GpAGJnV2n5WWlyhSLbgIAWLdunTJ6Am2wVQjPdz3uPODZ3cWFQPkJ4FdlReuNMgb4WxaZAxkPRhsDiA/4xqOXDxD7Dy89gtFOipb66cALNm/ejPfffx+bN2/Gww8/jAEDBiAtLU0yZW/YsGG6KBpMsFsZFhYWolEj6fomDWUrTKvViuLiYqSmpvq1lkew9dBTvi+ytPCq4VFKq4SO+ED46KBU/oazGzDqx1Gi6/yttllZzb5uJitnzoQ5mLJkimL9ejTtgeeufA73Lr3XI93gVoOx/eJ21/nLQ17GO1dzOwvy21njqEHSe0mSbfHWH1OWTMGP9/wIVABIAL7f9D2m9pmquD2hBCPYP1+Pxlkfwpz9GzDulHZhhX8Bq68UbCev+xhQkIW0je09blkPALi4BDj2MTB6M5D9O7BpLACATugCquKYmP76fUDK5cCKrkD5MSCDhi1rFSybb5B/RkInoOIEo0smhdIe3yH50IOK2mIbPB+W7ZMk77V8AsguAdJTgCy5uu4EHMYeZpZrZlJAi7FAtxeAtcO82wiMMwb4W5Zi3sK/gdWDgAz5/9dWuxWRb3M7rCr5365GDzIHCi89jO4D1AzuO3fFSxWIj4zX9Dy9fIDYf3jpoad8No5SVlaGxMREWTpNNaVGjBgBiqJA0zQ++ugjj+tH7XbxkohQRTCNzyiIiIhAWprCpQEhrIee8n2RpYVXDY9SWqO8dyPACH1hFPvv2qSrLrL4GUwJkQmoqK/wQA2YKJOiugUVdUI57nL5uhVXijNhG8c2FtFJ4cf9PwrOn/j9ibANShnB/gV65Jj9K18vWU3lg7ICtJrA/AGCpX2UXKFzCVi80UYmC06Tk5MlySRlx7dWTEugApSJCUgphFHGAH/LUs7LBfLIHMi/MEpfEB/Qh4f4gDoYpR9Cyf6VQtPyvenTp2P69Ol4/fXX8frrr7vOpf7CCeXl5bL32IQzDYlnIYXy8nKsXbvWY1+Egx56yvdFlhZeNTxKaZXQER8IHx2Uyk+NSRVdm9RdmEXByvIE/vK94W2He9XPRJlgMXn/TcW9VtW3u7/FxPkTseHsBoFu5eXlqLJWifhv6XKLiE4JamzShdvDAUawf74edXW18FijRwli0oHmYyTl6zUGrN+wwScZdvfle9dsdh7w2t76NuZ5sf1xJvZu7nrbO92kCad+Bw4cUKxHZXW1YloCb6CAilPcsQoYZQzwtywyBzIejDYGEB/wjUcvHyD2H156BKOdmoJSb7zxhisg5e0vnFBXVyd7r6E4Y21tLY4cOYLa2tqw1kNP+b7I0sKrhkcprRI64gPho4NS+ZHmSFFw6LVhr0nK8oSdl3a6js2U98wXChRu6XqLVzr3WlV19josProYo34cBZqmBe1kC5XzEWWJErSB3x95lXm4feHteGHNC171CCcYwf75ethsOmRjx7UCRv4hKV+vMeDoUYmld17BBSpo9+L5btlOAIDYVszz6u04mccX4+ZTdcKNB9QstaivD5/s96Dj+KfA8o7Mscodq4wyBvhbFpkDGQ9GGwOID/jGo5cPEPsPLz2C0U5NNaUaGpSshWwoa2kJCORAfKBhgl/XAADOPnUWbZPbeqWTw81dbkbrpNb47O/PZGn6Ne+HXQ/t8iqzdVJrXCi7IHnv0zGf4qlBT7nOd1zcgcGzBgtoHh/wOD6/Qbo4zswtM/Hy+pe5Cx/BVVMK/xbW1SLwI/a9CFxYBIw7GWxNPMNezxSxVlAvyIVLfwAbr2eOE7sC5Ue5ezceA1Z0Aa7fD6T0YmpKNb8e6Pcxc//cXGB7BnPc7h7grHCJKQBXTSkMWQBsvU2ZTtfvBVb1kbxFakr5gJY3A1m/McdqbISAgURdOHdI1ZTSE2QORBBIeKopFQwQ+yeQg9KaUpoypVjs3bsX06ZNw7hx43DNNde4rp8/fx7z58/3uFsdAQEBAUH4oXl8c5/4TZQJkeZIrzQAcHna5R7pqq3yS42e/vNpwbnU8j2He3YKD4KAFEHwQNOqs0xCEmrbSKmZ3qmQHdNSnR4EytAQbNifIL+vExAQEIQ0NAelpk2bhv79++PDDz/EihUrsIFXL4GmaWRkZOCnn37SRUmjoKCgQPZeQ9kKMz8/H59//jny8/PDWg895fsiSwuvGh6ltEroiA+Ejw6+yGeXvLnLUgqzyew1KMUWOZ87cS6eu/I5WbriGs8/jPDbWVlfKbrPBqWM8M6NAqP0BatHlZ9qHOk9Bnz51VfqGZ3L7opszSWWKcoHMfLz87Hqj9WKaAFg1apVilXKLw/v/+/BA286fukP4KRnezHyGKCnLOW8XFCKzIH8C6ONAcQHfOPRyweI/YeXHsFop6ag1A8//IAPP/wQN954Iw4cOICXXnpJcL9t27YYOHAgli1bpouSRkFUVJTsPfZLkpIdoUIZ0dHR6NSpE6Kjo8NaDz3l+yJLC68aHqW0SuiID4SPDv6wf6VQkynVtUlXfHDtB/jsOumlfp4ynQDgTOUZVzvrbOKagXYHEwhQ2x8P9X1I9t6likv4cueXyC7PViTLaDCC/fP1QIsbgK7ygUlf5evlAx07KvcBF9JGoeLqI4iKipD/v+q6zt2Pjo5GasuesCf38/qI6gG/IrrNdYpVCvZ7D1vwM9v2vwyc/NojeSiOAWQOFB4w2hhAfMA3Hr18gNh/eOkRjHZqqik1YMAAVFdXY//+/bBYLJgxYwbefPNN2O3cL3lTp07F2rVrceGCdD2PUAKpKUVA4B3EBxom+HUNejTtgYOPHpSkGzJrCLZd3OY6v6b9NVh7Rrwr350970TPpj3x4roXZZ85oMUA/PPgP67zams14t6NU637/X3ux/+N+z8AQObBTNy5WLhL2dTeU/H9+O8leUX1rHg1pV767SW8e/W7knz9v+2P3Tm70SutF/Y/sl+1zgQhCocdmGfRVi9oRTcm+FTG2zDgxhNAxXGg2TWAOZqhaT4G6PeJkDeTAtpNAc7OEcvl65Kp8IsEW4dKAqSmlA9ofTtw4VfmOKoJEJ0GjJX+X0oggYJtwJohpKYUQYMBqSlFECrwa02pI0eOYPTo0bBY5LfkTktLC3pqm96wWq3eicIcVqsV+fn5Qe8Lf+uhp3xfZGnhVcOjlNYo790IMEJfGNX+H+3/qKysaVdOE1xvndgalMSyouKaYq+ZUnlVeYLzKLN8FqsnJEUludrJZkXx4QCTaaW2P2wOm+y93Tm7AQAH8g5o0Dj4MIL9B0IP3ccAD8v/vfHabDbxjkax6UD6jUxASup5KscANfoQ+AH87ALKBMBzlmfI2T+ZA4UNjNIXxAf04SE+oA5G6YdQsn+l0BSUslgsqK+v90hz6dIlxMcHN2qrN4qKimTvNZS1tIWFhfjqq69QWFjonTiE9dBTvi+ytPCq4VFKq4SO+ED46KBVvlQwiZWVVywMJFEUhbT4NBH99ovbvQalSmtLBecmVUWdObSObu1qp50WB6XYQJXa/pAKcAFAflXo/1BjBPsPhB66jwFfa6gp5eQtLS0W15SyxEpQU9zzVI4BavQh8Ad4/8MoE+Bl6XHI2T+ZA4UNyBgQWFmh4gPE/sNLj2C0U9NMvmfPntiwYYOs4VVXV2Pt2rXo1897PYNQQmpqquw9k8kk+AxXNGrUCFOnTkWjRo3CWg895fsiSwuvGh6ltEroiA+Ejw5q5Pdpxm0P37VxV1lZwzoOE1ynaRrN4puJ6Ovt9V5rQVXVC3fK01rDoMBa4GqnZKaUUw9+f5wsOontF7d7lCuXKXX3b3cLzjWsng86jGD/gdBD9zHgvvs18yYlJcHsITOdA809T+UYoEYfF9pNUcxHoAL2WqD8mEeSkLN/MgcKG5AxILCyQsUHiP2Hlx7BaKcmy5k6dSqOHz+ORx99VJQxVV5ejnvvvRe5ubl48MEHdVHSKIiM9PzrfUNAZGQkWrVqFfS+8Lceesr3RZYWXjU8SmmN8t6NACP0hZHsf96t8zCszTA8M+gZXNX6KllZnZt2Rloclxk15rIxiDBFiOitDiv6Nu8ruv5wv4ddx2aTWWlTPOKdbe+42imVKcUGpdg2FNUVoduX3XDVLHE7+ZALSq0+vVpwXmcXF1c3Ooxg/4HQQ/cxoHVrzbwRFrP3bEBeYNar7u3vE9HKoukIkT4udHzMs04EynE+kzuuLxHek6jhFWmhQsv+/T0H4gX4yRzIvzBKX4TcGEC+B4QFjNIPoWT/SqE5KDV58mR89913aNy4Mb7/nikEO3DgQKSnp2PhwoWYMmUKbr31Vl2VDTYqKipk77G/eIfiL99qUFFRgc2bN3vsi3DQQ0/5vsjSwquGRymtEjriA+Gjgxr5nRp1wqZ7N+HjMR97lXXyyZN4tP+jeG3Ya7it222Sy/RsDhviIsVFy/nZU2ZKHJR6e+TbXnWVAqubVKYUG6hi2zBz00yP9aJYKKEBgIq64P4f1QIj2H8g9PDLGHBTuSbemppq2B3K/69K6t54MI+CEtGKENeO+ewkDDwF+703KGRS8gXo50Vi17o5oWX/ZA4UFiBjQGBlhYoPEPsPLz2C0U7NOXa//PILvvnmG7Rr1w7Z2dmgaRq7du1C69ZMjY5Zs2bpqachUFNTI3uvoThjdXU1du7cierq6rDWQ0/5vsjSwquGRymtEjriA+Gjg7/sPyEqAV+O/RJvjnwTFEVJBqVu63YbYiPE9XL4gR6LSbyUaWibobI6eKpRxermKVOKbYPVpqzgo5QsKRRWh159HiPYfyD0MNIYUFQdCbs5Qfvz3Je38s5ZWhGuYHalROvbRLK9gY5IVqwrgXYcO7ynQdg/mQMZC2QMCKysUPEBYv/hpUcw2knROlhPTU0NSkpKkJiYGHbFzQFlWxmSrTAJGjqIDxCoxZifx4iWtGU9kwUaNFp9wi0papvcFkNaD8HPB34GAKREp6D4hWIB3/aL22WX1V2edjn25+2XvMduC/7ZX5/h6T+fFty7pestWDRpket82ppp+GD7B9KN+QhABYAEYMqPUzB7wmycKDoBE2XCZamXARBu4QwABx89iB5Ne0jLc6LGWoMvdn6Boa2H4oqWV3ikJQhT2GuB3LXAppuA22uAX2OADLep28ruQLPRQL9PhdczKaD9vUD5CaD7S4yMDvcDp78XynDPyLnhALDlVuCm48J7GTR3fu3fwGrOJls+AWSXAOnNUpD1kdsSNALf4P6+Mymm/xsPDI4+RkP+FmDtMHE/8WC1WxH5NvcDBfu/Xy+QORBBIMGfT1S8VIH4yOB+/yb2TyAHJXEUwIdMKT5iYmLQokWLsAxIERAQEBD4B1IZTM3imyEuQrh878aON+KqVlzAaVDLQSI+qfpULKIt0ZLXezbt6TqWWnLnvqRP6S5/ZXVlOJh3EJ0/74xO/+uEY4XSRYvldunjY2zmWDy/5nkM+n4QLpZd9P7s2jKcKTmjSE+CEIE5GqAs3LEkPBT7bzYaaDURSL9R+TOTezIBKT0R01w9z8BvldF1e0m97FCErYoJMBK4wXuAiVZAQ0BAQEAQHGgKSnXv3h1PPvkkFi1aFPQtEQMJshUsUFBQgG+++QYFBQVhrYee8n2RpYVXDY9SWiV0xAfCR4dA2b9UIMlEmUTL96pqqjCx60R0a9INXRp3wbc3ib+oSi3pYxFliZK8nhad5tLN0/I9tg21NbWyz+Cjsr4SDy5nNvqgQePx3x/H/lxxppaSZX4bzm1wHU+cP9Hrc9v/tz06/LcDVp1chbMlZzF732yU16mvZSQHI9h/IPQw2hhQUmUDTNJ2zIAW8RQUFADRaUDbDKDrszxaigk68WjrGl0NpPZXpI830HJjgEQtOK+glOw6CKDRAPWyB/2gnidYWNGF+Tz7E7CyGwBg8W+LG4z9kzmQcUDGgMDKUsLrvugpGD5A7D+89AhGOzUFpYqKivDFF19g0qRJSEtLQ69evfDUU09hyZIlKCkJ35TtiAj5X+LZLcm1bk0eKoiMjETLli0NseuAP/XQU74vsrTwquFRSquEjvhA+OgQKPt3z5QyUSbJWlObszajSVwTHHr0EI4+fhQtE1uKZHkMSpmlv8yvvbDWpduh/EOi+8tPLBe0IcIiPwbwUW+vx9/Zf7vO159dj97f9BbRKcmU4sNbcGn2vtkormGWNd6QeQMGfDcA9y29Dw+veNgjnxpIvc9aWy3+PPVnQAu3h4sPKOU1NRkC3Fam/nm35IoJKBOzPI8v32xRFAAStMH9f72Mn7nQepJX+QFFQmfp612nyTAEcWwrZ7PWuC+fTZs2Zd7HgdeBk1/p+jij2T+ZAxkHRpgDBUIP4gPq6Ij9h5cewWin5ppSx44dw4YNG7B+/Xps3rwZBQUFoCgKFEWhZ8+eGDlyJEaMGIFx48bprXPAQWpKERB4B/EBArW4+7e7XXWiACZzqv61egDCegkJkQkof8lzQOZQ/iH0/Kqn5L0bO92IFSdWSN5besdSjOs8TlTviYVjusM1yXpj4xuYsWmGtAK8mlJt32qLc6XnPOoLAJvu3YSvdn2FiroK/HTzT0iJSRHR8PXq1KgTjj8hv6RKqi4WC73rp/Bx39L7MHvfbIxsOxLrp6z323MInMikJGpK9QCaXSOuKSXFe9lDwMBvhNc3jgXqS4DCHcy5e72pjo8DJ7/wXFPqqWhkF9YiPS0ZWRvfAPa/yNTDYtF1GnD0fVVNxRWzgL+neqcb+huw5Wb5+wO+BnY+Irw2ejuwZjBwwyHgd15tt8vfBfa/LJaR1AMoEwevA4YMGjjxJbDnacBh5WpKrRkCJHQMrcwvvZG/GVg73GNNqXp7PaLe5gKnpKYUQSiDPzcof7EcCVHKN8PwB4j9E8jB7zWlunTpgkcffRQLFixAXl4eDhw4gM8++wzjx4/H+fPn8dlnn+GWW27RKt6QsNmUbfMdzrDZbCgtLQ16X/hbDz3l+yJLC68aHqW0RnnvRoAR+iJc7D/SJM6UkkJFvfcMHE9ZR5523xs/b7zHdtbb611tMCkcMpUEpADgva3vYd6heVh5ciU+3vGxV3pvmVVyyxQB4Nb5t+JSxSVFenmC1PucvW82AOFSQ38jXHxAE+8t+WLCyrNAXbGy50Vwk0KW1uGww1MmkMNe76J3wRIjJGKzFc2xTDaWHrsw6fWre0detmBf1tec+iV3d3umjJ/HtNBHF19AO8C+p4rKcuZ90DT0zuIytP1LgWdrZA7kXxilLxr0GKAjD/EBdTBKP4SS/SuFLoXO6+vrUVhYiIKCAuTl5aGqqgo0TXtc7haKIDWlmDWmn332mSHW0vpTDz3l+yJLC68aHqW0SuiID4SPDoGy/wizcIyos9dJymid0Nrrc6wOq+w9ueV7fB3lUG+vd7VBaU0ppVh3dp3reNHRRaL7dTZhf4zpMMajPLOHmj2Lji7CQ8sfUqmhGEaw/0DoYegxILqJmNBeDZz7yfvzJlUDvd4Rya9IuApofq2sHlV0soseEUnMxeSeQEsuO8lhYjYocCgNklgUbo7TSsEPnGqCV12e8UIgMzW+7AHlz/AH1gwDE0hj2vrrvF+d71j/oJSh7V9HHjIHUg8yBgRWVqj4ALH/8NIjGO3UFJSy2WzYtm0b3n77bYwaNQrJycm4+uqr8d5774GiKLzwwgtYt24dSktLdVY3uEhJES+tYGEymQSf4YrU1FTcfffdSE1NDWs99JTviywtvGp4lNIqoSM+ED46BMr+PWUw8fHDOO/LUprESnxRV/ic1NRUJEcnS96rs9e52pAQ57/0+MJq8Y8eeVV5gvOOjTp6lOGprhYArDy5Ur1ibjCC/QdCj7AdAywxAM8fWNroXtOYHeza3SMpM7rFEBc9UvpwN9rc7joUjwFeMqXGKlwKN1QcsBUhpTfzeeWPnukm87MNZfRL7iV9Pb69dz38iYItwO5/uTK5rr/+euZ9qM1Iy/QewApb+9dIS+ZAHMgYEFhZoeIDxP7DS49gtFPhtiZCpKSkoLq6GmazGX379sVTTz2FkSNHYsiQIYiNjfUuIEQRFeWliGcDQFRUFNq3D/LELAB66CnfF1laeNXwKKU1yns3AozQF+Fi/+677/Vp1keSblj7YV6f0ya5jbwOHjKlxnYci6ioKKTGpKK0thRNYpugoJr7ZWh/7n5c3f5qtG/fHtF50V71UIN655IoAIJnsmB3/2NRY63xKE9u+aOeMIL9B0KPBjsGdHgQOCsO7ERYzC56WfCzldwzl1qMBTo+4lZTSkl2j8IMoDjW/734AN9HaJoLUrWfCpydA9B28fK9xC5A+TFlegQETJ+kp6cDkZFA+RHxEkQfEXr2zwXmwnoORNOAow4w6zsWqYFR+oKMAfrwhJwPBBlG6YdQsn+l0DSDZZfnDR06FBkZGcjIyMC1114b1gEpAKisrJS9x9aL11g3PmRQWVmJHTt2eOyLcNBDT/m+yNLCq4ZHKa0SOuID4aNDoOzfPYOpd7PeruNXh74KAOiX2g+11b4tm3OvtdQoppHrOKE+AZWVla4AkbtOc/bPcbXBblW3W56vcK8hVWvz3A9f7/7an+oA8G4bgfL/cPEBf/D6Ywyoqaly0ctlGNHOZRuSNjBiBRDfTnjNUxA1qrFHfVxI6qaMTg6sDoO+B3q8Jk3T7QXfnqE3nAG/gwcPorL0EmAth97L90LP/jmbC+s5UN56YJF8VnAgYIQ5UCD0CD0f0Majlw+Q7wDhpUcw2qkpKDV//nw89thjyM3NxdNPP43evXujadOmuO222/DVV1/h2DEj/aKkH6qqqmTvNSRn3LhxoyGc0Z966CnfF1laeNXwKKVVQkd8IHx0CJT9u9eU4mc0vTnyTWy4bQMmVEzwWQ/3QNPCSQtdx+cvnvcYlKJBu9pgrZevW6UFbZLks7sAwOYQFpissXnOlPor6y+fdfIGb7Zhp+2otlYjv0qiGHcA9TCS/JAaA6RqMzUfgyo61UUP0EDbu5h7La4HrmXsTv0YQAFDFkrfajFWoQweMmggsTOnm1e46dlqohdyhv6r7OfU66YrmKn7nj27Pc5LUXVB8xMMaf9b79D9eSE3B7JWALbwnn8bRQ9D+oAfePTyAfIdILz0CEY7KdpH68nPz8f69euxYcMGbNq0CSdOnABFUUhLS8PIkSPxyy+/6KVr0KBkK0OyFSZBQwfxAQK1GPrDUGy9sNV1/uygZ/HRmI80y+NvkczHy0Nexrtb33Wd735oN/p92w8A8Fj/x/DF2C+Q8p8UlNaWonOjzjhedNxF+8HoD/DcYOZL6MwtM/Hyeomt4gHgIwAVABIA/FuZvpelXoZTxadc5+5blD+/+nl8uOND1/mTA5/Ef6//r6w8ufbzofc26O7Pzf13Lnp81QNltWXYfN9mDGo5SPfnEUiArROU4eP7LdgGrBkiLedcJtA2gym4HdcGGPyT4PktpzVHdnYOMwb8/gBwaAZ3n5VXXwIsdNaomJAFFO0EtnDF0l1oezdTuH3QbKD9FKDiNLD8MiFNQkfAFAGUHRHr6143KYNmrrF0S9sBI1YKM61KDwO/9wBuOMR8shj0A9ByAlBxCvhzADDuDLAs+Ms3cO0OILErsDCZWXZ5xbfC+/z2KrluNJQfB87/CvSczpx70jtvA7BulMd21dvrEfU298OH3v8LAzIHuriE8ZdQeH/BRG2B9IYQYQT+uFv+YjkSovxX81IJyHcAAjkoiaMAOuy+17RpU9xxxx345ptvsGnTJnz44Ydo3LgxcnNzMW/ePF/FExAQEBCEKfgBKQBoneR9lz0tcC8Azj9nd+3jZ0o9OfBJ1/2OqUxx8TMlZ+QDUhrhngnFx5mSM4KAlDd6o2DAdwNQWF0Iq8OK8fPGB1sdArXw9Dtl2wyWCF6Xi537Sfp6JG/DGE/L99zrwCV0ENMk9RBfU4rxZ8VL/9gsMZFeFBCZLDzXSw9fUbCN+VSz+2CooGgXcPB1ZbT+yM4o/Bvg1f0jCCEsbhpsDQgaGi4uZn4gIdAMn4JSxcXFWLx4MZ588kn06NEDLVq0wPPPP4+CggKkpaVh0qRJeulpCBQVFcneayhbYRYWFmLWrFkoLBTvFBVOeugp3xdZWnjV8CilVUJHfCB8dAiW/bsHj9TqcXMXiYwLiJe98Z9z5PgRFBYWCoJSrRJbue7bHDYUFhZi/Lf6B1g8BZleWCuuY+NrUMpTwXel8PZOLpZfdB37cwlfuPqAHrz+HwNoySCI+jGAkg+m9H6Po+EjJh1odIVC+WpBuX26gwl8zF8wX3i50QA/6eMZ21Z+iYqCE9yF07OAv+7XRbZR7B9A8Ox/9SCg7KBimWQOFF56GMUHjDkGiKGb/duqgXMGSWop2gUUCssiyPbDzseBCwp2itUJoWT/SqFp971nn30WGzZswMGDB0HTNGiaRpMmTTBx4kSMGDECI0eORNeuXfXWNegwm82y9yjnxIoKx1+reLBYLEhNTYXFosl0QkYPPeX7IksLrxoepbRK6IgPhI8OgbL/j679CP9eza11E2U0qdTj+3HfY2T6SNReqMW0k9Nc1913pePv+hcRGQGT2eQK+ESaI2E2cf/r7bQdFosF5ShXpIMaZJXLp7j/dvQ30TX3wufBgBHsPxB6kDHAG534/zwF/higYBzwmCnl3DjHfTxJ6AjEtACK/oZcwXURYpVmYDqfldiZdy5+RnJSMlALILUfULxbuR4646qIn1BtHug8o4Cyw0DhNt+EVp0HVl8Fy8hDBrB/pl+Naf9iBGYOFPxle2QMCKws444BQuhm/xUnge2TgbbKasj5FUdmMkGykatcl/xmd1Xnmb+m3neb9qseAZIv+UwtTJ9++ilSU1Mxfvx4VxCqR48gpi8HCMnJybL3GsoX8uTkZEyYMCHYavhdDz3l+yJLC68aHqW0SuiID4SPDoGy//9n77zDnCifOP7N9d4oBxy9CkiXJtKbgPSmSFXAjooF2w8EQVHBhoqNJk16k96bdJBepNfrvd8l+f2xl76bvO9mc8kl83keHi67M7OTN/Mm2cm88xpXJAEwSQbJ8SMyMBJvPPUGUnJS8P5XhqRU1+pd8eXhL/WPjZNf+1L2ITg0WP/Yz9sP3iqjpJRGjYiICISGhgo3osWEn7efRYVXnjrPLptqrf1JLZ7XRKXwjmBy/XC2/RL1GSDx/s30GeDFmZSSEx+hNQF/3e6ZDPpDsgAfxp2hQ6oBT60yjIFvqOnOdkHC+1W37t2BDQD8i5YIObGxr8mu11qGZZW2yE8Fch64TPwDoO9ALoYrfAcqDj9cZQ6UlPsAin87ubkIuP4L0P+hc/1whH3GZdCylu+dOXMGiYmJWLNmjX7pniegVjv/V2pno1arkZWV5fSxcLQfStq3x5YcXR4dVllXed1dAVcYC3eJf/MvL8bJILl+qNVq5OWaJm8CfQNNHmu0puXlOfmG5I+ft59J0qpQUwi1Wq1f3ldcmPsIAEvPL8Xwtaw7i1miRKWV+WuSUyC9I6B5hZqSuMsccISuwz8DtOLL90yKOJhuTIxkfCMY5AG0+A1o9IXpsfJPS8uzJqQAoY9V5UEAgBQ1kK02m4OB5aDufBBZ+V7QBlYE2llWMxY3GpM5rZWuPrs6B7j0JRC3j8muq8Q/AEZdQ/C5zHeg1AuAyPt4SccVvgMVhx+uMgdc8jNACTJvGza9KEGYjMO1n4DMm0VnHPTjxOHnRH/4sPv1KMy2eprJ/tZmbNdaw7bpgKxvjI0aNZKjVuJJSEiQPOcpa8nj4+Mxa9YsxMc7drtvZ/uhpH17bMnR5dFhlWWRozngPj44K/7Nl+/Jjf+ffvjJ5Jh5L6VqkdVMHj+Ie6D/W2z5Xnx8POKTi/f1lqpqWnp+KTZe3SjLplaBL03mr0laXpqkrHnlm5K46xxQQtfxnwHiFTkmnwF13rTtqHHianCK2UldrJpdRyXSh8poaYUSnI09iwq3gMrXM5FiNg3jNTUw64f5iG113NCMvd77lkaKiey4f40eGb0uV74X/j9Q1Gcv4aCwQ92Fz5jsukb8CzHApmt4b1M0/otuBmV9B9rSAMhhq3ooSbjCd6Di8MOqfa2Gq0LSxJZGzdVA3zU/AyzhvgcoSBN2Y3UURZvY2I/p62wyDidfN2w2Adi/4YRYTN0R769ld/yvDAbU0uX/TPZTTkufu7ee2yW7fsa8c+cOPv/8cwwZMgTdu3fH4MGD8fnnn+P27dv2mHVZaPkeEBkZiWeffRaRkZG2hUuwH0rat8eWHF0eHVZZFjmaA+7jg7Pi3zyJITf+hz87HN90+QZtK7fFPy/8Y5HsMq7gqRdZD0GhhmoKseV7kZGRyFJlMfugBNaamjtzVzvz18TaEj1HVpe56xywS9c7gFvHQlbiRstEzssfMOrLpsNk+Z5vuG1/zSojUX2MdfluR62fV4hn1zyLXC2QpAamJcPkRkN0bM138StGQu7+bHig1Rgqpe4WNWO/v97oPMtNtPBcXSX+AdB3IKXJk960iQVX+A5UHH5YtX9sHPDvB/JsXf0O2NNZGT8U0FFqDnDFf24CsLWx5fH4g7Z1ASAnzvr7mToX+MuPzZZVLJ+L4+Ku6Fo5cUCylWQPABwbj9Jxv0r7kXEdSLtilzeW3w00QNY9S0Fd8k+rFZZ/6zgovvGQNWQnpX788UfUqVMH//vf/7B69Wrs3LkTa9aswSeffII6derg+++/l2vaZQkICJA8V2I+jOwkICAAderUsToW7uCHkvbtsSVHl0eHVZZFjuaA+/jgrPg3X75nT/y/3eZtHBhzAK0rtRZdRhbkKySivH294eVjOC+2fC8gIACFWvt2vmPl6P2jeGbZM8VyLTmYvyZK9KlSwg9Xtl8snwHh9YHqL3BfT9ZnQLu1QJPZFjKmnwE2PgcGpwN+ETb9M7FT2lG77pkSmxmr/zu1KLx/OPYDuvzZBZdTLjv9/V+UnIfQV0rdXAgk/mM4d/NPMPWa2lgL0Ao3GK4R/4LPdbwP2PcdKD8FyLoDrchNrInsugrCkiKZz0H8O5ALfh9aU9oudbtjQ1PAVSnkMD/ssZ91G8iW3qjEqq38FCD7gW0lAMiJQ4AmqXjuA/x8gbMfy7bJdQ9gnLxYFWH4e1c7MC2DW1fOYlc8E+Qum1XnAfnS1d+AAnFXmAMkHDE8PjjY9PyNP4B9PazbSLsI39w70n78+wFw+i15/hVh8TwTDgMbKgMFmcA/ww3J7dx4YQnjyiBgtUiC7Mq3zNeUlZTasmULJkyYgIiICHz++ec4cuQIbt26haNHj2LmzJmIjIzExIkTsXnzZjnmXZasLOlfynUfdmIfeu5EVlYWTp48aXUs3MEPJe3bY0uOLo8OqyyLHM0B9/HBWfFvXtGkVPyLJaV018rIykBSuuGXY38ff4vle3LHIcw/jEteq9Wi9bzW2PyfvM/OiIAIWXo8mI+vWO8rY+r/XB/H7h9zuB+ubL9YPgNa/wnUfYf7ehayEjcUJnJ+kYBviIWMVsPxGeAbakNAa9UfAEB0R6DaSNvXsofQ6kjyLYc3t72J3bd2o9W8Vk5//xflwSZDU/YLM0zPpV8u+sPodXmwxVRmazMg87q+es2u+E+9aLJ0Rr4twd/Ck+8ZdJdJxINRzFlc7+JMYE83S509XU1lcx4B6VdFzcv/DiQzKXV4mMTNnMjcOjhI3jV0FOZw3cTb/d545n3giPzeiIr5Icd++rWiP/i+51raYtQ//TbUh4ZZ+pETK60jej0AaZdEl8vpZTNTgIufSxtdprI63hbxf/g5oCDDqp8AhGV8NmUyDX/rK3Mc8EPhldlFiTEjtFog4wbwcDsAa3HH+Jom/gPsfNLw+N5qfhsACgoKROLiEXDiNeuK14yqazNvS8aSxfPUvUeknAZuLwUe7TAIp1+VXgp4eqJ1f4yQlZSaNWsWSpUqhdOnT2PSpElo2bIlqlSpghYtWuD999/HqVOnEBUVhW+++UaOeZclI0N6cnnKDXl6ejq2bNmC9HTlt0d3JT+UtG+PLTm6PDqssixyNAfcx4fiiv+KYRVNHteMqmm3H2I6Yr2NfIuWH6VnpSMh1dAvMNg32GL53qWHl5ivbwzv7nPWluyxYCtBpATm42vrmpcSLmHWkVkO98OV7RfLZ0BUUyCkOvf1HPYZYL40jwnOG/iYXkC9SeLnhlhv4moNk8+wsu2QHFhV/zBfne/0939Jbv0JpJ4VkksWqGByw7O/F5Bt1O/IrDeIrJjd30f4f8vjQNJx+2wZ4aNJc8x3oORTlrL7zJvma5ltKvodKPWcsD08C/fW2HetbU2BmwuYxSXH4sTrbAbyEoXlW6yceR84/Q67Hwohav/vOoa/OVYFmNri/F5QqLb0Iy+R43pFbK4v2licZxy3bNmC9JSiJEahaVLGIv7v/GVaEWUqbfrQVuXYqlBDBdMWo77WD7ZwVazZpDCnKLlfxL01QMop4bkcHQ3AaLxSxWLYymubeVvY/EAKldl7tBi6hJxKhYKCAsvXLfMm8N/Ppjpn3gey7gIri34kPWmUtDr8LLCuPHDqbWBdReG5310FwEpc7Gpv3UcA2N3JtowIPrZFLDl9+jSef/55VKhQQfR8TEwMhgwZgqVLl8pyylUpV66c5DkvLy+T/92V8uXLY/Lkyc52w+F+KGnfHltydHl0WGVZ5GgOuI8PxRX/rSq2QptKbXD43mH0qtULjco1YtbluV7tUrVRM6omridfx7QO0wAYElXhEeEIDDfszhfsG2yxfO/3K79z+aCDdylrAUdjzj239qBTNdMPfpabobzCPPj7+NuUM2fT1U24mXIT45uNNxlflkTY6kurbcrwUhBUgI8++ciiuk4p6DOAX87L2+gzoPJAoMxdodyflyazAS87l+QotIxcBZXFBgHOfv/np6g5vPn7w/oYYEAcEFDWQkNWzD7YZPjb6FpKzKXy5ctzyVpcT6sBzJP+Wq3jvwPlJQBB4vdKdvNopzKNotOvmN6I28BkLDQFhv5y//0ENP/Rfn8s/LsqWsml6Peg3Z2AznuUt598BijMRPnybQ224gGeihh/P9/i+QwolN5JV8fkyZOFasV+D4T3j2GG52HXPcCu9kCfomT6/Q3iMrs7AOW6me52d7Af0PQ7oParZsIS7/9XvhXiqcUvwvMYxvA6mPVgK3+gJiZPzhKv2syzkmy9+Lnwo0EjqWo0lbAUDhD+z74PBJn+cIu//PQ+BwUGYPK7LwLnpwDlfzOVe7gFKNMWuLMSuPw1UG0UUGhUWHP4eeF/3Vhe/a7o8W3g0BBgWNF748cfAF4+XE39AQibashA1t1jfn4+goODrcoEBwcjP794t9AmCIIgShaHXjgE7RQt/h72t8Ou4aXywrGxx7B31F581PYj/TGgaHlevuEXv1D/UIvle7wVTzp49QrU7Empzn9aNkpl2V0vJZf/JuZywmX0+asP3tr+Fr449IXJueKozjLnt1O/ocp3VfDU/KfcvjKz2FHJTPJ5B8HkRsDLFwiuJM9W7dcA/Rx0bk8eLbTuEWN3/gLidlse3/aEuPwyleVyDPMlf1ZRYMyUGvdH24XqsZ1Pmdm3ox/ehRmWSS4xzJs5b2foi3b6XTYfbi8Brs0R/tao2SurlETXTHpjTetyvIhtV79MZbXnETcPNhtuynlvos1jsyBdvCro6vfA2Q9Nj3ElzBV6/zNZ/qa2f24dKuqDdO5TINdK1VYOY++szBuGv89/Ki5TkAlc/sq+HxxOTxR/rQsyhSqmi9OFfmEZYtWmRaizgaNim3KohNfb2nci46WKufESFWJFr822Jwy9p+L3A+eNd04t+pEh8xZwQ+RHU3UOELvDdGdAY+4sE/7XSCy50/1AusIf2NdTeJ+5v85URp8cBBB/wPC38XO6s0LcvgSyklK1a9fGpk2bUFgo/oZcWFiIv//+G7Vr15Zj3mVJTk6WPMe9FWYJJSkpCUuWLEFSkn27d7i6H0rat8eWHF0eHVZZFjmaA+7jgzvGf1RgFDpU7aBPOOmW6GVmZuJR8iO9nHmllFqjRmGBvGV1jqyUEoPl5lnOjnjrrhi+jHx24DOT8VVrir/R+Ut/vwQAOPbgGE7cPOGQa7jjHGCSLdVCqJ7htTk0C5qinlKyPwP088W5CQ1b81Z0HGL6yL6eU7HynrNx+RzT57m/l6xLmMROYY6s1ybzX1vtQAw2LWI19WyRkVumKoUZ8r8DnfvEImln9TtQ9gNB3mhZoyRXZoNpDhiPY+I/wIaqtnVYbNlAdMyMkwq2L2ZbZKVE4YNRzyPu90bzz75/ngfurZXsU2bbvpHeideEPmCA6M5wFrasjffJCSZVSwUFBWzPU5dgLshE8qNrpjrnpxjk9nYFzhgSn3rfko3s31womoRetqRomaduI4ULU/XLhbV5wj2ySfzvaC0k7MyrsIx7KnFTNO76ZWRmY6nVWh4zOW/2nSXlrLA80HgZYJxp1Zw5GTeMx8bscyv5lKXC/U1C9ZJxz7p9vYAtDYW/c2KF9xRjcuMM47S7I3DeuPJNhbz8PGzfIfS5wnJv8d32sosS1VseF38i5u//h4cK///lh/TLi4W/H20XknTmOyPeXmL4+9JMw9/7jT4LH/D92CwrKTVq1ChcvXoV3bt3x6lTpoN/8uRJ9OjRA1evXsWoUaPkmHdZ3H1XMRa8vLzg7+/v9CVajvZDSfv22JKjy6PDKusqr7sr4ApjQfFvv46uUkqr0iLb6FfZEL8Qk55ShZpC2UvErDVYF4OnUkoMlp3wpCqbtFotLiVcEk0ymSe7jMfXGZVSxmjgmOt7whwQlVWpRJdzFev7nklMFf/3LlvJXdFxaDlPUv5hIdDxPvB8LKB2RtGV8XdX8+onlRdwXXx5ch+v99leb41aZDe1oif6cDtCLrxhGLM1pcUrtmwQ8HC5dQGj10wyVkUaKutlzb/f6+2prNv8+zHLZJc5j3YA6ytabyItikjsW8SmSCI3/pDhb4YlWaJcnCk0xhZBkfeC+H3ydQEg5xG/HyuMlq0nHrfZYNu6/aLxvv47cPRF4eZekyccW1cOSCra3KNo2azOVujZsbD5nnZtjslySpU6C0F+gHdhimEp2ZYGZt5oDcmQc5MRdmqIqe/G3w3i9gJXDElew/M08uv6b8D9tRauPeZzyOKYwU+JWNvfGzj7kemxPJEEW5KNH5hE78FVwH9zgUSjzVROv23aN8mcnAfAtuaGx/r3RCtvzmYJo1BVvOFBwiHh+rqld/H7Dee0WqGS7EAfo6qxoueRfBLILyp2yb4nfW1zHm4FEoQEka9vUaWiVgNsrmspa74U0kaDfKQbElthZ4w2Ebk2x6LvoH7pcK6ZTXM5DmR9054wYQIOHTqEdevWoUWLFggMDER0dDTi4uKQk5MDrVaLvn374s0335TtmCsSGSmy1WERntJPJzIyEoMHD7YtWML9UNK+Pbbk6PLosMqyyNEccB8fPCH+dQkj/wB/qHwNX3YCfQMtlu+FBFruNGZx3cBIpGSYLo1TQYX2Vdpj/x3Dl5RAn0Bk5ItvmmFPpdTxB8eRWyhRim2EWBJJq9XCa5owHvXK1MPFVy+anjf7sjZ48GBs/W8r8uLyUD6ErdfL2diz2H5jO0Y1GoXokGgmHRbKRJZRzJYxnjAHeGTt+gxot57JFwOm8VagLsDwdcORnpeOpQOWIirQslmvoxDrKcX7eoyNA/YV3a91DgReCFfKO0aMkyG6CgcdOQ+B4+MNj82SHpEREs6enwY0KPrlfl05y8bLOjvpl+AfvxmDA88A2hrC0hfjpUTGHBklVOrVtryh9PE2apxvoxeMPlazHwAPrWwbbyybaFbBlHJG90RM5Yy5v06ofMi6A+zpAq/CVAAi8a9r6p3xn+HYvx8BjXmTVNYwumHf1dYwPiuDgH73gaAY2yY2Pw70KmrEfPZDICAaCK9nOB+7ByjXCZG3P8fgwV8r43ZOrFCJUV2iiGG5r7ChgXkybl0FRA7T8r+v3lsHeAda3kiLwPTeqJs7VZ6FyfuWOgc4855QcVT6SYOtZUOA0g0hmQA5NNTw98HBgLc/fNL/xYAa+4HLywHvACBAur8xAEBbCB9tDgY/GQzo71slEmGPdiCyfDcMfroJEBghHDNfUpZ6Ebi/HgDQVDNf5Hqmz8Ui/uMPCP+aFe0maZxAMmZ7C/HjOnTzx/xHi7SLwPVfhERe+a5CU++CVOH0pa+Aeu+b2lHnCgkhnW9eRcnKE0Z9qW4vB2qON9XLjRWqm8y5/qsQwzouzwbqvgscGwuUbi38ryRFO0D6Ixudqj0EjFcaSi3X07GOvTefTXKLKqqlloADQKHEe70Esu4evb29sWbNGixatAgdOnSAv78/7t69C39/f3Ts2BGLFi3CunXr3O7m1N2XJbGg0WiQn5/v9LFwtB9K2rfHlhxdHh1WWVd53V0BVxgLin/7dfQ9pTRqkyVtft5+JtVMqy+tNqmcMmfZgGXYNWIXgnyDLM4VaAosKqOsVdzaUynVbbHIluciGFdCnXl0Bj+f+Bnbrm/TH7uUYPnruHnlyN4be9FzWU/0X9Efg1axbUfe+NfGmLRrEkasG8Ekz4qXvK8xNvGEOcAja994WKkM8A4CvPxMj5nF2w/HfsDKiyux7fo2TNw+UVKuuOAdh61G7XHOl7BWq7olmUg3SqjkPBKWAx16VliyJLoTmNb0r/Qr0Nj6lT75pGQvFy1HRaY+Vm//JfRDYZE1/0HAuLJEqzGNf917qK6PSsZ/Qn8VnqqkS1/YlhFFK/G3FcR+7NA9hwebDcfSLlrKAYbXZE9nYHcX4PIs23Mg/iAQt0/8nPESpsQj+l3NcHuZpay2sKjaw/K5Wrwn/fuhhQwAoeJL9xl/cACwr4dpIlYCTWE+Cu5uYpvrSSeF96NVRUnc/X2Ay7pdZ7V6X21yd6Xh73urgdtFG4bd+APa1IvCNcx3VxMj4xqwv5fBd/MKSUCoVtrbXZDZVAvaf4oqY9YXNdfWvb8mHbNcWmYNdZ7Q4N2cZSohwbWjFZsdqWSOriLN+O/bS4EjI4UlbMa9j/6V2J1Vh/FOclm3DX/H7zN6/Yx4KNFXz1g3N1Z4rjfmiT8H4+S0qC0bveGyiiozH/4tJOOMsfV8ixtrjd9FsOvb3IgRI7B7924kJSWhoKAASUlJ2LVrF0aMUPZLp6sQHx8vec5T+unExcXhiy++QFycZc8Jd/JDSfv22JKjy6PDKssiR3PAfXzwhPjXVUNlZmciwWhrX18vX5NE0vn480jOkO4nWDOqJjpX7ywa96m5qfD19jU5NrHVRAs5Hel58re2TsuzvhRBh65SKis/C01/a4rXtryGnsus37hN3me6i8+4JeP0f99P59uOeefNnVzytkhI5PvSw4onzAEeWYd9BpTrAgzULeUoSl4ZJ3JVKhx9YKh22XVzF5tdsUQyy05LsKwMNE/Kio6Dm7Z3iIsrSiT9XdQj9vjLwH9FN0L3VgF3bCyrA6AtSmylpugqSYvGM/WieENrMwo13igoMLuht6i2MrxGcXFxmPv1+/D613bDcF1cm/SMvfqjoWoj5V9guTfiYh8ZXve/dPEp3gNNY1GxaroUkKkhOWvCVR93NuJPqzVNTKRfFv7X94IxrvIputHPSxQqLzbVMpwrWnpp8z3j0kyhSiX5lGkSChDGVIx/nrfuvxkW70mXZgJnzKpiTr0FbK6vX+6kh6EquWB7O/ge6mP5PC9/Y7pECxCqRvISDMvujCtENPlIuPsvvvhCl4hUCcu1Ln0pVIodHAhsqG5q7+FmmKPKvgOkiy+pxPnp4s9hW1HSxTx5AQhLaQH981OZLNdTCQkf4+ohKdRZpq9pQap4821A2KGRlRvSS6It0BQIyaBz/xMeGzczP/G6jYbbEnPtzHvs1+fhxMuWx4yr0278YV2/JG28YatyywyupNTRo0fRuXNnhIWFISwsDF26dMHx4wxN+9yE8HDpmmvdr9/u3ncqIiICAwYMQEREhFv7oaR9e2zJ0eXRYZVlkaM54D4+eEL86yqlfH198cVxw6/Wvt6+8Pf2N5Gdd0H6y5GtuDevlHqm9jOStr48/KVVn5VA13fqSqJIU0xGKkQ7aItzGYSE2l5aKQdPmAM8sg77DFCpAF+j1zCqubBExSAgeg29rhTefsxJKF7siYsSdDsBAJbP8/qvQGxRYtlq9ZLhmepes+DgomrSgwOEJTZbHgcebDKopF0Wt+EbDB9vs9sVqZteAJG4gx7dOlnxzYAurkNDQg0HT71h+Luo31bZcwOlX/d80x8EvGyFv64hefZDQ8WSKEaGTr5pcR2r0XR5FpBR1Hz83hqh4fB6xt0wVwQY9Ha1ExWxOQcebhH8O/GqeMWJjrurhf9jbfQZM07y3BOSJxERERjRrSIiQowqLS+bLSu8+r11u1YSD355dwEAkT5mP0rpq5nM3oukKs2STyH6n2YYMGCA8FhXyXNnpbB89t5aQ/WLjmMvitsyT/DpMH/eRfinSveA0hHhn2V5MPEfoCBD6Ndkiz1dga1NjA5YmQAs9oy5+qPwj5V7q0Wu+RNwYbqQBBTD+D3IWRzszy577QfH+eFkmJNS58+fR6dOnbB3715kZmYiMzMTe/bsQceOHXHxosREdDMCAwMlz3nKDXlgYCAaNGhgdSzcwQ8l7dtjS44ujw6rLIsczQH38cET4l+XlFKZ3UFcTbyKQF/266nAl5Ty9vJGixjx3gkrLvJtnysHXaVUYraVbZxtEBEeoZA39uPv729bSAaeMAd4ZJ35GWBcqaQyvuFx0C/GKhtVJ1bHwcdy17AS9YmoNq1cCgwIsJRJPCKtr6t8MnnNhL/9/YySB6LVQloh0fVwm8lRH28feKWKLAc68x5wcxFwaIjJ4YC9rZl3/9bFtf/9ReICyULzZe/kY2hQr47p665LjP37voiiEbqmzuZVZetjRJtJAyiqZDKK72s/GHq4AECyrplwUXSZz7kz7xmabZ95Vxhv42WW6VdNG6IbH2egweOPM7y/SMxPna/xBwxb0+/pYjif88hSx7jS6eBAAEBgwV1UvzUWgZc+EL+O+W5hLOgqnXJiocoV/AjYKbFzmTEMy0sbNChqTp56Tvg/7TywrZlBQGIXQC4sEpe2CXwgVe1Y9PrdXMBnUFMguXkCN6fekLUxggVpF4B/JeJEdPkx4QyYk1IzZ85Ebm4uPv74Y8TGxiIuLg4fffQRcnJy8OWXjv911xXIyZFeL6770sSyJXdJJicnB+fOnbM6Fu7gh5L27bElR5dHh1WWRY7mgPv44Anxr0tKmfdx0mg1CPARuRGzYUcq7s2TUj5ePqK78hUXZ2PPQjVVhaeXPi3bxqZrLvDLYhHZObaX/8jBE+YAj6yczwCWxvumiNyUqVQmzfmd8aOH+XI+0XHQzf/QOsXklYPY+ZTJw5xczphdWZSUSzoOrBCSFrrRK3i0zyBnvtuU7mY6dofQ88eIQrVINdHlr4uqga6LNk6+eo0tuaKLa9xcaFt4hT/jPNQCmkLDw4dWtkXX9TqSSkhk3gIeGS95LhpN42QGIFSfAUJjcDGMq78AoS/RiVeEncOMMa8ckki2WH0viN1TpKuFMKe1QMI/wLYWwInXDEvnjPv56FDnCzKAYRmhFH8/JvxvvtwptyjJ8GCj0UHG941V4YJ/F6aZHtdqhF3PjLm92PA3Q0Pnc+fOmR6wY2MTSTbXA7LNltTnWk+6FOSI7IRnjHmMsKAttC3DSlGTdYdx/TfH2ieYYf5mfPDgQTz11FP47LPPULZsWZQpUwbTp09HmzZtsH//ftsG3IC0NOkMtKfckKempmLdunVITU11az+UtG+PLTm6PDqssixyNAfcxwdPiH9d8/KCQtMvhr7evgj04aiUKrpJlop7Xy/TmwRvlbfVxulKs3zgcrzQ+AX94+HrhhfbtYuDtHT+X4ZZ8IQ5wCPL+xnQ5c8uCJwRCJWNnq4iVgx/9roIVHjGJClkq4pJCcyTUOZYHQcvHyC4mhXbJQtDHyhOzn6o72GkKhR2G/W9ZrSMy7x/kK5ySmPcO0oYLR+1yBy3qKYpGtlYoefYsb1rmNzUxTUrLOOh0WiB81OZbUqjEpp/H5F4z9Y1wQYM29HbSgYUZBj+T7tgOK7rMcW4lCn4+ADpOZCvS3JoBb8Ks4VG8MknbDfp3v+MYXlbmkT/JDGMezLdWyX8b23ZoBiZN4X/z02xXGZ2fqqhab5G3m4FBzf/KkuPi5yHpo2+AaDA+mek73WJJY6usKyN8Ch8bIsIxMXF4dlnn7U43qpVK5w4cUJRp1yV6Gjpbawlt0J2M8qVK4ePP/4Y3t7Fd1PlDD+UtG+PLTm6PDqssixyNAfcxwdPiH9dtZK3j7dJYsrXy1dWpZRU3ItVSumarBcHzz7+LA7dlfFLZxGXE8z7vDgX8+RfqdKlHHIdT5gDPLK8nwG7b8lYcmFeBVW0Hb3J8j2dTJNZQKCC21tLuQSVRcyZjMOgVJ1jwv8iyemiWpESSblyNraft4VUHxcdh58FqgyF3SOkG/c9XQEAIysutiJsoNy1l/Hxx2uAlZ+yyUeXtSnj5eVluiQo1kpzfq0ayLonfd6Y5JN8VStiP5ToKp+Sze7bbO0IZkaN4JvQ6mIj3yhRZ3JNrdArKesWeyIn1qgqbFtTdoeMezKJNedmqbA8WVRNJrYzonHlVIrIUlIGXu5VDrhgW44gPBXmpFRBQQFCQiwbioaEhKCgwAEliC6Iu/fKYUGlUsHHhzlsSqwfStq3x5YcXR4dVllXed1dAVcYC4p/+3V0ySSN2fIEP28/hPqHiqmIX89G5caNlBsmj/19/BVfvncj+YbV8/ZUZn24W2KbbSdhq4pFKTxhDvDI2jcejN+dKvYHSrW0OCxaKVX3HZm+8CEWbybj4Fe0AY5+TrvX7rMqdTbgLb3Jj02M+yBJoSkwJDZ01SrC1W3r2qgCsYUq6RhXXLPdBnC8Rx0dZaSmMYojCM/N3yjpfvlr6Z3rxJCqsBIj/oDlMRtVV6oLRTu+baxhOLjcC2hT1BvROEF1j61yzak83OJQ894XJtsWcgQSzeoJwtVw75IGhUmxUrYrayvkEkhKSgpWrFhhdSzcwQ8l7dtjS44ujw6rLIsczQH38cET4l+XGMpXm/6C27tObwT7WjYr1jG+6XhRO2JxXyW8Cv6594/JsVKBpRRbvtd/RX/0WNoDTX5tYlWONwm26N9F+O7od8hX52PD1Q32uCjJjhs7MGDFAOy/zbf83zyJmJqWqqBXBjxhDvDIFstnQIWngRovWBw2rlQqjn5s5olm88SU6Dj4RRYJa21kLpxbZc5LaoqNfjNK8JcfsLuj5fGr39nWvTan6A95yWqNuhArVrBvMJGSkmxbKC8ZuP4LvzPLzWLj5nzg4WbD0jzRhBTnj+U8fYxstWI4X5RkyTd/T9Ca/e8KeHBRQc5DZ3tAEExw/ey1ZMkSHD161OTY9evXAQA9e/a0kFepVNi8ebMd7rkW7t4rhwWtVgu1Wu30sXC0H0rat8eWHF0eHVZZV3ndXQFXGAuKf/t1pJbQVQitYFXv196/onpkdXyw+wPUiqqFumXqSsp+1fUrDF091ORYsF8w1/K92qVq41rSNdFz66+sZ7LBu1xw9IbRXPJy6L6kOwBg3ZV10E7he32NMU9SsdqwVfnsCXOAR9au5xDdyfSWsPpoLn3jxPGt1FtWJJXBVjWe9XHQWr+Zj6gH4Lxs34obTTH2vzPhyvfsVUHZd4VeRDYQe1W8CpKghkgjdQl84hxbTWOBtZ0OASB+H5+9tWXYZVNO25axigt9XxRLehIE4VJwJaWuX7+uT0KZs23bNotj7rbcLSoqSvKcp/TTiYqKwrBhw5zthsP9UNK+Pbbk6PLosMqyyNEccB8fPCH+5VRcRAUKnwHvt3kfbau0Rf0y9a32lJJa2sdz7U/bf4qv//kaZ2Ll9bEAgITsBFl6U/cr0ayXjdzCXOy9tRdtKrdBmH+YpJx5EiosTFpWjHd3vIs/z/6JX575BQPqDpCU84Q5wCNr12eAT5Dp41Z8W4xvv7Fd/7ecJKQ9iM1h6+Ng40ZcVbKWwUclrgDKvl/8Fz79VrFdatjg3sAqNtnQfPEfCNyeG/PZZXX9tOL2OsYXgiDcEuZPx1u3HP/rFEEQBEEUB7YSQ3tH7UXHRaa/rlaPFHb4UalUeLLSk7KvwZOUup58XXZCSufviQfyNiMpjqVSOl7++2UsOrsIHap2wN5R0jcz5kkJniRFTkEOZh+ZDQAYuHIgV4UWIR8ttMWya57T6XMD+O9X4K50hkMbVAnIl59gLnb+nQSEVLctV5JZxZPYdvB7hjrPsfblcuxFdtmTrzvOD4Ig3Bbmb5xVqlSR9c+diI2NlTznKf10Hj16hKlTp+LRI/PteN3LDyXt22NLji6PDqssixzNAffxwRPi/2bKTavnO1TtgJsTTGUKC6Qbv4rFvRJJqdJBpZlljSkfUh7rh64HIDRXl4OjklIdFnawOLbo7CIAwL7b+6zqmieh4hPiMW3/NPRe3hu3Uqz/eFbA0U9F6Tnwv6n/w8OH/L09HP0ZcP3udUyZOoU+A4wwXpqXlJOEw3cPm5yXHIeQ6oCXj6Gn1OB0AGbdbIJL4PfiQ4Od7YHLkBt7zLEXOF981akEQRCuhHuvs1EYa8sEdEsV3W3Jojnh4eHo3bs3wsPt2I2lBPihpH17bMnR5dFhlWWRozngPj54QvzHZlr+yLBzxE6Tx+a78Om3gRdBLO6l5gJP1Yi1pWzWuPf2PTSIbgBA/u57idmJtoVksP+OaXNz8+tk5Wfh84Of47dTv1nomielrmddx5R9U/D3tb8xaNUgq9flqRhTcg4cSTyC6ZiOmN9jUKDm263YkXNgz609aLi4IVaFr0JomPUdJz31M2DD1Q14efPLJseYXw9fyzGlvowlm4BkBy9Ju/SFY+0TBEG4KCVrcbuTCQoKkjznjl/GxAgKCkLTpk2d7YbD/VDSvj225Ojy6LDKssjRHHAfHzwl/s3pUr2LyWPzKiWVl3Rsi8W9l8oL/t7+yDNbksFTgaRSqdCkXBOuJXw1ImuYNDfnbXRe3NSeU9vk8fQD0zHz8EwAwhJE49fFvAn1f2n/6f8+/Ui8Me/um7ux/85+BPoEMvuk5BwYuHag/u9XNr+CP/r84VA/WHU6/9kZAHA57TL23N+DPnX62GVT6jNAq9UquvmVWqOWHdOnHp7Ctuvb8EKTF1A+tLyojK3PMJtja5Z4cu9PRIIgCIKwH6qU4iAnJ0fynO7XL3f/FSwnJweXL1+2Ohbu4IeS9u2xJUeXR4dVlkWO5oD7+OAp8c9LXoF0vw+xuFdBZVLpVK9MPeE4R+JWBRVaVWzF4SWweVjJ2vU2Jdd0S3FdQgoAxm8ab3LOvFIqvyAf1kjLTUOXxV3w2YHP8NGej5h9Mo8jrVYLtYZ9ly4pdt/azSVfXHMgMUOoVruTegcdFnbA2I1jTWLalT4Dei/vLUtPrVHjid+fwCd7P7FZVWcNZ7//EwRBEIS7QUkpDtLS0iTPecoNeWpqKlauXInU1FS39kNJ+/bYkqPLo8MqyyJHc8B9fPCU+OflfIL0Vu5icW9eEdUoupHocWs0KteIWVZHjagaJo9D/awvzXJlbqXeQtNfmyIpOwmAZVIqJ9c0ORCXGYfxm8ZjzrE5yC3MxeF7pv2AWDGOo4vxF+E1zQs+n/ngerL4DsSsFGqk+5LZ8sOROroky3NrnsP+O/sx78w8bLy6kctmcX0GbL2+VZZeTqEhVv6594+knC3/bY6tcdK5XDfL81HNrdonCIIgCE+Dlu9xULZsWclzklshuxnR0dF4//334e8vr3FuSfFDSfv22JKjy6PDKssiR3PAfXzwhPif0WkGPt7zMbdPUojFvVRFFEtS6vkGz+PJSk+iXpl63Df55j2k0vPSufRdjTOxZxDzTQxyP8m1SErNv2i6VfnLm1/G+ivrAQATtk2QfU3jOKrwWQX98Vpzatm1ax9vUsrRnwE6IsIjAABH7h/RH7uceBl90ZfZptRngPmSS2fBs1OjNZ596VlEl41mE/YS+Zrd7Ftg51OK+EIQBEEQ7oB73z0qjLvfbLPg5eWFwMBAp4+Fo/1Q0r49tuTo8uiwyrrK6+4KuMJYUPzbr1Mc1UNSySeWRudLBizBq81flXVd82TYiYfsDb5dFV1fLlsJOl1Cyl4cNcd4lwA6+jNAh49Y8sROm8VBQlYCJm6fiKXnltqUVaqCa+1/a+0cB+oyRRAEQRDGuNa3CxcnJSVF8py7bIVsi5SUFKxdu9bqWLiDH0rat8eWHF0eHVZZFjmaA+7jgyfEf7BfMJO9d1q/wyQnFvfmSSldxQjP8j3CFKWqXWzhqDmm1vIlpRz9GaDj2TXP4nLCZZNjxslTV/0MGLdpHL49+i2Grxtu99JKVi5cvCA9DhWeAep9CAwVlgqmN/gCxrVxwnsAJaUIgiAIwhj6ZsyBu/fKYUGj0SA9Pd3piQdH+6GkfXtsydHl0WGVdZXX3RVwhbGg+LdfJ9iXLSnVIqYF87XNkaqIuply06oeayLM08grzCu2pJSj5hhvpZSjPwOMeXrp04rbBBz73WnD1Q36v4esGoIKsytIVk0plQw+lXpKehzKtAZqjgW8A5Cel46qf3RQ5JoEQRAE4c5QUoqDqKgoyXOe0k+nVKlSGD16NEqVKuXWfihp3x5bcnR5dFhlWeRoDriPD54Q//4+bP12bC1r0iEW91I3wacfnbZqa1A9+TuDidG5WmdF7TmL7ku640rilWK5lpzYW3Z+Gb44+AWyC7IlZcwrpc7FncPIdSOx5b8tivkhd87dTbtr8njpeUNyh+czIFedy3VdpTgTewaPMh9h+Lrhoud5dr20xtW8qzbHVq1RY/LeyRY7SxIEQSgNlUwQ7oB73z0SBEEQhAisFTfdanRDZEAkAGDloJVc11CpVGhTuY3+cf0y9QEApYNKW9VTennf771/V9Ses9h/Zz86/dnJ2W6IcvLhSTy/9nl8tOcjfLb/M0k587hrPa81Fp9bjF7LeumPLTm3BB/s+gDJOckO85eF8/HSu01aw3iXO8B1Gp0XV7W7VqtFq3mt8P2x78V9UCg5RhAEQRDuAiWlOIiLi5M85yn9dGJjY/H5558jNjbWrf1Q0r49tuTo8uiwyrLI0RxwHx88If7Nd6iTIsQvBAeHHMQEnwl4Kkp6xyyxuC9QF2Bur7loVr4ZOlXrhHeffBcAEOpvvcl6fFY8k2+sVIushnl95ilq012JzYzFlL1TsO70Oq7Y23DFsIxs5uGZknLmy/eMq6o0Wg0uJ1zGiHUj8OXhLzFh6wSHfwYoaVM3B0p6qwOWJFpsbCx+OPYDWv3RCgfvHDQ5d/jeYZx8eNKKNiWlCIIgCMIYtnUJBAAgJCRE8pyuLFyp8nBXJTQ0FJ07d0ZoqON3rnKmH0rat8eWHF0eHVZZFjmaA+7jgyfE/9M1pfvnmFO1bFUM6zIMYWFhkjJica/WqlEupBxOjje9QbV1025PpVRMaIzo8UCfQNk2PYlha4Zh7+29AIAovyhUeFBBUfuFmkLJcwXqAhy+d1j/eOn5pfi1+68OmQPWlhjKtan/DHCxpEu+Op+7l5ctfAN98ea2NwEA7Ra2g3aKYU7nFORIqREEQRAEIQIlpTgIDpZujOspN+TBwcFo2bKls91wuB9K2rfHlhxdHh1WWRY5mgPu44MnxD9rTylWm2JxL9VM3VYlhj1JqcblGose9/ZiqwzzZNLz0vUJKQBIzk/GmL/HINw/HGl5aQCAcP9wUV3deR0Ttk5AtYhqeLv12ybHre2+p9FqLBI6wcHBKFWrFAq9pZNZ5rDEK2+Sxp7PAGdWTiVlJ6HB3AbILczFnlF7mHRYkmo+/qZfn1deXIkh9YfI8pEgCIIgPB1avsdBXl6es11wOnl5ebh+/brTx8LRfihp3x5bcnR5dFhlXeV1dwVcYSwo/pW/3g9P/6C4zfAA8QSGrZt01ubqPLAuV/RUPtz1ISJmRoieM96BMSZMvBJtzvE5Fo8n7piI/bf3M/ughdYiobPu4jrUmlMLNX+oiaz8LCY7LPHK++OBK7zvyeGj3R/hUeYjpOSmYOzGsUw6LMv3Tt0/ZfJ46OqhOBd3jtEr9/7hhiAIgiB4oaQUBykp0ruoeEo/neTkZCxduhTJyc5twOpoP5S0b48tObo8OqyyLHI0B9zHB0+Jf2PeaPmGXTZ1ca+rpGlcrjEaRTcSl7XRZD0iIMKGt/wo3TzdHdh+fTsO3DkArVaLmYdnSiYjjMeOt8Jozy226hxASFaaV+kMWD0AAJCYk4iF/y5kssMSr7xL7HjmgHnS1ZmNzh9mPtT/fS/9nqTctaRr+On4T0jMTmSy+9za5yyO6XZQdPdq4ZJKye50RhAE4d7Q8j0OypQpI3lOtxWy2Lbg7kTZsmXx9ttvW13K6A5+KGnfHltydHl0WGVZ5GgOuI8PnhL/jaIb4WzcWUVs6uI+xD8EpyecRsWwipI3p7Zu0puVb2bTJynMl5Hp/ZNISk1oMQE/HJeuEnNnnl4q9BX7s9+fVuWMlz6aJxQLNYXY+t9WSV2ehIxYpZQxeWq2KiWWeOVNnBjbTMlJwfor69G5emdUDq+sl9HNAVdKyrAsHdRqtaj3Uz2otWpsvLaRKfEYnyNvMwItaPc9giAIgjCHklIceHvT8gdvb2+rzX7dxQ8l7dtjS44ujw6rrKu87q6AK4wFxb8yOpue24RFZxehd+3eivpRPbK61fPmN8rvtn4Xs47M0j+26MnDkdg4dPeQ6HHjBtrGRAZGMtt2V0auH2n1vPHSR+OeUKm5qfjl5C/4cPeHkrpiDcW1Wi0GrxqMy4mXLY5bq2hjrW5iiVeeSql7affwMOMhWsS0gEqlwvB1w/VVQf0e64e1Q9ZaTUQ5qqfUzhs7bcoYzx2psdVoNfrXdceNHco4RxAEQRAEM+5d0qAwaWniv0ADhi9dJX0rZFukpaVh06ZNVsfCHfxQ0r49tuTo8uiwyrLI0RxwHx88Jf7DEIZGaY1QNbCq3TZ54t88yfRU5ads6tiL1K5vAT4BiAygxJQ1jCul1Bo1Nl7dCNVUFSK/jLSakAKAX0/9anFs3ZV1WHN5DS4lXDI5roXl8j1jWCuQlJy/KTkpeOynx9BqXit8tPgjpKWl6RNSALD+ynqsvbwWgPXYd8TnQrcl3WzKGFe2FceugPnqfIbr2OeHVgvcL7DLBEEQBEG4FJSU4qCwUHr3G0+5IS8oKEBsbCwKCpz7jcjRfihp3x5bcnR5dFhlWeRoDriPDxT//HJcSSkzGZ6dAOUS4BMgenxUo1E49MIhvNXyLYf74C70/asvs6xYMvB26m1RWa3W+vI91qRKQUEBHj16hItxFyWTkazMPTlXX+0189ZM0TlwN+0uAOnY335jO8rOKosxG8bY5YscjH1y9LLCD3d/iODPg/HOjnckZTLyMywPtra+fNScobFApdvADOe29iQIgiAIxSjRSalr166hb9++KF26NMLCwtCmTRvs3bvXRObu3bvo3bs3goODUbp0aUyYMAH5+fmyrleqVCnJc57ST6d06dIYN24cSpcu7dZ+KGnfHltydHl0WGVZ5GgOuI8PFP/8cjzxb14pVTrIYLdp+aY29eUglpQ6Pf40yoeWR70y9fBJu08ccl13wDgZlJmfyaVboGZPqNqqlGJtVl+6dGk8rP0QbZa3QY+lPZivL4Z5Dy2xObD8wnKk5qZK9pTqv6I/ErOFRu3Xk6/rj+cU5CAlR3oDGSUwnmvmY6vVavHloS+tJpF4KdQUWu1Tt+TcEnz4z4/o/RBocM8Xh3IAhNbiusaqohD8JMkORwmCIAjChSjRd4+9evVCYWEh9uzZg1OnTqFx48Z45plnEBsbCwBQq9Xo1asXsrKycOjQIfz1119Ys2YN3nlHuS8gBEEQBMGDeUVJoE8g9ozcg3dbv4u1Q9balJeDv7dlNVaT8k30f9tKeKwYtMJuH0oqxn2kknL4MgHGujqkEk/peemIz5JuoM1T6TN1/1QAwK6bu0Qbd4tW7IjAEnsnHp5A5JeRTL3PMvIyoNVq0WFhBwR9HoSor6Jw5tEZJl94/TKXMx+/Tdc24YPdH+D7Y99zX98eZp5ehL+zgAu5BWh7H0DpVsKJGuOK1Q+CIAiCcBVKbFIqMTER169fxwcffICGDRuiVq1amDlzJrKzs3Hx4kUAwI4dO3Dp0iUsWbIETZo0QZcuXTB79mz8/vvvSE9P575mfLz0l0XdVsi6/92VuLg4fP3114iLi3NrP5S0b48tObo8OqyyLHI0B9zHB4p/fjme+De/eddCi47VOuLrbl+jSkQVq7q+Xr5Wl9oF+gSKHjdfIvjs48+aPDbumyTGiouem5SSkzSxxns73xM9XuW7Kpi4Y6Ld9h8+emjy+NiDY2i7oC2+OfKN/ti9tHtMtsxj1docyMwTSnhsJYy2Xd+G/Xf26x8PWjWIyRdj8tVsFe/WekptvraZ+7oOpa54XBAEQRCEu1Nik1KlSpVC3bp18eeffyIrKwuFhYX49ddfER0djWbNhO20jxw5gscffxwVKlTQ63Xv3h15eXk4deqUpO28vDykp6eb/AOAoKAgSR3dL3CutBWyIwgODkarVq0cthW9q/ihpH17bMnR5dFhlWWRozngPj5Q/PPL8cS/+ZIo88fW8PX2xYhGIyTPNy7XWPS4n7efyeNhjw8zeWy8w5wYxx8cZ3PQDbmXzpbAYUWseooF1p5SZ1NNl4+1md8Gh+4ewjs73kFyjtCIiDXmpuybYvJYifeEhxmmSbNHGY/stimFyfI9V/9skulflgaYlwacy1PYH4IgCIIoJnyc7YBcVCoVdu7cib59+yI0NBReXl6Ijo7Gtm3bEBERAQCIjY1FdHS0iV5kZCT8/Pz0S/zE+OKLLzB16lSL41u3bpVMTOXm5ur/X758ucxnVXK4f/++s10A4Hg/lLRvjy05ujw6rLLW5GgOuJ8PFP/scjzxr5PVsWXrFlz0vygpfz3O0IdHXajGiV0nJGWTEpNEr3869bTJ48MHDyPztKE/Ur7GeuVJfo68XoyEcpw6dQrLb4i8tpmncS3nGnpE9kC4TzguZF+QtLFk1RKU8S2D6znXJWWssWnTJslzuQVCXKvV0km3bdu24WbuTZNjhepC7s+Mv1b8ZfX8gqULEOAVYPJdT9eQXcd/N/7juqajWLB0AcaohLHtLUP//UTg56KNFjNqACEl9udmgiAIwlNxuaTUp59+KpoQMubEiRNo1qwZXn31VZQtWxYHDx5EYGAg/vjjDzzzzDM4ceIEypcvD0D8lzFbO9x8+OGHmDjRUEKfnp6OSpUq6Zuqi/Hee0LZdWBgIJ577jmbz7Okkp+fj9jYWJQrVw5+fn62FUqoH0rat8eWHF0eHVZZFjmaA+7jA8U/vxxP/E/4egKQbXj89NNPS1Y4AcC+Tfuw5/QeAIC3jzdeGvESgs8FY/ym8cgpzDGRndF7BgbVs1wOlXkqE/P+nqd/3LVTV3Su3tnwHNX5GD19tKQPISEhiE+RXsJOOJ7mTzTHc80NsbXn1h58uu9THHx4EACQE5mDHc/twLKzywCJ/OnhoMN4rflrqO5dHZPnTeb2YeDAgcAX4ud0iU0fbx/kQzyJ+dnDz1ApvJLJMW9vb9E5s/z8clxLugZcs7QzdOhQjJ4xWtLPsTfGYnK7ySiTVwa4Iy4TXj4cSJM0UWxMvD8R3coDa4MOYf094OcygL95YqlsByB+n6j+z0bP4Vwe8KT4Cl6CIAiCcFlc7veU119/HZcvX7b67/HHH8eePXvw999/46+//kKbNm3QtGlT/PzzzwgMDMSiRYsAAOXKlbOoiEpJSUFBQYFFBZUx/v7+CAsLM/kHAMnJ0vvveko/naSkJCxYsABJSc7d9sXRfihp3x5bcnR5dFhlWeRoDriPDxT//HJcPaXMeu7wLN/TMbzhcCwZsMTk2GcdP8PAugNF5X28TH+DMl/OZ2v5HuvOb4TjMO/v1PnPzjh496D+8c6bOwEAi/9dLGlj5cWVaL+wvdWG6tZgmVfWGp7nFOYIiSZjeZEeVOfjzmPY2mH4dP+nonZs9ZTSaDX4dP+nVn1Zf2W9VRvFRWpuKireAhZeXIv56cCsVBGhwPLF7VaJ4no+sCoDyHPvrx8EQRBui8tVSpUuXZppK+/sbOFnZvPtt728vPQ3Ba1bt8aMGTPw6NEjfeXUjh074O/vr+87xeubFDzbgZdkypQpg9dee02/RNJd/VDSvj225Ojy6LDKssjRHHAfHyj++eV44t/8RjnMP8ymjhjmvXnGNh0rWQU8pP4QvLDxBf1jX29fk/O2kk5VI6rierK8JV+E8lyMF1/u+da2t5CcL/0Dmg7zXlGslClTxqYMa+8ra+y4scPq+V9O/sJk58CdA3b7Utx8kgR8HFX0oMcZYGsTQIExdVdyNMBjdwA1gI8igRm2byEIgiAIF6PE3j22bt0akZGRGDVqFM6ePYtr167hvffew61bt9CrVy8AQLdu3VCvXj2MGDECZ86cwe7du/Huu+9i3Lhx+uonHnx8XC6HV+z4+PigdOnSTh8LR/uhpH17bMnR5dFhlXWV190VcIWxoPhXRsdZ8V+oKTR5XDOqpiw7KTkpJo+tVTsF+5k2qDavlBJLZjUt31T/94K+C+S4SDiIZ5Y/I3r8+2Pf4/hD203pz8TK21GQaQ5w5k+sVTNJMWnXJG6dksTRHGBPNqD2iRAOMDZB98TU1fFcISEFAJ+nWBUlCIIgXJQSm5QqXbo0tm3bhszMTHTq1AlPPPEEDh06hA0bNqBRo0YAhD4FmzdvRkBAANq0aYMhQ4agX79+mDVrlqxr6nbhE0NXfm5rK+SSTnp6OrZv3251LNzBDyXt22NLji6PDqssixzNAffxgeKfX44n/o2TUuOajrMpP6yBYae8/7X7n/5vby/TJBTPEjtfL1+bMrtH7sZnHT/DzhE7UTGsIrNtwjFsurYJZx4JyaTbqbed4gPLvOL9DHD3zww5tL4PdH4ATPnnG+FA/U+A8Mdt6nliUoogCIIo+ZTYpBQAPPHEE9i+fTuSkpKQnp6OI0eOoEePHiYylStXxt9//43s7GwkJSVhzpw58Pf3l3W9/HzpHgaeckOel5eHGzduIC/PuXsPO9oPJe3bY0uOLo8OqyyLHM0B9/GB4p9fjif+jfvhsCSH2ldtj0X9FmFW11l4u9Xb+uPmfaK4klLetq8bERCBT9p9gi7VuwAA+j3Wj9k+oTzbrm9D09+a4lbKLaf5cC1BpOu4nYhVSsmpnnJHZhydI/wR/hhQsY9NecaCKoIgCMKFuVkAfJcCPCy0LesuqLTufgepAOnp6QgPD0daWprksr+KFSviwYMHiImJcYmt4gmiuKE5QHgyPPHffmF7fa+bn3r+hFebvyrrmt8c+Qbv7HhH/zjtgzSr/alUUw13rNffuI4aUTUkzwOAdorp14P0vHR8vPtj/HjiR1n+Em7ObAAZQFCpIGS/kW1TXIePlw8K/ldgcmzWP7Pw3s73FHawZKKtBWCYFshNBNaWgeo/03PGj49WAloGFLuLTmV/NtDhgeGxtpa4XI4GCLphW04uFV8HHqQAMZHAfRd8i9RqKWnpThjP+5TqQIT1vUocDm/8a7XAkVygnA9Q3fZvZB5HqRtAsgZo4Aecq+I8P3ZnA3NSgdfCga7BNsVFSc8GwsfBah4FKOGVUgRBEARR0vij9x+oXao2ulbvivHNxsu2Y0+lVIhfCPf1wvzDMLCe+O5+BKGD97fOQk0hui3uhnNx5xzkkedAOQdpPPUXeI0W6PEAqHgLOJ0rLqPVAoUuNEB7soG3E4BbBbZl3ZmTucB/1jcaLbGszwLa3Afq3QES1bblSwonc4UKpxQ7n1Ny0U6i5538+nd5AGzIAro9lJY5mAN0uQ8strPjByWlOEhISJA8x7MdeEkmPj4e3333HeLj5W0nXVL8UNK+Pbbk6PLosMqyyNEccB8fKP755Xjiv1apWrjy2hXsGLHDIrHEg3ljc56kFI+sMckptnd2M+fWm7fwZss3ZV2PKHnkFORw6+y8uRPtFrTDpqub4D3NG0vPL3WAZyWThEJg7eW1yC7IxmwbjbzPGa0wvlMAfJ0C3DC6qZmVAgyPBR540JIQR1BgI4Gj1QL/5ACxLjDOG7OAbdnAQ7Vwg2lOgRZoeQ+IuQWcdW5nDr0/nR8A36UCT4v46ynszgaa3wPq3gHuKZSc02iF2CxujucCL8cJCRsdAx4J/+dpgR9Si98nc5ZnAB8kAsmcyaS5qcD/koAsDZCtEV6ztxOBl4rhFiFHA/ydCaQqkNRLUQN5Mm/f2t0HducAI+Ps84G20uIgIEC6Jlq3c5HUdtzuQmBgIBo2bIjAwEC39kNJ+/bYkqPLo8MqyyJHc8B9fKD455fjjX8l5ol5Ysna7nu8128R00L0uL8ff0/GqhFV7Uq+EZ5BWl4a+vwl9E36N/Zf5zrjQnR4AFy6NRBPxjTHP4nWZdOLbirUWqDjfeBWITAzGUiqAZzKBd4r0n9UCOymvQtkcSAH6PsQeMIf2BEjviRuYTrwQjwQ6QXcrwYEObEE4JFRYixF5KZzYTpwoigZ1fshcLda8fglRZaRj9c8uFJKl7RRA5iaDPwRbZ+9B4XAU/eAAJWwzDe8GJf7tbwn/P9ruu1lszkawF8FeBXjrcSVfGBYrPD33QJgWXk2vb3ZwKtF9Sp5WmBEqOHcqkw2G/GFQBlveUtrX0sAFqQDTwYAhyvx6+s4ngu0vw+U8gauVgGCJd6vBjwEAr2ABdGAnwNeH6qU4iA0NFTynKfckIeGhqJTp05Wx8Id/FDSvj225Ojy6LDKssjRHHAfHyj++eWcEf/m11KyUmrZgGWix4OCgpjsf9z2Y/h4+eDzTp8DAFS0sIggZHGpqNLpnwcnmOQP5ADRN4WEFGBYBnLGqApmD38xm1XuFQAjY4WqARaUXCpW3F852t8HUjXArhyhOkCMF4qqJFI0wFrGm1NnoNGaJq3uuUBlFyGglfhbLq/EA7cLgSsFQmWPNX5PA95NsH8JGisJauC1eGB8HFD+FtDgLpCvwJNmrQrbZ9QCcTnDfM0pek/dmGU49rWNKlYxpicD0beAMTIrjBYULZf7Jxe4mg889wh4JwFodU9ItLHS6yGQqxUSl3NSpeXWZQHLMoTliVIczQHeiAcuyKi6pKQUBwUFHpyyL6KgoACPHj1y+lg42g8l7dtjS44ujw6rrKu87q6AK4wFxb8yOiU9/s0TPbYSTbO7zQYAdKjaAVGBUVZlzZug6ygoZBuD6Z2mI+PDDHzY9kPBV847xyBftuQXQRAGVBCSJkkiFTHm92cbMoHX44VlfvYyNBZYnCFUDVwzuhm6WQA8Hwv8kWY49mMqEHYD+DhR6JdzIlf5JUXn8oDVGbaX2dlLcd20O4Jhj4Byt5RPUBLKYPyJaSuMWVZdGScpzuULSaevUyzn3qlcYHw8MDtV6OtlC60WeOaBsDxULr+kAT+nAb+nA2kaIRHvfx24yJnYyNMA6zKB2wXCe0uN20J1mK0E168MvZBuFwC7soWEXfgN4MU4+5OFuuTgogx+XfPXresD4K9M4JtU4FiusOxTLeLg+TzLHf2Me3olqYX3NY1WeinjIaNlmObvsa3vAz+mAU3vMj8VPZSU4iApSTq17Cn9dBITE/Hbb78hMdFGDXkJ90NJ+/bYkqPLo8MqyyJHc8B9fKD455dzRvz3rtPb5LGtpNTE1hNxc8JN7BqxS/Y1U9NSmWUDfAxL3nkrpRqXa8wlTxCeSA+znjuLOBrN9nsE/JQGVLst3KjYwxGjm5TLRje/vR8Kv6yPixd+hddogTcSgBwt8HmKcOPU4p50xZEc3k4AGt0FBse6Rq8aJcjTAPPShD5DSnAuT6gISVAD+83GXqsVzjur8bkjC9/uFgA7s8Rv1nVkaAQ5e3hYKCxDnJ4M9HnI1rD9rwxgdgqwOQv4MtmwFJeFWrctEw3W2J8jJJ3eTwS2FMVUrgb4ORX40OhWlyVZcjgX2JxtSJLkKhg3T3Ju5D0tWVj2WO02UPuOUC16OFdIelnjX7P3P/NEfaYGePyOkPgZHw8UAJifzt9/yhoX84TEV7cHwEQbycBtWUJC2RixKsdeZs3Jd2QBDe8KyTqp5vKzUoGom4D3daHi1hrrMgG/6+LnCiC832/OEl4DFigpxUGpUqUkz3l5eZn8766ULl0a48ePR+nSpd3aDyXt22NLji6PDqssixzNAffxgeKfX84Z8V8htILJY5ZqpGqR1eDtJb+ZRHhYuCw93kopuY3YCcKT2GaWpDgrsWRDU9R4WwwthBuV83nCkovX44FVGcB1O3d90mgNSw8BYE2m0EzbGN19ka5/jhJ8l2r4+12j3xGctbmcEkmW71KBsfFCo/JrDK+LRiv0vap72zRJqMPazfQ7iUJSb6DRa3IlH+j/EPgl1VL+XgHQ5K5wM+3oyjQdtwrEn5cUqWphw4DH7wq7iM2VSFJkaoBqt4Cqt4UkkRz2ZwOVbwEhN4RKmE1ZpmP5VwZQ9RbwrdESqGO5wHOxQrw+8xD4wKwGwrjPVobGsvInWSPMrdsykmlbipagzUwRehTtFEl8nssTkhgpasuE3gtmS8+SFEzU8CTmACHRLcYus+eUrAbWZwqNycWodRsYFyfE9dEcYZlclkhsLzaLEbHw12rZGog3uCsk03ZmA9+mmp6bkyq87jp6PATiGcZ5u9nz7l6UpMrVCpte2EIqz6mF8LxsvW9vyBLiuSfjhgX0rY8DX19fZ7vgdHx9fVG+fHmnj4Wj/VDSvj225Ojy6LDKusrr7gq4wlhQ/CujQ/HPT9OYprL0bqXesi1kBPWgIgjl6PYAWGjjJvuVeGHJxU9pwJBYoNYd092yePnS7KbnzQQglvOGdWWGsDToqAKVVKNt9G15WFTJxQOLuBLvZMZJihUMyZKVmUK/mysFwByRBIw1v3U3xMb9cjrfB9ZnAa8kmO4ouCsbqHxbqDTZmS0szTQnvlA8kbY1S6gkMt85zNZ43SoAat4G6t2RTrQaczUfiLwJlL1luLF/Q6IS5Zc0YemrFkKS6BMZxeJPPzQkW3Xo+rndyBfs3ikEJhrZtvWarswUEhNn84DyN4WlbWL0eSh+PKHQtHeYGFMlNtZdkyEkKcvcFCpomt01JKZ2ZwP/ObirwaJ0Q7JTqxWuna0BlqQLcbUuE2h3z3p10aYs08ddHwD9HwEvS+yQVwDgj3QhrlvfByYwLGMU47lHgNd1IPiG0OvP2vuLtTk5IUFY8rxHRqXk6gxhSWauWWLsS5Glm6z8nSW8H9iC98cGSkpxkJEh/a6hLXpltc7Ya7MYycjIwJ49e6yOhTv4oaR9e2zJ0eXRYZVlkaM54D4+UPzzy7lD/I9pPAYAMLDuQEmZAE0Avnz8S27bKy+u5JJ39w0TCKI4YVkep4JwM2bMiFj51/zIRjNlFobGCkuDWltZxsPaEHm1lQbGc1OFSpMujL/o6xgaKyy1sobYW9nnycLSxhv5QhXShkxlq4zkVMxYw7hfUPlbhuVOXc3Gy7y5cpJaqP6oc0fYqUzHg0Kg50Ohksj4hn91BjDFxngOemToodTmPvCylWTjrBTgsTvW7RmTY3bjPkNG82pry9fGmSVBDuQAkxLZ+rpNSAAa3xWv2NFxPl+ILR2Hc4REYcwtIFNmfA0yew84m2+oIpNqZr0xU0hC35N4XlkcFVCj4wRbTe4KCR6foiTPiDhh+e+AR8DBXMvqInN+TBVi8JsU4HSR34szgPsOTKr9VfSeo4bQ6y/6FvCsHVWhnR/w97EbHAs8cQ8IvGF5zus6oPpPni/jZDZntwYlpTjIzZX+ycgdbkhYyMnJwblz55CT49zOiI72Q0n79tiSo8ujwyrLIkdzwH18oPjnl3NW/H//9PcI8AnAh099aLet33v/juNjj2P5wOWSMjk5OfC752f3tYJ9g+22QRCEY8mT8XbmqF5Eo2Itqz2O5VomRuSg29Z9b450bx51UUNncz5IEvywRr5W6G+1PANYmg58nCRUG7R/INxY93vE3v+KZXhtydj7ErGO+VcpQHbRxZ4xquIxrnzTLYH6L1+4gTZefmnOPzmGhIKOX9NNlzbp2JUNvMdZ6WRtXE7lCsmWb1OE/kKbiypFtFrgz3QhsTnFRiI2wSyh0P6+MEZrGapOWPk4SYjhoY+Ap+4LVWFK512G20hI9C2K58q3LXdzK31DWNrIw9w0y75PAFuDdx1vJACdHgjLU42pdJvPF3tIVAMrMu2r/Iyy0eepuBDbTMNeVFp3v4NUgPT0dISHhyMtLQ1hYWGiMhUrVsSDBw8QExOD+/c5O7MRhBtAc4DwZJwZ/wXqAvh6F+/SwrEbx2LemXmS57VTTL9aqKaalgv81PMnvLblNUn9dlXa4cCdA/Y5SRQvswFkAAgF8I6TfSG4ifYG4kR+hf+yFPC+9c06LX5tbxPA3twWAEK9gHSRDT/N7UZ6AfeqAcFFP6mHXrddAaKtJW5Ld9z83N2qQCWRt9N5aUJfJzHmlgGmfALEpwC+YUDBRMO55eWEJsTvMyRIjH0yxti/qVHAZOkWtwCAL5KlK9W0tYRlVyxVYVJjpzsndnx4KDAvGvBTCU3njZNMOntrMkwrcLS1pMfXeEzK3RSP0eTqQGRRq8Q8jdAD6Jc06R5r5nZ1TEuyrNTS1hIqmareFrexJcuyobTU9RrcAS7Y2auNhUgvIIUxafBqOPBTWf6KmaTqQnXSdN140fs/vihl2ijeGhvKC8k7jyAXwExYzaMAVClFEARBECWa4k5IAcDsbrMxveN0jG86Hn7e/JVTkQGRVs9TTymCKF7EbvYBYFIScMIowXQyF/g4UVh6dr9AvC8JT0KKhxQN0Pa+4ZosS5LuFAgNrHm5ni8szbtdICxDs9UYWLeblfkyPBUMW7/bYiHH7olyucqRFOl0nz9ZsSQD+D5V+rzY0q1PEtmSdizLvr5OFXpfWUtI8aDVAjOsLCn81cbObjo+SCyehBTAnpACgJ/TTJdWslLqplFCigDAnpACPCghxQElpThwte3AnUFCQgJ+/vlnJCTI7PpWQvxQ0r49tuTo8uiwyrLI0RxwHx8o/vnlPC3+8zPy8XG7j/Fr718R/2482lVpx2XH1g6AR+8flTz33OPP4Zeuv3BdjyAI+ZwxWjrT/J6wy1XNO8LSFy+Jpss86FLQhUVbiP9n5eb9TB7bzlM6qt0WtkAX42aBZbNs3eq9J+4JS/M63BcafV+xsgZqQoJ0E2MV2JfLjYkDDuUIvXgSCoXqIfPlhFNEmoObY+16ze9ZLiOTYq/MZUYHJfRU/wlLt75ONT0+I0XYQU5Kp31RItLa84orBH5PY08AiiG2DNDrOvC7RLKQZyMA88b/rkQnBZbAEoS9+DjbgZKEn5/0r8G6pqzu3pzV398fNWrUgL+/v1v7oaR9e2zJ0eXRYZVlkaM54D4+UPzzy3ly/IcHhMNLxfcbl7l8REAEUnNT9Y/z1BIdVAEsG7gM6enpeHnny1zXJAhCHo5+V9PZ/ykVeCsR8IawJEsJtBBPYiWqhR3czPtm/ZcPVPMF0ooSFHcKAVu9sq317FGBb5ertmarv2uLFMJG3gRyagABMkoLMjTCDnDOxFYPLnMO5Ag9oqw1+X7mIXBS+mPDAl0CVAtgWjJQzYe/t9OiYqhsIwhPgZJSHFhbB+kpNyRhYWHo3r27s91wuB9K2rfHlhxdHh1WWRY5mgPu4wPFP7+cp8e/RstXIWaelJrTYw5GrBvB5QdBEO7FW0ULEtSw3MZdad5MEG/k/nwcMN1GzyYeeCqlxLgmkfEaHgesLi9+rjiaBVurZtuUJVQ4KflpaCuRxpOQAgC/66bjdIZTH5Cu7iIIgh9avsdBYaHElhweRGFhIRITE50+Fo72Q0n79tiSo8ujwyrrKq+7K+AKY0Hxr4wOxT8/UmNRI1KkS7EVzHtG8VZa0WtBEMWHVL8ppcjUGLaZZyFHC/jbuWxwmcT1EtXAyxINzeXiiCTRmkzTx7GFQkVRtgb4xI4lbKzUtlU+BmWft7XdvuRcRwnflmUA6ZSYIghFoKQUB9RTSugn8tNPP7lETylH+qGkfXtsydHl0WGVZZGjOeA+PlD888t5evxvu77NLrusSam5vebq/SAIonj4XxIQXwgkOyg5pYZlJYy1tPNbCUB+Cdo73FGu5hV93ORqgAZ3hd5LwTccdDEXpvwt5117n8y+WwRBmKLSanlWOnsm6enpCA8PR0JCAkqXLi0q48ztwIuT/Px8xMbGoly5clZ7bJV0P5S0b48tObo8OqyyLHI0B9zHB4p/fjlPj3/VVNPKJ+0U068W5uffbf0uZh2ZpX+8YtAKDF091Ob1NZM1UKlUyM/Ph/8Xzu1tSJhBW4K7PQEqIJfuGsRxQvw/GQAcrgSszwT6025ehDOh939CilwAM4G0tDSrrReoUooDZyZhXAU/Pz9UrlzZ6WPhaD+UtG+PLTm6PDqssq7yursCrjAWFP/K6FD88yM1Fn3r9LWqN6rRKJPHt9NumzxmrZTS9eyi14Igih9KSLkW/+QCWRrgXxn9kAiCIFwJSkpxkJmZKXlOV3Dm7oVnmZmZOHjwoNWxcAc/lLRvjy05ujw6rLIscjQH3McHin9+OU+Pf19vwxZRFcMqWuj1e6yfyWPzJJS3ytvkccPohjb98FWJbEtFEAThQYTcAKYmO9sLgiAI+6CkFAfZ2dmS5zzlhiQrKwtHjx5FVpaDt0Vxsh9K2rfHlhxdHh1WWRY5mgPu4wPFP7+cp8e/8e57YlVPtpJQ5ue7VOti0w/eHf8IgiAIgiAI14N6SjGg6yllbS2kp/QTIQgpaA4Qnoynx/+MAzPwyd5PAADDGw7H4v6LTc5vvLoRff8yLPF7vsHzWHp+qeH8sxvR568++sfvtH4Hs4/MtriOca8q/+n+yFdb2ZecKF6opwjhyVD8E54MxT8hBWNPKZ/i84ggCIIgCHfknSffweF7h5GZn4lvu39rU968Msr8sQqmjdHFqF2qNi7EX+BzlCAIgiAIgnApaPkeB0lJSZLnPGU78MTERPz+++9ITEx0az+UtG+PLTm6PDqssixyNAfcxweKf345T4//AJ8AbHl+Cw6MOYDSQZa71Ab5Bpk8tpmUUllPSiUmJmKQdhCP6wRBEARBEIQLQkkpDnx8pAvLdF+gbX2RLun4+vqiXLly8PV1boNZR/uhpH17bMnR5dFhlWWRozngPj5Q/PPLUfxbp1O1TmhQtgG8VF5YPXi1ZY8pL9MeU7YqpXx9fdG0UlMuHwiCIAiCIAjXg3pKMUA9pQjCNjQHCE+G4t82hZpCJGUnITokGmM2jMHCfxfqz+0csRNdF3fVP/6gzQeYeXimhQ3jnlIAoJrq3knAEgX1FCE8GYp/wpOh+CekYOwpRZVSHKjVame74HTUajXS09OdPhaO9kNJ+/bYkqPLo8Mq6yqvuyvgCmNB8a+MDsU/P/aMhY+XD6JDogEAoX6hJud4l+/p/CAIgiAIgiBKNpSU4iAhIUHynKf0E4mPj8e3336L+Ph4t/ZDSfv22JKjy6PDKssiR3PAfXyg+OeXo/jn4+O2H+v/nt9nPnejc50fBEEQBEEQRMmGklIcREZGSp7z8vIy+d9diYqKwvPPP4+oqCi39kNJ+/bYkqPLo8MqyyJHc8B9fKD455ej+OcjOiQa99++jwuvXMCYJmMsklDmSSoACPQJtPCjcXRju/wgCIIgCIIgnIt7f3tWGH9/f2e74HT8/f1Rs2ZNp4+Fo/1Q0r49tuTo8uiwyrrK6+4KuMJYUPwro0Pxz4+SYxETFoP6ZesDsExC5avzTR63rdwWh144ZOHH+mfX4+VmL9vtixgvNXvJIXYJgiAIgiAIA5SU4iArK0vynK5fvLv3jc/KysKxY8esjoU7+KGkfXtsydHl0WGVZZGjOeA+PlD888tR/NuHeVIqq8DU/oExB9C0vGG3PZ0fpX1LY+4zcxX1RceYMmNMHu8asQvqydRXjCAIgiAIQkkoKcVBZmam5DlPuSHJyMjA7t27kZGR4dZ+KGnfHltydHl0WGVZ5GgOuI8PFP/8chT/9mHe2DzYN1gxP77o/IUsn3bv3m3yuHP1zqLLCgmCIAiCIAj5qLTu/g1aAdLT0xEeHm51K0PaDpzwdGgOEJ4Mxb99HL1/FK3ntdY/fv/J9/HVP1/pH2unWP+qopoq3RhdM1mDyXsnY/rB6Vw+aadoTezqfIj5JgYPMx5y2fIIaEtwwpOh+Cc8GYp/QopcADNhNY8CUKUUQRAEQRBOxrwCSQvlfi9TqVT63lVK0KBsA8VsEQRBEARBeDqUlOIgOTlZ8pynbAeelJSEhQsXIikpya39UNK+Pbbk6PLosMqyyNEccB8fKP755Sj+7aNAXeBQP+QUhS9cuFD0uLeXN7ctgiAIgiAIQhxKSnFg3vPCE/Hy8kJYWJjTtz13tB9K2rfHlhxdHh1WWVd53V0BVxgLin9ldCj++XHUWOy9vdfksQrWP295/dBo+ZOFUmXmnat1ZtL/qedPNpcdEgRBEARBeDrUU4oB6ilFELahOUB4MhT/9jH9wHT8b+//9I8ntZmELw9/qX9sT08p7RQtlpxbghHrRuiPdaneBbtu7rJqU6qnVIG6AH7T/azqAsCyAcvwXIPnrPrmVlBPEcKTofgnPBmKf0IK6imlPO6+LIMFjUaDnJwcp4+Fo/1Q0r49tuTo8uiwyrrK6+4KuMJYUPwro0Pxz4+jxsK8p5StXe54/TCvlFo7ZC22Pr8Vk9pMktTJyckRPe7r7YsFfRfYvKauL1bj6MZMPhIEQRAEQXgilJTiID4+XvKcp/QTiYuLw1dffYW4uDi39kNJ+/bYkqPLo8MqyyJHc8B9fKD455ej+LePiIAIk8feKut9m8z9GNN4DNf1Qv1D8XTNp+HnLV3x9NVXX0meKx9SnvlaXSt15fKNIAiCIAjCk6CkFAfh4eGS53T9pty971RERASGDBmCiIgIt/ZDSfv22JKjy6PDKssiR3PAfXyg+OeXo/i3j961e5s8tjWO5n40jG4oKlclvIpVO9Z6TQ0ZMkTyXLca3dCnTh+UCSojKaPrjhAcGGzVB4IgCIIgCE/Gx9kOlCQCAwMlz3nKDUlgYCDq1q3rbDcc7oeS9u2xJUeXR4dVlkWO5oD7+EDxzy9H8W8fvt6+Jo9ttbs096NVxVaicl2rW69SsnYda89TpVJhw7MbLPpLPd/geSw9vxQA0LpSawCAv5+/VR8IgiAIgiA8GaqU4iA7O1vynO6Lrbv3jc/Ozsbp06etjoU7+KGkfXtsydHl0WGVZZGjOeA+PlD888tR/NuHreV6tvxoVbEVZnebjRebvCgqL/W6qLVqyWucPn3aph8+Xqa/7f3Q4wd83PZjrB68GtUjqwMASvuXtmnHUawYtAJ96vRx2vUJgiAIgiBsQUkpDtLT0yXPecoNSVpaGjZt2oS0tDS39kNJ+/bYkqPLo8MqyyJHc8B9fKD455ej+LcP88bmA+sN1P89ud1kJj8mtp6IP/r8gRC/EObrjmo0SvLcpk2bbOqbV8ZFBUZheqfpJv4/XeFpVEZllA0si5mdZzL7pgRD6g/Bwr4Li/WaBEEQBEEQPKi07v4NWgHS09MRHh5udStD2g6c8HRoDhCeDMW/fSTnJKPUV6X0j7VTtFhzaQ1up97Gq81fRaCv9PJ5c0K/CEVmfiYA4MUmL+KPPn9g0b+LMHrDaBP7Onbd3IUH6Q+w/up6rL+y3kRGNVUlqmMMiwwAqDVqeHt5m8g7Gp0/jrymt8pbqDijLcEJT4bin/BkKP4JKXIBzITVPApAlVIEQRAEQTgZFSyTJgPrDcQ7T77DlZCStG+l11eX6l0wqvEoi6V4SuPtxb5E8eS4kw70xJSJrSbapf9Tz58U8oQgCIIgCE+EklIcJCcnS57zlO3Ak5OTsWzZMqtj4Q5+KGnfHltydHl0WGVZ5GgOuI8PFP/8chT/rumHLtnFUhRuLrNs2TL5DhohZ8yaVWhWbMmem9duFst1CIIgCIIgxKCkFAfuvqsSCyqVCt7e3k4fC0f7oaR9e2zJ0eXRYZV1ldfdFXCFsaD4V0aH4p8fR42Fvw/fDnWsfmghv0OBtzdf83Up5I7Z+GbjFbm+Lcz7eREEQRAEQRQn1FOKAeopRRC2oTlAeDIU//bz5aEvsezCMnzb/Vt0qtZJtp2Qz0OQVZAFwNBTaum5pRi+brheRqz30+pLqzF41WATGSV7SonJf9r+U1xIuIAwvzDM/3e+hR17ekFN7zgdH7f72Kadye0mY9qBabKv80uvX/Dy5peppwjh2VD8E54MxT8hBfWUUh7K3wljUFhY6PSxcLQfStq3x5YcXR4dVllXed1dAVcYC4p/ZXQo/vlx5FhMemoSzr58likhZc2Pr7p+pf/7hSYvAABaVWylP9arVi9RmxVCK5g8LiwsZPLbFtZ8DfELwarBqzCv7zxFrmXMR20/YhOksCYIgiAIwolQUoqDuLg4yXOe0k8kNjYWM2bMQGxsrFv7oaR9e2zJ0eXRYZVlkaM54D4+UPzzy1H8u44fY5uOxU89f8KqwavwZKUnAQA1omrg2+7fYlzTcfiz/59M15gxY4ZDfG1QtoH+XPXI6opcw5waqMH8Gh04eMAhPhAEQRAEQbBASSkOwsPDJc/pekW4e8+RiIgI9O/fHxEREW7th5L27bElR5dHh1WWRY7mgPv4QPHPL0fx7zp++Hn74dXmr2JQvUEmx99q9RZ+6/0bogKjmK7Rv39/JVy18HXNkDVoUq4JhtYfin6P9VPkGubUqliL+TWqW7euQ3xwJ3aP3O1sFwiCIAjCbXHs/sduRmCg9LbUnnJDEhgYiIYNGzrbDYf7oaR9e2zJ0eXRYZVlkaM54D4+UPzzy1H8u58fDRs2xI+5P+LjPR9jUptJknLNyjfDqUen0LZyW9Hz5r7WKlULp186rbi/xkRERFj9zmJMuehywGWHulPisafHGUEQBEEQ1qFKKQ5ycnIkz+l6Rbh7z5GcnBycP3/e6li4gx9K2rfHlhxdHh1WWRY5mgPu4wPFP78cxb/7+XH+/Hm80OAFJE9KxodtP5SU2zxsMxb2XYi1Q9eKnnfGmKWmpjJfLz4u3q5rRYdE26VPEARBEIRnQ0kpDtLS0iTPecoNSWpqKtauXYvU1FS39kNJ+/bYkqPLo8MqyyJHc8B9fKD455ej+C/5fqhgWuWms++lsv5VKTokGqMaj0LpoNKi550xZvfu32O+3sXLF+26Vp86fezSJwiCIAjCs1Fp3f0btAKkp6cjPDwcKSkpkj0aPGU7cI1Gg8LCQvj4+MDLy3k5TUf7oaR9e2zJ0eXRYZVlkaM54D4+UPzzy1H8l3w/jtw7gifnP6l/nPdhXrHOAdVUQ1JMO0VrcUyKPnX6YOPVjSbHBtUdhBWDVuivV+brMkjMThTVn9x2MqYdnGbzOlJop2ix4coG9GvRj2tL8LdavoXvjn0n+7rFiXaKlum1YGHV4FUYvGqwIrYIF2I2uOKfINwKin9CilwAM4XinrCwMEkxqpTiwJlfwF0FLy8v+Pn5OX0sHO2HkvbtsSVHl0eHVdZVXndXwBXGguJfGR2Kf35cZSyKww9XmAMsjG0y1uKYSqUyud7W57dK6vt4299eVE4vtS+6fGH3dY2xVdGmJBVCK8jWNW/ATxAEQRCeDn3D5iAlJUXynKdsB56SkoJVq1ZZHQt38ENJ+/bYkqPLo8MqyyJHc8B9fKD455ej+Hc/P1xhDrDg42WZVLp3757J9Z6o8AS+6vKVqP6Fixckbb/R4g37HZTAfLmkvcS9G6eoPWtoNfyLDKpFVMOekXsc4A1BEARBlGwoKcUBrXQUbrjy8vKcfuPlaD+UtG+PLTm6PDqssq7yursCrjAWFP/K6FD88+MqY+EIP8yrfVxhDrAgViGk0Wgsrvdem/fQrHwzC9nCwkJRu1PaT8EPPX5g8qFAXcAk50ikenq5CkfHHkXHah2d7QZBEARBuBzUU4oBXU8pa2shPaWfCEFIQXOA8GQo/ks+R+8fRet5rfWPdX2diguxnlJ+n/mhQCMkfEY1GoVFZxdZ6O0csRNdF3c1OTak/hCsGLTCQvbpJU9j+43tJsemdZiGyfsmmxw7MPoA2lZpa+EXAKROSsWMgzMw/8x8vNHiDUzpMAWfH/wcH/f6mKunSN4nefCf7m9bkIE5Pebg9RavK9b3yRzznlIxoTF4kPGAy0bcu3EoG1wWAFuvMKKEQT11CE+G4p+QgnpKEQRBEARBlFzOvHQGb7V8CyfGncDCfgtFZcSW70n93ji68Wi7fQoPCMdXXb9CwnsJmNJhCgCgUXQjbjtKLd9rFN0Ir7d4XRFbjkTp5YoEQRAE4S5QUoqD2NhYyXOe0k/k0aNHmDZtGh49euTWfihp3x5bcnR5dFhlWeRoDriPDxT//HIU/+7nhyvMgSh1FCKPRyJGFQMAmN9nvoWMt8rb4tilS5dErzeg7gCUDylvcuzuvrsWciyNy+U0N3cE3l6Wz9/RuPs8JwiCIIjihJJSHISGhkqe0305c5UvaY4iLCwMPXv2tFp+5w5+KGnfHltydHl0WGVZ5GgOuI8PFP/8chT/Jd+PimEV9X+XDSpb7HPgk7afwM/bD193/VpSt16ZehZ6j5d93OJY+fLlRa/n5+2HK69fwdEXj+KDNh9gTrc5eKnXSxZyxVHVo9RckePr1A5TTR5/9NRHXPojG4zkviZBEARBEOLYvw+wBxEcHCx5zlNuSIKDg/HEE0842w2H+6GkfXtsydHl0WGVZZGjOeA+PlD888tR/Jd8PyqGVcQ33b7Bjps7MKvrLNQvW18Ru6y+ftbpM/yv/f/g5+0nqStWFRQZGInPOn6G/+39n/5YVFSU5HeWMP8wtKzYEi0rtjQc3CztV7sq7XDgzgEAQNWIqqIyMWExFscqh1fG3TTLKiwdSiW+5My5PnX6YMq+KfrHUs9LiimdpqBQVYgQvxA0Ld8Uff/qy+0DQRAEQRACVCnFQW5uruQ5Xf8Gd+8bn5ubi6tXr1odC3fwQ0n79tiSo8ujwyrLIkdzwH18oPjnl6P4dw8/3m79NrY+vxU1wmo4ZQ4YJ6TEdMWW6gHAJ+0+QXRwtP5xZkYm1xxY2HuhpIxx8ijCP0JUpnG5xiaPO1btiJpRNa1emyWZ9F3375A6KdWmHC/mSxh5UalVmNVtFj7t8Cn61OljUt1GEARBEAQflJTiIDU1VfKcp9yQpKSk4K+//kJKSopb+6GkfXtsydHl0WGVZZGjOeA+PlD888tR/LuXH646B6z1T9LCEHt3797lmgPdynczOR7oGygqX1hYKGnLy8vwlbJUUCmb17ZGgE8A7rx1B2+2ehPhAeF22QJMlz3++syviA6JtiJtG/Oxdfd5TxAEQRCORKWlT1KbpKenIzw8HMnJyYiMjBSV8ZTtwNVqNXJzcxEQEABv7+JvLlpcfihp3x5bcnR5dFhlWeRoDriPDxT//HIU/+7lh6vOgQvxF9BgbgMTGe0U4Wtc9KxoxGfFAwAGPzYYywct55oDG69txLNrnkWbSm2we+RufSVTh4UdsP/OfgBAk3JNcPql06K2fCJ8oE5TA6HAwD8GIiU3BXtu7ZG8tmayBntu7cHoDaPRp3Yf/HzyZ/259UPXo+9jhiVxqqnSVVXNKzTH8XHHAQAN5zbE+fjzFjLpH6TjUsIltIhpYVhqa2Tzt2d+Q4BPAEZvGA2N1rKJuXaKFu/ueBezj8xGt2rdsOX5LSZj23VxV+y6uUvSRwCIfzceZYLL2Hw+RAllNoAMAKEA3nGyLwRR3FD8E1LkApgJpKWlWe2tSZVSHDjzC7ir4O3tjeDgYKePhaP9UNK+Pbbk6PLosMq6yuvuCrjCWFD8K6ND8c+Pq4yFp84Ba72PjH9j9PHx4Z4D/ev2R8J7CSYJKbkYV20Zs3LQSkQHR+Ojpz6CSqVC5+qdcfetu/ip108mcmKJIRak/A71D0XLii2tPq8RjUYg7t04yabnX3f9Gv++9C/+fv5vi7HtUKUDl59fd/26WJrJEwRBEERJgJJSHNDyPWEM1q9fb3Us3MEPJe3bY0uOLo8OqyyLHM0B9/GB4p9fjuLfvfxw1TkQ4heCJf2XiMoaJ4Ie3H8gaw6E+YdZJG6M7arVar4nYMbg+oPx6J1HmNF5hv6Y7nqvPPGK/tiTlZ5ktmnsr9xEj85G6aDSmNF5BrYP364/N7zhcL1MlYAq2Lxps8XYBvkG2byG8Ti+++S7SP0gVVqYIAiCIDwI2n2PA2tfxjzlhqSwsBDJyclW+0q4gx9K2rfHlhxdHh1WWRY5mgPu4wPFP78cxb97+eHKc6B91faissaxl5+fr+gcUBKpaqWvun6Fx0o/hsblGsvu+aTU7pfdanTDsgHLcD7+PN578j39cSXHK8xfehkDQRAEQXgS1FOKAV1PKWtrIT2lnwhBSEFzgPBkKP6J4uJ++n1U+raS/rGup1Tpr0ojKScJAPB8g+exZIB4RRUv7Re2x4E7BwAATcs3xanxp0TljHtK9f+9P9Ly0ix6Sul85cVaD6YWMS1wbOwxwb9fm+JM7BkLGbHrGtv8vffvGNt0rCzfAODbI99i4o6JVmWMe0qJ+UCUcKinDuHJUPwTUlBPKYIgCIIgCPdCaoma8fIwpSqGeDC+fqHGspLok7afyLY9ruk4yXPG4yH2vMuFlJN9XUfDsuyPIAiCINwdSkpxEBcXJ3lOo9GY/O+uxMbG4osvvkBsbKxb+6GkfXtsydHl0WGVZZGjOeA+PlD888tR/LuXHyVxDhgXvl+8cFGxOTCo7iD93z0r95SUM479Tdc2WZyf1nGaTX/sxTxh93jZx036Q7HqSWHPaxniF2JxrN9j/bjtEARBEIS7QUkpDoKDgyXP6bcYdsKvk8VJSEgIOnTogJAQyy9X7uSHkvbtsSVHl0eHVZZFjuaA+/hA8c8vR/HvXn648hyQirEaUTX0f9erXE+xOfBK81fwVvO38GyVZ/F267eZfa8SXkX/d986fR02N4ztvtr8Vf3ff/b7E+dfOY+G0Q1t2niq8lNM15L7Wq4YtAKBvoEWx3vV6sVlhyAIgiDcEeopxQD1lCII29AcIDwZin+iuHiY8RAx38ToH+v6JV1NvIon5z+JEL8QnH/lfLE30laFqUx6iiS8l4CmvzaFWqvG8bHHERMWY8uEJOM2jsMfZ/4QPdeqYiscefEIAECtUePH4z9CpVLh9Ravw0sl/durcT8nub2udNjqKSVlX6PVwHuat13XJlwE6qlDeDIU/4QU1FNKefLy8pztgtPJy8vDzZs3nT4WjvZDSfv22JKjy6PDKusqr7sr4ApjQfGvjA7FPz+uMhaePAeklprVKV0HDyY+wKWXLiHxQWKxzwHjiqVnaj+D0kGlcfPNm7j95m27ElI8eHt5481Wb2JCywlWE1JyYR2vi69eZLLH4uNnHT9jskUQBEEQJRVKSnGQkpIiec5T+okkJydj8eLFSE5Odms/lLRvjy05ujw6rLIscjQH3McHin9+OYp/9/LDleeAtWVwAT4BSE9Nd8ocMPYr0EdYqubj5QNfb1+bftjCuIm6xXUZ+0EpAet4lQkqY/U8D7SggSAIgnB3aPkeA7rle0lJSYiKihKV8ZSlG4WFhcjMzERISAh8fHzc1g8l7dtjS44ujw6rLIsczQH38YHin1+O4t+9/HDlORCXGYdysw07ypkvDXPWHPCO8IYmTQOEAkPmD8GKQStYn6ZNDt89jKcWiPd9al2xNf558R9um3KW70mNg/nyvfh341F2Vlkm+8Z+iDGtwzRM3jeZyT/CidDyJcKTofgnpGBcvue8b5QlEGd+AXcVfHx8EBER4Ww3HO6HkvbtsSVHl0eHVdZVXndXwBXGguJfGR2Kf35cZSxoDiij46g5oHT1UvnQ8pLnKoZVVPRa1nCV+CcIgiAId4KW73GQlpYmeU5XcObuhWdpaWnYvHmz1bFwBz+UtG+PLTm6PDqssixyNAfcxweKf345in/38sOV54CtXeycNQeCfQ07FA+sO9DmtXmwNq++f/p7Ra9lDWfEv7WliwRBEAThDlBSioOCggLJc55yQ5Kfn4/79+8jPz/frf1Q0r49tuTo8uiwyrLI0RxwHx8o/vnlKP7dyw+aA/xyuqRUqH8oBtUbxOyvPYxpPMZqFZXSOCLuqkdWtykTERAhevzJCk8q5gdBEARBOAvqKcWArqeUtbWQntJPhCCkoDlAeDIU/0RxodFqUPW7qriXfg+vNX8NP/b80dkuAXDsHLiRfAM159S0OP5Ss5fwyzO/yLIpp6eUFAlZCfoeUr/0+gUD6g5g7il1Lu4cGv3SSPL8p+0/xeJzi3Ej5YbJ8fVD16NRuUao9n01u3wnFIJ66hCeDMU/IQX1lCIIgiAIgnAvvFReODr2KI7eP4qetXo6251ioVpkNdSIrGGRmKkRWcNJHplSJrgMLrxyAbdTb+Ppmk8jOYd9p8WG0Q1x9fWr8FZ5iybeqkZUxcrBK9Hqj1Yo0BTgqcpPoVn5ZuhTp4/NpZzmhPqFIiM/g0uHIAiCIBwNLd/jID4+XvKcp2wHHhcXh9mzZyMuLs6t/VDSvj225Ojy6LDKssjRHHAfHyj++eUo/t3LD1efAxVCK2BA3QEI8Amw63olZQ54qbxw5MUj2Pb8Nlx7/Rpql6qNNpXaYELLCYpfyxrWxqF+2froVbsXvL28USqoFKpGVAUATGhh28fapWqjRlQNi2NP13wawxsOR9PyTXF/4n2kf5COg2MO4sMmH+Kbb77hjqmaUZZJL4IgCIJwNlQpxUFgYKDkOd2vVby/WpU0goKC0Lx5cwQFBbm1H0rat8eWHF0eHVZZFjmaA+7jA8U/vxzFv3v5QXOAX87Rc6BMcBl0r9kdAHDltStOmWus4+Wl8sLRF4/i2INj6F6ju6xrmT/HssGG5YByY2p8s/F4ZfMrsvwhCIIgCEdBPaUYoJ5SBGEbmgOEJ0PxT3g6JW0OKNlTSink+GSss3/0frRf2F5SdnH/xRixboR8BwlpqKcO4clQ/BNSMPaUouV7HDh7tyFXID8/H/fu3XP6WDjaDyXt22NLji6PDqusq7zuroArjAXFvzI6FP/8uMpY0BxQRofmAB+uMg5SfrSr0k5U3kvlhcblGqNNpTbF4R5BEARBcEFJKQ6Sk6UbV3pKP5GkpCTMnz8fSUlJbu2HkvbtsSVHl0eHVZZFjuaA+/hA8c8vR/HvXn7QHOCX84Q5UFLj/+HEhzg57qSDvSIIgiAIedDyPQZ0y/cSExNRqlQpUZmSVrYul4KCAqSkpCAyMhK+vr5u64eS9u2xJUeXR4dVlkWO5oD7+EDxzy9H8e9eftAc4JcraXNAzlI5R8cdq0/Gfvh97meiY2zD3NbNlJuo8YNr7FjodtDyJcKTofgnpGBcvkeNzjlw5hdwV8HX1xdly5a1LVjC/VDSvj225Ojy6LDKusrr7gq4wlhQ/CujQ/HPj6uMBc0BZXRoDvDhKuNg7Mfxscfx88mf8ULjF2zqabSmVWw+Xj54vOzj+Df2X0e4SRAEQRBM0PI9DtLT0yXP6QrO3L3wLD09HTt27LA6Fu7gh5L27bElR5dHh1WWRY7mgPv4QPHPL0fx715+0Bzgl/OEOeCK8d88pjkW9F2AtlXa2tQzf20uvXoJKrj3jqEEQRCE60NJKQ7y8vIkz3nClzEAyM3NxbVr15Cbm+vWfihp3x5bcnR5dFhlWeRoDriPDxT//HIU/+7lB80BfjlPmAOOjrtetXoBAN5/8n2H+KGF6WtTq1QtPgcJgiAIwgFQTykGdD2lrK2FLGm9FAhCaWgOEJ4MxT/h6ZS0OSCnp5SjKdQU4mriVdQrUw8qlbwKJvOeUv7e/sj9REheXU28isd+ekx/TjtFi6a/NsWZ2DPynSYEqKcO4clQ/BNSMPaUokopgiAIgiAIgnAyPl4+qF+2vuyElDnfdPsG5145p39sXilV0uhbp6+zXSAIgiAcACWlOEhISJA85wlbIQNAfHw8fvjhB8THx7u1H0rat8eWHF0eHVZZFjmaA+7jA8U/vxzFv3v5QXOAX84T5kBJi/+3W7+N2qVq6x8H+wY72jVF+LT9p9g+fLvF8fCAcCd4QxAEQTgaSkpx4O/vL3lO96uWUr9uuSoBAQGoV68eAgIC3NoPJe3bY0uOLo8OqyyLHM0B9/GB4p9fjuLfvfygOcAvV9LmwNgmYwEA/R/rz6xT0uO/UngljGk8BpEBkdj03Cbu62Z9lMWtw0tMaAwmPTUJXat3tTj3RecvHH59giAIovihnlIMUE8pgrANzQHCk6H4JzydkjYH1Bo1Tj06hSblmsDX29fZ7igGS68sjVYDL5Xwu7RUT6mrr19FnR/rmBzL/igbC/9diFe3vGohf2r8KQxeNRh+3n6IzYxFam6qLP+NfTbvj6WdosXo9aOx6OwiWbYdillPnbaV2+Lg3YNOdoogignqKUVIQT2llKegoMDZLjidgoICxMXFOX0sHO2HkvbtsSVHl0eHVdZVXndXwBXGguJfGR2Kf35cZSxoDiij48lzwNvLGy1iWnAlpFxlHKz5UTOqpk19XUIKkK5sCy+0XCqnUqnwSvNXEPtOrMnxMy+dQdPyTfHfG//h0quXEBEQoT8XExqDNhXaiF7jmdrPmDz+tP2nNn2f22su/tfufzblnM2BMQec7QJBEESJgZJSHCQlJUme84ReCgCQmJiIX375BYmJiW7th5L27bElR5dHh1WWRY7mgPv4QPHPL0fx715+0Bzgl/OEOVAS4n/3yN2Y0WkGLr560a5r/PLLLxbHVBASWKH+oSbHG5drDEBIdqlUKrz/5Pv6czOenIGuD7uiX41+FvbMF2tM6TDFpl+BvoGY1nEakt9PxpD6Q2zKEwRBEK4PLd9jQLd8LyEhAaVLlxaVKWll63LJz89HQkICypQpAz8/P7f1Q0n79tiSo8ujwyrLIkdzwH18oPjnl6P4dy8/aA7wy3nCHHDH+D/58CSa/97c4vj9sfdR8Y+KJsfyPsmDn7cfsguyEfy5oWm6+TLBQk0h5p6YiyDfIAyvPxyJiYnYGbcTYzaNMZF77vHnsPzCckk7Ysv3jEnLTcNvp37D+7vehxKkfZCG8Jkym6mbLV/STtFa+E8Qbgst3yOkYFy+51N8HpV8nPkFxFXw8/NDTEyMs91wuB9K2rfHlhxdHh1WWVd53V0BVxgLin9ldCj++XGVsaA5oIwOzQE+XGUclPTjiQpP4OS4k/jt1G/47fRv+uNi9nWVUrbw8fLBGy3fMLE1ssJI3Ei9gWMPjmHnzZ0I9g3G112/RpBvEOadmYepHaZy+x4eEI732ryHv//7GwfuWF8uN6X9FEzdb/0aYf7SN0wEQRCE46DlexxkZGRIntMVnLl74VlGRgb27dtndSzcwQ8l7dtjS44ujw6rLIsczQH38YHin1+O4t+9/KA5wC/nCXPAXeO/WYVmaFSukcmxffv2mTwe1mCYrIbwOl+zMrPwWafPsGPEDiS+l4gHEx8gJiwGf/T5A/HvxmNy+8my/WdJltWKqiXbPkEQBOFYKCnFQU5OjuQ5T/gyBgDZ2dk4ffo0srOz3doPJe3bY0uOLo8OqyyLHM0B9/GB4p9fjuLfvfygOcAv5wlzwFPiHwBOnz5t8njpgKWy7Ij5WiqoFMIDDMvkygSXkedkEVLN2h3JtA7Tiv2aBEEQ7gr1lGJA11PK2lpIT+ilQBDWoDlAeDIU/4SnQ3OgZPPziZ/x2pbX9I/NeyIZ93Oy1VNKKWz1lNLRaVEn7L2916qti69eRP2f61uV4ekDpZ2ixbdHvsXck3PxX/J/HtlT6v7b91Hx24q2BQn3h3pKEVIw9pSiSimCIAiCIAiC8GBY+0UBrlcNN7T+UJsy9crUU/y6b7d+G9feuIaYUOf3GXMGMWGe+bwJglAeSkpx4OlbIQNAQkIC5s6di4SEBLf2Q0n79tiSo8ujwyrLIkdzwH18oPjnl6P4dy8/aA7wy3nCHPCU+AeAuXPn6v+uXaq2bDvF4evYpmNl67bwbwEA6Funr2wb33b/llvHlRNZ+Z/kI/+TfHSt3tXZrhAE4SHQ7nsc+PpKN3jUrWd3xrr24sTPzw9Vq1Z1+k6EjvZDSfv22JKjy6PDKssiR3PAfXyg+OeXo/h3Lz9oDvDLecIc8JT4B4CqVatiX5d92HN/D15o8oJsO0r5+lbLtyTPeXt5y7b7SYNP4F3VG53rdJZto0v1Ltw61uZJ9cjquJlyU7Y/9iKnoT1BEIQ9UE8pBqinFEHYhuYA4clQ/BOeDs2Bks3dtLuo8l0VAMCHT32Izzt/LimblZ+FkC9C9I+Lo6fUzM4zMempSUyyYoj1eGpTqQ0OvXCIy46xPWPCyoQhIzGDuadUhdAKeJjxUPScZrIGXtOct5hF99y6L+mOHTd2WJVz975ZBCPUU4qQgnpKKU9hYaGzXXA6hYWFSE5OdvpYONoPJe3bY0uOLo8Oq6yrvO6ugCuMBcW/MjoU//y4yljQHFBGh+YAH64yDo7wo3J4ZewdtRdze83Fh09+6BLx70hGNhqJ1YNWK+ZbmL/0zRYv7lxtSBAEIQYlpTignlJCb4A5c+a4RD8FR/qhpH17bMnR5dFhlWWRozngPj5Q/PPLUfy7lx80B/jlPGEOuHv8d6jaAS8/8TIyUzNdIv67V+mu/7tFTAu7fTFmZMOR0GZpFXuevHFf0heqlA8u72wXCIJwI2j5HgO65Xvx8fEoU6aMqIynlK3n5eXh0aNHKF++PPz9/d3WDyXt22NLji6PDqssixzNAffxgeKfX47i3738oDnAL+cJc4DiXyC7IBvBnwfrH1tbvmePr3eT7+LNzW+iYUxDTO001aos7/K9XSN24amYpyx86/tXX2y8utGqrb2j9qJD1Q4mx3TxL7V8b+OzG9Hnrz76x1UjquJ26m3944+e+gjfH/ses7vNxktPvOTUZXG61/PpJU9j+43tojItK7TE0XFHafkeIUDL9wgpGJfvUaNzDpz5BcRV8Pf3R9WqVZ3thsP9UNK+Pbbk6PLosMq6yuvuCrjCWFD8K6ND8c+Pq4wFzQFldGgO8OEq4+Ap8V85qjLWjViniB/m+Pv4i/q2evBq+E0Xb8qunaKFVquVtbyud53eJo8jAiJMHs/oPANTO06FjxfbrVn9MvVxMeEitx+2GN14NJuglSEI8AnA38/9jS6L+RvAs9AypiWOPTjmENsEQTgHWr7HQWZmpuQ5XcGZuxeeZWZm4vDhw1bHwh38UNK+Pbbk6PLosMqyyNEccB8fKP755Sj+3csPmgP8cp4wByj+i9eW0s9zxaAV8FJ5oXG5xmhTqY2ofV9vX8nd9DIzMyUTUixx365KO5PHT1Z6EgDQvkp7ADBJSFUJr2LTntLsGbkHvz7zK5OsWqO2er5z9c7I+TgHLzR+AW0rt1XCPT37Ru9T1B5BEM6HKqU4yMrKkjyn+zAKCAhAbm5ucblU7KSkpOD06dOoXLkyfHycFz6O9kNJ+/bYkqPLo8MqyyIXExMDX19flC1bluZACffBWfHv6+sLb2/D1t6ZmZk4dOgQatSogZCQECuaBnh0WGVZ5DzhhhyQ95qURD+UtG+PLZoDrgXFvwDPa1zc8W+NIfWHoF2VdigdVBoqlUrS/tbnt+LY/WN4dcurOBd3DgBQRVUFmZmZNuPfmL8G/oW3t7+NV5u/Kiq/8dmN2HFjB7rX7G5xftXgVWjxh6GP1h+9/8DYTWO5nzMrwxoMQ8dqHU2OWasI06ht99AK8AnAvL7z8F/Sf6j9Y227fdTBWk2mo1xIOcRmxip2fYIglId6SjGg6yllbS1kpUqV0K1bNwwYMADVq1cvZg8Jwvncv38farUa3t7eqFixorPdIUooERERKFeuXInbfcgT+ukQhDVoDngOWflZCPnCkJyx1lOquDDubRTkG4TsgmyT83J8bP57c5x8eBIA8FTlp3BwzEFJWbGeUgBMlvt1WNgB++/sBwA0im6Ef1/+V9LeqYen8MTvT5j4b/wcrS3fm9hqIr45+g3Tc9SR8WEGQvxME249lvbAtuvbROVbxrTE0bHiPaUCfAKQ83GO/vH15OuoNacWlz/WMB8La0QERODU+FOo8UMNRa59evxpNP2tqSK23ArqKUVIQT2lipdBgwahV69eKFWqFKpWrVribqgIwl7y8vJQWFgIHx8fVKtWzdnuECUMrVaL7OxsxMfHAwDKl6edfQiCIAg21g9dj34r+qFnrZ5YPXg1bqfeRr2f6znbLZP7gVGNRumTUi82edGqXqNyjVAxrCLup9/H9I7TLc4H+ASI6vl4+WB299ncSSnzhJQttHB+IlKM0Y1HY+G/C/WPZ3aeieqRyhULBPsF2xYiCIIbSkpxkJSUJJrhU6vV6NKlCyIiIuDl5YXAwEAneFc8FBQUIDU1FREREfD19XVbP5S0b48tObo8OqyyLHK6L14qlQoBAeJfltwBV5gD7hr/uvfO+Ph4lC1bFikpKdiwYQP69u2L0qVLM10vMTGRWYdVlkVOtx0477bgJQ2e8S3Jfihp3x5bcnRpDjgOiv/itcWj2/exvtBO0SIxMRHL/lyGvn37YkanGfh4z8cY20R82Zst+0PqDdFXSsWkxSAxMdFm/FtjVONRiMuKQ6GmEC8/8bJVWR8vH5wYdwLn4s6hU7VOFue7VO+CU49OSer//dzfmHFwBo7cP2LTLylUVrqZFxYUAhB2FXxl8yt4kPFAlh2l+f7p702SUlLJOykG1xuMVZdWKewVQRC2oEbnHBj3OjGmoKDAqQma4kSlUsHX19fplWCO9kNJ+/bYkqPLo8Mq6yqvuyvgCmPhzvEfFBQEQHhf9fHxQZkyZbj6WvHosMqyyBknZd0ZOa9JSfRDSfv22KI54FpQ/BevLXvj/6O2HyHxvUT83ud3WfbfbPUmJraaiNebvo4h1YYwxb81vFRe+OCpD/BJu0/g6237vqFcSDl0q9FNtIeSt8obu0fultTtVbsX/nnxH4vjqwevtnldFnTPt3ed3rj39j2ce/mc/tzPPX8WlTXGW+WNBmUbKOKLMWH+YWgY3VD/uHYpvl5Ws7rNstuHYQ2G2W1DCSqFVsI7rWktHVEyoJ5SDNjqKZWbm4uDBw8iMjISvr6+aNSokRO8JAjncvbsWX2CluYAIZfc3FzcunUL1apVK1EVd9RPh/B0aA54Dq7YU8rZSPWUUhLjPkofPfURpnWchppzauJ26m39cV8vX+T/L19UBxD8OvPoDL49+i0Wn1tsctycLw99iQ92fyDqS4uYFjg29pjJsb239iIhOwED6w6Et5fhh/y7aXdR5TvT3QQzP8zEqkurMGbDGCvPWBxrPaW0U7S4kXwDr2x+BU3LN8XMLjMBWI6DFI/eeYTys6XbB1x9/Srq/FjHqg3NZA28psmv+1CiWisqMApnXz4LHy8fq89HMainFCEFY08pqpTiQK22vv2pJ6DVaqFWq52+u46j/VDSvj225Ojy6LDKusrr7gq4wlh4Svyr1WpkZGRwvffy6LDKyvHDXXGVsXC0H0rat8cWzQHXwlXGgeJfGZ2SFv/fdf9O//fIRiPh7eWNsy+fReuKrbnsNCnfBNHB0Tbl3m79tuQ5jdZyuWLHah0xpP4Qk4QUAFQOr2whG+wXjB41ezB4K9CrVi8AwE89f7IpWyOqBnaM2KFPSFkjyDeI2QdW5FaLft31a2gmazC2qely0+oRhp5Y7aq0Q7h/uE1bl8deRvng8igXUg6XX7ssyx+CKE4oKcVBQkKCs11wOgUFBYiLi0NBQYFb+6GkfXtsydHl0WGVdZXX3RVwhbHwlPiPj4/HN998o29+rrQOqyyLnCf00wHkvSYl0Q8l7dtji+aAa0HxX7y2SmL8O5JXm7+Kxf0XY++ovahTWqjWCfMPQ9Py0rvBVQitIPt6ft5+yPk4B2Maj8HoxqPRrHwz/TldTylWAn0s++1Gh9hOjOnY9NwmxL0bh1ebvyop0/+x/lw+AZbLGXkbvrMyCqMQ7mdIJjUp10RUTiyhFZhqGLtWMa1w882bmNRmktXrzZ0zVx+vj5V+zOK8o54nQciFklIcREREONsFp/LDDz/A398fXbt2dYl+ClFRUdi2bRtGjhyJBg0aMPetadq0Kd58800AwOjRo6FSqfT//P39UadOHUyfPh1BQUH65/npp59CpVIhMTFRb8dcNzg4GFWrVkWfPn2wYMEC5OXlmfjKMmYLFy6ESqXCyZMnuXXNx4a1n4iU7LJly/Ddd9+JyqlUKnz66afMPjmCgoIC/Prrr2jevDmioqIQFBSEKlWqoG/fvli3bp1e7vbt2yavk5eXF0qVKoWePXviyBG+BqBVq1aFv78/YmJi4O/vb2JXt9Rsw4YNUKlU+OWXXyTt7Ny5EyqVCt98w7Y7zr59+/TXWbhwoejr1qlTJ6hUKlStWpXrOYlhbL9q1aoYPXo0t41du3ahdevWiIiIQMOGDTFu3Djum5LIyEg899xziIyMdIgOqyyLnCf00wHkvSYl0Q8l7dtji+aAa0HxL8DzGnta/DsSX29fDG84HB2qdjA5btwI/YUmL5icm9Fphl3XDPAJwPy+87Gg7wKTpuHePuJ9dqUwr57S4e/tb1VPBRV+6vkTVCoVygaXlZQ7Oe4kVg5eyeUTAEQERODoi0fRvkp7zOkxxyHJmjUD1+Cj5z7ClVeu4H/t/oflA5djQd8FFnJSFeW/9fsNDco0QKuKrTC5/WREBUahb52+Vq9pK17FdnQsDv4a+BeWD1zulGsTrg3tvsdBSepv4gjmz58PALh06RJOnDiBli1bOs0XLy8vBAQEYMOGDTh69CiaNGkCf39/nDolvRMJANy6dQtnzpzRJ1sAYcevPXv2AABSUlKwfPlyfPbZZ7h69SpWrFhh1Z6xbk5ODu7du4etW7di3LhxmD17NrZt24aKFSvKjh3d83SUjjXZZcuW4cKFC3jrrbcs5I4cOYKKFSty+aU0I0aMwNq1a/HWW29h6tSp8Pf3x82bN7Ft2zZs374d/fub/mL2xhtvYNiwYVCr1bh48SKmTp2Kjh074siRI2jSRPwXK3PWrVunTzbquHv3LoYOHaq/Xq9evVCuXDnMnz8fL78svrvOggUL4OvrixEjRnA959DQUMybNw+jR482eT1u3bqFffv2WV2rzYOcuDNm//796NGjB3r16oUNGzYgPj4ekyZNQufOnXHy5En4+1v/EqojICAAtWvzNSnl0WGVZZHzhBtyQN5rUhL9UNK+PbZoDrgWFP8CQb5BaBnTEsceHMPHbT+2y5bSus6OfwCIDCjepGX/x/pjcrvJiM2MxZddvjQ5x7LUSw5eKmXqGqy9X/Ss1RML+i6wmowChKqfZhWaWZWxRsuKLbFv9D5m+T51+mDj1Y3M8mFBYahdXYifaR2n6Y8fGH0A7Ra2s6n/ZKMncbbhWZOxal2pNT5o8wFOx55Gp6qdMHX/VOQU5ujP88SrjoNjDqLtgrY2/ZHLmMZjMKT+EKhUKhSoCzBy/UiHXYsoeVClFAdZWVnOdsFpnDx5EmfPnkXPnj0BAH/88QeTnlqttriJVwK1Wo2srCz88ssvuHbtGlasWIFWrVrZ1Fu9ejXKli2Lp556Sn/My8sLrVq1QqtWrdCjRw/8+eefeOqpp7By5UrcvXvXqj1j3Y4dO2LkyJFYvnw5tmzZgmvXrmHQoEF6X+X2U+DV5dFhlTWXa9WqlVOTUrdu3cKKFSvw4Ycf4quvvkLPnj3RuXNnjBs3DmvWrMHPP/9soVO5cmW0atUKbdq0wfjx47F48WLk5eWJykrRpEkTNG/eHA0aNEDz5s3RqlUrXL4srNUfO1boAeDj44ORI0fixIkTuHDhgoWN1NRUrFu3Dn369EGZMmW4nvfQoUNx6NAhXLlyxeT1mD9/PmJiYtCmTRsue1LYE7MA8N5776F27dpYvXo1OnXqhH79+mH58uW4cOGCPrnNQlZWFo4fP8713sujwyrLIqf7hdPd+67JeU1Koh9K2rfHFs0B14Li38CeUXtw9MWjJjfZcm0pqevs+A/2Cxbd9c6RqFQqTO04Fb/2/hXhAWxJKON+UXJ25CuuZbpSCankt5MR6B2IYN9g7Bi+g8tmuyqGRFCjcvwb8/z2zG82ZdYMWQMvlRcalG2AlmVbisZP2ypsCaDjx48jOzvb4vgXXb7A9uHbMempSUj9INVCh3fONYp27CZFzco30yfDrC0rHVB3gEP9cDWM49GToaQUBxkZGc52wWnMmzcPADB9+nQ88cQTWLFihcUbpG6Z1FdffYXp06ejWrVq8Pf3x969e/XL386dO4fBgwcjPDwcUVFRmDhxIgoLC3H16lU8/fTTCA0NRdWqVfHVV19Z9UetViMtLY37y++aNWvQv39/eHlZD/0WLVoAEJIfcujWrRvGjRuHY8eOYd++fUhLS5OdlBozZgzCw8Nx/fp19OzZEyEhIahUqRLeeecdi4Tf1KlT0bp1a1SsWBGRkZFo2rQp5s2bJzpOy5YtQ5s2bVC2bFmEh4ejcePG+te5Q4cO2Lx5M+7cuQOVSgUfHx+EhITon4Px8r2zZ4Vfb4yXzOnYunUrVCoVNm40/KL033//YdiwYShbtiz8/f1Rt25d/PST7caVxiQlJQEAypcX31HE1usLQJ/EvHPnDte1dbGna969YMECVK9eHZ06GcrnX3zxRQBCRZQ5y5cvR25uLl544QWLc7bo2rUrKlWqhPnz5+t90Gg0WLRoEUaNGiX6vHNzc/Hhhx+iWrVq8PPzQ0xMDF577TWkpqaayBUUFOD9999HuXLlEBoaio4dO+Lo0aPcPj548AAnTpzAiBEj4OPjox+vli1bonbt2qJxIkV6ejp27NiB9PR0h+iwyrLIecINOSDvNSmJfihp3x5bNAdcC4p/A0G+QWhZsaXNihlPi/8wvzDRHj7OokqEYde7ciHl9H9XCK2Ay69dxr5R+5iTAFM7TNX//U4TZbZYe7f1u7L0crNy8YH2A/w7/F+0rsTX6P2Lzl9gUb9FuPjqRe5G5yqoEB0Sja7Vu1qVG1B3AB5OfIjTL51GZkamXfOVRdfP20/fW6x+qfo2dVSwrJQK9Q/FsbHH8F3372wuD3Qka4asQdy7cSbHWsS0cJI3jqdnzZ4Wx+qXqe8ET5wLJaU4KFeunG0hNyQnJwfLly9H8+bN0aRJE7z88svIyMjAqlXi25X+8MMP2LNnD2bNmoWtW7fisccMH85DhgxBo0aNsGbNGowbNw7ffvst3n77bfTr1w+9evXCunXr0KlTJ0yaNAlr166V9MnPzw8VKlSAn58f8/O4f/8+jh8/joEDB9qU1SWjKlSQ3yCyT58+AISlbry+6vDz80NQUBAKCgrQp08fdO7cGRs2bMALL7yAb7/9Fl9+aVqmffv2bbz88stYtWoV1q5diwEDBuCNN97AZ599ZiI3efJkPP/884iJicGiRYuwbt06jBo1Sp+g+fnnn9GmTRuUK1cOR44c0f8Tew6NGjVCkyZNsGHDBotzCxcuRNmyZfUVdpcuXULz5s1x4cIFzJ49G3///Td69eqFCRMmYOrUqRb6UtStWxcRERGYOnUqfvvtN9y+fZtZV8f169cBgLtayTj2du3ahTt37uCFF14wKYWuXbs2nnrqKSxZssSiwfeCBQsQExOD7t27c/vs5eWF0aNHY+nSpYiOjoafnx927NiB+/fvY8wYy22VtVot+vXrh1mzZmHEiBHYvHkzJk6ciEWLFqFTp04mSc1x48Zh1qxZGDlyJDZs2IDnnnsOQ4cORUpKCpePuuqwhg0bAjAdr4YNG4pWj0lRvnx5fPLJJ5LJR3t1WGVZ5HQJQZaEaElGzmtSEv1Q0r49tmgOuBYU/8Vri+LffpqWb4p3W7+L1hVbY+eInSbnHiv9GNpXbc+85LZTtU7YPGwzNj23Cc82f1a2T4PrDdb/PaT+EEk5awnu8uXLY/L/JqNm5Zrc1w/yDcLIRiNRr0w90fN/9vvTpo31z67HGy3esCoTHRINHy8fu+cTq+6WYVswr8887B69W/b1WsS0wJut3sQrT7zCpRfqHyp6PNg3WP936aDSzPbKBpfF2CaGXQj/6M22QscVYdnp0hx7NigoqVBPKcImq1evRlpamr76Y+jQoXjrrbcwb948jBo1ykI+ICAA27dvh6+vr8W58ePHY+LEiQCALl26YMeOHfjxxx+xdu1afU+eDh064O+//8bSpUsxYIByJZxr1qxBREQEOnbsaHGusFDYRSQ1NRXLli3D+vXr0bx5c9SqVUv29apUEX6devjwoWwbOvLz8zF16lQMHix8kOt68yxbtgyTJ0/WyxlX5mg0GnTo0AFarRbff/89/ve//0GlUuHWrVv4/PPP8fzzz2PJkiV6+a5dDb/61KtXDxEREfD392daFjlmzBhMmDABd+7cQc2awheElJQUbNiwAa+//rq+IffEiRMRGhqKQ4cO6fsfde3aFXl5eZg5cyYmTJjA1Jw0ODgYS5cuxahRo/DSSy8BAEqVKoVOnTphxIgR6N27t4WORqNBYWGhvqeUrt/T888/b/N6UsybNw/e3t6ijcBffPFFjBkzBn///bc+ti9evIgTJ07g448/hrc3X5NQHWPGjMH06dOxbds29OrVC/Pnz0f79u1Ro0YNC9kdO3Zg+/bt+Oqrr/Dee+8BMFRbDR06FH/++SfGjRuHK1euYNGiRXj77bf1VYpdu3ZFdHQ09/joqtiioqIszkVFRenPEwRBEATheL7u9rUidlQqFXrWsqzqYKFxucY4dPcQANNlYlUjqirhGhdiVULGjGg0Ai0rtkSdH+tIygT5BqFTtU6Yc3yOXb682fJNfH/sewDA0zWfBgCTXQ6HNxzObCs6JNqi0b1cutXoht+e+Q3j/x5vVW5QvUGY2GoiBv8+GBmwXFG0e+Ru9FzWE4+VfgyD6g3SH29Z0dCX+L0n38O6K+twPfk63mr5lv747O6zUb9sfTQr3wwNohtg54idOPPoDN7f9b79T7AY2TNqD+r/LF35pAV7dXGz8s1w6pH1/sklFddK57s4ycnJ8hSPvwLs7+Pcf8f5Mt7GzJs3D4GBgXj22WdRWFiI3NxcDBw4EAcPHsR///1nId+nTx/RhBQAPPPMMyaP69atC5VKhR49euiP+fj4oGbNmlaXVRUWFiIxMVGfTGJhzZo16Nu3r8VOc1lZWfD19YWvry/KlCmDt956C08//TTmzZvHZd8c3S88Go2G21cduvFWqVQWiZaGDRtajNGePXvQuXNnhIWFwdvbG76+vpg8eTKSkpL0O5/t3LkTarUar732GvM42pJ7/vnn4efnh7///lt/bPny5cjLy9NX8OTm5mL37t3o378/goKCUFhYqP/Xs2dP5Obmci0X69mzJ+7evYt169bh3XffRf369bF+/Xr06dMHr7/+uoX8pEmT4Ovri4CAADRr1gx3797Fr7/+qq/iYkU3FvHx8Vi/fj2efvppxMTEWMgNGTIEoaGhJj2U5s+fD5VKJVrVxEq1atXQvn17zJ07F3FxcfrKOTF0TfjNk2aDBw9GcHAwdu/eDQDYu3cvAEOCTvccBwwYIHunTd0vr+axw9MEOSkpCX/++SdXIotHh1WWRU7XX6O4+mw4CzmvSUn0Q0n79tiiOeBaUPwXry2Kf9dD7uv5Z78/US2iGpqVb4aJrSfqj4f6h1pUcDnSD1b88m2vbmBdqmzN1+mdpmNGpxlYMWgFGkQ3AACUCiqFfaP24asuX2Fqy6mKz4HO1Trb/C6mUqkwrtk4kx0XxQjyDULrSq1F4/7Zx59Fy4otEftOLA6NOWSyA2OIXwguvnoRS/ovwbSO03D4hcPY9NwmzOwyUy8T5h+Gt1q9pe+91aV6F7zX5j2r/rgaQb5BkhV5cvihxw+ix1cOWmlz0wlXhyqlOJC9o0yLuco6Uoxcv34dBw4cwMCBA6HVapGamorMzEwMHDgQixYtwvz58/HFF1+Y6FgrFzWvntAtTzPf6cvPz8/m+mmeSpPY2FgcPnwY779vmV0PDAzEgQMHAAD+/v6oUqUKgoKC7O4hpksYVahQQXZVDCCUgouNkb+/P3Jzc/WPjx8/jm7duqF9+/b47rvvULNmTQQFBWH9+vWYMWMGcnKEXTkSEhIAQN+onNU3a3JRUVFo3749tmzZgjfeEMqZFy5ciBYtWqB+feHXgaSkJBQWFmLOnDmYM0f8l6XExEQmX3QEBgaiX79+6NevHwBhJ7wePXrgp59+wiuvvKK/NgC8+eabGD58OLy8vBAREYFq1arJntPe3t76Rum6BufmBAUF4dlnn8WCBQsQGxuL0qVLY8mSJZJVTTyMGTMGY8eOxXfffYfAwEAMGjRIVC4pKQk+Pj4WSxRVKhXKlSun/8Ki+994ibK3tzd8fHxQqlQpLt908sZfhnSxk5ycLFpBJYWXlxeCg4O5lkPw6LDKyvHDXXGVsXC0H0rat8cWzQHXwlXGgeJfGR2Kf37kjkW1yGq4PuE6VFBZfPfqUr2LqI6vt/gP3Pb4AbDdzym5i6g1X0P8QvBR248sjrev2h7tq7ZHSkqK4nPgi85f4NiDY0y2lg5YioErpduemCfmvL28oYbQf/bnnsJGQlKvY70y9fQJmwCfADxT+xlRuZLMTz35eubaQqzK74XGL2Bw/cEYXH8wZhycYXF+5aCVOPHwBL7+R5mKSUdBSSkOWJYVuRvz58+HVqvF6tWrsXq15e4cixYtwvTp000SFsWxHbSPjw/X67Fu3ToEBwebLFHT4eXlhSeeeMLiuL2vt665d6dOnWTb8vHxYe5F9ddff8HX1xebN282SWCtX7/eRE6XoLh//z4qVarE5BvLePft2xc7d+7E0aNHERAQgBMnTmDuXENCNjIyEt7e3hgxYgRee+01URvVqlWz6Ys1KleujPHjx+Ott97CxYsXTZJSFStWFH2dedGNxcKFCxEdHW1R/WfMiy++iN9//x1//vknateujfj4eMyePdtuHwYPHowJEybgq6++wrhx4xAYGCgqV6pUKRQWFiIhIcEkMaXVahEbG4vmzZvr5QAheRsTE6N/joWFhdy/Qj7++OMAgPPnz6Nnz54msXP+/Hn9eRYiIyOZesDJ1WGVZZFz1X4iSiPnNSmJfihp3x5bNAdcC4r/4rVF8e962PN62mqKr0MFFbxUXvi2+7cO8YOFqEj2H9Bs4WpzIMQvxKTpPWBIIJnT/7H+6FunLzZcNfSN3TNyDzr92QleKi981lHoWauL+7LBZfHjkB/Ro2YPBPqKfzctblRQoWJYRdxLv1fs144JtVxJwaQXxq5Xt0xdq+fD/MMkG6e3qdQGh+8d5vLNmO+f/h5vbntTtr4x7v3OqTDuXpJrjlqtxqJFi1CjRg3s3bsXe/fuxZ49e7B7927s2bMH77zzDh49eoStW7cWu29arRYajYa5dHbNmjV45pln4O/v7xD75uzcuRN//PEHnnzySbRp00a2La1Wy6yn2yXPy8tLf72cnBwsXrzYRK5bt27w9vbG3LlzrT5Pf39/fXUVy3i0bt0aZcuWxYYNG7BgwQIEBATgueee058PCgpCx44dcebMGTRs2BBPPPGExT/WqpyMjAxkZmaKnrt8+TIA+5rUW0Or1eL48eM4d+4cRo0aZXV5W8uWLfH4449jwYIFWLBgAcLDwxX5EhUQEID//e9/6N27N155RXppbufOnQHApHcYIMyHrKws/fkOHToAAJYuXQrA8HqvWLGCe9lpTEwMWrRogSVLluh3KNRoNDhy5AiuXr3K1SdOo9EgLy+P672XR4dVVo4f7oqrjIWj/VDSvj22aA64Fq4yDhT/yuhQ/PNTHGPx3xv/4dabt1A9srpifrSr0k7/d5XwKlYkDfZtwZp0ccU5MKDuAH2F2rT200yaihujUqksKtk6VuuI42OP4+KrF012dwSExOOAugOKLSG1bug6DKwr/b26R80euPnmTfSq1atY/DFHTqHGh099iHqlLZf8VQyraFN3UptJ3NezhwktJyhmi5JSHOh68ngKW7duxcOHDzF+/Hh06NABHTp0QJs2bfDYY4+hTZs2+OCDD+Dv74958+YVu28FBQWIjY3F9evX9VVcN27cAAD945MnTwIQlhHt37+fKxmgs2++c5o5Go0GR48exdGjR7F//34sXrwYw4YNQ48ePVCnTh2sXLmS2ZaUH7rEkC169eqFzMxMPPfcc1i5ciWWLl2Ktm3bWiTiqlatio8++giLFy/GoEGDMH/+fGzfvh1z5szBlClT9HINGjRAfHw85s6di3/++Qfbt2+3+hy8vb3Rs2dP7Nu3D4sWLcKAAQMQHh5uIvP999/j7t27aNu2LRYuXIh9+/Zh06ZN+Pbbb9GpUyfmcbl69SqqVKmC1157DStXrsTBgwexceNGvPTSS/j111/RoUMHPPnkk8z2eCgoKMCPP/4IAPrm/9Z44YUXcOXKFWzatAnPPfecZFUTrw+617lRo0aScl27dkX37t0xadIkTJ06Fbt27cI333yDMWPGoEmTJhgxYgQAobfb8OHD8d1332HSpEnYunUrpk2bhvfff1/fkJ6HL7/8EleuXMHgwYOxbds2zJ07F0OHDsXjjz/O1U8rLi4OM2fORFxcnG1hGTqssixyntJPRM5rUhL9UNK+PbZoDrgWFP/Fa4vi3/UojjlQI6oGKoVXUtSPvwb+hQ/afIBtz29DeEC4TXmWe76u1bvi8bK2q79dcQ54qbywc8RO3B93H5r9GiQm8LXPaB7THI+VNuyu7qz47/dYP6weYrmSR8fCfgu5m+mXDS5rUybA23qvLVu82MRw/9CxqukGXJ93/txCfumApTj64lGbTdHFNiLw92EryNDBWtGoa8xvjI+X/EV4tHyPA/MbbHdn3rx58PPzM7mJ1C3F8fHxQenSpdG/f3+sXr262L+g6fzYtm2bRWJAt0PdqFGjsHDhQqxfvx5+fn4mzdRZ7dtq8pyTk4PWrVsDEPoblSlTBo0aNcLvv/+ub/6t0WiYbEn5wVrd1alTJ8yfPx9ffvklNm/ejJiYGIwbNw5ly5a1GKNp06ahVq1amDNnDt544w34+PigVq1amDDBkPF+8803cfHiRXz00UdIS0uDVquFWq226kPv3r2xcOFCJCQkiCYf6tWrh9OnT+Ozzz7DJ598gvj4eERERKBWrVpcDcdr1qyJiRMnYs+ePdiwYQMSEhLg6+uLWrVqYfr06Zg4caLDSugLCgqwceNGtGvXDrVr17YpP2LECHzwwQfIz8+XbEjOC2t8qlQqrF+/Hp9++ikWLFiAGTNmoHTp0hgxYgQ+//xzk9iaN28eoqOjsXDhQvzwww9o2LAhVq1ahWHDhnH716FDB2zZsgWTJ0/GgAEDEBQUhF69emHWrFnM8QwAERERGDRoECIiIhyiwyrLIqf7Naw4li87EzmvSUn0Q0n79tiiOeBaUPwXry2Kf9ejpM6B8qHl8UWXL2wLGtkXw/j19fbyxpmXzuCd7e/gh+PiDajl+GqvLo9OVGSU7di2sVshULzx/0aLNzDn+BxMbDXRpixLggkA/Lz9kK/OByAsd4vPskxKdqvRDSv6rsB/N/9DtarVcCPjBkauH4kOVTrgt9O/cT2HWd1mITIgEjWjaprsRGUZ6mUAADrjSURBVCjFsAbCd/E7aZabgFlbIvh42cfRrko7LElbIiljTJBvEC69eglVv69qVe6P3n9gQF3LlQ95n+ThwJ0D6LjIcqd7W6i0ctcneRDp6ekIDw9HWlqaaNVAbm4uDh48iMjISPj6+lqtXCCKn549eyIwMBBr1qxxtituzdmzZ1FQUEBzgLCL3Nxc3Lp1C9WqVbNo7u/KVKxYEQ8ePEBMTAzu37/vbHcIotihOUB4MhT/9qGaakhmaKc4/9Y0Mz8ToV+EmhxrGN0Q/770r0XiZcaBGfhk7yf6x67gvznG4/tw4kOUD5XelMqcn47/hNe3Gna1Fnt+xR3/jzIemTwH4+dnjM7XVze/irknpTceOzD6ALou7oqKYRUxpvEYk9dzZueZmPSU9WVxo9ePxqKziyyOX3/jOmpE1UCHhR2w/85+AEIfJvNlb8PWDMPyC8tRv0x9XHj1Ar4+/DXe32XYnEv3PP659w/azG+jP969RndseX6LvrrpwJ0DaL+wvf58/if58PX2xZ9n/8So9aMs/GtbuS0O3j2of3xozCFUDKtoMyllHAPGY6+erMY/9/5B2wVt9ceaRTXDqQmnJPMoOmj5HgfZ2dnOdsHpqNVqZGdn26yYcSU/tmzZwp2QUvJ52mNLji6PDqusq7zuroArjIWjfXCV+M/Ozsa///7L9d7Lo8MqyyKn+33H3X/nkfOalEQ/lLRvjy2aA64FxX/x2qL4dz08ZQ7kZJu2zjj78lkcffGoaCWQreogV5gD/7zwD5qWb4pP239qksxRahyLO/55kmoA4OslvZMjALSt0hax78biyutXLJa7GSekpMbrhx4/WOweOLvbbNSIEnbb/mvQX3jvyffwR+8/RPsw/d77d6wavAp7Ru0BIFRr6bC2JG7tgLVWl9vpdj6UqnYbUHcASgUK/Xy/f/p7tKncRrIf2EvNXkLZ4LKY3G6y5PXErqN7TragpBQH6enpznbB6ajVaqSmpjo9OeFoP5S0r1arkZycjLy8PBQWFkr+U8oPHh1W2eJ83dVqtdVxcoQPPNdUciy0Wq3V6xYWFop+wDsr/m35KtZLwB5f09LSsGHDBqSlpTlEh1WWRc5TbkjkvCYl0Q8l7dtji+aAa0HxX7y2KP5dD0+ZAwXZBSgPIfHx3pPvoWF0Q9nNu11hDrSu1Bqnxp/ClA5TbMrKwdXj/6O2H8HP27CbecPohhhUbxAAYHzT8QCAiIAImz2RpMYrzD8MG5/diGkdpmFM4zFIfC8RE1sblheWCymHr7p+hRebiveiDfYLxqB6g/TLDUc3Ho3qkdXh7+2P3SN3W/XHmBqRNfR/Ny3f1OpzAYBAn0Bceu0Sjo09hjdavAFAfMljraha+KnnT4h9JxZTO061aVcOtHyPAd3yvdTUVNG+Up60fM84XJy5bt7RfihpX6vV4tNPP8W0adOsyt26dQtVq1a12w8eHVZZFjmllu9VrVoVd+5YrpnW0b59e+zbt0+2fTE6dOiA/fv3S56vUqUKbt++DUDZ2Fi4cKHNxt979+7V746nw1nxb+tauj5uLLakMF6+5+/vD61WC5VKxRX/rDqssixynrJ0g2d8S7IfStq3x5YcXZoDjoPiv3htUfy7Ho6KvcGrBmP1pdUY3nA4FvdfbFO+OOZAWm4aTj86jfZV28Pby1tS9vODn+PjPR8bdM2Wt5X0OeCKy/fMsbV8DwAepD9Aam4qYsJiEOonLM08H38eDaMbmlQbzf5nNt7d+a6ojeL8DCj4f3v3HR9Ftf4P/LPphRSSUEJCF1C6JAGpgkLoXAREQEOICnLvRUVA5SsSQL0gIthAESQhIB2Udq80iSA9VGkqXBMhhZaQhFRSzu8Pf7uXZTfJzO5ktn3er1deyu45zzwz8xzEw5kzZSXIu5+Hmp41dZ+l5qai/id/vQTgkYBH8Puk3w3yWHVuFQ6kHMCsnrPQwK8BAGD1udUYu3WswTH++9p/jb7l8ovjX+C1Xf9b0VXwTkGFk7IPXvvy2HIcvn5Y7/G9nDdyKt0GSYsbnctg75sXSmEt16C681AyvkajwSuvvILBgwdX2q5evXqK5CGnj9S2at73HTt2oLi4uMLvfXx8KvzOVF9//TXu3btX4fcPbs6t5LUYPHgwkpKSKm3TokULg88sVf9V5RoUFCQ5ltQ85PaX00dqW0v/D6g1sZZrUd15KBnfnFgcA9bFWq4D61+ZPqx/+arrWqwdthZvPPEGIupFWDSPB+P7e/rjqSZVvxl6dOvRukmpj3p/ZDSWrY8BexDiG4IQX/1NwdvXbS8rhprXy9XZVW9CCgBCfUPx1cCvsD95P/711L+M5jK23ViMbac/AfVwu4WRC/FY0GNGJ6QAwzfwSV0laM614aSUDFlZWSa9Ht2elJaWIifnrxlPU94mZyt5KBm/tLQU7u7uaN++vexYpuQhp4/Utmre9zZt2lRrfGOMTfxURMlrERgYiMDAQNn9LFX/4eHhisWSIisrC7t370bfvn0REBCgeB+pbaW0c5TXgZtyT2wxDyXjmxOLY8C6sP7VjcX6tz7VVXuuzq7oUr+LxfMwJX7jmo1xcNxBJGcnY1TrUYrmag1jIKpdFN7e9zbyS/KxpPcSo22ssf6HPjpU8ZjW8N+AieETMbLJSOzevRuBfQMl5dHYv7Hu3+v71td7tNCY/IJ8k/NrVauV7t/l3ANOShERERERERGZoHvD7ujesHvVDW2Qr7svDo85jC0/bsFzjz5n6XSM8vfwR3ZRNgBg2aBl8HX3xYBmAyyblBXp2qArJkVMwon0E4gbEletx6rpWRP7x+7H4euH8ffwvwPGt002wD2lJNDuKVXRs5COtKcUUUWU2lOKHNuDe0p5eHhYOh3JLL2fApGlcQyQI2P9kyOzdP3nFOVg+r7pqOdTD+/2eNesx8gWHV2EqXum6n5tbA8te7fp4iaM3DwSwF+TkjnTK94I/8E9pYxdq6rmUbS4UkoGzt9xo3O1Y9nSRueOwhquhSPVv6U3+DQ1D3tlLdeCGz0r04djQB5ruQ6sf2X6sP7ls5ZrwTGgTB97GQN+Hn74atBX1X4ca7kO1Z3HsMeGoXuD7rh85zL+Pebfisc3xqnqJqR18+ZNS6dgcSUlJcjIyEBJSYld56FkfHNimdJXTh+pba3lvlsDa7gWjlL/N27cwPvvv48bN25USx+pbaW0s8b9FKqDKffEFvNQMr45sTgGrAvrX91YrH/rwzGgbixbGQOsf/vK49bNW3j62tM4PeY0OoZ0rLTt7CdnA4DZj0va9KTU6dOn0adPH/j7+yMwMBATJkxAXl6eXptr165h8ODB8Pb2RlBQEF577TXcv3/fpOM5+ibnAODs7Ax/f384O1f8alR7yEPJ+ObEMqWvnD5S21rLfbcG1nAtHKX+/fz88Le//Q1+fn7V0kdqWynttH9TZY1/g6gkU+6JLeahZHxzYnEMWBfWv7qxWP/Wh2NA3Vi2Mgbsqf5bBP7v5UeP131c7ztHq//AmlW/jGlWz1n4fdLv2D5qu1nHtNk9pdLT09G6dWs899xzmDx5MnJzczF58mQEBwdj8+bNAICysjK0b98etWrVwsKFC5GZmYno6GgMGzYMX3zxheRjcU8poqpxTylSAveUIrJNHAPkyFj/5Mjsqf6FEHhl5yu4dPsSEoYmoGlAU0unZNOk7illsyuldu7cCVdXVyxZsgQtWrRAREQElixZgi1btuDq1asAgD179uDSpUv49ttv8fjjj6N3795YuHAhli9fjtzcXNnHLCwsVPo0bMrnn38OjUaDVq1aWXx5Znl5OQoLC7F9+3aMHTsWbdq0gaurq6QZ+g4dOuD1118HAIwbN073PK5Go4G7uztatGiB2NhY3L17V3ees2fPhkajwZ07d3RxHu7r7e2NRo0aYciQIYiPj0dxcbFernKvmanX+8HjpaenY/bs2Th79qxBO+05ScnN1HOQ4vLly4iKikKTJk3g4eGBoKAgdOjQAZMmTdIbpxXdq1mzZqGoqEjy8VauXKkX5+GfDz/8EADw+OOPIyQkBGVlZXr9H7wWXbt2RVBQkOTVlz179oRGo0GTJk2M7lF38OBBXR4rV66sMI7c+6E955SUFEnttfG1k/316tWDh4cH2rdvj/Xr10uKYWquDyosLMTFixdl/d4rp4/UtlLaae+njf49j2Sm3BNbzEPJ+ObE4hiwLqx/dWOx/q0Px4C6sWxlDNhT/Ws0GiwbvAyHXjxkMCHF+q8+NjspVVxcDDc3Nzg5/e8UPD09AQCHDh0CABw9ehStW7dGvXr1dG369u2L4uJinDp1SvYxc3Iq3nneEcTF/fUKyUuXLuHIkSMWzaW0tBR3797F999/j2PHjqFly5aSVuckJyfjzJkzGD58uO4zT09PHD16FEePHsXWrVvRqVMnvP/++4iOjkZpaeXvsXyw786dO/Hee+/B29sb48ePR1hYGFJTU3W5VhXrYaZe7wePl56ejjlz5hidlHr55Zdx8OBBSbmZeg5VOXPmDMLCwnDp0iXExsZi165dWLp0KQYOHIjdu3cjKytLr72xe/Xee+8hOjpa8jEHDhyoi/HgT58+fQAAzzzzDADgpZdeQnp6Onbv3q3XX3sttPclKioKbm5uko/v4+OD5ORk7N+/3+C7uLg4SY8JV9f9eDj+sGHDkJCQgFmzZuGHH35AREQERo8ejbVr18qOZUqu2dnZ2Lx5M7Kzs6ulj9S2UtrZ0x/IKmPKPbHFPJSMb04sjgHrwvpXNxbr3/pwDKgby1bGAOvfvvKwyHkKG3XhwgXh4uIiPvroI1FcXCyysrLEsGHDBAAxd+5cIYQQ48ePF3369DHo6+bmJtauXVth7KKiIpGTk6P7uX79ugAg7t69a7R9YWGh2LNnj0hKShJnz55V5PysTVJSkgAgBg4cKACIl19+WVK/0tJSUVRUpHg+5eXloqysTJSWluo+++c//ymqKumPPvpI1K5dW5SVlQkhhIiOjhbe3t4G7bp37y4AiOvXrwshhJg1a5YAIG7fvq1rU1FfIYTYvXu3cHV1FZ06ddLlWl5eLvn8TL3eQgi942njxMfHV9lWasyKnD17VvYYGDt2rPD29ha5ubkVHlerqnuVmpoq+bgPy8vLEzVq1BDdunXTfZaVlSU8PDzE8OHDDXIqKysTb731lgAgfvnlF8nHefLJJ0WrVq3EE088IcaMGaP3XW5urvDy8hLjx4+v9J49mIPUmoqPjxcARHJysqT25eXlYseOHQKAwe+Vffr0EfXq1dMbe1XFkpNrYWGhuHTpkigsLBRlZWWiqKhIN16lkNNHalsp7UJCQgQAERISIjlXW2TKPbHFPJSMb04sjgHrwvpXNxbr3/pwDKgby1bGAOvfvvJQMn5OTo4AIHJycipt56Le9Jc0s2fPxpw5cyptk5SUhPDwcCQkJGDKlCn4v//7Pzg7O+O1115DnTp19DbUNfY4l/j/r1CsyLx584zmsGXLFnh5eRl87urqqlvdIIRAZmZmpfnboiVLlgAApk+fjtu3b2P9+vWIjY3Vux7Xrl1Dhw4dEBsbi5KSEqxZswZpaWlYu3YtTp48iQULFuDAgQNYuHAhEhMT4ezsjFGjRmH27NlITk7GjBkzcPz4cQQEBCAmJgavvfaarBy1j3BVdv03bNiA/v374+7duwCge8Tu4T7t2rXDzz//jPPnz8PT0xMFBQUAgKysLF3tVNQXAMLCwhAVFYW4uDjs3LkTXbp0kXUuUq43AGRkZOCjjz7Cjz/+iNu3byMgIAAdO3bE/Pnz8fvvv2Po0KEAgJiYGMTExAAA3nzzTbz99tuYP38+FixYoHskMSoqCufPn8fp06f1ViACQGRkJEpKSpCYmAjgrzqPj4/HqlWrcPXqVbi7uyM8PByTJk1Co0aNJI+BjIwM1KhRA8XFxVU+AlfVvfrll19M3oNozZo1yMvLw6hRo/TiDxgwADt27MCVK1cQEBCg+7ysrAyrVq3C448/jnr16kk+35KSEpSVlWHkyJF455138Mcff+g2KVy1ahUAoH///li+fDny8vL04h47dgzz58/H6dOnUV5ejtatW+ONN95AZGSk3jFOnjyJ2NhYnDt3Dv7+/hg1ahQaNmwIALh79y58fHwk5bphwwZ4e3vjqaee0stjxIgR2Lt3L/bs2YOOHSt/I4cp7t+/j/z8fOzcudOm3vaoXeJcWFiIdevWWTgbIvVxDJAjY/2TI2P9U0W0/w9dJbOnvxR2+/Ztcfny5Up/CgsL9frcuHFD3Lt3T+Tl5QknJyexceNGIYQQM2fOFG3bttVrm5WVJQCI/fv3V5hDRSulUlJSjLa395VSBQUFws/PT0RERIiSkhLx2WefCQBi5cqVeu2Sk5N1s+S9evUSmzdvFnv27BHJycm6lUYtWrQQ77//vti7d69upcmkSZPEo48+Kj7//HOxd+9eERMTIwCILVu2VJhTSUmJyMrKEiUlJbrPqlopdf36daHRaMSePXt0n1W0+mbo0KECgLh06ZIQQv5KKSGE2LVrlwAg5syZY5BrZaRe79TUVBEcHCyCgoLEokWLxL59+8SGDRvEuHHjxLFjx0RmZqZuhcy7774rjh49Ko4ePWqw+kub27Zt2wQAsXfvXr3jXL58WQAQH374oe4cxo8fL1xdXcXUqVPFrl27xNq1a0Xjxo1FQECA+PHHHyWdpxBCfPDBBwKAGD16tPjpp59EQUFBhW0rut7PPPOMACB+//13ycd9WJcuXYSvr6/Iz8/X+3zfvn0CgPj00091n5WUlIgNGzYIAGLp0qWyjqNdKZWbmyu8vb3Fl19+qfuuU6dOYuzYsUZXt/3000/C1dVVhIWFiQ0bNogtW7aIXr16CY1GI9avX69rd/HiReHl5SVatmwp1q1bJ7Zt2yb69u0rGjRoIGulVElJiQgPDxfh4eEG3124cEEAEF9//bXkWHLq/8GVUllZWWLz5s0iKytLUl8hhKw+UttKaRccHCwAiODgYMm52iJT7okt5qFkfHNicQxYF9a/urFY/9aHY0DdWLYyBlj/9pWHkvFtdqVUUFAQgoKCZPWpU6cOgL/2Y/Hw8NDtDdO5c2f861//QkZGBoKDgwH8tfm5u7s7wsLCKozn7u4Od3d3g8+FCc/Jhi8Lx428G7L7VYe6Neri5ISTsvtt3rwZOTk5eOmllwAAQ4YMwYwZM7BixQqje/l4eHhg9+7dcHV1NfhuwoQJmDJlCgCgd+/e2LNnDxYvXozvvvtOt5dPz549sXPnTqxZswbDhg2rMK+HN6CuypYtW+Dv749evXoZfKfd7yY7Oxtr167Ftm3b8Pjjj6NZs2ayjvEg7eqU9PR0WblKvd6xsbG4c+cOzp07h8cee0z3+bBhw5CdnQ1fX1+0bt0aANC0aVM88cQTRo+nzW3AgAGoU6cO4uPj0bt3b9338fHxcHNz092fY8eOYfny5Vi4cKHuXgJAYGAghgwZgtWrV+Opp56SdK7Tpk3DyZMnsW7dOqxbtw7Ozs5o27YtBgwYgNdffx21atUy6PPwvdq6dSsiIiJMvle//vorjhw5gldeecVgJdpTTz2Fxo0bIy4uTrc5PgCsXr0aXl5eGD16tEnH9PHxwYgRIxAXF4e///3vuHTpEo4fP4758+cbbT99+nTUrFkTP/30E2rUqIHS0lJ07doVTz/9NKZNm4aRI0dCo9HgvffegxAC+/fv1/2+OHDgQF0dyJGVlYVHHnnE4HPtijE5K0LljlWt8vJy5Ofny97oX2ofqW1NycNeWcu1qO48lIxvTiyOAetiLdeB9a9MH9a/fNZyLTgGlOnDMSCPtVwHW6p/ycye/rKgL774Qpw6dUr89ttvYvHixcLT01N89tlnuu9LS0tF69atxdNPPy1Onz4t9u3bJ0JDQ8WkSZNkHaeqGb7KVkqFLAwRmA2r+AlZaNpzvk8++aTw9PQU2dnZus+0q5keXJ2iXSn1xhtvGMTQrsr57bff9D4fPXq00Gg0BqvfOnfuLMLCwmTlWdVKqe7du4tx48bpfRYdHS0A6P1oNBoxYMAAvT2KTFkpdenSJQFA/P3vf5d1HlKvd3BwsIiMjKw0VmV7SmnP6UFTp04VHh4eumOXlpaK4OBg8eyzz+razJgxQ2g0GnHz5k1RUlKi+zl58qRo06aNaN26tazzFeKva/XJJ5+I559/XoSGhgoAIjAwUPz666+6NlLvlVzTpk0TAERSUpLR79977z0BQJw8eVIIIcSdO3eEm5ubiIqKkn0s7UopIYQ4cOCAbk+qKVOmiKZNmxrdBywvL09oNBrxj3/8wyDe/PnzBQBx+fJlIYQQtWvXFoMGDTJop73XUldKCSFEs2bNRL9+/Qw+T09PFwDEvHnzJMeS48GVUrbEUfZTIKoIxwA5MtY/OTLWP1XEZldKyXHixAnMmjULeXl5ePTRR/H1118jKipK972zszP+/e9/4x//+Ae6du0KT09PjBkzBh9//LFqOdatUVe1Y1XFlFyuXr2KgwcPYvjw4RBC6HbhHzFiBOLj4xEXF4d58+bp9dGuSjPmwX15AMDNzQ1eXl4GewG5ubkhNzdXdr4VuXHjBg4fPoy33nrL4DtPT08cPHgQwF+r5Bo2bCjpDWhV+fPPPwFA7+2PVZFzvW/fvo3Q0FCz83zQiy++iIULF2L9+vV45ZVXsHv3bmRkZOj2owKAmzdvQgihW4nzMFNyeuyxx3SrvYQQ+PTTTzFlyhTMnDkTGzdu1LVT+l6VlJRg1apVaNeuHcLDw422iYmJwezZsxEfH4+wsDCsWbMG9+/f161kM1WPHj3QrFkzfP3119i4cSMmT55sdK+7u3fvQghhdFxpa0u7aikzMxN16xqOc2OfVSUwMNDoaijtGxEfHstERERERERyOVXdxHqtWrUKmZmZKC4uxrlz5/QmpLQaNGiAnTt3oqCgAJmZmfjiiy+MPponxY0b8h/DOznhJFKnpFrFjymP7sXFxUEIgc2bN6NmzZq6n4EDBwIAEhISDB7NqWwTeaXcv38f6enpVW6OrfX999/D29tb92jng5ycnBAeHo7w8HC0adMGvr6+suMbs337dgBA165dJceSc71r1aqF1NRUgxhyc3+wbcuWLdGxY0fEx8cD+OvRvXr16qFnz566dkFBQdBoNDh06BCSkpJ0P2vWrEFCQgI++eQTScetiEajwRtvvAF/f39cuHBB7ztj98ocO3fuxK1bt/Dyyy9X2CY0NBSRkZFYu3YtiouLERcXh0aNGlX4OKQcMTEx+Oqrr5CVlWX0UVgAqFmzJpycnJCRkaH7THuPr127BgC6R54DAwON/j4l9/eu+/fvo2nTprh8+bLucUmt8+fPA4DkRwLNGUsZGRn44IMP9M5dyT5S20ppp13ibOkl3dXNlHtii3koGd+cWBwD1oX1r24s1r/14RhQN5atjAHWv33lYYnztOlJKbVJfWuVvSgrK0NCQgKaNm2KxMREJCYmYt++ffjPf/6Dffv2YerUqcjIyMAPP/ygem7Ozs7w8/PTe9NiZbZs2YJBgwZJnpCUG/9he/fuxTfffIMuXbqgR48ekmLJvd79+/dHYmIifvvttwpz156v9q0YxjycW0xMDI4fP45Dhw5hx44diI6Ohpubm67doEGDIIRAWlqaboIoPDwcrVq1QsuWLWXt7VTRb3bp6enIzc2VtcrMFCtWrICHhweef/75Stu99NJLuHv3ru6tdtHR0XBxMX+haXR0NAYPHow333wTISEhRtt4e3ujU6dO+O6773T30dnZGT4+Pli/fj1CQ0PRvHlzAECvXr3w448/4ubNm7r+ZWVl2LBhg6y8nJ2dMXz4cOTl5WHLli163yUkJKBevXro1KmT5FimjiVfX19ERkbKmnyU00dqWynttJPxakzKW5Ip98QW81AyvjmxOAasC+tf3Visf+vDMaBuLFsZA6x/+8rDIudZzY8R2gVz9pSyZTt27BAAxPz5841+f/v2beHu7i6GDh0qhPjfnlILFiwwaGtsTyYhKt6X6cG9dyqTkpIiNm3aJDZt2iT69esnAOh+rd0j6M6dO8LFxUVs3rzZoH9V+0JVln90dLTw9PTUvdXup59+EqtWrRKjR48Wzs7OonXr1rL2OpJ7vbVv36tdu7b49NNPxY8//ii2bNkixo8fr9tjKD8/X3h6eoquXbuKxMREkZSUJNLS0vTO6WHZ2dnC09NTt7fTw/uACSHEhAkThJeXl3jzzTfFjh07xP79+8XcuXPF8OHDxTvvvCP5nAcNGiS6desmPvnkE7F3716xf/9+8eWXX4pmzZoJFxcXSW9KNFVaWppwdnYWY8aMqbJtcXGxCAoKEhqNRjg7O5u8h5WUuq7s7XudOnUSmzZt0r1V7+G3750/f154enqKli1bivXr14vt27eLvn37ivr168veU0oIIfr06SNq1qwpli1bJvbv3y/Gjx8vAIhvv/1WVhw5uKcUkW3iGCBHxvonR8b6p4pI3VOKK6VkKCoqsnQKqlqxYgXc3Nz09hMqLy9HUVERysvLERQUhGeeeQY7d+7UW5mhBm0eP/74I5599lk8++yz2LVrFwDofr148WIAwNatW+Hm5ob+/fvLjl/VMtTCwkJ07twZnTt3Rv/+/fHuu+8iLy8Py5cvx6lTpxASEiI5ltzrHRISghMnTmDQoEH48MMP0a9fP7z66qvIzs6Gl5cXysvL4eXlhbi4OGRmZiIyMhIRERFYtmyZ3nEfzs3Pzw/PPPMMUlNT0bVrVzRv3tzgHL7++mssXrwYBw8exKhRozBw4EB89dVXKCoqkvWmt1dffRXNmzfH8uXLMWLECERGRuL9999HmzZt8PPPPxt93FIpK1euRFlZWaWP7mm5ubkhKioKQghERkYiMDBQ1SXKTz75JPbv3w9vb2+MGzcOo0aNwt27d7F161Y899xzunatW7fGvn374Ovri+joaEyYMAFt27bFzJkzZR1Pe783b96MqKgoxMbGol+/fjh+/DjWrVtX5coyY7FMuV5FRUX4/fffZf3eK6eP1LZS2on//3ZWYcJbWm2JKffEFvNQMr45sTgGrAvrX91YrH/rwzGgbixbGQOsf/vKwyLnWb1zY/ZBO8NnbMWIEPa7UsqY4uJikZaWJoqLi20mj/79+4thw4ZVW/zqjGVKXzl9pLaV0u7s2bMcA3aSgyXr/8GVUunp6WL27NkiPT1d8vHk9JHaVkq74OBgAUAEBwdLztUWmXJPbDEPJeObE4tjwLqw/tWNxfq3PhwD6saylTHA+revPJSML3WllEYIO5/SVEBubi78/PyQlZWFmjVrGnxfVFSEn3/+GTVr1oSrqyvatWtngSzVIYRAeXk5nJycLPrccHXnoWR8c2KZ0ldOH6ltpbQ7d+4cSkpKOAbsIAdL1n9RURGSk5PRuHFjuLq6oqCgAF5eXpL3pCorK5PcR2pbKe1CQ0ORlpaGkJAQoy8gsBdyrq8t56FkfHNimdKXY6D6sP7VjcX6tz4cA+rGspUxwPq3rzyUjK+dR8nJyal0jyrzd+p1IJYsPmuh0Wis4jpUdx5KxtdoNNBoNAZvKXyYsY2zTclDTh+pbeXmIYSo8nydnZ0VnVBR65jGrkVZWVmlS5aVrldz4pWXl1f5KJ2Li4ui9W9qLO2G7tXVR2pbU/KwV9ZyLao7DyXjmxOLY8C6WMt1YP0r04f1L5+1XAuOAWX6cAzIYy3XwZbqXyruKSVDdna2pVOwuNLSUmRnZxu8Jt7e8lAyfmlpKd555x24urpW+pOSkqJIHnL6SG0rN4+EhIQqz/fAgQOSYkl14MCBKo+ZkJBg9nGMXYumTZtWetynn37a7ONWlYNU7733XpXX6erVq4rWv6mxsrOzsX37dlm/98rpI7WtlHbCQfZTMOWe2GIeSsY3JxbHgHVh/asbi/VvfTgG1I1lK2OA9W9feVjiPLlSSoaqVmE4AiEESkpKLP6bTnXnoWR8IQSef/55DB061OhqKK169eopkoecPlLbys1j8ODBSEpKqrRNixYtJMWSKiwsrMpjNm7c2OzjGLsWO3bsQHFxcYV9lP7bBnPqc8KECRg0aFClbYKDg1FQUKBY/Zuaa2lpKW7fvi17UlZqH6ltpbRzlD+QmXJPbDEPJeObE4tjwLqw/tWNxfq3PhwD6saylTHA+revPCxxntxTSoKqnoV0pD2liCriKHtKUfV6cE8pDw8PS6cjmaPsp0BUEY4BcmSsf3JkrH+qiNQ9pfj4HhERERERERERqY6TUjLcvHmzwu8cZcFZSUkJMjIyUFJSYtd5KBnfnFim9JXTR2pba7nv1sAaroU91/+Dv5feuHED8+fPx40bNyQfT04fqW2ltNNuHl/VJvK2zpR7Yot5KBnfnFgcA9aF9a9uLNa/9eEYUDeWrYwB1r995WGJ8+SklAze3t5GP3dxcXGY/aacnJzg4+MDJyfLlk5156FkfHNimdJXTh+pba3lvlsDa7gW9lz/2ufXXVxcUKNGDXTr1g01atSQfDw5faS2ldJO+1ZHJd8oaY1MuSe2mIeS8c2JxTFgXVj/6sZi/VsfjgF1Y9nKGGD921celjhP7iklQVXPQgohsHbtWjRv3hxubm7cT4ccEveUIiWkpaUhPz8fzZo1s6k/3HA/BXJ0HAPkyFj/5MhY/1QRqXtK8e17MlT0di2NRoPvvvsOEydORFBQEAoLC23qf6bkKC8vR2lpKVxcXCy6UqS681AyvjmxTOkrp4/UtlLaPfjmjaKiIkm52iJrGAP2WP9CCOTn5yM3NxfBwcHQaDQoLi5GRkYGgoOD4e7uLul4cvpIbWtKHvbKWq5FdeehZHxzYnEMWBdruQ6sf2X6sP7ls5ZrwTGgTB+OAXms5TrYUv1LxUkpGe7evYtatWoZ/e7YsWPw9/fHkCFDbOqNUXKVlZXh3r178PHxgbOzs93moWR8c2KZ0ldOH6ltpbS7ffs2ysrK4OzsbNf/wbKGMWCv9a/RaODv7w8/Pz8AQFZWFhISEjBhwgQEBwdLOp6cPlLbSmnnKPspmHJPbDEPJeObE4tjwLqw/tWNxfq3PhwD6saylTHA+revPCxxnnx8TwLtsrPMzEwEBAQYbaNdtvjII4/g/PnzKmeontLSUuTl5aFGjRpwcbHcnGZ156FkfHNimdJXTh+pbaW0e/LJJ3Hz5k3UqVMHBw4ckJSrLbKGMWCv9e/q6qo3cVVaWorc3Fz4+vrKqn+pfaS2ldLOUZaum3JPbDEPJeObE4tjwLqw/tWNxfq3PhwD6saylTHA+revPJSML/XxPU5KSSDlYjrKYCSqCMcAOTLWPzk6jgFyZKx/cmSsf6qI1EkpvkpLhpycnAq/e3A/HXuWk5ODH374odJrYQ95KBnfnFim9JXTR2pbKe04BuwnB9a//Hasf/vKg2NAfjtHGAOsf3Vjsf6tD8eAurFsZQyw/u0rD0ucJyelZCgpKanwO0cZjPfv30dKSgru379v13koGd+cWKb0ldNHalsp7TgG7CcH1r/8dqx/+8qDY0B+O0cYA6x/dWOx/q0Px4C6sWxlDLD+7SsPS5wnH9+TgI/vEVWNY4AcGeufHB3HADky1j85MtY/VYSP7xERERERERERkdWy3LbxNkS7mOy///0vmjZtarRNaWmp7p+5ubmq5aa2W7duYePGjRg5ciRq165tt3koGd+cWKb0ldNHalsp7TgG7CcH1r/8dqx/+8qDY0B+O0cYA6x/dWOx/q0Px4C6sWxlDLD+7SsPJeNr66Gqh/P4+J4EqampqF+/vqXTICIiIiIiIiKyGdevX0doaGiF33NSSoLy8nI0b94cp06dgkajMdomNzcX9evXx/Xr1yt9XtIeREREICkpydJpVHseSsY3J5YpfeX0kdq2qnYcA/aVA+tfXjvWv/3lwTEgr52jjAHWv7qxWP/Wh2NA3Vi2MAZY//aXh1LxhRC4d+8e6tWrByenineO4uN7Ejg5OcHNzQ1+fn5VtvX19bX7wejs7GwV51jdeSgZ35xYpvSV00dqW6ntOAbsIwfWv2ntWP/2kwfHgGnt7H0MsP7VjcX6tz4cA+rGsqUxwPq3nzyUjC9lDoUbnUv0z3/+09IpWA1ruRbVnYeS8c2JZUpfOX2ktrWW+24NrOFasP6V6cP6l89argXHgDJ9OAbksZbrwPpXpg/rXz5ruRYcA8r04RiQx1qugy3VvxR8fE8hUl93SGSvOAbIkbH+ydFxDJAjY/2TI2P9k7m4Ukoh7u7umDVrFtzd3S2dCpFFcAyQI2P9k6PjGCBHxvonR8b6J3NxpRQREREREREREamOK6WIiIiIiIiIiEh1nJQiIiIiIiIiIiLVcVKKiIiIiIiIiIhUx0kpIiIiIiIiIiJSHSelVLBz5060aNECzZo1wzfffGPpdIhU98wzz6BmzZoYMWKEpVMhUt3169fRs2dPtGzZEm3btsWmTZssnRKRau7du4eIiAi0b98ebdq0wfLlyy2dEpHqCgoK0LBhQ0ybNs3SqRCpzsXFBe3bt0f79u3x8ssvWzodskJ8+141Ky0tRcuWLZGYmAhfX1906NABx48fR0BAgKVTI1JNYmIi8vLykJCQgM2bN1s6HSJVZWRk4ObNm2jfvj1u3bqFDh064LfffoO3t7elUyOqdmVlZSguLoaXlxcKCgrQunVrJCUlITAw0NKpEalmxowZuHLlCho0aICPP/7Y0ukQqSooKAh37tyxdBpkxbhSqpqdOHECrVq1QkhICHx8fDBgwADs3r3b0mkRqapXr17w8fGxdBpEFhEcHIz27dsDAGrXro2AgABkZWVZNikilTg7O8PLywsAUFRUhLKyMvDvQ8mRXLlyBb/++isGDBhg6VSIiKwSJ6WqcPDgQQwePBj16tWDRqPB1q1bDdp8+eWXaNy4MTw8PBAWFoaff/5Z9116ejpCQkJ0vw4NDUVaWpoaqRMpwtwxQGTrlBwDJ0+eRHl5OerXr1/NWRMpQ4n6z87ORrt27RAaGoq33noLQUFBKmVPZB4l6n/atGmYN2+eShkTKUuJMZCbm4uwsDB069YNBw4cUClzsiWclKpCfn4+2rVrh8WLFxv9fsOGDZg8eTJmzJiBM2fOoHv37ujfvz+uXbsGAEb/NlCj0VRrzkRKMncMENk6pcZAZmYmxo4di2XLlqmRNpEilKh/f39/nDt3DsnJyVi7di1u3rypVvpEZjG3/rdt24bmzZujefPmaqZNpBgl/huQkpKCU6dOYenSpRg7dixyc3PVSp9shSDJAIjvv/9e77OOHTuKiRMn6n326KOPiunTpwshhDh8+LAYOnSo7rvXXntNrFmzptpzJaoOpowBrcTERDF8+PDqTpGoWpk6BoqKikT37t3FqlWr1EiTqFqY898ArYkTJ4qNGzdWV4pE1caU+p8+fboIDQ0VDRs2FIGBgcLX11fMmTNHrZSJFKXEfwP69esnkpKSqitFslFcKWWG+/fv49SpU4iMjNT7PDIyEkeOHAEAdOzYERcuXEBaWhru3buH//znP+jbt68l0iVSnJQxQGTPpIwBIQTGjRuHp556ClFRUZZIk6haSKn/mzdv6v5WPDc3FwcPHkSLFi1Uz5VIaVLqf968ebh+/TpSUlLw8ccfY/z48YiNjbVEukSKkzIG7t69i+LiYgBAamoqLl26hCZNmqieK1k3F0snYMvu3LmDsrIy1KlTR+/zOnXq4MaNGwD+egXmwoUL0atXL5SXl+Ott97iG2fIbkgZAwDQt29fnD59Gvn5+QgNDcX333+PiIgItdMlUpyUMXD48GFs2LABbdu21e3FsHr1arRp00btdIkUJaX+U1NT8dJLL0EIASEEJk2ahLZt21oiXSJFSf0zEJG9kjIGLl++jFdeeQVOTk7QaDT47LPP+BZ6MsBJKQU8vEeUEELvsyFDhmDIkCFqp0WkmqrGAN84SfausjHQrVs3lJeXWyItIlVUVv9hYWE4e/asBbIiUkdVfwbSGjdunEoZEamrsjHQpUsXnD9/3hJpkQ3h43tmCAoKgrOzs8Hfhty6dctgxpjIHnEMkKPjGCBHxvonR8b6J0fHMUBK4aSUGdzc3BAWFoa9e/fqfb5371506dLFQlkRqYdjgBwdxwA5MtY/OTLWPzk6jgFSCh/fq0JeXh6uXr2q+3VycjLOnj2LgIAANGjQAFOmTEFUVBTCw8PRuXNnLFu2DNeuXcPEiRMtmDWRcjgGyNFxDJAjY/2TI2P9k6PjGCBVWOy9fzYiMTFRADD4iY6O1rVZsmSJaNiwoXBzcxMdOnQQBw4csFzCRArjGCBHxzFAjoz1T46M9U+OjmOA1KARQgg1Jr+IiIiIiIiIiIi0uKcUERERERERERGpjpNSRERERERERESkOk5KERERERERERGR6jgpRUREREREREREquOkFBERERERERERqY6TUkREREREREREpDpOShERERERERERkeo4KUVERERERERERKrjpBQREREREREREamOk1JEREREpIhx48ZBo9HofpYuXarq8a9evap3/EaNGql6fCIiIpLHxdIJEBEREVUmJSUFjRs3rrSNEEKlbEiK119/Hf7+/ggPD9f7vFGjRrhx4waKiooq7Ovh4YG6desiJSVF9nEDAgIwa9YsAMCnn34quz8RERGpi5NSREREZBOaNm2KF154wdJpkASTJ0+2yCqlgIAAzJ49GwCwcuVK1Y9PRERE8nBSioiIiGzCI488optwICIiIiLbxz2liIiIyC7Mnj0bGo0GP/30ExISEhAWFgYvLy/07NlT1+bevXuYNWsWWrVqBU9PT/j7+6Nfv344dOiQ0ZgXL17EoEGD4OPjAz8/PwwYMAAXLlzQ7Z304CNmDx7/YStXroRGozG6eueXX37BqFGjEBwcDDc3NzRs2BCvvvoqMjMz9dqlpKRAo9Fg3Lhx+OOPPzBixAjUrFkT3t7e6N27N86dO2f0HG7duoVp06ahRYsW8PDwQEBAAJ544gksXLgQAPDHH3/AyckJAwcONNr/7t278PDwQLt27Yx+X920513ZjymP+hEREZHlcaUUERER2ZUFCxYgMTERQ4YMQZ8+feDi8tcfd7KystCjRw9cvHgR3bt3R9++fZGTk4Nt27ahV69e2LRpE4YOHaqLc+HCBXTt2hV5eXkYNmwYmjVrhhMnTqBr166KTdBs374dI0eOhLOzM4YMGYL69evj0qVLWLx4MXbv3o3jx4+jZs2aen1SUlLQqVMntGzZEi+++CL++9//6s7h8uXLqFOnjq7tlStX0KtXL6SlpaFbt24YOnQo8vPzceHCBfzrX//C1KlT0aRJE/Tu3Ru7du1CamoqQkND9Y63evVqFBcXY/z48Yqcs1z+/v66faIeVFhYiEWLFqG8vBweHh4WyIyIiIjMxUkpIiIisglXr141+vhev3798MQTT+h+feDAARw/fhxt2rTRa/fqq6/i4sWLiIuLQ0xMjO7zuXPnIiIiAhMmTEC/fv10ExyTJk1Cbm4uvv32Wzz//PO69u+88w7mzZtn9vlkZmYiKioKtWrVwuHDh9GgQQPdd+vWrcOYMWMQGxuLL774Qq/fgQMH8OGHH+Ltt9/WfTZz5kx88MEHiI+Px/Tp03Wfv/DCC0hLS8OyZcsMJpVSU1N1/z5hwgTs3bsXcXFxiI2N1Wu3YsUKeHh4KLafV2lpaaWPYZaWlur92t/f36C9EAKjRo1CaWkpFixYgLp16yqSGxEREalMEBEREVmx5ORkAaDCn08++UQIIcSsWbMEAPHGG28YxLh9+7ZwdnYWTz/9tNFjfP755wKA2LFjhxBCiD///FMAEG3btjVoe+/ePeHv7y8AiOTkZN3n2uMnJiYa9ImPjxcARHx8vO6zRYsWCQBi9erVRnPq0KGDCAoKMrgOjRs3FmVlZUav0bBhw3SfnThxQgAQPXr0MBr/Qffv3xd16tQRjRo1EuXl5QYxXnjhhSpjCCFEdHS0wXV5UMOGDSu9l9qfhg0bVnqcmTNnCgAiJiamwjYNGzasMg4RERFZFldKERERkU3o27cvdu3aVWW7jh07GnyWlJSEsrIyFBUVGV2lc+XKFQDAr7/+ikGDBun2Z+rWrZtB2xo1aqB9+/ZG946S49ixY7p/Xr161eD7oqIi3LlzB3fu3EFQUJDu83bt2sHJSX9bUO0jd9nZ2brPTpw4AQCIjIysMhdXV1e8+OKLmDdvHvbu3avrs2LFCgDAyy+/LOPMKufu7o6ioqIKv6/qUbx169bh/fffR/fu3bF06VLF8iIiIiL1cVKKiIiI7MqDeyppZWVlAQAOHz6Mw4cPV9g3Pz8fAJCTkwMAqF27tuRjyKXNacmSJZW2y8/P15uU8vPzM2ij3TerrKxM95l2giokJERSPuPHj8eHH36Ib775BpGRkSgoKMC6devQvHlzPPnkk5JiVLdjx47hxRdfRJMmTfDdd9/Bzc3N0ikRERGRGfj2PSIiIrIrGo3G4DNfX18AwNSpUyGEqPBHu6G2duLn1q1bRo9x8+ZNg8+0q5ce3hMJ+N8kl7Gczp8/X2lODRs2lHLaBvz9/QEAaWlpkto3btwYffr0wbZt23Dnzh1s3LgRubm5iq6SMse1a9cwdOhQuLm5YceOHXoTdURERGSbOClFREREdi8iIgIajQZHjx6V1F77dr1Dhw4ZfJeXl4ezZ88afK59S56xSaAzZ84YfNapUycAkJyTXNrHGPfs2SO5z4QJE3D//n2sWrUKK1asgKurK6Kjo6slPzny8vIwePBg3LlzBxs2bEDLli0tnRIREREpgJNSREREZPfq1q2LkSNH4siRI1iwYAGEEAZtjh8/joKCAgBAgwYN0KNHD/zyyy9Ys2aNXru5c+fq7d2kFR4eDgBYtWoVysvLdZ8fPXrUIAYAxMTEwMfHBzNmzMDFixcNvi8oKNDtO2WKiIgIdOzYEQcPHsTy5csNvjc2efa3v/0NdevWxcKFC3Ho0CEMGTKkwkcY1VJeXo4xY8bgl19+waJFi9CvXz+L5kNERETK4Z5SRERE5BC+/PJL/Pbbb3jrrbewevVqdO7cGX5+frh+/TpOnTqFK1euICMjA15eXgD+2uupa9euGDt2LLZu3YpmzZohKSkJJ06cQPfu3fHzzz/rxX/iiSfQuXNn7N+/H507d0aPHj3w559/Yvv27Rg8eDC+//57vfa1atXCunXr8Oyzz6Jdu3bo168fHn30URQVFeHPP//EgQMH0KVLF0mbu1fk22+/Rc+ePTFhwgTdORcVFeHixYs4c+YMMjMz9dq7uLjgxRdfxNy5cwEou8G5qTZv3owdO3YgODgYWVlZRjeqnzx5su5xRSIiIrIdnJQiIiIihxAQEIAjR45g8eLF2LBhA9asWYPy8nLUrVsX7dq1w8yZM/X2KWrdujUOHz6Mt99+G7t27cLu3bvRrVs3HD58GB9//LHBpJRGo8H27dsxZcoU/Pvf/8b58+fRrl07bN++Henp6QaTUgAwcOBAnDlzBgsWLMC+ffuwd+9eeHt7IzQ0FDExMXjhhRfMOudmzZrh9OnTmDdvHnbs2IFPP/0UNWrUQLNmzfDuu+8a7RMdHY25c+eiQYMGkt7cV920q9cyMjIwZ84co23GjRvHSSkiIiIbpBHG1q8TERERUYXGjRuHhIQEJCcno1GjRpZOR1EbN27Ec889hzlz5iA2NlZWX2u6Ltrjp6SkWDQPIiIiqhj3lCIiIiIiAIAQAosWLYKLiwteeuklk+M0btwYGo0GS5cuVTC7ql29ehUajQYajQZ//vmnqscmIiIi+fj4HhEREZGDO3/+PHbu3IkjR47g+PHjmDhxIkJCQmTHGTp0qN4KKe3m72oJCAjArFmzdL/mI31ERETWjY/vEREREclkTY+pKWHlypWIiYmBv78/hgwZgiVLlqBGjRqWTouIiIjsHCeliIiIiIiIiIhIddxTioiIiIiIiIiIVMdJKSIiIiIiIiIiUh0npYiIiIiIiIiISHWclCIiIiIiIiIiItVxUoqIiIiIiIiIiFTHSSkiIiIiIiIiIlIdJ6WIiIiIiIiIiEh1nJQiIiIiIiIiIiLVcVKKiIiIiIiIiIhU9/8Afk7jwEgwcyUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_analysis(processed_data_bkg, processed_data, Sxx_bkg, Sxx, filename_bkg, filename_data, peak_find_threshold=-60)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "699f9f52", + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "67f9cd80", + "metadata": {}, + "outputs": [], + "source": [ + "\"\"\"Synthetic data to validate analysis\"\"\"\n", + "# # Generate time series data with values against time in seconds\n", + "# num_seconds = 10 # Total number of seconds\n", + "# time = np.arange(0, num_seconds, 1/30) # Create timestamp index\n", + "# voltage = np.sin(2*np.pi*4*time) + np.sin(2*np.pi*7*time) + np.random.randn(len(time))*0.2 # Generate 4 Hz and 7 Hz sine wave\n", + "# data = np.column_stack((time, voltage))\n", + "\n", + "\"\"\"Real data\"\"\" \n", + "dir = str(globals()['_dh'][0]).replace('\\\\','/') + \"/Time Series Data/\"\n", + "filename_bkg = \"Arm 2/PID_Active_SP_9V\"\n", + "filepath_bkg = dir + filename_bkg + \".csv\"\n", + "\n", + "background_data = extract_data(filepath_bkg)\n", + "\n", + "dir = str(globals()['_dh'][0]).replace('\\\\','/') + \"/Time Series Data/\"\n", + "filename_data = \"Arm 2/PID_Inactive_SP_9V\"\n", + "filepath_data = dir + filename_data + \".csv\"\n", + "\n", + "data = extract_data(filepath_data)" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "be833e35", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Calculating power spectrum...\n" + ] + } + ], + "source": [ + "# Extract the first and second columns from data_array\n", + "time_bkg = background_data[:, 0]\n", + "voltage_bkg = background_data[:, 1]\n", + " \n", + "processed_data_bkg, Sxx_bkg = compute_psd(background_data, new_sampling_rate = 1000000)" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "a37ab5b3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Calculating power spectrum...\n" + ] + } + ], + "source": [ + "# Extract the first and second columns from data_array\n", + "time = data[:, 0]\n", + "voltages = data[:, 1]\n", + "\n", + "processed_data, Sxx = compute_psd(data, new_sampling_rate = 1000000)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "e5ca8ba3", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAMWCAYAAAAgRDUeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5gURfrHvzObl7TAkpYsggqIIpwYCKKengrmHFAxnDnr6f3uEMynmHMWTBjAgIJ6CoqoiJKDghJc0uacd3b798feDqzsLFU9Nd3VXd/P8+zj7vT7vvNWzffLPFfXVR2wLMsCIYQQQgghhBBCCCEOEnS7AUIIIYQQQgghhBBiHlyUIoQQQgghhBBCCCGOw0UpQgghhBBCCCGEEOI4XJQihBBCCCGEEEIIIY7DRSlCCCGEEEIIIYQQ4jhclCKEEEIIIYQQQgghjsNFKUIIIYQQQgghhBDiOFyUIoQQQgghhBBCCCGOE+92A16gvr4e27dvR5s2bRAIBNxuhxBCCCGEEEIIIURbLMtCaWkpMjIyEAxGvh+Ki1ICbN++HT179nS7DUIIIYQQQgghhBDPsGXLFvTo0SPidS5KCdCmTRsADZPZtm3bZmP23Xdf7NixA926dcOvv/7qZHuEaAE9QEyG+iemQw8Qk6H+iclQ/yQSJSUl6NmzZ3g9JSIW2SPFxcUWAOu3336LGNOtWzcLgNWtWzcHO3OerKws68EHH7SysrJ83YfK+tHUspMrkyMaKxJHD/inB+pfPo7691cf9IB8nAkeoP6drUX96wc94Gwtr3iA+vdXHyrrN66jFBcXtxjHg84lSE1NjXit8awpv5851apVKxxyyCFo1aqVr/tQWT+aWnZyZXJEY0Xi6AH/9ED9y8dR//7qgx6QjzPBA9S/s7Wof/2gB5yt5RUPUP/+6sONcQYsy7IcezePUlJSgnbt2qG4uDji9r0ePXpg27Zt6N69O7Zu3epwh4S4Dz1ATIb6J6ZDDxCTof6JyVD/JBIi6ygAwDulJKipqXG7BdepqalBZmam63MR6z5U1o+mlp1cmRzRWF0+dx3QYS6ofzU51L88uswFPaAmhx6QQ5d5oP7V5FD/8ugyF/SAmhx6QA5d5sFL+heFi1ISFBQURLxWX1/f5L9+JT8/H6+++iry8/N93YfK+tHUspMrkyMaKxJHD/inB+pfPo7691cf9IB8nAkeoP6drUX96wc94Gwtr3iA+vdXH26Mk9v3BGi87Sw/Px8dOnRoNsaU2xZDoRCKioqQlpaG+Hj3Ht4Y6z5U1o+mlp1cmRzRWJE4esA/PVD/8nHUv7/6oAfk40zwAPXvbC3qXz/oAWdrecUD1L+/+lBZX3T7HhelBOCZUoTsGXqAmAz1T0yHHiAmQ/0Tk6H+SSR4plQMKCkpiXitcW3P72t8JSUl+Pzzz1ucCz/0obJ+NLXs5MrkiMaKxNED/umB+pePo/791Qc9IB9nggeof2drUf/6QQ84W8srHqD+/dWHG+PkopQELR32ZYoZq6ursWHDBlRXV/u6D5X1o6llJ1cmRzRWJI4e8E8P1L98HPXvrz7oAfk4EzxA/Ttbi/rXD3rA2Vpe8QD1768+3Bgnt+8JwO17hOwZeoCYDPVPTIceICZD/ROTof5JJLh9jxBCCCGEEEIIIYRoCxelJMjNzY14zZRHYebk5OCxxx5DTk6Or/tQWT+aWnZyZXJEY0Xi6AH/9ED9y8dR//7qgx6QjzPBA9S/s7Wof/2gB5yt5RUPUP/+6sONcXJRSoLk5OSI1wKBQJP/+pWUlBQMGTIEKSkpvu5DZf1oatnJlckRjRWJowf80wP1Lx9H/furD3pAPs4ED1D/ztai/vWDHnC2llc8QP37qw83xskzpQTgmVKE7Bl6gJgM9U9Mhx4gJkP9E5Oh/kkkeKZUDKitrXW7Bdepra3Fjh07XJ+LWPehsn40tezkyuSIxuryueuADnNB/avJof7l0WUu6AE1OfSAHLrMA/WvJof6l0eXuaAH1OTQA3LoMg9e0r8oXJSSID8/P+I1U/bS5uXl4YUXXkBeXp6v+1BZP5padnJlckRjReLoAf/0QP3Lx1H//uqDHpCPM8ED1L+ztah//aAHnK3lFQ9Q//7qw41xcvueAI23neXl5aFjx47Nxphy22JtbS3y8vKQnp6OhIQE3/ahsn40tezkyuSIxorE0QP+6YH6l4+j/v3VBz0gH2eCB6h/Z2tR//pBDzhbyyseoP791YfK+qLb97goJQDPlCJkz9ADxGSof2I69AAxGeqfmAz1TyLBM6ViQGlpacRrjWt7fl/jKy0txbx581qcCz/0obJ+NLXs5MrkiMaKxNED/umB+pePo/791Qc9IB9nggeof2drUf/6QQ84W8srHqD+/dWHG+PkopQEVVVVEa+ZYsbKykqsXLkSlZWVvu5DZf1oatnJlckRjRWJowf80wP1Lx9H/furD3pAPs4ED1D/ztai/vWDHnC2llc8QP37qw83xsntewJw+x4he4YeICZD/RPToQeIyVD/xGSofxIJbt8jhBBCCCGEEEIIIdrCRSkJ+ChYIDc3F8888wxyc3N93YfK+tHUspMrkyMaKxJHD/inB+pfPo7691cf9IB8nAkeoP6drUX96wc94Gwtr3iA+vdXH26Mk4tSEiQmJka8FggEmvzXryQlJaFfv35ISkrydR8q60dTy06uTI5orEgcPeCfHqh/+Tjq31990APycSZ4gPp3thb1rx/0gLO1vOIB6t9ffbgxTp4pJQDPlCJkz9ADxGSof2I69AAxGeqfmAz1TyLBM6ViQCgUcrsF1wmFQsjLy3N9LmLdh8r60dSykyuTIxqry+euAzrMBfWvJof6l0eXuaAH1OTQA3LoMg/Uv5oc6l8eXeaCHlCTQw/Iocs8eEn/onBRSgKeKdWwx/Tpp5/WYi9tLPtQWT+aWnZyZXJEY0Xi6AH/9ED9y8dR//7qgx6QjzPBA9S/s7Wof/2gB5yt5RUPUP/+6sONcXL7ngCNt53l5uYiPT292RhTblusqalBVlYWunbt2uIZW17vQ2X9aGrZyZXJEY0ViaMH/NMD9S8fR/37qw96QD7OBA9Q/87Wov71gx5wtpZXPED9+6sPlfVFt+9xUUoAnilFyJ6hB4jJUP/EdOgBYjLUPzEZ6p9EgmdKxYCrZ1+NCz+8EGe9fxZOfPtEHPP6MRj16igc/srhKK8pBwD4fY2vrKwM3377LcrKynzdh8r60dSykyuTIxorEteofXrA+z1Q//Jx1L+/+qAH5ONM8AD172wt6l8/6AFna3nFA9S/v/pwY5xclJLgjdVvYPqK6Xh3zbuYvX42/rvxv1iYuRDfb/keRVVFAPxvxvLycixatAjl5eW+7kNl/Whq2cmVyRGNFYkz5QtJBw9Q/2pyqH95dNC/E33QA/JxJniA+ne2FvWvH/SAs7W84gHq3199uDFObt8ToPG2M9wOIDlC0MMASsHbFomx8NZdYjLUPzEdeoCYDPVPTIb6J5EQ3b4X72BPnmfhxIVIb5+O5PhkpCSkIDk+GfHBeBzy0iFYhVUAgLIad2/nI4QQQgghhBBCCPEC3L4nQUZ8BvZJ3we903qjc6vOaJvUFqkJqXh+3PPhmJLqEmQWZ7rYZWzJy8vDiy++iLy8PF/3obJ+NLXs5MrkiMaKxJnyOFgdPED9q8mh/uXRQf9O9EEPyMeZ4AHq39la1L9+0APO1vKKB6h/f/Xhxji5KCVBfHzzN5Yd2vNQpCakAmjYS3vNnGt8u6c2ISEBXbt2RUJCgq/7UFk/mlp2cmVyRGNF4gKBQJP/+hUdPED9q8mh/uXRQf9O9EEPyMeZ4AHq39la1L9+0APO1vKKB6h/f/Xhxjh5ppQAInshu3fvju3btwNtANwMzDpzFk7Z7xRnGyXERbifnJgM9U9Mhx4gJkP9E5Oh/kkkRM+U4p1SEtTV1UW89ueV4WvnXovS6tJYt+Q4dXV1KCkpaXEu/NCHyvrR1LKTK5MjGqvL564DOswF9a8mh/qXR5e5oAfU5NADcugyD9S/mhzqXx5d5oIeUJNDD8ihyzx4Sf+icFFKgtzc3IjXGvfQJsUnAQC2lW7Dv+f/25G+nCQnJwePPvoocnJyfN2HyvrR1LKTK5MjGisSZ8p+ch08QP2ryaH+5dFB/070QQ/Ix5ngAerf2VrUv37QA87W8ooHqH9/9eHGOLl9T4DG285ycnLQqVOnZmMab1vs0q0LSq4uQWWoEsFAED9e+iOGZwx3uOPYUV1djS1btqBnz55ISkrybR8q60dTy06uTI5orEicKbfu6uAB6l9NDvUvjw76d6IPekA+zgQPUP/O1qL+9YMecLaWVzxA/furD5X1RbfvcVFKAJHJ3NWM1864Frd/dTsA4KBuB+HHS39EfLD5Q9IJ8QumfCER0hzUPzEdeoCYDPVPTIb6J5HgmVIxoLy8POK1xrU9y7Jw06E3YXDnwQCApTuW4unFTzvSnxOUl5fjxx9/bHEu/NCHyvrR1LKTK5MjGisSt6sH/IwOHqD+1eRQ//LooH8n+qAH5ONM8AD172wt6l8/6AFna3nFA9S/v/pwY5xclJKgrKws4rVdzZgQl4Dnxz0fvvav+f9CVllWzPtzgtLSUnz11VcoLXX3EPdY96GyfjS17OTK5IjGisSZ8oWkgweofzU51L88OujfiT7oAfk4EzxA/Ttbi/rXD3rA2Vpe8QD1768+3Bgnt+8JILt9r/G2xb/P/jteWPoCAGDKEVMwacwkx3omxGl46y4xGeqfmA49QEyG+icmQ/2TSHD7ngb8a/S/EAw0TPELS15AqD7kckeEEEIIIYQQQgghesBFKQkKCgoiXmvuUZg92/XEuAHjAADbSrdh9rrZsW3QAfLz8/Haa68hPz/f132orB9NLTu5MjmisSJxpjwOVgcPUP9qcqh/eXTQvxN90APycSZ4gPp3thb1rx/0gLO1vOIB6t9ffbgxTi5KSRAIBKRzrhp+Vfj3Z39+VmU7rhAMBtG2bVsEg+5KJ9Z9qKwfTS07uTI5orG6fO46oMNcUP9qcqh/eXSZC3pATQ49IIcu80D9q8mh/uXRZS7oATU59IAcusyDl/QvCs+UEsDumVIAUG/VY8CTA7ChcAMAYP0169G/Y39H+ibESbifnJgM9U9Mhx4gJkP9E5Oh/kkkeKZUDLBzS2IwEMTfh/09/PdzPz+nsiXHqa+vR2Vlpeu3Z8a6D5X1o6llJ1cmRzRWl89dB3SYC+pfTQ71L48uc0EPqMmhB+TQZR6ofzU51L88uswFPaAmhx6QQ5d58JL+ReGilAQ5OTkRr7W0l/bioRcjKS4JAPDq8ldRWVsZmwYdIDs7Gw8++CCys7N93YfK+tHUspMrkyMaKxJnyn5yHTxA/avJof7l0UH/TvRBD8jHmeAB6t/ZWtS/ftADztbyigeof3/14cY4uX1PgMbbzrKystClS5dmY7p3747t27cjIyMD27Zt2+36hA8m4PWVrwMAXjvpNVx44IUx7TlWVFZWYvPmzejTpw9SUlJ824fK+tHUspMrkyMaKxK3Jw/4BR08QP2ryaH+5dFB/070QQ/Ix5ngAerf2VrUv37QA87W8ooHqH9/9aGyvuj2PS5KCRDNmVKN/LDlBxz2ymEAgBHdR2DRpYti2jMhTsP95MRkqH9iOvQAMRnqn5gM9U8iwTOlYkBFRUXEa41re5HW+A7pcQgO6HIAAODHbT9i6Y6l6ht0gIqKCixdurTFufBDHyrrR1PLTq5MjmisSNyePOAXdPAA9a8mh/qXRwf9O9EHPSAfZ4IHqH9na1H/+kEPOFvLKx6g/v3Vhxvj5KKUBCUlJRGv7cmMgUAAVw6/Mvz3sz89q7Y5hyguLsbs2bNRXFzs6z5U1o+mlp1cmRzRWJE4U76QdPAA9a8mh/qXRwf9O9EHPSAfZ4IHqH9na1H/+kEPOFvLKx6g/v3Vhxvj5PY9AVRs3wOAspoyZDycgdKaUqQmpGL7TdvRLrldLFsnxDF46y4xGeqfmA49QEyG+icmQ/2TSHD7noa0TmyNCQdMAABU1FZg+orpLndECCGEEEIIIYQQ4g5clJKgoKAg4jXRR2E22cL387Oeu82xoKAAb731Votz4Yc+VNaPppadXJkc0ViROFMeB6uDB6h/NTnUvzw66N+JPugB+TgTPED9O1uL+tcPesDZWl7xAPXvrz7cGCcXpSQIBAJR1xjUeRBG9RoFAPgl7xd888c3Udd0kkAggLi4OCVzoXMfKutHU8tOrkyOaKwun7sO6DAX1L+aHOpfHl3mgh5Qk0MPyKHLPFD/anKof3l0mQt6QE0OPSCHLvPgJf0LvyfPlNozqs6UauTtVW/j3FnnAgDOHHQm3jn9HeU9E+I03E9OTIb6J6ZDDxCTof6JyVD/JBI8UyoGqFq/O3W/U9G5VWcAwEe/foSauholdZ3AsiyEQiHXtx3Gug+V9aOpZSdXJkc0VpfPXQd0mAvqX00O9S+PLnNBD6jJoQfk0GUeqH81OdS/PLrMBT2gJocekEOXefCS/kXhopQE2dnZEa/J7KVNik/C0XsdDQCorqvG6pzVahp0gKysLNx7773IysrydR8q60dTy06uTI5orEicKfvJdfAA9a8mh/qXRwf9O9EHPSAfZ4IHqH9na1H/+kEPOFvLKx6g/v3VhyvjtMgeKS4utgBYWVlZEWMyMjIsAFZGRoZQzUe+f8TCZFiYDOuFn19Q1WrMqaiosFasWGFVVFT4ug+V9aOpZSdXJkc0ViRO1gNeRQcPUP9qcqh/eXTQvxN90APycSZ4gPp3thb1rx/0gLO1vOIB6t9ffais37iOUlxc3GIcz5QSQPWZUgCw4I8FGPPaGADA5QddjufHP6+0Z0KchvvJiclQ/8R06AFiMtQ/MRnqn0SCZ0rFgMrKyojXGtf2RNf4hnYdigAaTrRfsmNJ9M05RGVlJVatWtXiXPihD5X1o6llJ1cmRzRWJE7WA15FBw9Q/2pyqH95dNC/E33QA/JxJniA+ne2FvWvH/SAs7W84gHq3199uDFOLkpJUFxcHPGarBnbJLXBPun7AABWZq9Edag6+gYdoKioCLNmzUJRUZGv+1BZP5padnJlckRjReJM+ULSwQPUv5oc6l8eHfTvRB/0gHycCR6g/p2tRf3rBz3gbC2veID691cfboyT2/cEaLztrLCwEGlpac3G2Llt8fxZ5+PNVW8CAH6+7GcMyximquWYUV9fj1AohPj4eASD7q1pxroPlfWjqWUnVyZHNFYkzpRbd3XwAPWvJof6l0cH/TvRBz0gH2eCB6h/Z2tR//pBDzhbyyseoP791YfK+ty+FwNUf+jDM4aHf/fKFr5gMIjExERXjehEHyrrR1PLTq5MjmisLp+7DugwF9S/mhzqXx5d5oIeUJNDD8ihyzxQ/2pyqH95dJkLekBNDj0ghy7z4CX9C7+nY+/kAwoLCyNes/MozGHddt4ZtWS7NxalCgsL8d5777U4F37oQ2X9aGrZyZXJEY0ViTPlcbA6eID6V5ND/cujg/6d6IMekI8zwQPUv7O1qH/9oAecreUVD1D//urDjXFyUUoC1Tsdh3bbedj5zzt+Vlo7VtTX16O6utr1f3Ri3YfK+tHUspMrkyMaq8vnrgM6zAX1ryaH+pdHl7mgB9Tk0ANy6DIP1L+aHOpfHl3mgh5Qk0MPyKHLPHhJ/6LwTCkBRPZC2t1LO/Dpgfgl7xckBBNQekcpkuKTVLVNiKOYsp+ckOag/onp0APEZKh/YjLUP4kEz5TyCI3nStXW12JVziqXuyGEEEIIIYQQQghxBi5KSZCVlRXxmt29tF47V2rHjh246667sGPHDl/3obJ+NLXs5MrkiMaKxJmyn1wHD1D/anKof3l00L8TfdAD8nEmeID6d7YW9a8f9ICztbziAerfX324MU4uSknQpk2biNcCgUCT/4oyLGOXRSkPPIGvbdu2OP7441u8/c4PfaisH00tO7kyOaKxInF2PeA1dPAA9a8mh/qXRwf9O9EHPSAfZ4IHqH9na1H/+kEPOFvLKx6g/v3Vhxvj5JlSAsTyTKmymjK0e6Ad6q16DO06FEv/vlRV24Q4CveTE5Oh/onp0APEZKh/YjLUP4kEz5SKAVVVVRGvNa7tya7xtU5sjX3T9wUArM5ZjepQtf0GHaCqqgrr1q1rcS780IfK+tHUspMrkyMaKxJn1wNeQwcPUP9qcqh/eXTQvxN90APycSZ4gPp3thb1rx/0gLO1vOIB6t9ffbgxTi5KSVBUVBTxWjRm9NJh54WFhZgxYwYKCwt93YfK+tHUspMrkyMaKxJnyheSDh6g/tXkUP/y6KB/J/qgB+TjTPAA9e9sLepfP+gBZ2t5xQPUv7/6cGOc3L4nQONtZwUFBWjfvn2zMdHctvjEj0/g+s+uBwA8e8KzuGL4FVH3HCvq6upQVVWF5ORkxMXF+bYPlfWjqWUnVyZHNFYkzpRbd3XwAPWvJof6l0cH/TvRBz0gH2eCB6h/Z2tR//pBDzhbyyseoP791YfK+qLb9+KjehfDiJX4vPQEvri4OLRq1crtNmLeh8r60dSykyuTIxqry+euAzrMBfWvJof6l0eXuaAH1OTQA3LoMg/Uv5oc6l8eXeaCHlCTQw/Iocs8eEn/onD7ngSx2r53YNcDEQw0fBS6P4GvqKgIH374YYtz4Yc+VNaPppadXJkc0ViROFNu3dXBA9S/mhzqXx4d9O9EH/SAfJwJHqD+na1F/esHPeBsLa94gPr3Vx9ujJOLUhLU1dVFvBaNGVsltsJ+6fsBAFblrEJVyN3D01oiFAqhoKAAoVDI132orB9NLTu5MjmisSJxpnwh6eAB6l9NDvUvjw76d6IPekA+zgQPUP/O1qL+9YMecLaWVzxA/furDzfGyTOlBBDZCxntXtqLPrwI01ZMAwAsvnQx/tL9L1H1TIjTmLKfnJDmoP6J6dADxGSof2Iy1D+JhOiZUrxTShN2PVfq5+0/u9gJIYQQQgghhBBCSOzhopQE2dnZEa/V19c3+a8swzOGh3/X+VyprKws3H///cjKyvJ1HyrrR1PLTq5MjmisSFy0HvAKOniA+leTQ/3Lo4P+neiDHpCPM8ED1L+ztah//aAHnK3lFQ9Q//7qw41xclFKgpZOoQ8EAk3+K8sBXQ/wxGHnrVu3xhFHHIHWrVv7ug+V9aOpZSdXJkc0ViQuWg94BR08QP2ryaH+5dFB/070QQ/Ix5ngAerf2VrUv37QA87W8ooHqH9/9eHGOHmmlABOnCkFAPs/uz9W56xGfDAepXeUIjk+OZq2CXEU7icnJkP9E9OhB4jJUP/EZKh/EgmeKRUDqqurY1q/cQtfqD6EldkrY/pedqmursbGjRtjPhdu96GyfjS17OTK5IjG6vK564AOc0H9q8mh/uXRZS7oATU59IAcuswD9a8mh/qXR5e5oAfU5NADcugyD17SvyhclJKgsLAw4jUVe2l3Pex8yXY9t/AVFBTg9ddfR0FBga/7UFk/mlp2cmVyRGNF4kzZT66DB6h/NTnUvzw66N+JPugB+TgTPED9O1uL+tcPesDZWl7xAPXvrz7cGCe37wnQeNtZfn4+OnTo0GyMitsWF21dhENfPhQAMPHAiXj5pJdt9xwrQqEQysrK0Lp1a8THx/u2D5X1o6llJ1cmRzRWJM6UW3d18AD1ryaH+pdHB/070Qc9IB9nggeof2drUf/6QQ84W8srHqD+/dWHyvqi2/e4KCWAU2dKVdZWos39bVBn1eGALgdg+RXLo+iaEGcx5QuJkOag/onp0APEZKh/YjLUP4kEz5SKAcXFxRGvNa7tRbPGl5KQgkGdBwEAVuesRmVtpe1asaK4uBiffvppi3Phhz5U1o+mlp1cmRzRWJE4FR7wAjp4gPpXk0P9y6OD/p3ogx6QjzPBA9S/s7Wof/2gB5yt5RUPUP/+6sONcXJRSoLa2tqI11SZcXi3hsPO66w6fL/l+6hqxYKamhps3boVNTU1vu5DZf1oatnJlckRjRWJM+ULSQcPUP9qcqh/eXTQvxN90APycSZ4gPp3thb1rx/0gLO1vOIB6t9ffbgxTm7fE8Cp7XsAMGP1DJwz8xwAwA0jbsCjf3vUdi1CnIS37hKTof6J6dADxGSof2Iy1D+JBLfveZS/7f03xAXiAACz18/2/YozIYQQQgghhBBCzISLUhLk5OREvKbqUZhpyWkY1XsUAGBD4Qasy18XVT3VZGdn4+GHH0Z2drav+1BZP5padnJlckRjReJMeRysDh6g/tXkUP/y6KB/J/qgB+TjTPAA9e9sLepfP+gBZ2t5xQPUv7/6cGOcXJSSICUlJeK1QCDQ5L/RMH7A+PDvs9fNjrqeSlJTU/GXv/wFqampvu5DZf1oatnJlckRjRWJU+kBndHBA9S/mhzqXx4d9O9EH/SAfJwJHqD+na1F/esHPeBsLa94gPr3Vx9ujJNnSgng5JlSALA+fz32eWofAMDo3qPxzUXfRFWPECfgfnJiMtQ/MR16gJgM9U9MhvonkeCZUjHAqRPoB3QcgAEdBwAAvsv8DgWVBY68rwg1NTXYsmWLFk8diGUfKutHU8tOrkyOaKwun7sO6DAX1L+aHOpfHl3mgh5Qk0MPyKHLPFD/anKof3l0mQt6QE0OPSCHLvPgJf2LwkUpCQoKIi8Oqd5L27iFr86qw9zf5iqpqYL8/Hy88soryM/P93UfKutHU8tOrkyOaKxInCn7yXXwAPWvJof6l0cH/TvRBz0gH2eCB6h/Z2tR//pBDzhbyyseoP791Ycb4+T2PQEabzvLy8tDx44dm41Rfdvi15u/xthpYwEAZw8+G2+f9nbUNVVQW1uLwsJCtG/fHgkJCb7tQ2X9aGrZyZXJEY0ViTPl1l0dPED9q8mh/uXRQf9O9EEPyMeZ4AHq39la1L9+0APO1vKKB6h/f/Whsr7o9j0uSgng9JlSAFBbV4vOUzujqKoI7ZLaIffWXCTEuSd+QvaEKV9IhDQH9U9Mhx4gJkP9E5Oh/kkkeKZUDKhc+zzw27PAr48Dax8CVt8DrJwErLkPjWt7qtb4EuIScNzexwEAiquLsTBzoZK60VJSUoIvvvgCJSUlvu5DZf1oatnJlckRjRWJU+0BXdHBA9S/mhzqXx4d9O9EH/SAfJwJHqD+na1F/esHPeBsLa94gPr3Vx9ujJOLUhJUB9oCrfoCafsD6YcCXY8Bep4KVBfAqqsCoNaM4waMC//+yfpPlNWNhqqqKqxfvx5VVVW+7kNl/Whq2cmVyRGNFYkz5QtJBw9Q/2pyqH95dNC/E33QA/JxJniA+ne2FvWvH/SAs7W84gHq3199uDFObt8TYI+3nVVsRY8+A7Att1LpbYsFlQXo/FBn1Fl16N+hP9Zfu15JXUJiAW/dJSZD/RPToQeIyVD/xGSofxIJbt9zktQeMSnbIaUDDu91OADgt4LfsD6fi1KEEEIIIYQQQgjxB1yUkiA3NzfiNSuYDED9ozDHDxgf/n32utlKa9shJycHTzzxBHJycnzdh8r60dSykyuTIxorEmfK42B18AD1ryaH+pdHB/070Qc9IB9nggeof2drUf/6QQ84W8srHqD+/dWHG+PkopQESUlJkS/GNSxKBQIBpe/ZZFFqvfuLUsnJyRg4cCCSk5N93YfK+tHUspMrkyMaKxLXqH3VHtANHTxA/avJof7l0UH/TvRBD8jHmeAB6t/ZWtS/ftADztbyigeof3/14cY4eaaUACJ7IcN7abt1wtbt6lYVLcvCgKcG4PeC3xEXiEPurblon9JeWX1CVMH95MRkqH9iOvQAMRnqn5gM9U8iwTOlYkBtbe2eg0LlSt8zEAiE75aqs+rw2e+fKa0vS21tLbKzs8XmwsN9qKwfTS07uTI5orG6fO46oMNcUP9qcqh/eXSZC3pATQ49IIcu80D9q8mh/uXRZS7oATU59IAcusyDl/QvChelJMjPz494rXEPrWXVATXFSt933IBx4d/d3sKXl5eH5557Dnl5eb7uQ2X9aGrZyZXJEY0ViTNlP7kOHqD+1eRQ//LooH8n+qAH5ONM8AD172wt6l8/6AFna3nFA9S/v/pwY5zcvidA421nubm5SE9PbzYmfNtil/bY+u29QP8rlb1/bV0tOj3UCcXVxUiJT8GqK1ehX4d+yurLUFNTg9zcXHTq1AmJiYmu9OBEHyrrR1PLTq5MjmisSJwpt+7q4AHqX00O9S+PDvp3og96QD7OBA9Q/87Wov71gx5wtpZXPED9+6sPlfVFt+/5YlGquroaI0aMwIoVK7Bs2TIceOCB4WuZmZm4+uqrMW/ePKSkpODcc8/F1KlTpSZY6kyp7t2xdfog4MjPox1WE276/CY8uuhRAMCRfY/Elxd86fvD5Ii3MOULiZDmoP6J6dADxGSof2Iy1D+JhFFnSt12223IyMjY7fW6ujqccMIJKC8vx8KFCzFjxgzMnDkTN998s633KS0tjXitcW3PsiwgbTBQsNTWe0TirrF3oVe7XgCAeZvm4dXlryqtL0ppaSm+/vrrFufCD32orB9NLTu5MjmisSJxTTzgY3TwAPWvJof6l0cH/TvRBz0gH2eCB6h/Z2tR//pBDzhbyyseoP791Ycb4/T8otTcuXPxxRdfYOrUqbtd++KLL7B27Vq88cYbGDp0KI4++mg8/PDDePHFF1FSUiL9XpWVlRGvNTFjv0uBDS9J12+J1omt8fy458N/3/zFzdhRukPpe4hQUVGBpUuXoqKiwvH3drIPlfWjqWUnVyZHNFYkzpQvJB08QP2ryaH+5dFB/070QQ/Ix5ngAerf2VrUv37QA87W8ooHqH9/9eHGOD29fS87OxvDhg3Dhx9+iPT0dPTt27fJ9r1Jkybho48+wooVK8I5hYWF6NChA+bNm4exY8cKvY/09r2tW4GvTwBGvgvEt4p6nLsy4YMJeH3l6wCA0/Y7De+f+b7S+oTYhbfuEpOh/onp0APEZKh/YjLUP4mE77fvWZaFiy66CFdccQWGDx/ebExWVha6dOnS5LX27dsjMTERWVlZEWtXV1ejpKSkyY80vc4E/nhXPm8PPHrso+iU2gkAMPOXmZj1yyzl70EIIYQQQgghhBASa+LdbuDPTJ48GVOmTGkx5qeffsL333+PkpIS3HHHHS3GNncYuGVZLR4Sfv/99zfbw1tvvYV27do1m9N4e1tFRQXefvttxFkWRuJxfLM4ucX+7HBW27PwVMVTAIBLZl6C/D75aB3XWvn7NEdNTQ22b9+OjIwM1586EMs+VNaPppadXJkc0ViRuD97wK/o4AHqX00O9S+PDvp3og96QD7OBA9Q/87Wov71gx5wtpZXPED9+6sPlfWFtwBampGbm2v98ssvLf5UVlZaJ510khUMBq24uLjwDwArLi7OmjBhgmVZlvXvf//bGjJkSJP6BQUFFgBr3rx5EXuoqqqyiouLwz9btmyxAFiZmZkRczIyMiwAVkZGxs4XF19pWYWro5uQZqivr7fGvTXOwmRYmAzrko8uUf4ekSgqKrLmzJljFRUVOfaebvShsn40tezkyuSIxorENesBH6KDB6h/NTnUvzw66N+JPugB+TgTPED9O1uL+tcPesDZWl7xAPXvrz5U1i8uLrYAWMXFxS3GefZMqczMzCbb6rZv345jjz0W77//PkaMGIEePXpg7ty5GDduHLZu3Ypu3boBAN555x1ceOGFyMnJaXFf467YOlMKAAqWAZumA8MejW6wzbC1ZCsGPj0QpTUNp+IvvnQx/tL9L8rfhxBRuJ+cmAz1T0yHHiAmQ/0Tk6H+SSR8f6ZUr169MHjw4PDPgAEDAAD9+vVDjx49AADHHHMMBg4ciAsuuADLli3DV199hVtuuQWXXXaZ8ILUroRCIbmEDkOBkl+Auirp99oTPdr2wL1H3hv++7Xlryl/j+YIhUIoKCiQnwuP9aGyfjS17OTK5IjG6vK564AOc0H9q8mh/uXRZS7oATU59IAcuswD9a8mh/qXR5e5oAfU5NADcugyD17SvyieXZQSIS4uDp9++imSk5Nx+OGH48wzz8TJJ5+MqVOn2qqXl5cX8Vp9fX2T/4YZcA3w9Thg9b1A+R+23jcSFx14EVLiUwAA76x5BzV1NUrrN0dubi6efPJJ5Obmxvy93OxDZf1oatnJlckRjRWJi+gBn6GDB6h/NTnUvzw66N+JPugB+TgTPED9O1uL+tcPesDZWl7xAPXvrz7cGKdnt+85SeNtZzk5OejUqVOzMS3etmjVA9lfA5tfB6rygJ6nAr1OAxLk79b6M+fOPBdvr244UO7jsz/G+H3GR12zJaqrq7Fjxw5069YNSUlJMX0vN/tQWT+aWnZyZXJEY0XiTLl1VwcPUP9qcqh/eXTQvxN90APycSZ4gPp3thb1rx/0gLO1vOIB6t9ffaisL7p9j4tSAtg+U6o5QuXAlllA5vtAfCugTX8gJQNI6bbzJ7kLEEwALAuABVh1//uxgLhkYJcnB875bQ5OeOsEAMCZg87EO6e/o3LohAhjyhcSIc1B/RPToQeIyVD/xGSofxIJ358p5QZlZWURrzWu7e1xjS++FdD3AmDMR8CwJ4AeJwKp3YGqbGD7XGD1PcDCM4FvTgQWnAR8eyqw8Czg+wuARRc2vPbNieGfv2Y+gfTkdgCAj9d9jJLqkpbfP0rKysrw3XfftTgXThDrPlTWj6aWnVyZHNFYkThhD3gcHTxA/avJof7l0UH/TvRBD8jHmeAB6t/ZWtS/ftADztbyigeof3/14cY4uSglQXl5ecRrtsyYnA50GAZ0HwfsfRmw/yTg4OeA0R8AYz5u+Bn9ITB6FjDqPWDkuztf/99PwphZOLt9awBAVagKs36ZFc0Q90hZWRkWLlyohRlj2YfK+tHUspMrkyMaKxJn0heS2x6g/tXkUP/y6KB/J/qgB+TjTPAA9e9sLepfP+gBZ2t5xQPUv7/6cGOc3L4ngNLtezHgx+WP4ZCPbgQAHNX3KHw54UtH358QgLfuErOh/onp0APEZKh/YjLUP4kEt+8ZxMEHXI9+KQ13S83bNA/bSra53BEhhBBCCCGEEEJIy3BRSoL8/PyI19x8FGYgEMD5Q/8OALBghZ/GFwvy8vLw8ssvIy8vL2bvoUMfKutHU8tOrkyOaKxInCmPg9XBA9S/mhzqXx4d9O9EH/SAfJwJHqD+na1F/esHPeBsLa94gPr3Vx9ujJOLUhLExcVFvBb43xPxArs8Gc9Jzjvo7+Hf31j5RszeJz4+Hp06dUJ8fHzM3kOHPlTWj6aWnVyZHNFYkTi3PeAUOniA+leTQ/3Lo4P+neiDHpCPM8ED1L+ztah//aAHnK3lFQ9Q//7qw41x8kwpAXQ/U6qRES+OwOLtiwEAq65chcGdB7vSBzETHTxAiFtQ/8R06AFiMtQ/MRnqn0SCZ0rFgLq6OrdbaJHzh5wf/v3NlW/G5D3q6upQWlrq+lzEug+V9aOpZSdXJkc0VpfPXQd0mAvqX00O9S+PLnNBD6jJoQfk0GUeqH81OdS/PLrMBT2gJocekEOXefCS/kXhopQEubm5Ea/psJf2rMFnIS7QsMXwzRUvo95S30tOTg4eeeQR5OTkKK+tUx8q60dTy06uTI5orEicDh5wAh08QP2ryaH+5dFB/070QQ/Ix5ngAerf2VrUv37QA87W8ooHqH9/9eHGOLl9T4DG286ys7PRuXPnZmO6d++O7du3IyMjA9u2uff0u+PfPB5zf58LALhj5B2YcsQUJMQlKKtfVVWFzMxM9OrVC8nJycrq6taHyvrR1LKTK5MjGisSp4sHYo0OHqD+1eRQ//LooH8n+qAH5ONM8AD172wt6l8/6AFna3nFA9S/v/pQWV90+x4XpQTwyplSADBz7Uyc/t7p4b+Hdh2K6adM5/lSJObo4gFC3ID6J6ZDDxCTof6JyVD/JBI8UyoGlJeXR7zWuLbn9hrfqfudinvG3oP4/z39YFnWMgx7YRge/O5B1NVHvy+0vLwcixcvbnEunCDWfaisH00tO7kyOaKxInG6eCDW6OAB6l9NDvUvjw76d6IPekA+zgQPUP/O1qL+9YMecLaWVzxA/furDzfGyUUpCUpLSyNe08WMgUAA/zf6/7DoqOsxsH1vAEBNXQ3+8eU/MOrVUViVvSqq+iUlJfjiiy9QUlKiol1t+1BZP5padnJlckRjReJ08UCs0cED1L+aHOpfHh3070Qf9IB8nAkeoP6drUX96wc94Gwtr3iA+vdXH26Mk9v3BPDS9r0w+T+hKvMDTMoLYer3U2Gh4WOOD8bj5kNvxqQxk5CakOpyk8RPaOcBQhyE+iemQw8Qk6H+iclQ/yQS3L5nOu0PRHLxKjz41wex4OIF6N+hPwAgVB/Cf777DwY9MwhzfpvjcpOEEEIIIYQQQggxFS5KSVBQUBDxmnaPwgwmAIEAUFeDkb1GYuWVK3HnmDuRGJcIANhctBknvHUC7v/2fqmy+fn5mD59OvLz82PRtTZ9qKwfTS07uTI5orEicdp5IEbo4AHqX00O9S+PDvp3og96QD7OBA9Q/87Wov71gx5wtpZXPED9+6sPN8bJRSkJAv87PNwzdBgGFCwBACTHJ2PyEZOx8oqVGNtnbDjk/+b9Hz77/TPhksFgEK1atUIw6K50Yt2HyvrR1LKTK5MjGqvL564DOswF9a8mh/qXR5e5oAfU5NADcugyD9S/mhzqXx5d5oIeUJNDD8ihyzx4Sf+i8EwpATx5phQAZM0DCn4GBt7W5GXLsjDlmymY8s0UAECHlA5YevlS9E7r7UaXxCdo6QFCHIL6J6ZDDxCTof6JyVD/JBI8UyoGeO6WxPRDgPwfd3s5EAhg0phJOHGfEwEABZUFOP2901Edqt5jyfr6elRXV7s+F7HuQ2X9aGrZyZXJEY3V5XPXAR3mgvpXk0P9y6PLXNADanLoATl0mQfqX00O9S+PLnNBD6jJoQfk0GUevKR/UbgoJUFOTk7Ea1rupY1PBeqqAGv3noKBIKadPA17td8LAPDz9p9x/WfX77FkdnY2HnjgAWRnZytvV4ZY96GyfjS17OTK5IjGisRp6YEYoIMHqH81OdS/PDro34k+6AH5OBM8QP07W4v61w96wNlaXvEA9e+vPtwYJ7fvCdB421lWVha6dOnSbEz37t2xfft2ZGRkYNu2bQ532ALLbgX6XgikDW728vKs5Tj05UNRFaoCALx20mu48MALI5arrKzExo0bsddeeyElJSUmLYsQ6z5U1o+mlp1cmRzRWJE4bT2gGB08QP2ryaH+5dFB/070QQ/Ix5ngAerf2VrUv37QA87W8ooHqH9/9aGyvuj2PS5KCeDZM6UAYOtHQOV2oP+VEUNeW/4aLv7oYgBA51adkXVzlvcOdSeuo60HCHEA6p+YDj1ATIb6JyZD/ZNI8EypGFBRURHxWuPannZrfJ1GAjkLWwy56MCLwk/kyynPwY6yHRFjKyoqsHz58hbnwgli3YfK+tHUspMrkyMaKxKnrQcUo4MHqH81OdS/PDro34k+6AH5OBM8QP07W4v61w96wNlaXvEA9e+vPtwYJxelJCgpKYl4TVszJnUEavKBPfQ1pMuQ8O+/5f8WMa64uBgfffQRiouLlbVoh1j3obJ+NLXs5MrkiMaKxGnrAcXo4AHqX00O9S+PDvp3og96QD7OBA9Q/87Wov71gx5wtpZXPED9+6sPN8bJ7XsCNN52VlRUhHbt2jUbo/Vti4uvAAbeDrTuEzHk6cVP45q51wAAXhz/Ii496NJm4yzLgmVZCAQCrm7xi3UfKutHU8tOrkyOaKxInNYeUIgOHqD+1eRQ//LooH8n+qAH5ONM8AD172wt6l8/6AFna3nFA9S/v/pQWV90+158VO9iGJ49Z6nTKCD32xYXpQZ0HBD+fX3++ohxbpvQqT5U1o+mlp1cmRzRWF0+dx3QYS6ofzU51L88uswFPaAmhx6QQ5d5oP7V5FD/8ugyF/SAmhx6QA5d5sFL+heF2/ckKCgoiHhN60dhdh4F5HzbYkj/jv3Dv/9WEHn7XkFBAd5+++0W58IJYt2HyvrR1LKTK5MjGisSp7UHFKKDB6h/NTnUvzw66N+JPugB+TgTPED9O1uL+tcPesDZWl7xAPXvrz7cGCcXpUygVS+gIrPFkJ5teyIpLglAy3dKEUIIIYQQQgghhKiAZ0oJILIXUvu9tN9PAAbeCqTtHzFk0DODsDZ3LZLiklD+z3LEBeMcbJB4He09QEgMof6J6dADxGSof2Iy1D+JhOiZUrxTSgJPr98NfRBYfjuQOTNiSOO5UtV11dhSsqXZGMuyUF9f7/pcxLoPlfWjqWUnVyZHNFaXz10HdJgL6l9NDvUvjy5zQQ+oyaEH5NBlHqh/NTnUvzy6zAU9oCaHHpBDl3nwkv5F4aKUBNnZ2RGvab+XNqUrMPrDhgPPl/0DqA/tFtK/wy7nSuU3f65UVlYW7r77bmRlZcWqUyFi3YfK+tHUspMrkyMaKxKnvQcUoYMHqH81OdS/PDro34k+6AH5OBM8QP07W4v61w96wNlaXvEA9e+vPtwYJxelJGjplrPGE+p1OJE/IsEEYNhjQPsDgG9PBapym1xusigV4bDzdu3a4aSTTkK7du1i2ekeiXUfKutHU8tOrkyOaKxInCc8oAAdPED9q8mh/uXRQf9O9EEPyMeZ4AHq39la1L9+0APO1vKKB6h/f/Xhxjh5ppQAvjhT6s8UrgRW3AGM+QT43z8g32z+BkdMOwIAcP2I6/HY3x5zrT3iPTznAUIUQv0T06EHiMlQ/8RkqH8SCZ4pFQMqKysjXmtc2/PMGl/7IUD7A4Gcb8Iv9e+45zulKisrsWbNmhbnwgli3YfK+tHUspMrkyMaKxLnOQ/YRAcPUP9qcqh/eXTQvxN90APycSZ4gPp3thb1rx/0gLO1vOIB6t9ffbgxTi5KSVBcXBzxmifNuM8NwLrHwn92a90NrRJaAQDW569vNqWoqAjvv/8+ioqKYt9fC8S6D5X1o6llJ1cmRzRWJM6THrCBDh6g/tXkUP/y6KB/J/qgB+TjTPAA9e9sLepfP+gBZ2t5xQPUv7/6cGOc3L4nQONtZ4WFhUhLS2s2xrO3LS65Aeh9LpB+MABg6PNDsTxrOeICcaj8v0okxCU0Ca+vr0dtbS0SEhIQDLq3phnrPlTWj6aWnVyZHNFYkTjPekASHTxA/avJof7l0UH/TvRBD8jHmeAB6t/ZWtS/ftADztbyigeof3/1obI+t+/FADfFFzP2uwX49eHwnwM6DgAA1Fl12Fy0ebfwYDCIpKQk1+ci1n2orB9NLTu5Mjmisbp87jqgw1xQ/2pyqH95dJkLekBNDj0ghy7zQP2ryaH+5dFlLugBNTn0gBy6zIOX9C/8no69kw8oLCyMeM2zj8JM7QEktAOKVgFo+gS+5rbwFRYWYubMmS3OhRPEug+V9aOpZSdXJkc0ViTOsx6QRAcPUP9qcqh/eXTQvxN90APycSZ4gPp3thb1rx/0gLO1vOIB6t9ffbgxTi5KSeDbnY4DbwPWPgSg6aJUc4ed19fXo7y83PV/dGLdh8r60dSykyuTIxqry+euAzrMBfWvJof6l0eXuaAH1OTQA3LoMg/Uv5oc6l8eXeaCHlCTQw/Iocs8eEn/ovBMKQFE9kJ6fi/t9xOA/Sfhh6JcHPbKYQCAK4dfiWdOeMblxohX8LwHCIkC6p+YDj1ATIb6JyZD/ZNI8EwpIsfA24C1D6J/x5bvlCKEEEIIIYQQQghRARelJMjKyop4zfN7adMGA6k90HHR+WgfnwgAWJ+7drewHTt24J577sGOHTuc7tDRPlTWj6aWnVyZHNFYkTjPe0AQHTxA/avJof7l0UH/TvRBD8jHmeAB6t/ZWtS/ftADztbyigeof3/14cY4uSglQZs2bSJeCwQCTf7rSfafhMCRn6F/p0EAgC2l21FV3PRuqbZt2+KYY45p8fY7J4h1HyrrR1PLTq5MjmisSJwvPCCADh6g/tXkUP/y6KB/J/qgB+TjTPAA9e9sLepfP+gBZ2t5xQPUv7/6cGOcPFNKACPOlNqFCz64AG+sfAMAsPq42zHo4Ptd7oh4AT95gBBZqH9iOvQAMRnqn5gM9U8iwTOlYkBVVVXEa41re35Y49v1CXzrM//b5FpVVRXWr1/f4lw4Qaz7UFk/mlp2cmVyRGNF4vzkgZbQwQPUv5oc6l8eHfTvRB/0gHycCR6g/p2tRf3rBz3gbC2veID691cfboyTi1ISFBUVRbzmJzPuuij1W3UIqMoJ/11YWIi3334bhYWFbrTmWB8q60dTy06uTI5orEicnzzQEjp4gPpXk0P9y6OD/p3ogx6QjzPBA9S/s7Wof/2gB5yt5RUPUP/+6sONcXL7ngCNt50VFBSgffv2zcb46bbFJduXYPiLwwEAl/Qfi5cOPgfY+zIAQF1dHSoqKpCamoq4uDjXeox1HyrrR1PLTq5MjmisSJyfPNASOniA+leTQ/3Lo4P+neiDHpCPM8ED1L+ztah//aAHnK3lFQ9Q//7qQ2V90e178VG9i2G4KT4n6d9xlzulqmqA7XPCi1JxcXEtHvjuFLHuQ2X9aGrZyZXJEY3V5XPXAR3mgvpXk0P9y6PLXNADanLoATl0mQfqX00O9S+PLnNBD6jJoQfk0GUevKR/Ubh9TwJTtu+1TWqLLq26AADWF26AhSBQUwSgYQ4+/vjjFufCCWLdh8r60dSykyuTIxorEucnD7SEDh6g/tXkUP/y6KB/J/qgB+TjTPAA9e9sLepfP+gBZ2t5xQPUv7/6cGOcXJSSoK6uLuI1v5lxQMcBAICssixcs60IoS0fAQBCoRByc3MRCoXcbC/mfaisH00tO7kyOaKxInF+80AkdPAA9a8mh/qXRwf9O9EHPSAfZ4IHqH9na1H/+kEPOFvLKx6g/v3Vhxvj5JlSAojshfTbXtoZq2fgnJnnhP8+rmNXzLhsHdomRd4LSszGbx4gRAbqn5gOPUBMhvonJkP9k0iIninFO6VIs5w9+GxMO3kaEoIJAIC5+VkY9crh2FK8xeXOCCGEEEIIIYQQ4ge4KCVBdnZ2xGv19fVN/usHJhwwAf+94L9on9zwxMGVOatx3OvH4f4H7kdWVparvWVlZeE///lPzPpQWT+aWnZyZXJEY0Xi/OiB5oi19nTogfqXj6P+/dUHPSAfZ4IHqH9na1H/+kEPOFvLKx6g/v3Vhxvj5KKUBK1atYp4LRAINPmvXxjTZwx+uOQH9G3XCwCwJn8NEvdLROvWrV3tq3Xr1hg5cmTM+lBZP5padnJlckRjReL86oE/E2vt6dAD9S8fR/37qw96QD7OBA9Q/87Wov71gx5wtpZXPED9+6sPN8bJM6UEMPFMqT/zwS8f4NR3TwUAHNvvWHx2/mcud0R0w+8eIKQlqH9iOvQAMRnqn5gM9U8iwTOlYkB1dbXbLbjGifuciD4pbQAAn2/4HCu3r3S1n+rqamzevDlmn4nK+tHUspMrkyMaG+v59hI6zAX1ryaH+pdHl7mgB9Tk0ANy6DIP1L+aHOpfHl3mgh5Qk0MPyKHLPHhJ/6JwUUqCwsLCiNf8vpc2LhiHa/c9Nvz3I9894mI3QEFBAaZNm4aCggLt60dTy06uTI5orEic3z3QSKy1p0MP1L98HPXvrz7oAfk4EzxA/Ttbi/rXD3rA2Vpe8QD1768+3Bgnt+8J0HjbWX5+Pjp06NBsjAm3LRZt+xI9Xj0e5XW1SE1IxdYbt6J9SntXegmFQigpKUHbtm0RHx+vdf1oatnJlckRjRWJM8EDQOy1p0MP1L98HPXvrz7oAfk4EzxA/Ttbi/rXD3rA2Vpe8QD1768+VNYX3b7HRSkBeKbU/wiV45ppB+DprRsAAA/99SHcctgtLjdFdMEIDxASAeqfmA49QEyG+icmQ/2TSPBMqRhQXFwc8Vrj2p6v1/jiW+GKTt3Cfz61+CmE6kOutFJcXIy5c+e2+JnoUj+aWnZyZXJEY0XijPAAYq89HXqg/uXjqH9/9UEPyMeZ4AHq39la1L9+0APO1vKKB6h/f/Xhxji5KCVBbW1txGummHHvVp0wOHFfAMAfxX/gw18/dKWPmpoabN68GTU1NdrXj6aWnVyZHNFYkThTPBBr7enQA/UvH0f9+6sPekA+zgQPUP/O1qL+9YMecLaWVzxA/furDzfGye17AnD73i6suQ+fVyXjb5/cDADo3KozFl+6GL3TervcGHEbYzxASDNQ/8R06AFiMtQ/MRnqn0SC2/dIbEg7EMe0TsRRfY8CAOSU52Dc2+NQUl3icmOEEEIIIYQQQgjxElyUkiAnJyfiNVMehZkbysCqb9/EU2OeQv8O/QEAq3NW45yZ56Cuvs6xPrKzs/HII48gOztb+/rR1LKTK5MjGisSZ4oHYq09HXqg/uXjqH9/9UEPyMeZ4AHq39la1L9+0APO1vKKB6h/f/Xhxji5KCVBSkpKxGuBQKDJf/1Kcvu90L090L1Dd3xy7idon9weADDntzm4du61qKlzZu9pamoqDjroIKSmpmpfP5padnJlckRjReJM8UCstadDD9S/fBz1768+6AH5OBM8QP07W4v61w96wNlaXvEA9e+vPtwYJ8+UEoBnSv2Jb04ERn0ABOMwf9N8HPPGMeGn8O3Vfi/cf9T9OGPgGb7/h4k0xSgPEPInqH9iOvQAMRnqn5gM9U8iwTOlYoDbJ+3rQE1NDUoD3VBTsAYAMLbvWLww7gUE0LAAtbFwI856/ywc8vIh2FS4KaZ9bNu2LaZPHVBVP5padnJlckRjYz3fXkKHuaD+1eRQ//LoMhf0gJocekAOXeaB+leTQ/3Lo8tc0ANqcugBOXSZBy/pXxQuSklQUFAQ8Zope2nz8/Px5c+5KN/6Xfi1i4dejJ8u+wlj+4wNv7Z422Kc/M7JqKytjFkfL730EvLz87WvH00tO7kyOaKxInEmeSCW2tOhB+pfPo7691cf9IB8nAkeoP6drUX96wc94Gwtr3iA+vdXH26Mk9v3BGi87SwvLw8dO3ZsNsaU2xZra2tR8sdCpJXMRdxBDza5ZlkWPvv9M1w952psKmq4S+qq4Vfh6ROejkkfBQUF6NChAxISErSuH00tO7kyOaKxInEmeSCW2tOhB+pfPo7691cf9IB8nAkeoP6drUX96wc94Gwtr3iA+vdXHyrri27f46KUADxT6k/U1QDfnQmM/rDZy2ty1mD4i8NRFaoCAMw6cxZO2e8UBxskbmCUBwj5E9Q/MR16gJgM9U9MhvonkeCZUjGgpKQk4rXGtT2/r/GVlJTgy/kLUFsTeVveoM6D8Nixj4X/vuTjS5BZnKm+jy+/bPEz0aV+NLXs5MrkiMaKxBnlgRhqT4ceqH/5OOrfX33QA/JxJniA+ne2FvWvH/SAs7W84gHq3199uDFOLkpJUF1dHfGaKWasqqrC2rVrEYrrAFTlRIy7fNjlOG2/0wAAhVWFuOCDC1Bvqdtn3NhHVVWVspqxqh9NLTu5MjmisSJxpnkgVtrToQfqXz6O+vdXH/SAfJwJHqD+na1F/esHPeBsLa94gPr3Vx9ujJPb9wTg9r1m+PUxoN0goNtfI4YUVhZi6PND8UfxHwCAZ094FlcMv8KhBonTGOcBQnaB+iemQw8Qk6H+iclQ/yQS3L5HYkv7A4CiFS2HpLTHyye+HP77tv/ehq0l/IeKEEIIIYQQQgghXJSSIjc3N+I1Ux6FmZOTg6eeegq5oR7A9rlAKPLZUgBw1F5HYeKBEwEApTWluOrTq5Tc2tnYR05O5C2EutSPppadXJkc0ViRONM8ECvt6dAD9S8fR/37qw96QD7OBA9Q/87Wov71gx5wtpZXPED9+6sPN8bJRSkJkpKSIl4LBAJN/utXkpOTMWDAACS16QIMugNYdDFQX9diztRjpqJLqy4AgNnrZ+PdNe8q6yM5OTnqWrGuH00tO7kyOaKxInGmeSBW2tOhB+pfPo7691cf9IB8nAkeoP6drUX96wc94Gwtr3iA+vdXH26Mk2dKCcAzpVpg0+tA/s/AsMeAFv4hen/t+zjjvTMAAF1adcHmGzYjOd5dQxO1GOsBQkD9E0IPEJOh/onJUP8kEjxTKgbU1ta63YLr1NbWIicnZ+dc9L0ASOkC/PpIi3mn7Xcaxg8YDwDILs/GzLUz1fahGJX1o6llJ1cmRzQ21vPtJXSYC+pfTQ71L48uc0EPqMmhB+TQZR6ofzU51L88uswFPaAmhx6QQ5d58JL+ReGilAT5+fkRr5mylzYvLw/PPvss8vLydr448A6gZB2w/bOIeYFAALcedmv47+eXPK++D4WorB9NLTu5MjmisSJxRnvAZz1Q//Jx1L+/+qAH5ONM8AD172wt6l8/6AFna3nFA9S/v/pwY5zcvidA421nubm5SE9PbzbGlNsWa2pqkJ2djS5duiAxMXHnhVAF8M04YNQHQGK7ZnMty8KgZwbhl7xfAABrrlqDgZ0Gqu1DESrrR1PLTq5MjmisSJzxHvBRD9S/fBz1768+6AH5OBM8QP07W4v61w96wNlaXvEA9e+vPlTWF92+x0UpAXimlCA5C4FN04ARL0YMeXzR47jh8xsAADeMuAGP/u1Rh5ojsYYeICZD/RPToQeIyVD/xGSofxIJnikVA0pLSyNea1zb8/saX2lpKRYsWND8XHQeCcS3AbbPjZg/4YAJ4QPOp62YhsraSvV9KEBl/Whq2cmVyRGNFYmjB/zTA/UvH0f9+6sPekA+zgQPUP/O1qL+9YMecLaWVzxA/furDzfGyUUpCSorIy+gmGLGiooK/PTTT6ioqGg+4IB7gF+mAjVFzV5un9IeZw46EwBQWFWI99e+H5s+okRl/Whq2cmVyRGNFYmjB/zTA/UvH0f9+6sPekA+zgQPUP/O1qL+9YMecLaWVzxA/furDzfGye17AnD7niS53wGbpgMHN3+Y+XeZ32HkqyMBAIf1PAwLL16IQCDgZIckBtADxGSof2I69AAxGeqfmAz1TyLB7XvEPTodDgTigZxvm718WM/DMKjTIADA91u+x1OLn3KyO0IIIYQQQgghhGgAF6Uk4KNggdzcXDz//PPIzc1tOfCAe4FVk4G6mt0uBQIBTDliSvjvGz6/AZ/9/lls+rCJyvrR1LKTK5MjGisSRw/4pwfqXz6O+vdXH/SAfJwJHqD+na1F/esHPeBsLa94gPr3Vx9ujFNoUSouLi7qn7vuuivWY4k5CQkJEa81bj/z+za0xMRE9OjRY8+Ph0xMA/pdCvz6cLOXTxt4Gv458p8AgHqrHme9fxZWZK1Q34dNVNaPppadXJkc0ViROHrAPz1Q//Jx1L+/+qAH5ONM8AD172wt6l8/6AFna3nFA9S/v/pwY5xCZ0oFg0H07t0bffr0kX4Dy7KwYMECTJ48GZMmTbLTo+vwTCmbWBbw7SnAQY8ArfcCQpVA4TIgtSeQ2gP1sHD6u6fjg18/CKfs03EfjO0zFjcdehP6d+zvYvNEFnqAmAz1T0yHHiAmQ/0Tk6H+SSREz5SKFy148cUX215UCgb9sUswFAq53YLrhEIhlJWVoXXr1oiP34N8AgFg6FTg+/OBxA5AMAFofxBQuQ0oz0QwMQ2vn/giRhZtwvKs5QCAdfnrsC5/HeZtnoc1V61BfLD595DqwwYq60dTy06uTI5obKzn20voMBfUv5oc6l8eXeaCHlCTQw/Iocs8UP9qcqh/eXSZC3pATQ49IIcu8+Al/Yvij9Uih+CZUg17TB9//HHxPaZt9gZGzQRGfwiM/gDY/9/Awc8BY+cArfuiVdVWzL9wPu4ccycO63lYeBFqff56vLP6HXV9SKKyfjS17OTK5IjGisTRA/7pgfqXj6P+/dUHPSAfZ4IHqH9na1H/+kEPOFvLKx6g/v3VhxvjFNq+V1dXh2AwaHufaLT5btN421lOTg46derUbIwpty1WV1eHx5mUlBRdsY3TgfgUoNcZ4Zfmb5qPI6cfCQDYN31frL5yNeKCcbHtoxlU1o+mlp1cmRzRWJE4esA/PVD/8nHUv7/6oAfk40zwAPXvbC3qXz/oAWdrecUD1L+/+lBZX3T7ntCilOnwTKkYkbcIyPoSGPyv8EuWZWHMa2Pwbea3AIAZp83AWYPPcqtDIgE9QEyG+iemQw8Qk6H+iclQ/yQSootStrbvLViwAD///HOLMZmZmViwYIGd8tpSVlYW8Vrj2p7f1/jKysrwww8/tDgXwrQZAJSsb/JSIBDAv0f/O/z3Pd/eg3pr91tBlfbRDCrrR1PLTq5MjmisSBw94J8eqH/5OOrfX33QA/JxJniA+ne2FvWvH/SAs7W84gHq3199uDFOW4tSRxxxBEaMGIHrr78+4t7RV199FWPHjo2qOd0oLy+PeM0kM3799ddqRJrUAagp3O3lo/c6Gof0OAQAsDpnNT789cPY9tEMKutHU8tOrkyOaKxIHD3gnx6of/k46t9ffdAD8nEmeID6d7YW9a8f9ICztbziAerfX324MU5b2/eCwSDatGmD0tJSHHvssXjnnXd2ux1rypQpuOuuu1BXV6esWbfg9r0Y8vU4YMzshif17cKc3+bghLdOAACMHzAeH5/zsRvdEQnoAWIy1D8xHXqAmAz1T0yG+ieRiOn2PQC48cYbcfPNN+Pzzz/HoYceik2bNtktRUwmuTNQvfvJ/n/b+2/o3KozAGDepnmoDlU73RkhhBBCCCGEEEJiiO1FqWAwiIceeggvvfQSfv/9d4wYMQLffvutyt60Iz8/P+I1Ux6FmZeXh1deeQV5eXlqCrbdByhZt9vLwUAQx/Y7FgBQXluOhZkLY9vHn1BZP5padnJlckRjReLoAf/0QP3Lx1H//uqDHpCPM8ED1L+ztah//aAHnK3lFQ9Q//7qw41x2l6UamTixIn473//i/r6evz1r3/FK6+8oqIvLYmLi4t4LfC/7WeBP21D8xvx8fHo0KED4uPj1RRsMwAoXd/speP2Pi78+2e/fxbbPv6EyvrR1LKTK5MjGisSRw/4pwfqXz6O+vdXH/SAfJwJHqD+na1F/esHPeBsLa94gPr3Vx9ujNP2mVKTJ0/GpEmTwq9t2LAB48aNw/r163HTTTchNTUV99xzD8+UIi1TvBbY+Bow9MHdLuVX5KPTQ51gwcKgToOw+qrVzvdHhKEHiMlQ/8R06AFiMtQ/MRnqn0Qi5mdK/Zl+/frhxx9/xFFHHYWHH34Yjz76qKrS2uCHBbZoqaurQ3l5ubq5aN0PKP292UsdUzvi4O4HAwDW5K7BluItsevjT6isH00tO7kyOaKxsZ5vL6HDXFD/anKof3l0mQt6QE0OPSCHLvNA/avJof7l0WUu6AE1OfSAHLrMg5f0L4qyRSkAaNu2LebOnYsrr7zS9UclxoLc3N0P5G7ElL20OTk5mDp1KnJyctQUjEsC6msiXo60hU95H39CZf1oatnJlckRjRWJowf80wP1Lx9H/furD3pAPs4ED1D/ztai/vWDHnC2llc8QP37qw83xmlr+54IP/30EyoqKjBmzJhYlHeUxtvOsrOz0blz52Zjunfvju3btyMjIwPbtm1zuEPnqKqqwh9//IHevXsjOTlZTdEFJwMj3weCu+9bXbxtMUa8NAIAcMq+p2DWWbNi18cuqKwfTS07uTI5orEicfSAf3qg/uXjqH9/9UEPyMeZ4AHq39la1L9+0APO1vKKB6h/f/Whsr7o9r2YLUr5CZ4pFWOW3AAMuAZos/dul+qtenSZ2gV5FXlok9gGb532Fg7tcSg6pnZ0vk/SIvQAMRnqn5gOPUBMhvonJkP9k0g4fqaUCZSXl0e81ri25/c1vvLycvz8888tzoU0bfcBStY1eykYCOLYfscCAEprSjH+7fHoPLUz7vv6PvV97ILKcUZTy06uTI5orEgcPeCfHqh/+Tjq31990APycSZ4gPp3thb1rx/0gLO1vOIB6t9ffbgxTuFFqbi4OOmfWD9GsE+fPggEAk1+br/99iYxmZmZGD9+PFq1aoX09HRcd911qKmJfIZRS5SWlka8ZooZS0pKMGfOHJSUlKgr2mYAULo+4uW/D/s7kuKSwn/XW/V48IcHMfvT2Wr72AWV44ymlp1cmRzRWJE4esA/PVD/8nHUv7/6oAfk40zwAPXvbC3qXz/oAWdrecUD1L+/+nBjnMLb9/bdd18EAoEmr+Xl5SE/Px/77LNPxLxffvklug5boE+fPrjkkktw2WWXhV9r3bo1WrduDaDh5PgDDzwQnTp1wsMPP4z8/HxceOGFOPXUU/Hkk08Kvw+378WYiq3A6nuAg5+LGJJbnosFfyzAQ98/hB+3/QgAmH/hfBzR5wiHmiR7gh4gJkP9E9OhB4jJUP/EZKh/EgnR7XvCtzL9+uuvu702efJk3H333TFdeNoTbdq0QdeuXZu99sUXX2Dt2rXYsmULMjIyAAAPP/wwLrroItx7770tTgxxkJQMoKLlQ/E6teqE0waehuq6apw36zwAwMfrPuaiFCGEEEIIIYQQ4lGiOlPqz3dOucF//vMfdOzYEQceeCDuvffeJlvzfvjhBwwePDi8IAUAxx57LKqrq7FkyRLp9yooKIh4zZRHYebn5+ONN95Afn6+uqKBIACx2z2P2/s4xAXiAABv/vwm8vLy1PWxCyrHGU0tO7kyOaKxInH0gH96oP7l46h/f/VBD8jHmeAB6t/ZWtS/ftADztbyigeof3/14cY4Y3voU4y5/vrrcdBBB6F9+/ZYvHgx7rjjDmzatAkvvfQSACArKwtdunRpktO+fXskJiYiKysrYt3q6mpUV1eH/27cT6nDIpzbBINBJCUlIRhUfEZ+YnugKg9ITm8xrH1Ke4zqPQpfb/4aOaEc/F78O9LTW86xg8pxRlPLTq5MjmhszD53D6LDXMS6B+o/+j78ii5zQQ+oyaEH5NBlHqh/NTnUvzy6zAU9oCaHHpBDl3nwkv5FET5TqjmmTJmCu+66C3V1dcoamjx5MqZMmdJizE8//YThw4fv9vrMmTNx+umnIy8vDx07dsTll1+OP/74A59//nmTuMTEREyfPh1nn322VA8vvfQSUlNTm8255pprUFBQgA4dOuCpp55qsX+yO/2tz1GGztgRGLrH2DmFc/BG7hsAgHPSz8H4DuNj3R4RgB4gJkP9E9OhB4jJUP/EZKh/EomKigpceumlezxTSrtFqby8vD1uyerTpw+Sk5N3e33btm3o0aMHFi1ahBEjRmDSpEn46KOPsGLFinBMYWEhOnTogHnz5mHs2LHN1m/uTqmePXuisLAQaWlpzeaYcsBbfX09QqEQ4uPj1a6e5v8MbPsYGHLXHkM3FGzA3k/uDQA4vOfhWDhxobo+/ofKcUZTy06uTI5orEgcPeCfHqh/+Tjq31990APycSZ4gPp3thb1rx/0gLO1vOIB6t9ffaisL3rQuXb34KWnp2Pfffdt8ae5BSkAWLZsGQCgW7duAIBDDz0Uq1evxo4dO8IxX3zxBZKSkjBs2LCIPSQlJaFt27ZNfgAgJycnYo4pe2mzs7Nx//33Izs7W23htCFA4Yo9xwHo16Ef+qf1BwD8sPUH5Jbnqu0FascZTS07uTI5orEicfSAf3qg/uXjqH9/9UEPyMeZ4AHq39la1L9+0APO1vKKB6h/f/XhyjgtQbKzs3f7ueWWW6xgMGjl5OQ0ez07O1u0vDTff/+99cgjj1jLli2zNm7caL3zzjtWRkaGdeKJJ4ZjQqGQNXjwYOuoo46yli5dan355ZdWjx49rGuuuUbqvYqLiy0AVlZWVsSYjIwMC4CVkZFhe0xeoKKiwlq5cqVVUVGhvvj84y2rvk4o9Oa5N1uYDAuTYd3x5R3KW1E5zmhq2cmVyRGNFYmjB/zTA/UvH0f9+6sPekA+zgQPUP/O1qL+9YMecLaWVzxA/furD5X1G9dRiouLW4wT3r4XDAabPejbsqyIB4AHAgGEQiF7q2V7YOnSpbjqqqvw66+/orq6Gr1798bZZ5+N2267rcm5T5mZmbjqqqswb948pKSk4Nxzz8XUqVORlJQk/F4it52ZcttiTFl6C9BvItBu4B5Df8v/DYOeGYTa+lokBBOw8sqV2Dd9XweaJJGgB4jJUP/EdOgBYjLUPzEZ6p9EQvn2vdGjRzf7M2bMmIjXRo0apWQwzXHQQQdh0aJFKCoqQmVlJX799VdMnjx5t4PIe/XqhU8++QQVFRXIz8/Hk08+KbUgtSuVlZURrzWu7Qmu8XmWyspKrFy5ssW5sE36IUDeIqHQHqk9cFH/iwAAtfW1uGbONUrnXuU4o6llJ1cmRzRWJI4e8E8P1L98HPXvrz7oAfk4EzxA/Ttbi/rXD3rA2Vpe8QD1768+3Bin8KLU119/jfnz50v/+Ini4uKI10wxY1FRET744AMUFRWpLy6xKFVUVIRO6zqhZ5ueAICvNn2Ft1e/rawVleOMppadXJkc0ViROHrAPz1Q//Jx1L+/+qAH5ONM8AD172wt6l8/6AFna3nFA9S/v/pwY5zC2/fmz5+P0aNHIy4uLtY9aUfjbWdFRUVo165dszGm3LZoWRbq6uoQFxcXcdtmVMw/Hhg7R7iPOb/PwUnvnAQAaJPYBj9e+iP267Rf1G2oHGc0tezkyuSIxorE0QP+6YH6l4+j/v3VBz0gH2eCB6h/Z2tR//pBDzhbyyseoP791YfK+sq37x111FHo3LkzJkyYgJkzZ6KsrCyqBr2Im+LThUAggPj4+NjNRUJroLZUuI8T9z0R5ww+BwBQWlOKE2eciMLKwqjbUDnOaGrZyZXJEY2N+efuIXSYi1j3QP1H34df0WUu6AE1OfSAHLrMA/WvJof6l0eXuaAH1OTQA3LoMg9e0r8owotSb731Fo455hjMnj0bZ5xxBjp16oTjjz8eL7zwArZv3x7LHrWhsDDyYocpj8IsLCzEO++80+JcREXHg4GCn6X6eHH8iziw64EAgN8Lfsd5s86L+vZRleOMppadXJkc0ViROHrAPz1Q//Jx1L+/+qAH5ONM8AD172wt6l8/6AFna3nFA9S/v/pwY5zCi1Jnn3023n77beTm5uLzzz/HJZdcgjVr1uCKK65Az549MWLECNx///1Ys2ZNLPt1Fb/vkxWh8Xa+mM1FR7FzpXbto1ViK3x41odIT00HAMz9fS5+2PpDVG2oHGc0tezkyuSIxsb8c/cQOsxFrHug/qPvw6/oMhf0gJocekAOXeaB+leTQ/3Lo8tc0ANqcugBOXSZBy/pXxThM6UisWzZMnz44Yf4+OOPsWLFCgQCAfTt2xcnn3wyTjzxRIwcORLBoPDal5aI7IU0ZS9tzAlVAD9cAIyaKZ06bfk0XPTRRQCAS4ZegpdOfElxc6Ql6AFiMtQ/MR16gJgM9U9MhvonkVB+plQkhg4diilTpmDZsmXYvHkzHn30UfTp0wdPPPEExo4diy5duuCiiy6K9m2IKcSnAglpwNbZ0qlnDDoDbRLbAADeWfMOymrMO/eMEEIIIYQQQgjxCkpvYerVqxeuu+46fPnll8jNzcX06dMxduxYfPjhhyrfxjWysrIiXjNlL+2OHTswZcoU7NixI3Zv8pdngY2vAtlfS/WRmpAaPvS8rKYM7615z3YLKscZTS07uTI5orEicfSAf3qg/uXjqH9/9UEPyMeZ4AHq39la1L9+0APO1vKKB6h/f/Xhxjhjtq+uXbt2OO+88/Duu+8iNzc3Vm/jKC3dctZ4Or3bp/HHmnbt2mH8+PFo165d7N4kLhE47A1g7YNA3mKpPiYOnRj+/ZXlr9huQeU4o6llJ1cmRzRWJI4e8E8P1L98HPXvrz7oAfk4EzxA/Ttbi/rXD3rA2Vpe8QD1768+3Bhn1GdKNbJw4UIsXboU9fX1GDVqFIYNG6airBbwTCmXqCkCFl0EZBwP9LsMEPiHzrIs7P/s/liT23Dg/g+X/IBDehwS2z4JAHqAmA31T0yHHiAmQ/0Tk6H+SSRicqbUc889h759+6J169YYM2YMVq9ejZqaGowfPx5jxozBjTfeiJtvvhkHH3ww/v73v0c9CN2orKyMeK1xbc/t0/hjTWVlJX755ZcW50IZiWnAqFlATWHD4eeh8j32EQgEmtwtdfT0ozF7nfz5VCrHGU0tO7kyOaKxInH0gH96oP7l46h/f/VBD8jHmeAB6t/ZWtS/ftADztbyigeof3/14cY4hRelPv74Y1x11VX4448/kJycjG+//RannHIK/vOf/+DTTz/FyJEjcdNNN+Giiy5Cu3bt8NJLL+H111+PZe+OU1xcHPGaKWYsKirCu+++i6KiImfeMBAEBv4D6HEK8OujzfdRtBr47dnwtSuGX4FDexwKACivLcdJM07C9BXTpd5W5TijqWUnVyZHNFYkjh7wTw/Uv3wc9e+vPugB+TgTPED9O1uL+tcPesDZWl7xAPXvrz7cGKfw9r1jjz0WCxcuxDfffIPhw4djyZIlGDNmDILBICZOnIjHHnssHJuZmYnBgwfjoIMOwtdffx2j1p2j8bazwsJCpKWlNRtjym2L9fX1qK6uRlJSEoLBmB1JtjuWBXx9HDDyXSChbUMfFSVI3vAwAqW/AVXZwJFfAMEEAEBlbSUmfjwRM1bPAAAkBBMw78J5GNlrpNDbqRxnNLXs5MrkiMaKxNED/umB+pePo/791Qc9IB9nggeof2drUf/6QQ84W8srHqD+/dWHyvrKt+8tXboUJ554IoYPHw4AGDZsGMaPH4/y8nJcf/31TWJ79eqFk08+GStXrrTZvp64KT5dCAaDSElJcX4uAgFgwDXAuicb+oCFlGWXItB+CDByBtDtr0Dud+HwlIQUvHXqW7hi2BUAgNr6WpzyzinYXLRZ6O1UjjOaWnZyZXJEY1373DVEh7mIdQ/Uf/R9+BVd5oIeUJNDD8ihyzxQ/2pyqH95dJkLekBNDj0ghy7z4CX9C7+naGBhYSH69evX5LW99toLQMMi1J/p3bs3SkpKomxPLwoLCyNeM+VRmIWFhZg1a1aLcxEzMk4AchYAtSWoWnQdfsrqjsI2R++8tv3TJuGBQABPHv8kjt6rISavIg8TP5r456rNonKc0dSykyuTIxorEkcP+KcH6l8+jvr3Vx/0gHycCR6g/p2tRf3rBz3gbC2veID691cfboxTeFGqvr4eiYmJTV5r/DsuLm63+Pj4eN/tK/XbeOxQX1+PkpISd/7Rabxb6usTUB9MwZryoTv7SBsCFO5+Z158MB7vnv4u+qb1BQDM3zwfi7ct3uNbqRxnNLXs5MrkiMa6+rlrhg5zEeseqP/o+/AruswFPaAmhx6QQ5d5oP7V5FD/8ugyF/SAmhx6QA5d5sFL+hdF+EypYDCIyZMnY9KkSeHXpkyZgrvuugt1dXW7xbd0zWuI7IU0ZS+t61gWsOFFoN+lDYeg78qPlwOD/gm07rNb2stLX8alsy8FAJw+8HS8d8Z7DjRrFvQAMRnqn5gOPUBMhvonJkP9k0iInikVL1N09erVePfdd5v8DQDvvffebncRNV4jRCmBALD35c1fyzge2D4HGHDVbpfOH3I+/jX/X8gqy8LMtTPxe8Hv6NWuFxLjEpspRAghhBBCCCGEkFgjdXrVzJkzcc4554R/Zs6cCcuycPbZZzd5vfGa38jOzo54zZS9tFlZWbjvvvuQlZWlXx9djwayv2o2Pik+CdePaDiQ34KFfZ7aB0n3JGHESyPw5so3UVpduuf6KnuNYa5MjmisSBw94J8eqH/5OOrfX33QA/JxJniA+ne2FvWvH/SAs7W84gHq3199uDFO4Tul7rzzzlj24Qlat24d8VogEGjyX7/Spk0bHHXUUWjTpo1+fSS0Bqw6oOQ3oG3/3XKuGH4F7v32XpTVlKHeavhHc/G2xTj/g/MBAHt32Bv/Hv1vTDhggtJxRlPLTq5MjmisSBw94J8eqH/5OOrfX33QA/JxJniA+ne2FvWvH/SAs7W84gHq3199uDFO4TOlTIZnSnmI8kxgyfVA+mHAvjcCwabrrm+sfAN3fXMXEuMSEaoPYV3+uibXU+JTkHdbHlITUp3s2hfQA8RkqH9iOvQAMRnqn5gM9U8iIXqmlNT2PdOprq52uwXXqa6uxu+//+76XETso1UvYNQsILkT8PVxQPb8JpfPH3I+1l+7HquvWo1frv4FCy5agCuGXRF+Ol9lqBIL/ligdJzR1LKTK5MjGqvL564DOsxFrHug/qPvw6/oMhf0gJocekAOXeaB+leTQ/3Lo8tc0ANqcugBOXSZBy/pXxQuSklQWFgY8Zope2kLCgrw5ptvoqCgQN8+AgFgr4uAke8B2z4BFp4NlG1sJiyAUb1H4dlxz+LBvz4Yfv3z3z9XOs5oatnJlckRjRWJowf80wP1Lx9H/furD3pAPs4ED1D/ztai/vWDHnC2llc8QP37qw83xim0fW+vvfayVzwQwIYNG2zl6kTjbWcFBQVo3759szGm3LZYV1eH8vJytGrVCnFxcd7oo2QdsOKfQGIHAAEgsR0w9KEmIUVVRUh/MB11Vh32Td8Xq69YrWyc0cyZnVyZHNFYkTh6wD89qKxP/fsLHfTvRB/0gHycCR6g/p2tRf3rBz3gbC2veID691cfKuuLbt8TOui8vr5+t4PLampqsGPHjoYi8fHo2LEj8vPzEQqFAADdunVDYmKi3f61xE3x6UJcXFyLgtKyj7b7AKNmNtwtFZcCLLkBqCkEEncuMKYlp+GQHofguy3f4de8X7GldAv6pPVxvlcFuTI5orG6fO46oMNcxLoHlfWpf3+hy1zQA2py6AE5dJkH6l9NDvUvjy5zQQ+oyaEH5NBlHrykf1GEtu9t3rwZmzZtCv8sW7YM3bp1w+jRo/Htt9+iqqoKO3bsQFVVFRYsWIDRo0cjIyMDy5cvj3H7zlJcXBzxWuMNZ34/N764uBizZ89ucS607aP1XkBKNyD9ECD/590u/23vv4V//3DVh8rGGc2c2cmVyRGNFYmjB/zTg8r61L+/0EH/TvRBD8jHmeAB6t/ZWtS/ftADztbyigeof3/14cY4bZ0p9Y9//ANVVVX46quvcPjhhyMYbCgTDAYxcuRIfPnll6ioqMA//vEPpc26TeNdYM1hihlra2uRlZWF2tpa7/bR8WAgf/FuL++6KDV341xl44ymVzu5MjmisSJx9IB/elBZn/r3Fzro34k+6AH5OBM8QP07W4v61w96wNlaXvEA9e+vPtwYp9CZUn+ma9euuOiii/DAAw9EjPnHP/6B6dOnh7f4eRmRvZCm7KX1BaEK4IcLGrb07UK9VY9uD3dDTnkOAOC1k17DhQde6EaHnoQeICZD/RPToQeIyVD/xGSofxIJ0TOlbN0pVVJSInSbn9u3thHSLPGpDQtTf1qPDQaCuGfsPeG/L//kcizausjp7gghhBBCCCGEECOwtSg1aNAgzJgxI+KT9X777TfMmDEDgwcPjqo53cjJyYl4zZRHYWZnZ+Ohhx5Cdna2t/to1Quo2H0l/7Jhl+HK4VcCAGrqanDDpzdE0WUD0fRqJ1cmRzRWJI4e8E8PKutT//5CB/070Qc9IB9nggeof2drUf/6QQ84W8srHqD+/dWHG+O0tSj1r3/9C8XFxRg6dChuvPFGzJw5E99++y1mzpyJG264AcOGDUNpaSn+9a9/qe7XVVJTUyNea3w64Z+fUug3WrVqhUMOOQStWrXydh8RzpUCgMf/9jj2br83AGBx1mJkl0VnyGh6tZMrkyMaKxJHD/inB5X1qX9/oYP+neiDHpCPM8ED1L+ztah//aAHnK3lFQ9Q//7qw41x2jpTCgCmT5+Oa6+9FqWlpU0EaFkW2rZtiyeeeAITJkxQ1qib8EwpH1K0Ctj0BjD0P81e/udX/8T9C+8HALw4/kVcetClTnbnSegBYjLUPzEdeoCYDPVPTIb6J5GI6ZlSADBhwgRs3boV06ZNw4033oiJEyfixhtvxLRp05CZmembBaldqampcbsF16mpqUFmZqbrcxF1H20HAsVrI14+od8J4d8/WveRvff4H9H0aidXJkc0VpfPXQd0mItY96CyPvXvL3SZC3pATQ49IIcu80D9q8mh/uXRZS7oATU59IAcusyDl/Qviu1FKQBo06YNLrjgAkydOhUvvvgipk6digsuuKDFVTAvU1BQEPGaKXtp8/Pz8eqrryI/P9/bfQTjgLhEoGJ7s5f7JPZBa7QGAPx3w39RVlNmt9WoerWTK5MjGisSRw/4pweV9al/f6GD/p3ogx6QjzPBA9S/s7Wof/2gB5yt5RUPUP/+6sONcdrevmcSjbed5efno0OHDs3GmHLbYigUQlFREdLS0hAfH+/tPopWA6vvAUbOaLb+pR9eimlrpgEAZp45E6fud6rjvdrJlckRjRWJowf804PK+tS/v9BB/070QQ/Ix5ngAerf2VrUv37QA87W8ooHqH9/9aGyvuj2PaFFqRdeeAHDhw/HQQcdZKuZaPPdhmdK+ZiVdwJpQ4Bep+126bPfP8Nxbx4HADih/wn45NxPnO7OU9ADxGSof2I69AAxGeqfmAz1TyKh9EypK664Ap98Yv9/kEebrwslJSURrzWu7fn9xrOSkhJ8/vnnLc6Fp/oY9E/gt2d328ZXUlKC0G8h9GjTAwDw6W+fYumOpY73aidXJkc0ViSOHvBPDyrrU//+Qgf9O9EHPSAfZ4IHqH9na1H/+kEPOFvLKx6g/v3VhxvjFD5TqqioCJmZmbZ+/EJLh32ZYsbq6mps2LAB1dXV/ugjLgn4y9PAjxOBUGWT+pmbMnHt0GvDr9294G7He7WTK5MjGisSRw/4pweV9al/f6GD/p3ogx6QjzPBA9S/s7Wof/2gB5yt5RUPUP/+6sONcQpt3wsGgwgEAlG90Z133olJkyZFVcMtuH3PAHZ8AWx+EzjkNWAXrVeHqtHviX7YVroNAPDTZT9heMZwl5rUG3qAmAz1T0yHHiAmQ/0Tk6H+SSREt+8JnVx14YUXRt3QgQceGHUNQmJGt2OAsk3AsluBoQ8B9dXA9rlIqinEPw46D9d98yAAYMIHE7Dk8iVISUhxuWFCCCGEEEIIIcTbCG3fe/XVV6P+OfHEE2M9lpiTm5sb8Zopj8LMycnBY489hpycHP/10f/vQFJH4IcLUfPF0Zg3500UVQbx9/rVOKhbwyH9v+T9grHTxuLM987EjNUzhG5TjaZXO7kyOaKxInH0gH96UFmf+vcXOujfiT7oAfk4EzxA/Ttbi/rXD3rA2Vpe8QD1768+3Bin8JlSBEhOTo54rXF7Y7TbHHUnJSUFQ4YMQUqKu3cKxayPgbcDe1+G6sM+AvpfhbjepyExsRXeGPc0kuMbPv8ft/2I99a+h3NmnoNDXz4U6/LWxaxXO7kyOaKxInH0gH96UFmf+vcXOujfiT7oAfk4EzxA/Ttbi/rXD3rA2Vpe8QD1768+3Bin0JlSpsMzpQxn42tAMBGvFFbh0o8vhYWmlmmX1A7vnP4Ojt37WHf60wR6gJgM9U9Mhx4gJkP9E5Oh/kkkRM+U4p1SEtTW1rrdguvU1tZix44drs9FrPtoUj/jeGDbp5g4dCKybsnC5us349NzP8U+HfcBABRXF+Pkd05GZnHzT5qMplc7uTI5orG6fO46oMNcOKp/F2tR//qhy1zQA2py6AE5dJkH6l9NDvUvjy5zQQ+oyaEH5NBlHrykf1G4KCVBfn5+xGum7KXNy8vDCy+8gLy8PF/30aR+cmegphCor0XnVp3RO603ju9/PH667Cec0P8EAEBVqAoz185U3qudXJkc0ViROHrAPz2orE/9+wsd9O9EH/SAfJwJHqD+na1F/esHPeBsLa94gPr3Vx9ujJPb9wRovO0sLy8PHTt2bDbGlNsWa2trkZeXh/T0dCQkJPi2j93qr3kA6DAM6PbXJnG/5v2K/Z7eDwBwRJ8jMP/C+Up7tZMrkyMaKxJHD/inB5X1qX9/oYP+neiDHpCPM8ED1L+ztah//aAHnK3lFQ9Q//7qQ2V90e17XJQSgGdKEVRmA4suAo6YA+xyiJ9lWdjnqX3wW8FviAvEIefWHHRI6eBeny5CDxCTof6J6dADxGSof2Iy1D+JBM+UigGlpaURrzWu7fl9ja+0tBTz5s1rcS780Mdu9VO6AF3/Cmx+s0lcIBDAifucCACos+ow97e5Snu1kyuTIxorEkcP+KcHlfWpf3+hg/6d6IMekI8zwQPUv7O1qH/9oAecreUVD1D//urDjXHaWpQaOnQonn32WZSUlKjuR2uqqqoiXjPFjJWVlVi5ciUqKyt93Uez9QdcA2x8Bfj2DODLI4D6EABg/IDx4ZCP13+stFc7uTI5orEicfSAf3pQWZ/69xc66N+JPugB+TgTPED9O1uL+tcPesDZWl7xAPXvrz7cGKet7XvJycmora1FcnIyzjjjDFx66aUYOXJkLPrTAm7fI2GqcoBgErDhRaDtQKD78QjVh9D5oc4orCpEh5QOyL01F8GAeTch0gPEZKh/Yjr0ADEZ6p+YDPVPIhHT7XtZWVl49NFHsffee2P69OkYM2YM9ttvPzzyyCOun0ZPSExJ7gwktgP6XABsmg4AiA/GY3Tv0QCAgsoCrM1d62aHhBBCCCGEEEKIJ7C1KJWWlobrrrsOK1aswOLFi3HZZZdhx44duOWWW9CjRw+cddZZ+OKLL1T36jp8FCyQm5uLZ555Brm5ub7uY4/1U7oAqAeqGq43LkoBwII/Fijr1U6uTI5orEgcPeCfHlTWp/79hQ76d6IPekA+zgQPUP/O1qL+9YMecLaWVzxA/furDzfGGfUeo+HDh+O5557Djh078Morr+Dggw/Ge++9h+OOOw59+/bFvffeix07dqjo1XUSExMjXgv874lsgV2ezOZHkpKS0K9fPyQlJfm6D6H6fc4HNrwMoOVFqWh6tZMrkyMaKxJHD/inB5X1qX9/oYP+neiDHpCPM8ED1L+ztah//aAHnK3lFQ9Q//7qw41x2jpTKhIFBQWYNm0aHn74YWzfvj38ekJCAi677DI8+OCDSE1NVfV2jsEzpUizWPXAt6cDg/+NUMk6dHj9XJTWW+jWuhu23bTN9/8w/xl6gJgM9U9Mhx4gJkP9E5Oh/kkkYnqm1J/58ssvcfbZZ6N79+645ZZbUF9fj3/+859Yt24dZsyYEX5a3zXXXKPi7VwjFAq53YLrhEIh5OXluT4Xse5DqH4gCIx4EVhyLeK3vI/DM4YCAHaU7cCGwg1KerWTK5MjGqvL564DOsyFFvp3oBb1rx+6zAU9oCaHHpBDl3mg/tXkUP/y6DIX9ICaHHpADl3mwUv6F8X2otT27dtxzz33oF+/fjj22GPx3nvvYcyYMXjvvfewZcsW3HPPPejfvz/OPPNMLFq0CMcffzw++ugjlb07Ds+Uathj+vTTT2uxlzaWfQjXT+oIHPYmcOh0jB5wWvjlXbfwRdOrnVyZHNFYkTh6wD89qKxP/fsLHfTvRB/0gHycCR6g/p2tRf3rBz3gbC2veID691cfbozT1va98ePH47PPPkNdXR26dOmCiRMn4rLLLkOfPn0i5tx///3417/+hbq6umj6dYXG285yc3ORnp7ebIwpty3W1NQgKysLXbt2bfGMLa/3Yaf+N5u/wRHTjgAAXDn8SjxzwjNR92onVyZHNFYkjh7wTw8q61P//kIH/TvRBz0gH2eCB6h/Z2tR//pBDzhbyyseoP791YfK+qLb92wtSgWDQfz1r3/F5ZdfjpNOOgnx8fF7zFm9ejWWLFmCCy+8UPbtXIdnShERiquKkfafNADAiO4jsOjSRe425DD0ADEZ6p+YDj1ATIb6JyZD/ZNIxPRMqQ0bNuDzzz/HaaedJrQgBQCDBw/25ILUrpSVlUW81ri2p/DceC0pKyvDt99+2+Jc+KEPO/XbJbfD3h32BgCsyFqOUH0o6l7t5MrkiMaKxNED/ulBZX3q31/ooH8n+qAH5ONM8AD172wt6l8/6AFna3nFA9S/v/pwY5y2FqXuvvtufPzxxy3GzJkzBxMnTrTVlK5UVFREvGaKGcvLy7Fo0SKUl5f7ug+79Q/qdhAAoKquGr/m/RpVLbu5MjmisSJx9IB/elBZn/r3Fzro34k+6AH5OBM8QP07W4v61w96wNlaXvEA9e+vPtwYp+3te5MnT8akSZMixvznP//BP//5T0+eIfVnuH2PiPLgdw/iH1/+AwAw7aRXMeHAi9xtyEHoAWIy1D8xHXqAmAz1T0yG+ieRiOn2PRGqqqqEt/YR4hca75QCgKV/fOViJ4QQQgghhBBCiN7YXpQKBALNvm5ZFrZs2YI5c+YgIyPDdmM6kp+fH/GaKY/CzMvLw4svvoi8vDxf92G3/tCuQ8O/L932Y1S17ObK5IjGisTRA/7pQWV96t9f6KB/J/qgB+TjTPAA9e9sLepfP+gBZ2t5xQPUv7/6cGOcwotSwWAQcXFxiIuLAwBMnjw5/PeuP/Hx8ejTpw9++uknnH322TFr3A1auvOrcZEu0mKdX0hISEDXrl2RkJDg6z7s1u+Y2hG92/UGACwt2ISK2oqoerWTK5MjGisSRw/4pweV9al/f6GD/p3ogx6QjzPBA9S/s7Wof/2gB5yt5RUPUP/+6sONcQqfKXXEEUeEhbZgwQL06tULffr02S0uLi4OHTp0wJFHHonLLrssvIjlZXimFJFh4kcT8eryVwEAL45/EZcedKnLHTkDPUBMhvonpkMPEJOh/onJUP8kEqJnSgkf+vT111+Hfw8Gg7j44otbPOjcj/jh0PZoqaurQ3l5OVq1auXqgmOs+4im/lV/uSq8KPXkj4/hoiEXoaKiwlYtO33I5IjG6vK564AOc6Gz/lXWov71Q5e5oAfU5NADcugyD9S/mhzqXx5d5oIeUJNDD8ihyzx4Sf+i2DpTqr6+3rgFKQDIzc2NeM2UvbQ5OTl49NFHkZOT4+s+oqk/PGM4DulxCABgZc4aTP1mKm5+9GbcNuc2HDX9KDzywyMI1Ydi1odMjmisSBw94J8eVNaPphb1rx866N+JPugB+TgTPED9O1uL+tcPesDZWl7xAPXvrz7cGKfw9j2TabztLCcnB506dWo2xpTbFqurq7Flyxb07NkTSUlJvu0j2vpvrXoL5806L+L1Q3ocgjnnzkH7lPbK+5DJEY0ViaMH/NODyvrR1KL+9UMH/TvRBz0gH2eCB6h/Z2tR//pBDzhbyyseoP791YfK+qLb94QWpSZOnIhAIID77rsPXbp0wcSJE4WaCAQCePnll8W71hSeKUVkqauvw4QPJuCt1W9FjLlgyAWYfsp0B7uKLfQAMRnqn5gOPUBMhvonJkP9k0iILkoJbd977bXX8Nprr6G4uLjJ3yI/fqK8vDzitca1Pb/feFZeXo4ff/yxxbnwQx/R1o8LxuHN097EZ0dci3N6H4rxPcbjoSMfwntnvIe05DQAwOsrX8fc3+Yq70MmRzRWJI4e8E8PKutHU4v61w8d9O9EH/SAfJwJHqD+na1F/esHPeBsLa94gPr3Vx9ujFNoUWrTpk3YuHEj9tprr/DfIj8bN26MafNOU1ZWFvGaKWYsLS3FV199hdLSUl/3oar+sYfdh1e7peCQ7INxfv/zcfrA0/HwMQ+Hr//fvP9T3odMjmisSBw94J8eVNaPphb1rx866N+JPugB+TgTPED9O1uL+tcPesDZWl7xAPXvrz7cGCfPlBKA2/dIVGycBmx+AzjgPqDjX2BZFoa9MAzLspYBADZctwF7td/L5Sajhx4gJkP9E9OhB4jJUP/EZKh/Egml2/dkqK6uRigk9mQxQoxgrwuB4c80LE6h4ay1MwedGb78wS8fuNUZIYQQQgghhBDiGrYWpRYuXIi77roLRUVF4dfy8/Nx3HHHoXXr1mjbti3+7/9a3pbkRQoKCiJeM+VRmPn5+XjttdeQn5/v6z5U1s/Pz8e0WQtQU/R7+LVT9zs1/PusX2cp7UMmRzRWJI4e8E8PqvVvtxb1rx866N+JPugB+TgTPED9O1uL+tcPesDZWl7xAPXvrz7cGKetRamHH34Y06ZNQ1paWvi1m2++GZ9//jn22msvpKWl4YEHHsD777+vqk8tCAQCbrfgOsFgEG3btkUwqPwmO636UFk/GAyiTdv2CGDnP9QDOg7AoE6DAADfb/keWWVZyvqQyRGN1eVz1wEd5sJr+rdbi/rXD13mgh5Qk0MPyKHLPFD/anKof3l0mQt6QE0OPSCHLvPgJf2LYutMqb59+2LMmDHhp+tVVFQgPT0do0ePxmeffYbS0lIMGTIEffv2xbx581T37Dg8U4ooYcEpwOHvAHGJAICbP78Zjyx6BADw5QVf4qi9jnKzu6ihB4jJUP/EdOgBYjLUPzEZ6p9EIqZnSuXk5KB79+7hv3/44QdUVVXh4osvBgC0adMG48aNw6+//mqnvLb4/ZZEEerr61FZWen6XMS6D5X1G2tZrfoCZTufSNmvQ7/w75uKNinrQyZHNFaXz10HdJgLL+rfTi3qXz90mQt6QE0OPSCHLvNA/avJof7l0WUu6AE1OfSAHLrMg5f0L4qtRank5OQmjwj85ptvEAgEMGbMmPBrrVu3RmFhYfQdakROTk7Ea6bspc3OzsaDDz6I7OxsX/ehsn5jrRKrC1D6W/j1Pml9wr9vLtqsrA+ZHNFYkTh6wD89xEL/dmpR//qhg/6d6IMekI8zwQPUv7O1qH/9oAecreUVD1D//urDjXHa2r43YsQIFBYWYtWqVQgGgxg8eDASExOxatWqcMx5552HhQsX4o8//lDasBs03naWlZWFLl26NBvTvXt3bN++HRkZGdi2bZvDHTpHZWUlNm/ejD59+iAlJcW3fais31hrr9RNSKr4FdjvJgDAL7m/YOAzAwEA5+1/Ht449Q0lfcjkiMaKxNED/ukhFvq3U4v61w8d9O9EH/SAfJwJHqD+na1F/esHPeBsLa94gPr3Vx8q64tu37O1KPXSSy/h8ssvR48ePZCYmIhNmzbhwQcfxM033xyO2XvvvdG/f3/MnTvX3gg0gmdKESWUZwJr7gcOfhYAUFFbgVb3tQIAHN7zcCycuNDN7qKGHiAmQ/0T06EHiMlQ/8RkqH8SiZieKXXJJZfg1ltvRUVFBYqKivD3v/8dN9xwQ/j6/PnzsXHjRhx1lLcPbv4zFRUVEa81ru3ZWOPzFBUVFVi6dGmLc+GHPlTWD9dCB6Bi5z/UqQmp6NyqM4DIZ0rZ6UMmRzRWJI4e8E8PMdG/jVrUv37ooH8n+qAH5ONM8AD172wt6l8/6AFna3nFA9S/v/pwY5y2FqUCgQD+85//IC8vD3l5eXjmmWcQFxcXvn744YejsLCwyUKVHygpKYl4zRQzFhcXY/bs2SguLvZ1Hyrrh2uVlAK1xcC8Y4GvTwAWX4m+/ztXanvpdlTX7G58O33I5IjGisTRA/7pISb6t1GL+tcPHfTvRB/0gHycCR6g/p2tRf3rBz3gbC2veID691cfbozT1vY90+D2PaKM4l+B1n2BuCRg81s4+793453tDU+pXH/AAejfJh04dBqQ2n0PhfSDHiAmQ/0T06EHiMlQ/8RkqH8SCdHte/HRvEkoFMK6detQVFSEurq6ZmNGjx4dzVsQ4i/a7bvz9z7nok+b5wE0LEptGnQf+sfnAznfAn3OtlW+srYSGws3YmCngQgEAuHXK2orkJqQGk3nhBBCCCGEEEKIUmxt37MsC//+97+Rnp6OIUOGYPTo0Rg7dmyzP36ioKAg4jVTHoVZUFCAt956q8W58EMfKuu3VKvv3ueGf99cshVofxBQuNRWH4WVhfjLi3/B4GcH48QnT0RBQQGKq4px9vtno/V9rXHNnGukepONowf804NT+o9FrkwO9S+PDvp3og96QD7OBA9Q/87Wov71gx5wtpZXPED9+6sPN8Zp606pu+++G/feey/S0tIwYcIE9OjRA/HxUd105Ql2vfPEVAKBAOLi4lyfi1j3obJ+S7X6/O9MKQBYumMpMPQSoORX6T5q62px7qxzsSZ3DQDgk8JP8P227/Hv7/+N5VnLAQDP/fwc7jvqPrRN2nnrpGh9XT53HdBhLvyi/1jkyuRQ//LoMhf0gJocekAOXeaB+leTQ/3Lo8tc0ANqcugBOXSZBy/pX/g97Zwp1adPHwQCAfz888/o2LFjLPrSCp4pRWJFQWUBejzSA5WhSiTFJWHj9RuRseQyYMwngMQ/BOfNOg9vrXprj3Gzz5mNcQPGRdNyROgBYjLUPzEdeoCYDPVPTIb6J5EQPVPK1va97OxsnHzyyUYsSO0Kz4RvmINQKOT6XMS6D5X1W6rVIaUDrv7L1QCA6rpqPLDwAaBVX6B8s3Afy7OWCy1IAcC8TfOEe7MTZwI6zIVf9B+LXJkc6l8eXeaCHlCTQw/Iocs8UP9qcqh/eXSZC3pATQ49IIcu8+Al/Ytia1Gqb9++KCkpUd2L9mRnZ0e8Zspe2qysLNx7773IysrydR8q6++p1m2H34ZWCa0AAK8tfw1V7YYABUuE+/hp20/h3x846gH8cPYPaI/2AIABHQfgx0t/RAANd119ufFLqd5k4ugB//TgpP5V58rkUP/y6KB/J/qgB+TjTPAA9e9sLepfP+gBZ2t5xQPUv7/6cGWclg2efvppq3PnzlZ2draddM9RXFxsAbCysrIixmRkZFgArIyMDAc7c56KigprxYoVVkVFha/7UFlfpNaFH1xoYTIsTIY1e8XLlvXtmcK5V396dTh3/qb5VkVFhbVoySLr018+tSpqGvIOfvHgcMz6vPXS4xSJowf804PT+leZK5ND/cujg/6d6IMekI8zwQPUv7O1qH/9oAecreUVD1D//upDZf3GdZTi4uIW42ydKZWZmYlbbrkFS5cuxaRJkzB06FC0a9eu2dhevXrZXjDTBZ4pRWLNJ+s/wfi3xwMALjzgQrzWswPQ4yQgbTBQtBooXgOkHwp0GLpb7qhXR2Fh5kIAQMFtBWif0n63mKnfT8Wt/70VAPCvUf/C3UferXwM9AAxGeqfmA49QEyG+icmQ/2TSMT0TKk+ffpg5syZ2LhxIy6++GIceOCB6Nu3724/e+21l+0B6EhlZWXEa41rezbW+DxFZWUlVq1a1eJc+KEPlfVFav11r7+iTWIbAMBH6z5Cbr8rgbX/QWjxddix5kNUx3UEVk7aLc+yLKzMXgkA6Nm2J9qntG/2/c4cdGb493u+vQcnvn0i7vrmLmzO2yw0TpEx0AP+6cFp/avMlckRjaX+d6KD/p3ogx6QjzPBA9S/s7Wof/2gB5yt5RUPUP/+6sONcdpalJowYQImTJiACy+8MPx7cz8XXHCB6n5dpbi4OOI1U8xYVFSEWbNmoaioyNd9qKwvUispPgnj92m4U6qoqggHvXokNh34NHL3nooXvk1DQepoIKUbUPxrk7zNRZtRUt1wvtsBXQ+I+H692vXC+AHjw3/PXj8bd359Jy788EKhcYqMgR7wTw9O619lrkyOaCz1vxMd9O9EH/SAfJwJHqD+na1F/esHPeBsLa94gPr3Vx9ujNPW9j3TaLztrLCwEGlpac3GmHLbYn19PUKhEOLj4xEM2lrT9EQfKuuL1lqfvx6jXx2N7PKGA/XPGnQW3jr1rZ25RcuBpTcB3ccD+92M6lA1jn/r+PAT9f5v1P/hniPvifh+xVXFmDR/El5b8Vp4ISsYCGLrdVvRpW2XFnsTGQM94J8e3NC/qlyZHNFY6n8nOujfiT7oAfk4EzxA/Ttbi/rXD3rA2Vpe8QD1768+VNaP6fY9U3FTfLoQDAaRmJjo+lzEug+V9UVrDeg4AMv+vgydW3UGALy75l38Xvj7ztwOBwGHvAaU/gbkLcabq94ML0i1SmiFCw+4sMX3a5fcDo8f9zgK/1GI6w6+DgBQb9VjXua8Pfamy+euAzrMhR/1rypXJkc0VofPXBd0mQt6QE0OPSCHLvNA/avJof7l0WUu6AE1OfSAHLrMg5f0L/ye0SRnZWXhmWeewXXXXYdLLrkk/Hpubi4WL17s+n5L1RQWFka8ZsqjMAsLC/Hee++1OBd+6ENlfZla3dp0w42H3AgAsGDh7nl3N81t3QcY9E/g10fwXeZ34bx3Tn8H/Tv2F3q/YCCIU/Y7Jfz3k18+ucfeRMZAD/inB7f0ryJXJkc0lvrfiQ76d6IPekA+zgQPUP/O1qL+9YMecLaWVzxA/furDzfGaXtR6plnnkHfvn1xzTXX4KmnnsJrr70WvpaTk4NDDz0Ub7zxhooetYE7HRv+samurnb9H51Y96GyvmytK4dfibZJDbc3vvPrO9hRvqNpbqteQH01lu1YAqBhkWls37FS73d4z8ORnpoOAPix9Ed0eKIDvtn8jbIx+Bkd5sLP+o82VyZHNFaHz1wXdJkLekBNDj0ghy7zQP2ryaH+5dFlLugBNTn0gBy6zIOX9C+KrTOlZs+ejZNOOgnDhw/HpEmTMHfuXDz33HOoq6sLxwwdOhQZGRn49NNPlTbsBiJ7IU3ZS0uc4f+++j/ct/A+AEBachrmnDsHh/Y8NHy95ucb0Xru06itr8XATgOx5qo10u/x0HcP4bYvb2vy2gVDLsBTxz8VXhSTgR4gJkP9E9OhB4jJUP/EZKh/EomYnin10EMPoVevXpg/fz7GjRuHzp077xaz//77Y+3atXbKE2I81x9yPVLiUwA0PI1v5Ksj8XvB7+Hra0MJqK2vBQAM7TrU1ntcffDVGNRpUJPXXl/5Ol5f8brNrvWj3qrH4m2LMfX7qSioLHC7HUIIIYQQQgghu2BrUWr58uU44YQT0KpVq4gx3bt3R3Z2tu3GdCQrKyviNVP20u7YsQN33XUXduzY4es+VNa3U6tzq8649bBbw3/XW/VNttctrdh5XtufF6VE3y81IRUfnPAB+qN/k9fnb55vaww6eeClpS8hMCWAuLviMOKlEbj1v7fi9i9vV1JbBw/4Xf/R5MrkiMZ6Tf+xRAf9O9EHPSAfZ4IHqH9na1H/+kEPOFvLKx6g/v3VhxvjtLUoVV9fj4SEhBZjcnNzkZSUZKspXWnTpk3Ea4FAoMl//Urbtm1x/PHHt3j7nR/6UFnfbq3JR0zGQ0c+FP57Te7OLXpLi3LCvw/t1nRRSub9MtIz8H+H/1+T1/Iq8naLE6kZCw9YloXVOaul7nLaUboDl82+bLfXX1z6opKedPCACfq3myuTIxrrlv51RAf9O9EHPSAfZ4IHqH9na1H/+kEPOFvLKx6g/v3VhxvjtHWm1LBhwxAIBPDzzz8DAKZMmYK77rorfKZUKBTCfvvth27dumHBggVqO3YBnilF3GJH6Q5kPJIBADim3zH4/PzPAQDDnjsAS7NXIoAAim4vsnUG1K68ufJNnP/B+QCArq27YsfN8ivjsfDA04ufxjVzr0FKfApmnD4DJ+5z4h5zrvzkSjy35Llmr4X+HUJcME5Jb4TsCr8DiOnQA8RkqH9iMtQ/iURMz5Q677zzsHTpUtxzzz27Xaurq8Mtt9yCjRs3YsKECXbKa0tVVVXEa41re35/Ql9VVRXWrVvX4lz4oQ+V9aOplRafhnaJ7QAAq3NWAwDKasqwIqfhrqn9u+y/24KUzPs1xp424DSM6jUKAJBVloXiqmLpmqo9YFkWnlz8JACgMlSJuxfcvcecGz67ocmC1D9H/rPJ9T+K/4i6Lx08YIr+7eTa0f+eYt3Qv67ooH8n+qAH5ONM8AD172wt6l8/6AFna3nFA9S/v/pwY5y2FqWuvfZajBkzBnfeeSf22WcfzJw5EwBw5plnon///njiiSfw17/+FZdcconSZt2mqKgo4jVTzFhYWIgZM2agsLDQ132orB9NraKiIrSraViU2l66HUVVRVi8bTHqrIa7Eg/r2BfI/cH2++0au0/HfcKvr8tfJ11TlQceX/Q4znjvDLy9+u0mfSzdsRSFlZHfv7K2Es/+/Gz47xsPuRH3HnUvJo2eFH7tgYUPoCoU3T+wOnjAFP3bybWr/2jj+B3grz7oAfk4EzxA/Ttbi/rXD3rA2Vpe8QD1768+3Binre17AFBTU4MpU6bgueeea9Jw27ZtceWVV2LKlClITExU1qibNN52VlBQgPbt2zcbY8pti3V1daiqqkJycjLi4tzbBhXrPlTWj6ZWXV0dLp99OV5Z8QoA4O3T3sYlH1+CitoKAMD0AYNwQZfuwLBHgXYDpd9v19hHf3wUt/634XD16SdPxwUHXCA1BhUe2FCwAXs/uXfE63POnYPj+h/X7LV5m+bhqOlHAWg4xL349mLEB+Mxf9N8HDn9yHBcWnIavpv4HQZ2GmirRx08YJL+ZXPt6r+lWKf07wV00L8TfdAD8nEmeID6d7YW9a8f9ICztbziAerfX32orC+6fS/e7hskJibi3nvvxT333IN169ahoKAAbdu2xX777efqhxRL/DouGeLi4lp86qJf+lBZP5pacXFxGJoxFFjR8Pc5M89pcv2wvY4D9joF2PJBeFFK5v12jW3pTimnPvffCn5r8frvBb9HvDZ73ezw7y+MewHxwYZ/3g7vdTj2S98Pv+T9AgAoqirC9BXT8cDRD9jqUQcPmKR/2Vy7+lfdh1/RZS7oATU59IAcuswD9a8mh/qXR5e5oAfU5NADcugyD17Svyi2tu/tSiAQwL777ovDDjsMgwcPdnzh5tNPP8WIESOQkpKC9PR0nHrqqU2uZ2ZmYvz48WjVqhXS09Nx3XXXoaamxtZ7cftewxx8+OGHLc6FH/pQWT+aWkVFRSj7razZa8f3HYO9DpoMpPYEKrfZer9dY/dJj7woJVJThQfqrd0fJdsuqV349w2FG5rNqwpV4e3VbwMAEoIJOGHACeFriXGJmH/hfJwx8Izwa38enww6eMAk/cvm2tV/tHH8DvBXH/SAfJwJHqD+na1F/esHPeBsLa94gPr3Vx9ujNP2otSaNWvw2muvYerUqZg6dSqmTZuGtWvXquxtj8ycORMXXHABLr74YqxYsQLfffcdzj333PD1uro6nHDCCSgvL8fChQsxY8YMzJw5EzfffLOt92t8umBzmGLGUCiEgoIChEIhX/ehsn40tUKhENKr0rF3WtMtbbcffjs+uWA+AgmtgJSuQOWOJjmi77drbN+0vuG7i95f+z4mfjRRqqYKDzR3ZtQ5g3feHfb4j4+jtq52t5jZ62YjuzwbAHDiPiciLTmtyfUurbvg7dPeRlJcEgDg17xfbfeogwdM0r9srl39RxvH7wB/9UEPyMeZ4AHq39la1L9+0APO1vKKB6h/f/Xhxjilz5T68ssvcdNNN2HNmjXNXh8yZAgeeeQRjB07VkmDkQiFQujTpw+mTJkS8UD1uXPnYty4cdiyZQsyMjIAADNmzMBFF12EnJycFvc17orIXkhT9tISd3hq8VO4du614b/L7ihDq8Rdbqv8ejxwxOxmMuXo/2T/Jlvktty4BT3a9hDKVeGBJ358Atd/dn2T19Zfsx77Pb1f+HD3N055A+cNOa9JzOOLHscNn98AAJh28jRMOKD5J38OeHIAfiv4DW2T2qL49uJmYwixA78DiOnQA8RkqH9iMtQ/iYTomVJSd0q9//77OP7447F69Wr07t0b559/Pm677TbceuutOP/889GrVy+sWLECxx57LD788MNox9AiS5cuxbZt2xAMBjF06FB069YNxx13XJPFsh9++AGDBw8OL0gBwLHHHovq6mosWbIkYu3q6mqUlJQ0+SHETSYcMAHd23QHANxy6C1NF6QU8ue7kDKLM2PyPpHILc9t8vcp+56C/h374+DuB4dfW52zOvz7ku1LsLFwIypDleHX2iZF/gcvJSEFAFAdqlbVMiGEEEIIIYQQmwgfdF5YWIi///3vSEhIwMsvv4zzzz8fgUCgSYxlWZg+fTquuuoqXH755Rg7dizatWsXoWJ0bNy4EQAwefJkPPLII+jTpw8efvhhjBkzBuvXr0eHDh2QlZWFLl26NMlr3749EhMTkZWVFbH2/fffjylTpuz2+ptvvom0tLRmcyoqKsL/ffvtt22OSn+qq6uRmZmJXr16ISkpybd9qKwfTa1dc29Pvx2ZbTJxQN4Bu2lspJWN7996HfWBeKn3+3PswfEH4w/8Eb4+Y+4M/NHmD6GazXlgfvF8LCpdhDM6noG9U5p/ql6dVYfM6ky0jWuLezbd0+RaZVYl3n77bZwefzp+wA8AgK9XfI23c9/G9yXf46mspxBAAO3jdz4Vc9HCRahcVonmKCtqOJ+ruq4ab7311m7/homggwdM1L9objT6jyaO3wH+6oMekI8zwQPUv7O1qH/9oAecreUVD1D//upDZf1GbewRS5Ann3zSCgQC1iuvvLLH2JdfftkKBALWM888I1o+zJ133mkBaPHnp59+st58800LgPX888+Hc6uqqqz09HTrueeesyzLsi677DLrmGOO2e09EhISrLfffjtiD1VVVVZxcXH4Z8uWLRYAa9u2bRFzMjIyLABWRkaG9Ji9RGlpqfX9999bpaWlvu5DZf1oagnnLr7Ksso2S7/fn2OLq4qtvZ/Y28JkWJgMa+p3U4Vr/tkD1aHqcJ2ku5OazVmRtSIc09zP579/Hq4VmBwIvz59+XSr72N9m835ZvM3EXsc+crIcFx1qHqP8yMyZ25A/avJEY21o3+/ooP+neiDHpCPM8ED1L+ztah//aAHnK3lFQ9Q//7qQ2X94uJiC4BVXFzcYpzwmVInn3wylixZgszMzD3eXVBfX4/evXtj2LBh0tv48vLykJeX12JMnz598MMPP+DII4/Et99+i5EjR4avjRgxAkcffTTuvfdeTJo0CR999BFWrFgRvl5YWIgOHTpg3rx5wude8Uwpoj1r7gM6HwF0OizqUgszF2LUq6MAADeMuAGP/u1RobxGD2RkZGDr1q3ILs9Gt4e7ha9bd+78p6agsgAHPncgtpRsiVjv6r9cjSePezL8702vR3u1GN/Ij5f+2GS7364cPf1ofLXpKwBAye0laJPURmhshOwJfgcQ06EHiMlQ/8RkqH8SCeVnSq1cuRKjRo0S2u4SDAYxevRorFq1SrR8mPT0dOy7774t/iQnJ2PYsGFISkrCunU7H+1eW1uLzZs3o3fv3gCAQw89FKtXr8aOHTufTPbFF18gKSkJw4YNk+6tuprn0FRXV2Pjxo2uz0Ws+1BZP5pawrkp3YHKbQ05xZn445fvhN6vufq7HmzeuAgk0ke9VQ8A2F66HQe9cBC2lWxrcr2mrib8+8frPm5xgWlIlyFNFqSAhvOlREiJT4l4LSl+5y2o1XX2PlsdPED9q8kRjdXhM9cFXeaCHlCTQw/Iocs8UP9qcqh/eXSZC3pATQ49IIcu8+Al/YsivCiVn5+PHj3EnsIFNKyY7umOp2ho27YtrrjiCtx555344osvsG7dOlx55ZUAgDPOOAMAcMwxx2DgwIG44IILsGzZMnz11Ve45ZZbcNlllwk/eW9XCgt3f1x9I/X19U3+61cKCgrw+uuvo6CgwNd9qKwfTS3h3NQeQMU2oGIrAt+eguD3Z6Mgd1vLORHqZ7TJQAANi0FbS7YK91FeUx7+fXnWcjz101NNru96aPovub9ErHPqfqfiu4nf7bYA/tjfHsOI7iP2OKbGw8ybIylul0Upm4ed6+ABL+h/edZynPX+WXj959djr3+bOaKxInH8DvBXH577DrCZQw/IQf07W4v61w96wNlaXvEA9e+vPtwYp/D2vbi4ONx5552YNGmSUOEpU6bg7rvvRigUiqrBlqitrcUdd9yB119/HZWVlRgxYgQee+wxDBo0KByTmZmJq666CvPmzUNKSgrOPfdcTJ06VerQrsbbzvLz89GhQ4dmY0y5bTEUCqGsrAytW7dGfLzwOfme60Nl/WhqCedWbAWW3gx0GIa6toNRXbgJSclJiOt/qa363R7uhqyyLHRv0x1bb9oq1EdShyTUFNYAbQDcvPv12efMxrgB4wAAJ804CR+v+xhAw5MFp6+YHo6r+VcNEuISmn2PZ356BlfPubrFMW25cUuTu7125ZyZ52DG6hkAgA3XbcBe7fdqsVZz6OABL+i/w386oLCqYSF/21Xb0Ll959jp32aOaKxIHL8D/NWH574DbObQA3JQ/87Wov71gx5wtpZXPED9+6sPlfVFt+8Jv4vg2lXUOTIkJCRg6tSpmDp1asSYXr164ZNPPlHyfm6KTxfi4+MjPoHQT32orB9NLeHc1B5Acldg85uI+9sSpHatBb49BdjDolSk+r3a9UJWWRa2l25HVagKyfHJLfbxyA+PoCZUE/E6AJw36zwU3FaAYCCIpTuWAmjYanf74beHF6WO2/u4iAtSACIuNu1Ki9v3FNwppYMHvKD/xgUpAHhs+WN48K8POtKHTI5orA6fuS7oMhde8ICKWvSAXugyD9S/mhzqXx5d5oIeUJNDD8ihyzx4Sf+iCG/fA4CFCxfiwQcfFPpZuHBhrHp2jeLi4ojXGhfgYr0Q5zbFxcX49NNPW5wLP/Shsn40taRyh0wGBv8LxaXl+PTzeahO7AUUrQEWXwl8OhioLROu379DfwCABQsbCjbssY9Xlr2yx/ZKqkuwLGsZXl/5enhb4MBOA7Ffp/3wwFEP4IyBZ+ClE19qsUbftL5N/j578Nm7xQhv37N5ppQOHvCS/gHgoe8fir3+beSIxorE8TvAX3148jvARg49IAf172wt6l8/6AFna3nFA9S/v/pwY5xSt/58+eWX+PLLL4XjRQ5F9xK1tbURr5lixpqaGmzduhU1NS3fFeP1PlTWj6aWVG5ie6DXGajJzcXWrVtRsc+pSPrhfKD3OUD6oUDmu0C/iUL1B3QcEP59ff56dE7vHLEPy7KwuWhz+O/Wia1Rht0XwABg2Y6GRalGbjr0JgDAP0b+Y8/jAzC482CcP+R8LM9ajtdOeq3ZxbDk+OSmL4TKga+OBsbOaXLQ+a4Hr8uggwe8pH8AaB9sH3v928gRjRWJ43eAv/rw5HeAjRx6QA7q39la1L9+0APO1vKKB6h/f/XhxjiFz5SaNm2arTe48MILbeXphMheSFP20hIPYVnAT1cBwx4DrHpg4enAEZ8Kpc5YPQPnzDwHAPDAUQ+0uGiUX5GP9IfSgYcBlAIdunRAwZXNH4x33v7n4Z017yBUH0K/9v3w+3W/y46qCXd8eQce+O6B8N+JcYmo/tcud0BZFvDTFcD2ucBfnsOta+Zj6g8N230XXLQAo3qPAgBU1lYiOT4ZofoQzpt1Hv4o/gPvnv4ueqf1jqo/k+nxSA9sK204bP/IvkfiqwlfudxRbOF3ADEdeoCYDPVPTIb6J5FQfqaUHxaXCDGKQAA4+Nmdf8elAqEKID51j6mN2/cA4LeC31qM3fWpegAQH4z8z8qbq94M/35Mv2P22MeeSEtOa/L3budJVe4Afn8BGPowULgMSdlfhC81bt/7auNXGP/2eOybvi/OGnQW3lv7HgBg8LOD0TGlI649+FrcfFgzJ7eTFunSukt4UWrepnkoqira7fMihBBCCCGEmI3UmVKmk5OTE/GaKY/CzM7OxsMPP4zs7Gxf96GyfjS17ORGzEnbHyhaBVQX7DG2f8edi1Lr8te12MfqnNVN/g4iiF7tejV5bd/0fXfLa+48KFmGdBnS5O/dzpMqWgUMexzo/3egYAmSQqXhS40HnT+x+AlUhiqxLGsZbv/q9vD1spoy/FH8B2757y1YtHVR+HUdPOAl/Tfy8g8vO9KHTI5orEgcvwP81YcvvwOiiKUHGqD+na1F/esHPeBsLa94gPr3Vx9ujJOLUhKkpEQ+QLnx/Cy/naP1Z1JTU/GXv/wFqal7vtvGy32orB9NLTu5EXPaDwVyvwP+e9geY9smtUX3Nt0BAGty1iAlJaVJXKg+hPfWvIdZv8zChA8nNMkNBoKYeODOs6vaJLbBKye+0uQOqjG9x2BUr1HCY4rEoT0PRQA7PdfkPKntnwHLbgbSDwPiWwHVuUiKSwxfbrxTqvFJgC3xwMKdWwR18IAX9P/nneGPLXvMkT5kckRjReL4HeCvPnz5HRBFLD3QAPXvbC3qXz/oAWdrecUD1L+/+nBjnMJnSpkMz5QivqBiK/D5IUB1LnBWJRBoeU36+DePx9zf5wIAfrz0Rzzz0zM4uPvBuOovV+H+b+/HP+f9s2nC/86U6t69O9ZvWo9r51yL7WXbcfVfrsa4AePw6fpPccdXd2Df9H3x1PFPoXOrzkqG1WVqF+SUN9zFOLjzYKy6clXDhSU3NhzsnrZ/w99Fq/H4zy/hhu8eBwC8depbOGf/czDylZH4bst3Lb5H/w79sf7a9Ur6NYUDnzsQK7JXNHkt9O8Q4oJxLnUUW/gdQEyHHiAmQ/0Tk6H+SSREz5TinVISuH3Svg7U1NRgy5Ytrs9FrPtQWT+aWnZyI+akdAesENDlqPAWvpbq77o1bsRLIzBtxTRcPedq/Lz9Zzz8w8O7xe/6ZLvUhFS8fNLLmHveXIwbMA4AcMKAE7DyypV494x3lS1IAUCrhFbh39sktgHq//eUzLINQNv9dgamDUZy2s6/K2orAAAl1SV7fI9NRZsQqg8B0MMDXtC/hd3//47GM6Zi2YdMjmisDp+5LugyF17wgIpa9IBe6DIP1L+aHOpfHl3mgh5Qk0MPyKHLPHhJ/6JwUUqCgoLmnygGmLOXNj8/H6+88gry8/N93YfK+tHUspMbMScQAI6aB7QfAlRl77H+n89rauSfX/0T+ZU749NT0/HL1b+gQ3IHAM57YNdbhdskpgJzhjQ8bdCqA/506PquZ12ty18HACisKtzje4TqQ/h689cA9PCAF/Tf3E24m4s2x7wPmRzRWJE4fgf4qw9ffgdEEUsPNED9O1uL+tcPesDZWl7xAPXvrz7cGCe37wnQeNtZXl4eOnbs2GyMKbct1tbWorCwEO3bt0dCQoJv+1BZP5padnL3mPPro0DaAUDXI1uMXZOzBoOfHdzie3Vr3Q0/Xvojerbr6ZoH+j3RDxsLNwIAxvc4CB+n5wNJnYDW/YCRM5rEbi/dju6PNJyVdUy/Y3D5QZfj9PdOD1/fp+M+uOfIe3D6wNPxwpIX8OB3D2JD4QYAwKn7nYqZZ87UwgNe0P/+z+6/2yH4n577KY7vf3xM+5DJEY0VieN3gL/68PV3gI1YeqAB6t/ZWtS/ftADztbyigeof3/1obK+6PY9LkoJwDOliK/Y/FbDf/uc22KYZVk47d3T8MGvH6Bf+37hxZldWXfNOgzoOACAex5osiiV3hUfnz8PWHw50PWvwP6TmsRaloWO96egsLYa6anpyKvIC18b3Xs0vrnomybxtXW16P5Id+RW5KJdUjsU/qPQ94c4qmLQM4OwNndtk9feO+M9nD7w9AgZ3obfAcR06AFiMtQ/MRnqn0SCZ0rFgJKSyGfPNK7t+X2Nr6SkBF988UWLc+GHPlTWj6aWndw95iR3DW/fayk2EAhg1lmzEPp3CEsvWopPR3yKfx6683DzK4dfGV6QAvTwgFVfD7TbD9j7CiD9kN2uBwIB9E5p+Adx1wUpAEhLTtstPiEuAQd1OwgAUFxdjJzyHC084AX9N6eDytrKmPchkyMaKxKng/6dQAf9O9GHr78DbMTSAw1Q/87Wov71gx5wtpZXPED9+6sPN8YptCh15JFH2vo56qijYt2/o1RXV0e8ZooZq6qqsH79elRVVfm6D5X1o6llJ3ePOcldwotSIvXjgnGoqqrCxt834voDr8dn532Gx459DI8e+2iTuCYeyPoKWHIDULiimYoxpPEupr7nAd2OaTakV2r7Zl9vk9im2df3Td83/Pv6/PVaeMAL+m/uoPOssqyY9yGTIxorEsfvAH/14evvABux9EAD1L+ztah//aAHnK3lFQ9Q//7qw41xCm3fCwbt3VAVCARQV1dnK1cnuH2P+IqqPGD5rcAhryot28QDr/UHBlwFFK0Chtyl9H3+zK7b98Z16onZV2W2GH/tG4fiqQ2Ldnt9xRUrmj3c/d4F9+Jf8/8FAJh9zuzw0wRJy+z71L7hw+QbOW//8/DGqW+41FFs4XcAMR16gJgM9U9MhvonkRDdvhcf8cou+P0kfUKMIqkDUN3MkyTr6wArBMQl7bnGr48BrfoAPU9u5mI9kNoD6HEKsHFadL3KEkzcY8g+7bo3+fvJ457EsG7DIj5tMDUhNfx7eU15dP0ZROOdUgEEwr/nVuS62RIhhBBCCCFEM3imlAS5uZH/B5Upj8LMycnBE088gZycHF/3obJ+NLXs5O4xJxAErPrdY5dcDyy7bc81S34Dtn0MbP+kSUzYA6EaoN1AIBgPIADU1zYEFK8FYnBbb5dWXcK/d2jmXKg/c2TG/k3+vubga3Boz0MjxrdKbBX+vaK2QgsPeEH/9f/T2K7bIr/Y8EXM+5DJEY0VieN3gL/68PV3gI1YeqAB6t/ZWtS/ftADztbyigeof3/14cY4uSglQVJS5DtIGp/I5fcncyUnJ2PgwIFITk72dR8q60dTy06uUE4gCNRVh2Pb5H3YcIdU2QagprjlmmvvB4Y/DVRsa1qy0QNWqGFRCgDa7QuUrAdqS4AvRwMbXhQehyjPj3se8cF4JMcl4J5h5+0xfr/2/XBmn0OQHJ+MN099c4/xu94pVVFboYUHvKD/xp3h8UGhG3KV9SGTIxorEsfvAH/14fvvAMlYeqAB6t/ZWtS/ftADztbyigeof3/14cY4hc6UikRVVRV++uknbN++PeIh4BMmTLDdnC7wTCniO1bdBXT9K9DpUKA8E1hyHTByJrD5zYY7nPqc23yeZQFfnwCMndNwV1XxWuDg54HU7js90Lk1tv62BGg7ANg4vWGxK6EdsOV9IKkzcOB9yoeTVZaFhD/eQsd2/YEe41sO3vYJULkdNX0vQmLcnrf7zfplFk579zQAwINHP4hbD79VRcu+p/Gsr/TU9CZPOrTu9OchmPwOIKZDDxCTof6JyVD/JBKiZ0rZvlPq6aefRkZGBo444gice+65uPjii5v8XHTRRbj44ovtlteS2tpat1twndraWmRnZ7s+F7HuQ2X9aGrZyRXK6XQ4kPc9amtrUbTxS4S6Hg8E44AOw4DC5ZFrVuQCSekNLw59EBj2GLBoIlBXszO4PgS03qvh97T9Gw47z1kAdD8RqCkUHocMXVt3RccggITWew5OSANqioQWpIA/nSlVW65UG9tLt+PkGSfjvFnnobZO8WccBSrqN/7/HUEE0a1VN8f6kMkRjdXl3z0d0GUuvOABFbXoAb3QZR6ofzU51L88uswFPaAmhx6QQ5d58JL+RbG1KDVr1ixce+216NmzJ6ZOnQrLsnDSSSfhvvvuw9/+9jdYloXTTjsNr7zyiup+XSU/Pz/iNVP20ubl5eG5555DXl7enoM93IfK+tHUspMrlNPxYCD/R+Tl5WHF19NQiN4Nr7fdByhZt1t4Y83CHb8CKTvPcEKbvYE+5wEbXw5r34L1v/OkALTbD8j9FshfDHQ5Eqhp5oB1VYTKgHiBRanE9jsXx+r2/KjTVglNz5RSqY2z3j8LH637CG+tegtzf58rnOcF/TeeKWVZFoLl9v7/j5jpXzJWJI7fAf7qw/ffAZKx9EAD1L+ztah//aAHnK3lFQ9Q//7qw5VxWjYYNWqU1aVLF6u8vNyyLMsKBALWlClTwtfffPNNKz4+3po/f76d8tpRXFxsAbByc3MjxnTv3t0CYHXv3t3Bzpynurra2rp1q1VdXe3rPlTWj6aWnVzhnHnHWdWV5VbF58dZ1RXFO1+ff7xl1dc3W7Nm638ta+1DTeuU/WFZP16x0wOdUppe3/qpZW2b21Dz6/HC45Bm6a2WVbR2z3HlWy3rxysafp93nGWFWp6nn7f9bGEyLEyGdfWnVyvVRmNdTIb13E/PCed5Qf+9Hu1lYTKsrg91tQ565qDwOOv/pC3VfcjkiMaKxPE7wF99GPEdIBFLDzRA/Ttbi/rXD3rA2Vpe8QD1768+VNZvXEcpLi5uMc7WCbQrV67EmWeeidTUndta6urqwr+fe+65mD59Ou666y4cccQRthfMdCMxUWy7j59JTExE9+7d3W4j5n2orB9NLTu5wjnpI5BYuhxIDAApu+zxTekGVG4HUrs3nCEVCOys+cd3QHKXpnVSewAVu+wfD/zpn5Xuxzf//pbV8BTAYJzQuPZIqFz+TqmKTKAmv2HMEfjzQecqtPHBLx/ghs9vaPJaZahSON8L+rf+t30vEAggqXaHY33I5IjG6vLvng7oMhde8ICKWvSAXugyD9S/mhzqXx5d5oIeUJNDD8ihyzx4Sf+i2NpTUVtbi06dOoX/TklJQVFRUZOYIUOGYOnSpVE1pxulpaURrzX+DzArBo+814nS0lJ8/fXXLc6FH/pQWT+aWnZyhXMyjkfo55uxpbh109g+5wNr/wNU5QGfDQNCleGaVcV/7L4oFQgCsHZ6IJAQ+T139ceWWcC6R4XHtUdCZWJnSsWlAHUVDb9XZQHVLW8pbJPUJvx7YVWhEm3cveBuZBZnNnmtrKZMON8L+rdgNf4CqzJ799dj1IdMjmisSBy/A/zVhxHfARKx9EAD1L+ztah//aAHnK3lFQ9Q//7qw41x2lqUysjIwI4dO/+f7969e2PZsmVNYv744w/Ex9t/FLiOVFZGvpPBFDNWVFRg6dKlqKio8HUfKutHU8tOrnBOh2Go7Hg03t8wvGlslyMABIBvTwE6jgB+fThcM1S2Y/dFKQCIS4bVeKZUS4tSu1K8BtjxOZD5nlj8ngiVAXGt9hwXCDQcxl5XBVTnN9wp1QJdWnVBMNDwT+W2km1N57euuulCmyDLspbt9tqqnFXC+V7Qf+OZUgEEUFufFH5d5t/ImOpfIlYkjt8B/urDiO8AiVh6oAHq39la1L9+0APO1vKKB6h/f/XhxjgDlg31nHvuuVi7di2WL18OALjpppvw+OOP495778X48eOxcOFCXHPNNTj66KMxd6744b26IvIoQz4Kk/gKywK2fgD0OBlYenPDE/nikoFgAnDwC0BK16bxy29Hj+NfxbYdOS174JuTgFGzGrbsfXceUPBTwxa+8b81LBZFw9f/z955hzlRbQH8l2y2L7C7lKV3EATpICIgqNjFhojYUezdB/aC+BAV21NBRQUbKFIUwYL0JiACUqV3tlfYnt28P7LpmWQmmU0myf19Hx+ZmXPOnJmcmzt75t5zr4YhP8uT3XgPHPzc/HnQfGhxnUfxpm83Jf2MORE/98a53ND5Olh5hXkaYOtb4KxHZbuZV5pH/Tfruz2WOz6X1PhU2ba0jOWetajTlJZRlawryAag8sVKDPrwemEBog8QCEQbEEQyIv4FkYyIf4EUcvIo4ONIqRtvvJHy8nKOHDkCwLPPPkvz5s15/vnn6datGw888ABJSUm8+eabPjkvEAiCjE4HLa43T83r/S5cvAK6TYRTv0BsA1f51D62KXGeiEmGykLz58pCGPgDNLkUTu9X1X2vNL3KXEeq/5fm0VLexOs0tX5+bvlzUHLSPMqrqsw84ksmJpOJBm+6uX81/HXyL9m2tI5lmp6OanRRcUH2RiAQCAQCgUAgEGgRn5JS1113HXv27KF169YANGzYkG3btjF58mTuvfdeJk2axM6dOznnnHPU9DXoiKVgITs7m2nTppGdnR3Wfqhp3x9bvugq0ZErm52dzbQ5f1HUdRq4G+XS8HxzoXG8tIGUHpDxB1RXATpI6W6eLpiz3quvqpI2BFqMgMQWtiSZB67vfL31877cfTz92X3mDZMRyhUs01uS47GmUlF5kSw7fsWnqdprIk6N+LcO5a6qouh0qct+OWgq/r3IiT4gvPwQfYByuUhoAyL+A2tLxL/2EG0gsLZCpQ2I+A8vP4JxnT4lpY4dO0ZGRobDvpSUFMaNG8e0adN45plnNFGZXm2io6Vr5ehqph7p/J2CpHFiYmJo3bp10FcirG0/1LTvjy1fdJXoyJW1yJlajnQvEN+kpuC5lzbQ4UE48AnkbYbkruZ99c6BAvn1lFyoPAPVlaCggDYxydDnfxCVAFXeV717duCznNvsXOv2mwW/Ykw5F+p0gKoKWacsM5bR/oP2DvsKni5g6hVTrdu5pd5HbYGf8bnvQ/ipde3Zr8GSfIvCSFR0vMt+OWgt/j3JiT4gvPwQfYByuUhoAyL+A2tLxL/2EG0gsLZCpQ2I+A8vP4JxnT7VlIqKiuLOO+/k888/rw2fNIeoKSUQeKd5syacPJXhvQ0cmgn/vgs9JkPTy81Fx9dcDxcs9O3Eu14328jfAoMXKNPN3w7Hvofu//Uq+sbaN3hm2TPW7crLHsAQkwSFe2TVspq5bSZ3/XSXdfu5gc/x34v+y8K9C7nmu2sAeG3oazw/+Hll16CU1ddDeTYMW1Orp2n4VkNySnJoGxdH80Z9WH1sLQDlL5QTExXczrw2EH2AINIRbUAQyYj4F0QyIv4FUtRqTanU1FRSU8OjGK8SjEZjsF0IOkajkby8vKDfi9r2Q037/tjyRVeJjlxZWXK6KHkOtrkDznoMGg4yb+sNYKqSp+uO0/vh8Eyo10W5blQ8GL2PlAJol9rOYTuj/oXQ4QHZBdo3n9rssD2291gA6sfbip7nlMibCuhzTP1+nnmqZHS92rFvh+V9hw49RmO1y345hFT8RwhauReiD1BHR7QBZWjlPoj4V0dHxL9ytHIvRBtQR0e0AWVo5T6EUvzLxaek1KBBg9iwYYPavmgeUVPKPMf0gw8+0MRc2tr0Q037/tjyRVeJjlxZOXKy24BOB+3GQHSSbZ8hUXZyyIWyLOg8HhoNVq5riJc1fQ/gmhTHFfM2ZKZDUhtAZ16t0At5pXnWz/NHzqd1cmsA6ifY7L638T0MrxpYd2ydR1s+x1TxYSjLtE61VN2+HVU1iUY9cPLUSet+JdP3wjL+QxzRBwTWlmgD2kLEf2BtifjXHqINBNZWqLQBEf/h5UcwrtOn6Xt79+6lf//+PP744zz//PMYDOG3vLc9lmFnWVlZNGzY0K1MpAxbLC8vJz09nSZNmhAbGxu2fqhp3x9bvugq0ZErK0fOrzawdRy0HQP1OivTA1h5FQxZpFwPoDwPtjwJ5830LrvhLp7f8TuTTqUDcGHLwSy7axWsuxn6fAjRdUHvWneuqLyIn/79idfXvs6enD0A5I3PIyU+BYDs4mwaTWnkoNOjcQ+23rdV2m1fYspkghWXQcYSaHa1x+mSasR/zMQYKqsr6ZFYl7g6Z7Mhw/wio+S5EuLtakx5ImLiP4QQfUBgbYk2oC1E/AfWloh/7SHaQGBthUobEPEfXn6oaV/u9D2fklJjxoxh//79rF+/nsaNG9O9e3fS0tJcipvpdLqwqDslakoJBN7xqw3sm2oeddT0cmV6xmLYMAYGfq9Mz6pfChvugIFzvMtuuIsVR9dz4b/7AOjZuCdb7tsCm+6HQ19A7w+gw30uanf9dBczt8102Ff1UhX6mtFKxmoj0RNdk1mml11/miuqKnjq96fYlb2L6VdPd5lS6My7f77Lj3t/5Nned3HZv49D2lA4/3tYeyNc8JP3a/aRyqpKYl4z1406v24KMak9WHFkBaAsKRVKiD5AEOmINiCIZET8CyIZEf8CKWq1ptTMmTNZt24dJpOJ9PR0fvvtN7788ktmzpzp8i+cOHPmjOQx6/LnynN8IcWZM2dYt26dx3sRDn6oad8fW77oKtGRKytHzq82kNgaio8o1zt9AOq09y4nRVQcVJV5OcdBOPUrlOcyNK09dWPqAPBvzr8Yq41QWWhe/c9NTS1jtdElIQVYE1IABr37kaYPLHqAksoSh33T/57Oh399yIojK2j/QXuO5xyXdPvU6VM8ueRJVh9dzeXz72JfcSHUOxuiYvC2UqG/8W/vd7ypgsLCQuu2kul7ERP/IYToAwJrS7QBbSHiP7C2RPxrD9EGAmsrVNqAiP/w8iMY1+lTUurw4cOy/h06dEhtf4NKcXGx5LFIaoxr167VRGOsTT/UtO+PLV90lejIlZUj51cbSGoNZw4r1zt9AJL8SErJKVJeuAvS/wB0oI/loiZ9ASg1ljJj6wzz8eRzoCLfRfVk0UmXfcPaDnPZ90T/J1z2ffz3x7y57k2HfeuOO9aa+uXfXyTdPpB3wGH7rKOQH5UiKW+Pv/Fvn5RKqi52TEopiI+Iif8QQvQBgbUl2oC2EPEfWFsi/rWHaAOBtRUqbUDEf3j5EYzr9Gn6XqQhpu8JBN7xqw1UnoZN98H5s7zLFuyE3W/CgK/M/9c/F9Iu8M1pgFXDbfWVdr1uttf4QtvxQ1/CqcVQVQ5Jbfm1NIorlr0NQL9m/dh48w9QchJO/gxpQ8zX0vIGAP48/icDvhjg6P7TBdSLc1z9rrSylJ/2/sTN82522N8goQHZ42xFBscuHMtnWz+zbn9y1Sfc2/tet5f13c7vXOx9PPQ57hv8X1hZU1NK5sqBAFXVVZQaS0mKSfIqezDvIO0/MCcLb2nagYzYliw7vAyAM8+eITEmUfZ5QwXRBwgiHdEGBJGMiH9BJCPiXyBFrU7fGzNmDAsXShfJBfjll18YM2aML+YFAkGkEV0HjDKz8em/QeEOSF8CJcchsaV6fhydDcfnmT9XVUBppnkEVHHNNLm4NC5PMpASkwDA/tz95vMntoSKPDg0E/Z9YDV36vQpl1M4J6QA4qPjGdV1lMv+0krHlQGj9I5TBI8WHJW8lIKyApd9ZTE1BdVj60N5rqSuM8ZqIz0+6UGDNxuw4vAKr/LFlbZRpQn1ezscUzJ9TyAQCAQCgUAgEIQ3PteU2rZtm0eZHTt28OWXX/piXrPk5kr/ERcpS2Hm5OTw+eefk5OTE9Z+qGnfH1u+6CrRkSsrR87vNiB30GbGcrhoBex+A84cgfimvp3PQmk6LO5i/hzfFEprptxlroA9b0FFAZRlmPfFpVGRtYVWOvM0uPyyfDLOZEBsAzjwiTmpZZd0WX54uSJX3r/sfYdtS3Lnz+N/EvtaLJ/8/YnD8UlrJ7m1o5+g54HFD7jsL68qN39IaG67Tieqqqu4a+5d9HmzDwdOmKcALj20lJ1ZOymvKufCry50q2eP/fQ9vSmWU6dsyTklg3MjKv5DBNEHBNaWaAPaQsR/YG2J+Nceog0E1laotAER/+HlRzCu06eklBzKysowGNwX8A1VoqJcCxlbsKw86LwCYbhhMBho2LBh0L/b2vZDTfv+2PJFV4mOXFk5cqq0AW8Ji8LdUKcdxCSbV+rL3wJRfi6F2uomKKlJmkQlmFfkAyg+BP++DZlLzSO5TEaIa4Sh6B861rGtejd/z3xHH0zmDvlk0UlmbJuhyJWH+z3MjWffaN1ul9KOH//9kQFfDKCiqsJFPlofbT2fhYcWPyQ5GsmaEIqKlyzwvvbYWmbumsnfpX/zyPJHAMfC7HIorrCNlEqMSyY2xnZ/lIyUirj4DwFEHxBYW6INaAsR/4G1JeJfe4g2EFhbodIGRPyHlx/BuE6fakrp9XomTJjAiy++6HLMZDJx4sQJRowYQVZWFocP+1C8WGOImlICgXf8bgN/3gm93jZPLZPi1O9w5gB0fAhyNsJfD8DlW3z22YqlrtSq4eYkz5BFsHUc7JliPt70KvMqe73fg99682uv+Vzx/fUAvDDoBSZeOBEWNIWY+hCTAsNWo5vg2jFPHDqRFwa/4NWdNu+34UjBEQBiomLcJqQA0mLiyWhVCqNtP+PuzmvhzYvfZNz5NdeV2tdtLa7/bfwfj/32mHXb9LKJpYeWMuzrYQ77PGFfz+q/F/6XlUdW8sehPwAofKaQurHSc8pDFdEHCCId0QYEkYyIf0EkI+JfIIXqNaX0ej1RUVHW0UKvvPKKddv+n8FgoHXr1vz111+MGuVaIyWUqaqqCrYLQaeqqorTp08H/V7Uth9q2vfHli+6SnTkygbke09oZi4Y7gljEUTX/KCl9IQ2t6nvR3U5VBRCyQnzOfTR0GgQNL8GUnpS3fFRDNiKfZdaRlZddwouNI+qcq4FteCmBcwfOZ/x54+X5ULzus2tn6USUgDRUdGQ0BKqjdZ9DRMaSspbbenj3I6U+vP4nw4JKYCv//naISElhw822epqbcvY5hA3St6DRFT8hwhauReiD1BHR7QBZWjlPoj4V0dHxL9ytHIvRBtQR0e0AWVo5T6EUvzLRXZSavDgwdZ/Op2Oli1bOuyz/Bs6dCg33HADU6dO5bXXXqtN3wNOdna25LFImUublZXFO++8Q1ZWVlj7oaZ9f2z5oqtER66sHDm/20BCc3MiyBOVdkmpqBjo9IRv53ImKg6MJeZRUomtYMcEqDwDfadBbCM4ezx0fgp0OjKbPcPc7+daVcuM5uSOyWTilY3T6P73Ot5cM9HB/DVnXcN1na8jJipGljt1YurIkis1VphHllWXW/d5Wh3P4itRcQ46FpxXCgS4/cfbXfYZ7ZJg7lh/fL31c3lZOUeP2gqyK5m+F1HxHyKIPiCwtkQb0BYi/gNrS8S/9hBtILC2QqUNiPgPLz+CcZ2yJwquXLnS+lmv13PXXXfx0ksv1YZPmiU5OVnyWKTMpU1JSeHmm28mJSUlrP1Q074/tnzRVaIjV1aOnN9tIL6ZZPFtK5VFkNTWN/ueiG0A+dvMCa+uL8LuN2v214e4Rg6iKSkpDL9iOJ/+8ilgS/SsObaGCasmALB9zetW+Xt73av4nnhKLN3Z406+2f4NxmojuZVlFBuSSawqA0MiYFfM3A3WY1HuR0rJpbii2O0qgvY+ztw2E4CHz32YiaUTOZh+UPF5Iir+QwTRBwTWlmgD2kLEf2BtifjXHqINBNZWqLQBEf/h5UcwrtOn6lXhngWVIi4uTvJYpDTGuLg4OnbsGGw3at0PNe37Y8sXXSU6cmXlyPndBhKaQZ6X+lCVRRAtnQzxmQ4PwMax0PgiiG0I5TWrTbhJSsXFxdGpXSfrtiUptSNzh1vTDRIaKHbHU1JqxjUz+CfjH7ZmbAXg/O1b2TqgFF1NLXH76X7ntzif1865kqG/PAdAudGSlIr1LylV6TkppbcbhNs0uSmJiYnWbefpe8ZqI3uy99ClUReXgupScWcymXh97eucqTjDSxe8RJwhzquOOzQV/yGC6AMCayui+oAQQMR/YG2J+Nceog0E1laotAER/+HlRzCu06fV906cOMHChQspKChwezw/P5+FCxdy8qSXUQ8hRnFxseQxyx9aPtSNDymKi4vZtGmTx3sRDn6oad8fW77oKtGRKytHzu82EN8MSp2m75Vmgn1NpYpC2/Q9NanXBQp2mEdhGRKg8jTo9BCdDD3fchAtLi5mz8491m1LUiq3NNet6YaJ0jWepPCUlAKItbtP/5wpILc43ZpksiSeOjfozNoxa0mJtr17+GzrZ+YPbmpKlVSWyPbPfnU9d9iP1jJWGCksLLRuO0/fu33B7XT7uBt3/HiH63kk4u77Xd/z/PLneX3t69w09yZZOm6vQ0vxHyKIPiCwtiKqDwgBRPwH1paIf+0h2kBgbYVKGxDxH15+BOM6fUpK/fe//+Wuu+4iPj7e7fGEhATGjBnD66+/7vZ4qHL69GnJY5HSGIuKiliyZAlFRUVh7Yea9v2x5YuuEh25snLk/G4DcY0gZwNkr4c9b8P622DNdbDyctj7ASy7CI7Pq52klE4PcWlQ92zzdtYqc5FznQ6Sz3EQLSoqYv0qW80ka1KqxH1S6vL2lyt2x6B3P4i1UwPzCK24Csf6dhUVp+F78++xZaRUrME8dKqe3vbWSkfNZzfT93JKcmT7d6bijMfj9kmpitIKcrNt98Y+PgrLCpm9czYA32z/xiV23MVdRVWFdWU/gIV7F3rVkUJT8R8iiD4gsLYiqg8IAUT8B9aWiH/tIdpAYG2FShsQ8R9efgTjOnUmH6KnY8eO9O7dm9mzZ0vKjB49mi1btvDvv//65aAWkLOUoVgKUxDpqNIGjn4PBz4FnQF6vG6uk1SwHf5+DIb8Br92h5tKzUkVtVk6FAYvgJhk2DMFWo6ExJZuRYsrikl63Tya6aI2F7H09qXcOv9Wvt3xrYus6WXlHfSsHbO4Zf4tLvv/6dSMbk36MHTDT6y0W+DvwE2f027L3Zhurkb/qvldQ79m/dh4z0bYNxXd7IcAaFanGSeePAFZayB3I3T+j9XG+uPrOf+L82X5t+auNQxsOVDy+NWzr2bRvkUAZDyVwZiFY/hl/y8A5IzLoX5CfQB2Zu3knGm2pF/B0wUepwUCzN8znxvm3OCwz5d7rDaiDxBEOqINCCIZEf+CSEbEv0AKOXkU8HGk1MmTJ2ndurVHmVatWoXd9D2BQFDLtLoJWt8CegOk9oK6Z0Hza6HfZ1DvbDDUqZ2EFNgSUmBO1kgkpMA2Cglg9dHVAGSX2EYvDU5pDMA7l7zjkysXtbnIZV/vJr3pVnUSTvzE4UrHY6V/3g1AZaVtBFNsVI2PxmI61msBmGtBAaB3qilVXcX+v56X7Z+36Xuny22jSuvG1rWN0MJx+p59/SuA/LJ8r+fecGKDXDcFAoFAIBAIBAKBxvEpKRUTEyNrmF+4FTvLy8uTPBYpS2Hm5uby1VdfkZvrfqpSuPihpn1/bPmiq0RHrqwcOdXaQNs74dwvbNv6aGh2hTlR1Xq0f7Y9YUlIeSE3N5dZ38yybldWV5JxJoPjhccBiDfEs7LHAPLG5/HEeU/45EpqfKrLvv9d/j/zvQD+0/Neh2MlNXme8jm2NxAxUTHmD1UlJMWYC42fqThjHlrtPH3v9H7KMlfK9s/b9L2D+eaV9gw6HcWFxZw8YXtBYT841zkp5Zzschd3dWM9T98M+fjXOKIPCKytiOwDNIyI/8DaEvGvPUQbCKytUGkDIv7Dy49gXKdPSalu3brx888/U17ufunxsrIyFi5cyDnnnOP2eKgSbkk2X9Dr9SQmJqLX+xQ6IeOHmvb9seWLrhIdubIB/d51eohPc3+s38e1f34vWO6FPb8d+I09Oebi5y3rtURnqiQl3vdlVKOjoqkXa5vG9vutv3Ne8/MgoRU0uZwRfSc4yJfWPAMU2z0LJMUkgckExmJr4XRjtdGcCIqKg9J0+Oths/Dmh6j0MgMuLcFWsN064soNW9K3cKLIPHTbaDIRFRWFweBaI6uksoTzPj/PYV9lteMQMHdxtz9vv0c/Qz7+NY5W7oXoA9TREW1AGVq5DyL+1dER8a8crdwL0QbU0RFtQBlauQ+hFP9y8amm1Jdffsldd93FsGHDmDZtGm3btrUeO3jwIA8++CBLly7ls88+46677lLV4WAgakoJBN6JtDagm2BLUl/R4QprzaQLWl3AyjZ14YKFUqqy2JO9h5dXvsywtsMY23useefKq2HIzwC88k0vJhzcCsAvTeHykbs5sON9Oiz7BIDR54zm2x7DYMNdXGsaxk8H/gBgxwM76JpYF9bdDDnrYbQJto7j3fVTeNJDrfP/Nkrg+SzzCn1Tr5jKA30fcCs38oeR/LD7B+u26WUTw2cP5+d9Zr8z/5NJo8RGJE9OprC80EF30z2b6Nusr8f7Yn/f7c8RbLzF/77cfbRObm0bwSYQhBm11QdUVFVw4w83kl+azw83/kBaksRLC4EgiETaM5BAYI+If4EUtVpT6o477mDkyJH88ccfdOrUibPOOosLL7yQs846i86dO/PHH38wcuTIsEhI2RPuQxLlUF1dTXl5edDvRW37oaZ9f2z5oqtER66sVr53LWC5F2N7jbXu25uz1/q5f/P+ygxKvBfo3LAzc26cY0tIOflQx2CrrZVTBdTrTHHDQdZ9SdFJULQPgMZJTa37Z26bCYYkc0IKwFQNlWcw2tm/uO3FLudMNZVYP0tN3zOZTA4JKYuvpmqTg0xFVYVLQgpcp/PJjbtTp08p1lEi62/8f7DxA8768Cz6f9Y/5Fem0cpvgegD1NEJhT7gw00fsnDvQtYcW8NDvzwU8PPbI+I/sLZE/GsPrdwL0QbU0RFtQBlauQ+hFP9y8XlM1nfffceHH35Ihw4d2L9/PytXrmT//v107NiRjz76yOPKfKFKVlaW5LFImUubmZnJ5MmTyczMDGs/1LTvjy1fdJXoyJWVIxdpbWBgQ9vqc4cLDls/D2412LsRS2LCWAprbwSj58LhVmqmEGdmZlKcbnsTdXvN11IY3di6LykmCSoLYMBsujTuZd3/9p9vs6fAlsShshCMp6k8y1b/amTbkS6nbhVt+yw1fc9SS8qezMxM9h9wnHI3/e/pbvWdp+/Jjc/CMluCS4vx/+hvjwKwNWOr1+mHWkf0AYG1JfoA2Jaxzfp5xZEVqtpWioj/wNoS8a89RBsIrK1QaQMi/sPLj2Bcp18TBR988EF27drFmTNnOHHiBKdPn2bnzp088ID7aR2hTr160kuVW+pNhXvdqeTkZEaMGEFycnJY+6GmfX9s+aKrREeurBy5SGsDrRq2su6rNtk64Toxdbwbma2HikKYkwBZq6BE5kqlNcms5ORkOjdIcDhUZizjvl8ftm7HR8dD5Wloejk3nD3CQfbjLTVJobMeg4p8KM+j0mAbUtswuSEd63W0bg9pMYDEvv+zbkutvldudKwzeGfjFiQnJ9OsaTPbJWDif5v+56wKuI6UkhufZTmbHO6Nr/EvNYpJzfivrKr0eFzriD4gsLZEHwB6ne1RNdgjDUX8B9aWiH/tIdpAYG2FShsQ8R9efgTjOlWpXpWQkEDTpk1div+GG/Hx8ZLHIqUxxsfH06VLF4/3Ihz8UNO+P7Z80VWiI1dWjlyktYHeLXoTrY92OV4ntg7ooqC6yr2BM0fM/2fWvPEvz4GSY4p96HmeY7HzhXsX8m/Ov9btNnXSoLIIDEk0SGjgIDt752wYvBBiUsxJKb2BV1bZ7CXFJ2GKsv3xFx+dQGKjAdbtKX9OkeXno83aEB8f7zCH3GQyYaw2upW/9JtLrbW5LNdpibuSyhKu+/46t3pl6+8EU5VV5+yzz1YU/zkVOegm6NC/qmfxvsWScs42q6qryCkxF+KSG/9VJom4UAtTtXkEXi0h+oDA2hJ9gKM9+xcAwUDEf2BtifjXHqINBNZWqLQBEf/h5UcwrtOvpNTWrVsZP348w4cP5+KLbTVIjh49ypw5c8jLy/PbQS1RUlIieczy9i7Yb/Fqm5KSErZt2+bxXoSDH2ra98eWL7pKdOTKypGLtDagN+q5ttO1LsfrxNSB6HrmqXPuyFoFjS6A/C1Qvx+0Gwvpv3s/8fEfIamN1YczZ85yOHzT3Jsct/c+al5hTx/lUlw7vywfml9tTUqdKHNMYhQVF3FxI9tv+oizR9AosZF126B3XU0PXP9gjNfrKSkpoaiwyLrPhMljse8rZ11p/WwfdxNXTeTHf390q1NmAqrNo7R2ntxJm7fbMGTGEK+jkiz231jzhnXfVbOvkpSzj3+TyUT/z/vTeEpj5u6eKzv+3SW9VOX4Avi5Xa2ZF31AYG2JPgD0do+qJoLbv4j4D6wtEf/aQ7SBwNoKlTYg4j+8/AjGdfqclBo/fjx9+vRhypQpLFq0iBUrbPP8TSYTo0eP5uuvv1bFSa1QVFQkeSxSGmNhYSE//fQThYWuRYrDyQ817ftjyxddJTpyZeXIRWIb+PTqT12O14mtA7ENoDzXvYHio1D/XCg+Bq1GQc83oEy6Xh0AJxdB7kZof6+DD3FRcW7Fe9VrTJIeaDTI7XFjtZEjBUfMSanio1yz8y+H4+kF6aT8m8JdXe7i6RbtubPnPbSo18J6XCqpVF7lOH0v2RBNYWEh6enpDvulpv85Y7nOmX/PZPK6yZJy5Sag2jz1766f7+Jo8VFWHVvFF1u/kGX/cO5hh/1VTqPc3MX/xpMb2XxqM1WmKm784UbZ8f/c8uc8HvebqlJzMrKWEH1AYG2JPsBx+p5z2ww0Iv4Da0vEv/YQbSCwtkKlDYj4Dy8/gnGdOpMP0TNjxgzuvvturr76av773/8ye/ZsJk+eTFWV7WFhwIABxMfHs2zZMlUdDgaWpQwLCgok60pFylKYJpMJk8mETqcL6hDN2vZDTfv+2PJFV4mOXFk5cpHaBlYfXc0FMy+wHi99vpS4ve+ZE0LZ66EiF3rYJVQ23mMeKXX4G2g5AtrcButvg0E/uJ7MwiwdtLgBer0Nia2sPsRPinepwwRwTcPm/Jh8Anq9A53MBcx1Exy/Nx06tlz3Hj12PobOqfb24psXc1n7y8zXuPoauGAhAHUnJXG6spizG57Nrgd3WeWrqquorK7k71N/M3CGrQB86aAriB26iBvm3MCCfxcAcOKJEzR/t7nHe1z9UjU6nc56nVETozzKL2gC196WAfFpDtc5fsB43hj2hqSexf64P8bxzoZ3rPvLni8j1hDrImcf/+uPr+f8L863yjSb3kwy/p3vvenlWnxoO/wN/HkbjK6dc4g+ILC2RB8AYxeO5bOtnwGQGJ3Imefcr/4ZCET8B9aWiH/tIdpAYG2FShsQ8R9efqhp35JHKSwsdCjn4YxPI6WmTp1K586dmTdvHl27diUmxvWteadOndi/P7RXGXIm3OfJykGn06HX64N+L2rbDzXt+2PLF10lOnJltfK9awHne5ESl+JwPM4QVzNSKgcKtkPWGkcDZVmQ1A5KT4EhCfSx1qlnksQ3g+PzwFDHwQepUQOtdTUjkaIS3B4H8zSYB9a7XwXvsg6Xuf2+o/Tm5JB9TajSylK6TO1C4ymN2XRyk4N8XJTB7KvdSIcJdrWrwDw10BlLok2n05Fdki15DRbsp+/Zs+nUJldhOyz30XnaoXPNK3fxH28Ibj2BYKGV3wLRB6ijE2p9gBbOr5X7IOLff51Qi38toJV7IdqAOjqiDShDK/chlOJfLj4lpXbv3s2wYcMwGNzXFQFIS0sjK8vLlJQQw1ONrEhZCjMvL4/Zs2cHvV5Ybfuhpn1/bPmiq0RHrqwcuUhtA6nxqa5CdTrAiYWgj7ElS9bfDge/MBeijkm2JaV0OsDLj35qL/P/0XUcfJAq+ttXl2/+YJBOSgGUuUlqvZoKxXu/Y86sL12+b0stKfukzYxtM9ibu5fC8kKeXPKkdf/LF7wMmMjLy+P48ePW/dO3OCbC5oyYQ5eGXRz2Wezn5eVx5cdX4o7kuGTr57lngOoK1h5b6yCz8shKwFzrqrTStfi35T7uy97n9vzOcvb3w3kKY6TGf7j6IfoA5XKR0AZE/AfWloh/7SHaQGBthUobEPEfXn4E4zp9SkoZDAYqKlynjNhz6tQpkpKSfHJKIBAIQoVmdZtxb697aZzUmCW3LjHvTLvAPCLKeAai4sBkgiNfw8a7zYmi6LpQkQcGy4qlMqdaOa32J1X0t2VSTVFyu5FSnw//3EUuNqYuNHUs7K3TQeL2BxnJnSQvaw8nf7YesySl7EdoFZQVuPUhzuC+3pU93dO6o9PpHBJM4JgU+rv4b7e69uedV5OUGjTDtYbWofxDRL0aRcKkBAZ+MdDleG5lLr8c+sVhn9TqgPY43/vSmhXvan11Pa+Edz0HQeQR7OLmAoFAIBAIahefakoNHDiQ3Nxcdu3ahV6vZ8KECbz66qvWmlIlJSV06NCBrl278vvvMlaV0jhy5kJGylxagUCKSG8DlrnXVlZebf4/Pg06j4dFNavl9ZsOrUfDnES4cjfU6wyrhlvrNrll1XAYOBecRuc41yqysPbONZy/bhAM+RWaXiYpP7jVYC5LMPHcHtsUw72toKPzjOya+kQt3mnOidMnaVanGSeeNH/HH276kEd+fcTFh3cueYcnKlbABQsZ+cNIftjtWjNrYBysedrEoBmDHEY55YzLoX5CfYorikl6Xd7LjepHtqD/oJfL/pb1WnKs8Jh127me0/sb3ufx3x932Jf+VDqNkxp7PN/2zO10/7i7bcfbwGmISYmhPM9xKmFAa0od+go23FFrNaUEAilqqw+4Z+E9fL7VnFRPikni9LOnVbMtEKhFpD8DCSIbEf8CKWq1ptSYMWPYu3cvDzzwgMuIqaKiIu68804yMjIYO3asL+Y1S7ivKCAHk8lEdXV10O9Fbfuhpn1/bPmiq0RHrqxWvnctIHUvJOdd1+sCmXYLPrS51TatLqmd+f+TP0PJSc8ntktIWXyQ4qyGncwfEls57G9Vz3F7W8Y2h4QUQMdrt2OKTqa6z1QXu4Yo80gty0gik8mETmLqoaVQuKeYqaMHVlyOrvi4w36L/YZvNZTUfbL/kw7b5RXuV0e1T0g5YzKZzKsQOuE8Usrddy5Vz6vC6DqK2DLCDCAtMU3SH3Wo3Taqld8C0QeooxMKfYDUb0wwEPEfWFsi/rWHVu6FaAPq6Ig2oAyt3IdQin+5+JyUuvnmm5k+fToNGjTg88/Nb7D69etHs2bNmDt3LnfccQcjRrgWsA1lMjMzJY9FylzajIwMJk6cSEZGRlj7oaZ9f2z5oqtER66sHDnRBtyg00HDgXB0jnm7ywvm6XwA1x53HPn0z/OKfXi+n6vOwJYDaZDQAFreBEltHY5FRzlO/ysqd5PIiW2IrrKAb39aT07PBQ6HonTmQudlxjIqqyq5+OuLefjXh936GBsVa/V19+7dbmVWlALpv5nra9lRWV1JRVWFdUqcO548z5aU6pOYyOqjqyRl7dFN0FkTShkZGWzYuMFFxjkp5e47l6rn5Y6kGNtor66NusrW8wmT96mH/iD6gMDaEn2AtqbvifgPrC0R/9pDtIHA2gqVNiDiP7z8CMZ1Slcq98K3337LkCFD+PDDD9m5cycmk4nNmzfTuXNnHn30Ue677z41/dQEnoacWUZJBLsaf21Tr149rrnmGurVqxfWfqhp3x9bvugq0ZErK0dOtAEndHpzgiC1D2StNO+zrwmV0Nz2+eZqWDbEvR2TyfzPjQ8t27akUWoj3t3wrnXEz6dXfWoWGvidiynn4txuqUkmnTvwUhIbnu1wyDLip7C8kJjXPNuKj463+tqsWTN2ndzlIlNWc1nOBdf/zfmXr/75yqP9enG2+19s0nPpby97lLfn/Y3vU1pZSvt67WnTpiUbDjsmpiqrKh3P5eY795aUWrh3IS+vfJkH+zzoMFLKU6JNFarKQedz1+4V0QcE1pboA5zOEeRRUyL+A2tLxL/2EG0gsLZCpQ2I+A8vP4JxnT7VlHKmtLSU/Px86tatG5bFzUVNKYHAO6INOLH+Nig+CsNWw7wGUJ4L57wK57zoXn7dLdD3I/PKfPaU5cCaa2HYWndaAOSU5PD6mtfp1aQXt3S7RVKu96e92ZK+xaPbpueLzfWurtoHsalm32vqE3Wd2pVd2a7JJXcsuGkB12bOgAt+4uZ5N/PdTtck2VPJMKUhDMtpwNL8HFl2LRQ/V0zipETvgl64MgEWlzjum33DbG6edzPjBozjzWFvUlxRzDfbv6Fnk570a9YPgI0nNtL/8/42pZqaUtQBU5FJst5Xj8Y92HrfVlhxOXR5Dhq5Fmf3iz1vw44JMNL9dEaBoLYIRE2pOjF1KHpWxLZAe4hnIEEkI+JfIEWt1pRyJj4+nqZNm4ZlQsqe0lLpN9yW3F6w55jWNqWlpezatcvjvQgHP9S0748tX3SV6MiVlSMn2oAT0XWhssD8+ZqjEJPqWT65KxTsdN2/cwJkr/PoQ4OEBrx96dseE1JgTl55RW8eKfXv4WxKK3WQ3M16yH7EjzfiDfGAidLSUooK3f8R+Z8U4NzPeb+98iltlqmE/vKHm6/x5nk3A/DW+rc4UXSCCSsmcP/i+zn3s3PJKzUvj6tk+p49ZcYy84f036DoX59seKSqDAzx6tutQfQBgbUl+gCncwR5Kp+I/8DaEvGvPUQbCKytUGkDIv7Dy49gXKdfSani4mJmzZrF+PHjue+++xg/fjyzZs2iuLhYLf80RWFhoeSxSGmMBQUFzJ07l4KCgrD2Q037/tjyRVeJjlxZOXKiDTihj4bqmmlghkRofBHUaSctX68rLHUzaubkYhgwyzcfnPBU9NuK3pzs+f7HPyg4XQ5X/GM9JGv6Xw2WBFZBQQHHjrs/b2oUYKrm7MQ6PNLPdQU/KeIMceh1qrxTocJLuB7KP8RbG96ybp/3+XkAVJncFzoHyC3JlTxWbqxZmU8fA9WuRdH9pqoUomovKSX6gMDaEn2AthDxH1hbIv61h2gDgbUVKm1AxH94+RGM6/R5+t7s2bN5+OGHKSgocAhAnU5HcnIyH330EaNGjVLN0WBiGXaWn59PcnKyW5lIGbZYXV1NZWUl0dHR6PXq/FGoRT/UtO+PLV90lejIlZUjJ9qAE389DNmr4Yrt8gyfOQQL25nrS1nm5JtMMFsPV+yE5C7KfXDilvm3MGvHLI8yppdNkvbbvN/G7Wp17tg8djO990+getCPXPjlhaw65liIfEanntwZdQR6vgUnfuLjxCt4YPEDHm0+2u9RVhxZwYxrZtCjcQ8ME/2vnZSih3wPg5423rORcz8712Gf6WUTLy5/kdfWvGbbaTd97+TJkzR7p5lbe02SmnDqqVPwXSy0uQPO/dTva3Bgy1Nw6he4ao+6dmsQfUBgbYk+QFvT90T8B9aWiH/tIdpAYG2FShsQ8R9efqhpX+70PZ+e6H/++WduvfVW4uLiePDBBxk0aBBpaWlkZmayevVqZsyYwa233kqdOnW48sorfb4IrRHM4NMKer2e2NjYYLtR636oad8fW77oKtGRK6uV710LyL4XpkrQRXuXs5DUFlreaB7pYkgw79vylPn/eo4Fx339Pt64+A2vSSlP9pVMWevaqCvsN9tyTkjd3e0W7mwSAz1+h+h6cHy+dbU+T7x/+fvWz2q9jWsfDX+VSx93LnpuwSEh5YR1NJQb0s+kQ3WVeZTUwenWpNQv+3/hm+3fMG7AOHo26SnPeSdOFp1kwcFNXBMdRQufLHhHK78Fog9QR0f0AcrQyn0Q8a+Ojoh/5WjlXog2oI6OaAPK0Mp9CKX4l31OX5Ree+016tSpw9atW/nggw8YOXIkF1xwASNHjuTDDz/k77//JjExkYkTJ6rtb1DJz8+XPBYpS2Hm5+czb948j/ciHPxQ074/tnzRVaIjV1aOnGgDTlQbQUENJgBiUmD9rVCeB6Zq2PsuDPnNNnJKqQ9ONK/bnDhDnFc5KftV1dJT1uxpl9KOWEOs1ZYzDWMTzDW24hpCVAzEpRFT5XneerxTnSSpFV4SLAk9mZR7yW0dLjisyB6Asdro8fjpU8tc9o35aQyzd86m16e9FJ/Pwqh5o3hk91pa/rNLMpnmL6IPCKwt0QdoazqIiP/A2hLxrz1EGwisrVBpAyL+w8uPYFynT0mpHTt2MGrUKDp27Oj2eKdOnRg1ahTbt8ucthIiaOnBKFhUV1dTXFwc9B+d2vZDTfv+2PJFV4mOXFmtfO9aQPa9OPtp6PuxMuOxDeDEAjj6HeRuNu+re5bvPrhh4z0beW2o9CgfT/bljpRaf/d6B1vOxBYfMa/sZyG+KbHVJS5yDjavlzfNrcRYwsV1L5YlC1Dm5Wf99gW3u+zzNoWxstpzQujzfxe77MsszrR+3paxzbNTEqw9Zluh8Z0/3/HJhje08lsg+gB1dEQfoAyt3AcR/+roiPhXjlbuhWgD6uiINqAMrdyHUIp/ufhUU6px48bceeedTJ48WVLm6aef5quvviI9Pd0vB7WAnLmQkTKXViCQQrQBlTgy2/x/0b+w6zW48bRtOp+KZJ7JpPHbjV32m16W7hLSpqSRVZzl9tiIs0ew8cRGHu73MOPPH2/eueoauOAndBMcRzX9JxneunACnPOSece/7/NzwWmG//6i5LlNHYDRjr4527VQ8lwJCZPk3bOWsfEcK1e2usgt59zCtzu+ddxpV1Nq29d96bHtL0n9V/rew8sFn0FUHNxUislkQv+q4zsiT9+DFM73wxcbAoGvREJNKYFACvEMJIhkRPwLpJBbU8qnkVJXX301ixYtoqrK/VQOo9HI4sWLGT58uC/mBQKBIHKJigPjadj5Kgw/XCsJKYC0pDQKnynkyf5Pyta5tN2lbve3NsB3Fz7DsSeO2RJSADXLt5/f4nwH+ZNGoJHdSoOxDYipOiN53vMkZhwOatDG7f74aNfV56J0UW5ly/XK58zvz9vv8bgxVzohBVBh6XrrdQWU1eoSCCINMUpdIBAIBILwxqek1FtvvUVcXByXX345GzdudDi2YcMGLr/8cuLj43njjTdUcVIrZGRkSB6LlLm06enpvPbaa0EfAVfbfqhp3x9bvugq0ZErK0dOtAGViIqD8hzz59j6tepD3di6XNLuEtn2p1wyhYF1U13k/2oJUTnrJH3tf7K/w76B8UDaUNuORgOJzt/qVr+hLolvLAO6ZjmOBHqv64VudV577TUGNRvksG/VnavcyhaVep426I5NJzd5PF7p5W/oPo1qCtfrzF2wtxpUWkL0AYG1JfoAR6RqyQUKEf+BtSXiX3uINhBYW6HSBkT8h5cfwbhOn5JSvXr1IiMjg2XLljFgwADi4uJo1qwZcXFxnH/++Sxfvpz09HR69epF27Ztrf/atWuntv8BpU6dOpLHLA9KwX5gqm3q1q3LJZdc4nH4XTj4oaZ9f2z5oqtER66sHDnRBlQiKh7Kc2s+ux8lpaYPep1rNyBlv1FiI9b0HMCQ1kMc9sfqMK+i54KOunXrMvLSkQ5705wHLcU3Q1dV7Na/Tec9SJt4d7YhwVTmdv9TZ33OVR2vctgXExXjVrZKr/4oDG8pJoNlJdfcTbD1aapM8grIawHRBwTWlugDHAn2qCkR/4G1JeJfe4g2EFhbodIGRPyHlx/BuE6fakq1bt3a56A7fFj5SkbBRtSUEgi8I9qASuRsgP3TILYh9JpS66dbdmgZF39tKwzutQ7RquHoVv7ssKtqzI/oy7Og/VgnWXNNKXCsd/Rrjwu47JqVDqL7f72QjptWOOxbNOpnrvz7auj5FmwdZ95pV1fq6IqRtF79g4uLpg4wtcNHPPTLQ9Z92+7bRo9Peni+Nn+wqyl17wT41EPZm3k9hnJ9cc21Jrbh9GX/UHeyY98iakoJQo3a6gPu/uluvtj2BSBqSgm0i3gGEkQyIv4FUtRqTakjR45w+PBhn/6FMmVl7t/Kg+3tXbDf4tU2ZWVl7Nu3z+O9CAc/1LTvjy1fdJXoyJWVIyfagEpExZlHShmSAuJDn6Z9rJ8f7vuwT/b1hgSoqpGtqjD/A8BktTXr2lnogE51GjCs/0QXGx0SXK/3wmYDAKisdt9VJbgZkzSwcTfzmasc41BqpFRt4CkhBWAs3GfbiIpRNFKqoqqCEXNGMOzrYeSW5Prooe+IPiCwtkQf4Eiw38KL+A+sLRH/2kO0gcDaCpU2IOI/vPwIxnX6lJSKVAoKCiSPRUpjzM/PZ/bs2eTn54e1H2ra98eWL7pKdOTKypETbUAl9DU1pQyJAfGhXlw9/hr7F1OvmMqkiyb5Zj8qDnZOMCfTNo2Fvx9z8XVIoyGcGHgV24eMIcrgpnJ55ko+vvJj62aTpCYU5pnnspcXHHV72gSdazLnnW63A1BRVuGwP9h/zNpjrHc2a2K68EgWvJFRwPHC4y4y9y+6n79P/e2y/8NNHzJvzzyWHlrKk0uki9SnxrvW/lID0QcE1pboA7SFiP/A2hLxrz1EGwisrVBpAyL+w8uPYFynT9P33GE0GtmxYwcAXbt2JTo6Wg2zmsAy7CwvL4+UlBS3MpEybLGqqoqSkhISEhKIinK/mlU4+KGmfX9s+aKrREeurBw50QZUovgYLB0CZ4+DDg8ExQeP9ldezZAjp1l11Fw4/Mtrv+T25p3h935w2RbzNLvYBjDwO1h1DVUD59tsrbjQXDOrx2RI6eFod9nFlF2wiO4fd+dw/mEW3ryQYY3OImpRW6rbjkVviIVTv8Dwg1aV6pVXE7VqkXU7Sqen4rav0f95C192/oI7F46xHtvxwA7OmXaO6vfKit30PZ7yLPpp7xHc+/dc63ajxEZkFWe5lXWegjdq7ii+3/U9AGmJaWT8x7YAR/0365NXmgdA7ya92XzvZsWX4Q3RBwTWlugDYMxPY5ixbQZgXpyh8JlC1WwrRcR/YG2J+Nceog0E1laotAER/+Hlh5r25U7fM8g1ePjwYVasWMHAgQPp2LGjw7FFixZx9913k5NjXjEqJSWFqVOnMnLkSHemQpZgBp9WiIqK8ljwPVz8UNO+P7Z80VWiI1dWK9+7Fqj1exGXBsWHzf8HyQeP9qNieP+SKYyYdzPd9cXc2u1WKNxlPmZIAlMl6C0vJUyOtrJWm//v+barXUMCcYY4dj24i4KSXBrE14P55nugpwr6fACrHEdM6Z1GP81pXI3eeBoMiWzZMM7hWKcGnWRff22Te2Suw7ZUQsodnkZ8VZtsq96YqJ23lVr5LRB9gDo6og9Qhlbug4h/dXRE/CtHK/dCtAF1dEQbUIZW7kMoxb9cZE/fmz59OmPHjiU2NtZh/4EDBxg5ciTZ2dm0bNmSTp06kZ+fzy233MLWre6X+A5VxPQ98z1YuHChx3sRDn6oad8fW77oKtGRKytHTrQBlYiq+Y2Nbxo0Hzzaj06me0oL9j+yn7ld+5hX79PXTMfT6aC6Eo5849mWXmIkrcmEQW+gwfFvYelQqDQXZ6ooL5Hld7toKD2dSXFVEoeKHestGfQGNt2zyaN+lC4wLx68rc5nj6U9FZYVMmX9FNYeW2s9FqWPghVXuMg6f1YT0QcE1pboA0CHdqbeivgPrC0R/9pDtIHA2gqVNiDiP7z8CMZ1yk5KrV27lu7du9OqVSuH/e+//z5lZWU89NBDHD58mF27dvHDDz9QVVXFhx9+qLrDwaSqSroYbaQ0RqPRSHZ2Nkajkj+rQs8PNe37Y8sXXSU6cmXlyIk2oCJnPQ51OkoeDmr81+sMhTvB/nuOqklKmapBV9OtVJUDOve23CWl9LFQXVMHqiIfcjdYD1VXS1ynU6zF6oDSdEqq4rnGriRXm+Q2APRt1hfTyyYe7feoW3OBKoZejvzkV3lVOQAvrXiJcX+M40SRbVi8gWpI/9W6bT86yvrZZDJ/Lyoh+oDA2hJ9QO2N+vMFEf+BtSXiX3uINhBYW6HSBkT8h5cfwbhO2TWlWrRowZAhQ/j6668d9nfo0IHjx4+TnZ3tMMzrggsuID09nX379jmbCjnkzIWMlLm0AoEUog1ECEe+A1MVtBoFa2+AwT9CaTosaApX7oGdE83Jpb7TYOPdcMFPNt21N8GxOXDtcUho7mh33S3QbxpE14V/XoBd/7Uda3cPnDsdVg2HAd9AeR4ktYaVV6Ozqyl1uDW0jgaaXIbx1G/cGX0deZVlfHXdVzRIaGCVe2nFS0xc7boCoCcuanMRyw4vkxZQUFOqe536/HNa3sp5eePzSIlPQTfBdbSIDqjuAIw2d+N1X6/L6YrTAPRo3IOt922Fvx6Gw1/BSC9LAgoEfhKImlL1YutR8EyBarYFArUQz0CCSEbEv0AKuTWlZI+UysnJoUWLFg77CgoKOHjwIOeee67LvMMePXpw8uRJhW4LBAKBQNPE1oeKXHNiyjLdLbYh1D8XqIbKQvPUQ2MROI9w6Paa+X+du5FS0WAZEVVVatvf8WHo/T/z55M/w6+94Pe+7l2z5G2i62HQwTdXTOGXW35xSEgBPHme9Kp1UpypOKNYRwq5CSmAkkrpqYvOb5QcRkpZ3jft/wiMp5W4JxAIBAKBQCAQBAzZSSmDweAyr9BSM6pPnz4u8klJSf55pkEyMzMlj1VXVzv8H65kZGTwxhtvkJGR4V04hP1Q074/tnzRVaIjV1aOnGgD4eODR/ux9aE8B0xGW1JKb4C0C2sSVXrzaKfK0662LNP89G7W2NAbzDYBjLZEzLx1RWTk2K22deag+fxuiK5JSm3aecr8Yd9HbuWS45IZ3eES9xcvwalTpxTJq0VFVYVs2UAUOtdC/AfCD9EHKJeLhD5AxH9gbYn41x6iDQTWVqi0ARH/4eVHMK5TdlKqY8eOLFvmOHVhyZIl6HQ6BgwY4CJ/6tQpmjRp4r+HGiIxMVHymGVFJE8rI4UDSUlJDBw4MOhJx9r2Q037/tjyRVeJjlxZOXKiDYSPDx7tx6Sap+hV5ENMfdt+XZStdlF0nZqklM7RljUp5WaklM5gGykVkwxAdWI7Gve5V/o6dTriDHHWzYQY84jd1k0SzDsq8qSvMTpW8pg7kusmK5JXi8rqStmygSh0roX4D4Qfog9QLhcJfYCI/8DaEvGvPUQbCKytUGkDIv7Dy49gXKfsmlKTJk3ihRdeYOzYsTz00EMcOHCAMWPGYDKZOHXqlEvCpmPHjrRt25bffvutVhwPJKKmlEDgHdEGIoTqKljQBIb+Bid+gm4TzPu3vwzNr4UdL0PTKyChJRz4xLGmVOVp+KEujCwBQ7yj3b8ehrPHQ2JL2PU6ZCyFor1w3QlXfYCbq2DFpWzp/AYvLH+BGzrfwN0Z70PBDqjf31wovdFguHiV28t44Idr+Hj3QtmXfVHrISw7slJaQEFNKSXsenAXZzc8221NKQCTXU2p+P/GU2YsA6Brw67seHAHzKrRG22iuKKYGCA6Ot5WkF4gUAlRU0oQyYhnIEEkI+JfIIXqNaWeeOIJzjnnHKZPn07Pnj258cYbKSoq4qWXXnJJSG3evJkDBw4wbNgw369Ag5SXlwfbhaBTXl7OkSNHgn4vatsPNe37Y8sXXSU6cmW18r1rAS3ci6DGvz4KGvSH0/uhTnvbfp0eiv4FfQwY6ljrGDnY8jRSyjJ9z2SC9N+hLBNKTzr6EW1Xu3D7i5CxlF5NevHLLb9wd6+7off7VFy4nsLY7maZel09XKWyIealxdKjrmqTyirvI6XeXPcmw74eZk1IAezM3snpclstqd3Zu2nydhPavJVE4YEvffZHC/EfCD9EH+C/H+GIVu6DiH91dET8K0cr90K0AXV0RBtQhlbuQyjFv1xkJ6Xi4+NZt24dEyZM4LLLLmP06NH8+OOPPPWU6yvhLVu2cM011zB8+HBVnQ02+fn5ksciZS5tXl4eX375JXl5wfkDLVB+qGnfH1u+6CrRkSsrR060gfDxQZb9on+hbme7HXpYP9pcDyoqDvL/cbWlq6klZalFZY9l+t6ZQ+ZkUkovAPd+6KNh1yRzHSt70oaSa2rNe6uakHn+DseC6U5UV1dJX5sbsnOD8+bP0/S9KJ2eI5Xw9NKnWXpoqcvxV1a+Yv7Q9i5umnsTpytOc9IIb+7+3Wd/ZMdeWZY5wVhLaKINBMCW6ANqrz6aL2jh9z8Qfoj4Vy4nnoHCyw/RBpTJifgPLz+CcZ2yp+9FMpZhZ7m5uaSmprqViZRhi0ajkaKiIurWrYvB4KZYcZj4oaZ9f2z5oqtER66sHDnRBsLHB6/2Vw0HQxL0+8Q2emnnf2H7C9BqFPSYDMsvgbqdMJ4/z9HWpvuh38euNrc+DW3vMCeziv6FxhfD0sHkXZbr6Mcsu2lso127L6vvSfEYNoyGwQvcXuO9313G9L3ykzP94vRsKvPwsFVL0/fWj1nPeS3Ok5y+t7gpXClRg71dSjsOdG4CSW2JW/Y95VXmN173n301026UP3XRHtmxN0sHl/8DKd18Oo9qfmjAvidbZyrOkBCdgF5iOqXoA2DQjEGsPbYWCP70PS38/gfCD/EMpFxOPAOFlx+iDSiTE/EfXn6oaV/16XsCghp8WsFgMJCamhr0e1Hbfqhp3x9bvugq0ZErq5XvXQto4V4EPf5PH4Cjsx2n01lGP0XFQ2IrqHuWe1vuElJgnr5XbTSPtoqKg5TucN43vsd/TLzkKn0AJpOyt3lnRwfn7d9fR1fA7/0lj0slpKzUjECzH3FlsE+AnDkCxmLbdsEO+CFZ0pyi2DPJL9KulKC3ARVsLT+8nEZvNaLPp32okhi5F+l9QHFFsTUhpQW08PsfCD/EM5D/foQrWrkXog2ooyPagDK0ch9CKf7lIpJSCigsLJQ8ZhlwFu4DzwoLC/n111893otw8ENN+/7Y8kVXiY5cWTlyog2Ejw9e7RftcbOzJmkT21CZLQs6A/xaUwuqYDtE16Uw9Sr/4j97rW1FQGdvnfZ/0N6x/pRz5/hGA9kuqMpjy56H3I0+6ep0OshaSXW10eF6o+2TUovOgoOf27aNJVApcb9NJooydsr/TiyrKdYCQW8DKti66KuLKDWWsjVjKz/v+1k1P8KpD1jpaXGBIKCF3/9A+CGegZTLiWeg8PJDtAFlciL+w8uPYFynSEopoLJS+q1vpDTGiooKjhw5QkVFRVj7oaZ9f2z5oqtER66sHDnRBsLHB5/sl+dBdLJtNb6TP0Phbvm2dHZvYwyJPvvhoNPiBqiuNP877jiNr9rkODKlf0pjh22D02y5RiH6crDCBOesneOwL1pv7vrXH1nFjScr+C19r+1gVKy0sYId1F1+jvzvpEK6DqO/aLIN+GHLvii9v36EUx/gvLx4sJcb18LvfyD8EM9AyuXEM1B4+SHagDI5Ef/h5UcwrlPUlJKBnLmQkTKXViCQQrSBCKIiH+amOtZ02vwoZK2EK7abty21n9zUfXLLrtfhn+fMny9YDM2ucC9nsTtgFrS+2bPNtaOg/xdQcsI8IsjOl8umd+f3U9ut29sHXEu39T9at1Ni65JfXmTdNnUA3X4P56qlmlKyzi1Bu5R2PBN9kLFZjvuf734jr107x6FOlenlmntTuBsWd3H/vRXshF/OkfedztLBxaug0WDljkcI9vd/9g2zGdV1VBC98Z/a6AN+O/Abl397uXU7OS6Z/KdrL9kpEPiKeAYSRDIi/gVSiJpSAoFAIKgdYlJc91VXOo52UopFt8ll0PQyabmaUVTUae/dpt4AJiNUFrkcuqJZd4ftWPv6WMC9Pe4guaaH/LmJ9CmubdHb/CG4AzjccjD/IF+7GYAT7Wm0yeGvpY/pox23SzM8O6Bzkt8xEQ586lknQjHoQ3QoXi2j02LDEggEAoFAoCoiKaWArKwsyWORshRmZmYm77zzDpmZmWHth5r2/bHli64SHbmycuREGwgfH3yybzK6JqX6TpNvy/JHeXxTqKl55FZ35Bnz/1Fx3n2vKfLtLinlnJjRRyc6bNeJrcPB1rCnFVzY6R5Jt29o0YMNvQbSKL6R5+sLEqtLXfcZ3CSlKqpqhmjvnuzBmvl7sd7fBR6ydQBVJY7b2ashY5lnHZlosg34YUsqKRXpfUCwp+s5o4Xf/0D4IZ6BlMuJZ6Dw8kO0AWVyIv7Dy49gXKdPSakLL7yQl156SW1fNE98fLzkMcuDk9YeoNQmISGBXr16kZCQENZ+qGnfH1u+6CrRkSsrR060gfDxQZb9cz/zbOSqfdD+Pvm+WhJHdqNxPOrq3SelHHR0UWCqclu427lmlM6Q6CShIzUKOsVAVbfXAXj7wrepE+M4ospAFefWTcEQ5dtIF73Oczfct0E7n+x6Ilrv2kZP5P4rQ9P8sOnwnXiqAGB0SkpFxbvu8xFNtAEVbUVZVq9UwY9w6gO0NlJKC7//gfBDPAMplxPPQOHlh2gDyuRE/IeXH8G4Tp9qSiUmJvLYY48xadKk2vBJc4iaUgKBd0QbiHA2PwaZy+DKnb7pz28CZRnQ8WHo84Fn2Vk6uPY4JDT3LLfpPjjnFUhfAhvudKiFNPP3u7hrw0zrdvVN76P//jHr9muDn+f59P+aN26ugtlRMNpEtamaqFdtCYQ5593OjbH5NL9lCydPnnSoKZUUk8SZijMeXYzWR1NZLb2IRo+Ulmw9uzW6das9X6sC3ul9M09cNcuhptEFCdGsHFcBfwwyr1roXDdq41g463H4pavt2CwdjKq0jXKrKoOqcoipZz52/vfQaqTNhtI6Y2GO/f3/+rqvubXbrUH0xn9qow9YdmgZF399sXVb1JQSaBXxDCSIZET8C6So1ZpSnTt35siRI776FrIEu9K+FqioqODkyZNBvxe17Yea9v2x5YuuEh25slr53rWAFu6FJuO/wbnQcKDvtvQx5v/tpuV51JUYKeWgozPAgqbmhJTTdL9o55FSMY4dpc5uFbqKSqPVtvPIpiiMkpd0Vv2zJI8BbB672WstofKqCkho6VFGKf8WnnLZt6qkJjGW2hvqdXVVOviZedQZcOroHiqzt5j3m+yuf/cbsGyobdt5+p6KaLIN+GGraZ2mqvkRTn2A1t66a+H3PxB+iGcg//0IV7RyL0QbUEdHtAFlaOU+hFL8y8WnpNQjjzzCwoUL2b17t9r+aJq8vDzJY5EylzY3N5fPPvuM3NzcsPZDTfv+2PJFV4mOXFk5cqINhI8PPtlvPRr6fey7rb5Tzf9H2YYKe9SVqCnloGNf4yraMenU8vhM6+eU2BRI6elwvLiyDJK7WW3a/+/gRrU5UeMu7q/oILGCIObV7no37U2U3nXa1lV2ehXGMohJlrTjC58eWEXGGdci5RVVFebEk8RUslOnM/isEH6dM57oP3oz5zTc/uMY9ubsNQtUlTpOw/Rnql7NfZVCK23AWG3k9gW3c/Xsq8krdf+MIPqA8EELv/+B8EM8AymXi4T4B9EGAm0rVNqAiP/w8iMY1+nT9L3Vq1fz5ptvsnr1au677z769u1LWlqa2zdagweH/nLQlmFnOTk51K9f361MpAxbrKysJC8vj9TUVKKjo70rhKgfatr3x5Yvukp05MrKkRNtIHx8CFr8Z66AxDaQ1Nqz7iwdjKpwXQ3OWWf707D3XfOBpHYw/ID5c8FOTIvP4faSs1h3poLZN8zm3NQ0dG+3sdp56rynmFI3Hw59QeWNFUT/EGP+PzraYdrVgm7nc21yXZrftp2TJ08SnxpP1H+imD9yPmuPreXV1a+6vVTTy+auN3lyMoXltppXo9qcz+ybf6HplMakV5TSwgDHrnwa3U9veL53Crm+8/XM3zPfYV+3tG480CCZexOKmNH4YWINsdxyzi3mvn2WjnNy27Ez7yB9U9uxLOUgdQ+a9dqmtOXgowdh2zNwbK75Pn+fCD1eh7MetZ1A7vS9rDWw5jq4IUdSxPI916lXh8UHF9M2pS29m/b25VZ4tO8tbj/c9CGP/PoIAHd0v4OZ1850kTmWf4yY8hjq16/vYMs+jpbdvowL21zosx++6mi9D1h5ZCVDv7SNvgv29D0t/P4Hwg/xDKRcTjwDhZcfog0okxPxH15+qGlf7vQ9nyqzDhkyBJ1Oh8lk4u233/Y4vLqqyvPbzlAimMGnFaKjo0lLSwu2G7Xuh5r2/bHli64SHbmyWvnetYAW7kXYxn/aUIdNSV0PSQ0HHftRSNF1zEW5dTrY9jQ6HXx94w+QfI75eKnjCiO9m/SGLiPh0Bfm3/6YFLd9gCl7HVTEAeYXFqnxqRx9+ihR+ijWHlvr9ZKdp+/VzV0HhXuIrpkWWGmCqloowVTlZiTS9sztPJAJh5qk8dZf5hUHGyU24pJ2lwCwM8+chfor7yCHk2x6h/IP2VmpcVanB5PtjWlWcRYzTtdhWPsr6eXNuYp8KPf8ds7yPb+57k2eXvo0AJn/yaRRojqrIMqN2z9P/Gn9vHj/Ypfj/1nyH97+820e7PMgH135kaQdqfeDkd4HOBc6D3bhcy38/gfCD/EM5L8f4YpW7oVoA+roiDagDK3ch1CKf7n4NH3vpZde4qWXXuLll1/m5Zdftm67+xdOFBW5LituwfJA6cPAs5CiqKiIpUuXerwX4eCHmvb9seWLrhIdubJy5EQbCB8fwib+q+zmwudvg9J08+eqMrOsrqVNNiqWRLsV9JrWaWpOasXWN9tMnuPWj2qT2Z59/LubkieFs+y99YBDM4g2mWs8VZqgwlDHRS81Lln2OdzRu4n0qKK30m0Juv9t/J9bmd+KJZTP1CSodHowVVFYVsjVs68mbUoaz2Scpvfa7zBWS9fhAiD9d8/HsX3PloQUwKXfXOpVTy6eYq+grIAlB5dQWeVYoN7db9/bf74NwNTNU0Uf4ANaqymlhd//QPgRNn2ASrLiGciGaAOBtRUqbUDEf3j5EYzr9Ckp9corr1gTUt7+hRPl5eWSxyKlMZaVlbF7927KysrC2g817ftjyxddJTpyZeXIiTYQPj6ETfxXlZp31ulgLuBdk+ihTkezbHm5TVYfyx/dB9AsNo4bz76Rwa1qpp7fkOPRDxNAXCOf4995pFTXGKD+uURHmQu/VwCVbpJSLes0VnQeZ8qN8u7pwfyD4CaJFOf09GAymeDMYdsOXRSYqnl3zkAW7VvkIOttRUJ3BfOdsXwn9mzL2OYitzdnL/cvup8lB5dgMpkoN0r34+7sO3/nJpOJi7+6mEu/uZTxf4x3GLnjLYEi+gDlBHtklDNa+P0PhB9h0weoJCuegWyINhBYW6HSBkT8h5cfwbhOn2pKaYGVK1cydOhQt8c2bdpE3759ATh27BgPPfQQy5cvJz4+ntGjRzNlyhRiYmJkn0vOXMhImUsrEEgh2oBAc1hqGN1YBDtfg7Z3Qr3OcGwe7JwAV2y3yZqqYfklmGLqoxv0vUez9rWAvm8MIxu3oflDFS7x//KKl73WlGr1XiuOFR6z7q9uD7oLFtJ97n1sL0wnTq9n11Wv0G6h48jj8xq05c+cQwSCf+/7m4XzejPersTTY8nwfoFt2/iikag118PJhebplfMaQOdx9F74DFuc8kBLb1vKRW0vkj7hkdlsWT6a1We/y+3dbyc1PlVS1P67ANt9tZA2JY2s4iwA+jbty77cffx6y6+c1+I8T5csSZmxjPj/xlu3bznnFr7d8S0ADRIakD0uW9I/Z9/k1JQKJWqjD1h3bB0DZ9iSlClxKeQ9Lb3ojEAQLMQzkCCSEfEvkEJuTSmfRkpZ2Lp1K+PHj2f48OFcfPHF1v1Hjx5lzpw5Hler85cBAwaQnp7u8O+ee+6hdevW9OnTBzDXs7ryyispLi5m7dq1fPfdd8ybN4+nnnqq1vwSCAQCgUZIagednjLXkzIkQJVlNbhq6PQfR1mdHqrL0Bncr+onhQ6g+LDbYya8v/OJjYp1tKcDTFVE10zrq6w28c6eZS568QEcQHLd3JsdElLgmJAC87W+kXWGFofhu53fAebpe84JKYB9ufs8nq+8qpLex+GJ359gxJwRfvluSUgB/HXqLwrLC7nwK9+TP85T9pTg6R1giL4frHW0Nn1PIBAIBAKB+viclBo/fjx9+vRhypQpLFq0iBUrVliPmUwmRo8ezddff62Kk+6IiYmhcePG1n/169dn4cKFjBkzxvoQs2TJEnbv3s0333xDz549ufjii3n77beZPn26T3Mks7OzJY9FylKYWVlZfPjhh2RlZXkXDmE/1LTvjy1fdJXoyJWVIyfaQPj4EDbxf8U/0KNm1bqoBDhzBAp2wfEfQad3tV9VAXrXUbRe/Wh0gaz4H1ozwOb27rdb98XZJcGGNj7b/MFktCalqjDx0f5VLrbi41Ikz6M2e7wkkQByS3J5ZvdyThjh5nk3m5N8xhK3z4cMvAAA82BJREFUsj/t/YlBMwaRecaxuDz7pkJFARkltiLnK46soNrkek8t34kvlMmYuij1nXuth+WBzKxM70Iy/VBLR+t9gNam72nh9z8QfoRNH6CSrHgGsiHaQGBthUobEPEfXn4E4zp9SkrNmDGDKVOmcNVVV7F9+3aeffZZh+OtW7emX79+LFy4UBUn5bBw4UJycnK48847rfv+/PNPunbtStOmTa37Lr30UsrLy/n7778lbZWXl1NUVOTwDyA2NlZSx5IIC/e3enFxcXTs2JG4OGWjCULNDzXt+2PLF10lOnJl5ciJNhA+PoRN/BsSbSvwGRJg56uw+ho4Ogt0elf71ebaUkr80AEY6siK/x+bwC9d+/DJVZ/YbNslpSoso3DKMq1JKSmidX4NdFadxm871riqQs85yz51K/v7wd9Ze2ytiw6bH4KivUQZEh12F5QVAFBYVsjMbTM5UnDE+p3UFlLfeYV98XwPHCk44pLAiomVLhvguIKhdz88EU59gLOtYPcvWvj9D4QfYdMHqCQrnoFsiDYQWFuh0gZE/IeXH8G4Tp9qSvXt25eSkhL++ecfDAYDEyZM4NVXX6WqyrbE9JgxY1i6dCnHjh3zYEk9rrjiCgB++eUX6757772XI0eOsGTJEgfZ2NhYZs6cyc033+zW1iuvvMKECRNc9n/22WckJCS41Xn44YfJy8sjNTXV57e3AkEoI9qAQMu0Ma2kP5+SQzsacJBN3MNBneM0rptNo/mXy9mqu82jrZlZM1lSYO5X0tuA0dCb7o8cdon/H3J+YEHeAqueqQMu551wfAJ7S/cC0Dm2PrtbmkcJnXuiMZtKMyR9uCSpMUvOSB9Xi35J/dh0ZpNivU/TErk3U2qJPhuzOs6yfr7ZNJolvMrpysOMODLDun96u+kkRiXyv/T/seH0BpL0SXzS7hN0Oh2j942WtAe4HJeSk0tOZQ6PHn7Uun1+nfNZd3odAHWi6vBJu09YUrCEmVkz6RjXkX1ltlFmX3X4CoPOVtjem++hRm30AQdKD/DScVs9tUR9ItPbT1fFtkCgJuIZSBDJiPgXSFFSUsI999zjtaaUT0mpxMRExo4dy3vvvQfgNin17LPP8u677yqu2i6VELLnr7/+staNAjhx4gStWrVizpw53HDDDdb99957L0ePHuX33x2Xl46JieGrr75i1KhRbu2Xl5c7rLRXVFREixYtyMnJoX79+m51IqXAW2VlJfn5+aSkpBAdHR22fqhp3x9bvugq0ZErK0dOtIHw8SEs4//o97BulHllt+y1cM4rVHZ6zlH2p7bQaiT0mOzR5uny03y+9XN6NO7BkMNvgM5A81u3usT/SyteYuLqiVY7pg7AtSchwTZ69+KvLmbZYXPNqK4JiexoZk7kXH6mM7+l75G8zhFJMNfLInZqcGu3W/lm+zeK9Z5tVJfXs7xPk3co/j1LB5f8yeHF59H2iG13wdMF1Iur51AY/PT402TmZtL+8/bS9nAthC4l54xUHO3P3U/HD92P0LIUOpc65+nxp0mKT5L0zZ1P9n4YDAbe2/AeeaV5PDfoOeKj413kPfnuj2yw+oBNJzdx7mfnWreDXehcC7//gfAjLPsAP2TFM5AN0QYCaytU2oCI//DyQ037tVro3GAwUFHheQj7qVOnSEpK8ijjjocffpg9e/Z4/Ne1a1cHnRkzZlC/fn2GDx/usL9x48ZkZDi+Sc7Pz6eyspK0tDRJH2JjY6lbt67DP4Dc3FxJnUiZS5uTk8O0adPIycnxLhzCfqhp3x9bvugq0ZErK0dOtIHw8SEs4z/KMsq15g9/ncFVVhdlXoXPi806sXV4vP/jDGk9BNJ/g1OL3Ma/23c+cY59T6zBNl2wrNI2ssjb9L09HrpgNVdxq6qu8i7kBrm/AnmlTgkGUzXVTnWE3NWUysnNYernU33yTQ5ScVRe5aZyu0yycpTXZrD3Y/H+xTy55EleW/Mab6x7Q5aOEvv+ygWiDwj21BAt/P4Hwo+w7AP8kNVK/GsB0QYCaytU2oCI//DyIxjX6dNIqYEDB5Kbm8uuXbvQ6/UuI6VKSkro0KEDXbt2dRmlpDYmk4l27dpx/fXXM2XKFIdjv/76K1dddRUnTpygSZMmAHz//ffccccdZGVleczW2WPJ8GVnZ9OgQQO3MpGSIa6oqCAzM5O0tDRiYqTrY4S6H2ra98eWL7pKdOTKypETbSB8fAjL+D/1K6y8wrbd9WUqOj3nKLuoEzS9CnpNkWcTYPOjkLWK5vfmusT/C8tf4L9r/msVNXUARjt2udd9fx0//vsjAC0NcLSNef8NZT2Yf3ybrGt25oPLP+CRXx/xSdeZEWePYO7uuYr1xjVK5q2sAq9y0fpoFo9ezLB2w8wjpQbNZ9+pdZz129tWmexx2TRIaOAwsijziUwOnzxM/zn9HeypNVJK6jvffGozfaf3datj0BuofLFS8px5T+WRkmQrUC9npJS9H/f9eh8zt80EoF5sPQqeKVDkuz+yweoDnEdKpcankjte+gVhbaOF3/9A+BGWfYAfsuIZyIZoA4G1FSptQMR/ePmhpv1aHSk1ZswY9u7dywMPPOAyYqqoqIg777yTjIwMxo4d64t5RSxfvpzDhw9z9913uxy75JJLOPvss7ntttvYunUry5Yt4z//+Q9jx46VnZCyJ5jBpxViYmJo0aJF0O9Fbfuhpn1/bPmiq0RHrqxWvnctoIV7IeLfFx2nRIGp0lW2aC+Upivzw5Agucqc0nc+9h1yjN4gKQfQOArOjXPfhf9+UL2XQXILeztTUCXvbWlldSWXfHMJAEcqoWzr0y5vWt2NlEp7N42f03/2yTc5SH3nnlbu87YynyHa83e6+dRmj35E6Wyj56pM0iPYRB9Qe2jlPog+QB0dEf/K0cq9EG1AHR3RBpShlfsQSvEvF5+TUjfffDPTp0+nQYMGfP755wD069ePZs2aMXfuXO644w5GjBihqrPu+PzzzxkwYACdO3d2ORYVFcXixYuJi4vj/PPPZ+TIkVx77bUuI6rkcvr0acljlj8+fBh4FlKcPn2a1atXe7wX4eCHmvb9seWLrhIdubJy5EQbCB8fwjP+nZJS1Ub3sjl/KvOj4WBoOcJt/HtKYFiwl7f30NvqeoPi4YYk94kfb8kRJfialJqe672elD2zd8ymzRGI37qf00bHKXLuklKAwyg0C5b7eer0KdYdW6fIB3ukvvNyo/T0vYRo9wuhWCg8Xejx+N0LXV+u2fthn5Ty9B2LPqD20MLvfyD8CM8+wHdZEf82RBsIrK1QaQMi/sPLj2Bcp89rSn/77bd88skntGnThpMnT2Iymdi8eTMtW7Zk2rRpfPHFF2r6KcmsWbNYt076wbNly5YsWrSIkpIScnNz+eCDD4iNdV3yWw6lpaWSxyKlMZaUlPDXX39RUuJ+ZEC4+KGmfX9s+aKrREeurBw50QbCx4ewjP/4mlpOjS6AhBZQXekqe10GXPiHMj+aXQE9Xncb//b1b5JikmCUa4LHPuFiXy4n2kvpnCoTSFWdSopRXs9RipVHVqpmyxOj59tWohuxwXEVOqmklDt+/PdHiiuK6TK1CwNnDPTZH6nv3FNNqbqxnkdgF5d4Xo1we+Z2j35E2dUZ81TrS/QBtYcWfv8D4UdY9gF+yIr4tyHaQGBthUobEPEfXn4E4zp9qinlTGlpKfn5+dStW9en4uZaR85cyEiZSysQSCHagEDzzNLBNUdg1XBoNBj6fKCaaXfxvytrF12nmRfmWHHHCnNhdCeunn01i/YtAqBdNBzoMwBy1nO/sS+fHP5L8nzDE2FoPDzhVIPysvaXUS+2Ht/v+l6dC9MAx584zpKDS9yOJHLmvUvfIzkumTt/utOjnH39pq//+ZoTRSd4rP9jXkc7zd8znxvm3OD2WJOkJpx66pRkTanc8bnUf9O8gm+fpn3cTtfzVOvqkV8e4cO/zEtt63V6ql7yrQh9baF2H7AzayfXfnctB/MPWvcFu6aUQCCFeAYSRDIi/gVSyK0p5bnAgUzi4+OJj3e/NLFAIBAIBJqg1c0QkwqdnoSEZrV+ui6NurDlsuco3zWZ/m4SUuBm+t7QX+HnDsSUeB4qpQf0TiLXnHUN066cxrg/xvnlt9Y4nH9YVkIKlK/OtuHEBm7/8XbAPFXx5SEve5T3NCUz/Uw63T/uLnn83p/vtX52l5Dyhv1IKSWjx0KV/p/1p7jS8+gygUAgEAgEoY9P0/e6dOnCI488wrx584K+JGIgEUvBQnZ2Np988gnZ2dlh7Yea9v2x5YuuEh25snLkRBsIHx/CNv7PnwXRdaDtHdD44oDEf8/UlvT38M7GhFNSSh8HumiidVKT82yyzh34j6N+pEmdJg7Ji3BAamSSO0wmE0sPL5UlW24s58nfn7Ruv7LqFetnqe/cU00pcD8Fz8K8PfNk+WVPJPcB7hJSOufacAFGC7//gfAjbPsAH2XFM5AN0QYCaytU2oCI//DyIxjX6dNIqdzcXD766COmTp0KmJNUQ4cOZejQoVxwwQWkpKR4sRCaREdHSx6zvJ1V+pY21IiJiaF58+aaWHWgNv1Q074/tnzRVaIjV1aOnGgD4eODiH/lcpLxr9OBh1EtLiOlagqcR+s9vzPS66RrSoUb2SXyH4pMmPhm+zde5aqqq+j2cTf25e5z2L8new+3LriVTimduLnZzYpW36sNwqINqIh9EjcYaOH3PxB+iD5AuZx4BgovP0QbUCYn4j+8/AjGdfpcU+rff/9lxYoVLF++nNWrV5OdnY1Op0On03HOOecwdOhQhgwZwvDhw9X2OeCImlICgXdEGxBEMpLxf2A6bLoXRrvvai/95lKWHFwCQKdo2PNsNSxoyouVZ/Hav6skzzfirKuZUPozXY6Zt+/qcRdfXGNeYOS2BbfJSsyEI29f8jZPLXnKq9yvt/zK5d9e7rL/rPpnsTd3LwDtUtrx78P/YtDb3t+9++e7PLnkSRc9tTj97Gn25e6jZ+OeLg/3j//2OO9vfN+67an+lByKyot4/LfHSUtMY9JFk/z+Y0LtPsBdbS5RU0qgVcQzkCCSEfEvkEJuTSmfV9/r1KkTDzzwAD/88AOZmZls376d999/n2uuuYajR4/y/vvvc/311/tqXpMYjeotsx2qGI1GCgoKgn4vatsPNe37Y8sXXSU6cmW18r1rAS3cCxH/6ugEJP51nrtZS0IKYH8l5pFV5TnEeNHTRcVx9u3lfDPoQZ5JMSdjLCRFh9+CI3IpKCuQJVdYVuh2vyUhBXAw/yAfbfzI4bin1ffUoNcnvej9aW/+t/F/gGPsyX2HaDQaycnL4ac9P3Ew76Ck3O0LbmfGthlMXjeZxXsXe7UZ7N89CP70Pa3cB9EHqKMjnoGUo5V7IdqAOjqiDShDK/chlOJfLj4npeypqKggJyeH7OxsMjMzKS4uxmQyeZzuFoqImlLmOabvv/++JubS1qYfatr3x5Yvukp05MrKkRNtIHx8EPGvXE46/uV3s9a11ExGjMVHPcrqdXqIiuGWVn14vQGkxNumzU8YOsFB9v7e95MSl8w5jc6R7UuoMnH1RFlycgtoz98132HbW00pf9mftx+Ax39/HJCOPU/JmezsbG754BaunXMtXad15UzFGbdyP+39yfr54V8edjhWUVXhYlP0Adr4/Q+EH6IPUC4XCfEPog0E2laotAER/+HlRzCu06fpe0ajkY0bN1qn723YsIHy8nIMBgP9+vWz1pcaMGAAsbGxteF3QLEMO8vKyqJhw4ZuZSJl2GJ5ebn1OoP53da2H2ra98eWL7pKdOTKypETbSB8fBDxr1xOMv4PzYQNd0lO33OeomR62QSzdDQ9UY/0UvejeQBGdR3F7Btmw4FPYdP9MNrxQdDe7rox6+jdpDcxUTHoX1XlXZRmqRdbj8Jy6ftm4a1hb8lepdB+mtyzS59l8rrJPvunBNPLJofYG798PP/bZB5BpUNH9cvuH/7Ly8uJmxxn3Z4/cj7Xdb7ORc5t7AHz98zntgW3cXXHq/luxHdWm4HuA9xN36sfX5+c8eovsPNPxj/8sPsH7uxxJ+1T20vKaeH3PxB+iD5AuZx4BgovP0QbUCYn4j+8/FDTvtzpez4VOk9JSaGkpISoqCh69erFY489xtChQxk4cCAJCQk+O611wiHB5i+xsbG0bds22G7Uuh9q2vfHli+6SnTkymrle9cCWrgXIv7V0QlM/Ps23ahlYn2PSSm9ZXpftRH0rl353IueYcSyyQxoMYD+zfvb5MMcY7W8oeZvrHvDJ/uBLnRuiT1jtZGZ/8yUrWNPlalKQtJGvMG2RKRltcPvd33PW8PeokW9Fpr43atNenzSA4AZ22Zw8smTknJauQ+iD1BHRzwDKUcr90K0AXV0RBtQhlbuQyjFv1x8ekq1TM8bNGgQo0ePZvTo0VxyySVhnZACOHPG/RB4sK2g5GPd+JDhzJkz/Pnnnx7vRTj4oaZ9f2z5oqtER66sHDnRBsLHBxH/yuUk41/n+d3PI/0esX7ubFnkpMMDvD5ovEc96/St+v3g7Odcjt/QegCmDuZRUpGSkAJIjEmUJZdT4ttom9quKeWMJfam/jmVovIi634TJooriimtLGX98fVUVVc56Ngza8csr+cZ032M2/2WaXyR0gecOn3K43Et/P4Hwg/RByiXC4f4l4NoA4G1FSptQMR/ePkRjOv06Ul1zpw5PPjgg2RkZPD444/To0cPGjVqxI033si0adP4999/1fZTExQXS9egiKTGuHLlSk00xtr0Q037/tjyRVeJjlxZOXKiDYSPDyL+lctJxn+U5+V037/sfQa3GkynBp34tWnNzr5TSWsyyKOeNdFUvw90e8WNRHjXdZDCfsSPWry2+jV0E3S0fq81mcWZqtv3hCX2nl7xtMuxV1e9yqXfXMr5X5zP+D/GO+jYc7TQc30yACQGmEXpoxz8iPQ+QAu//4HwQ/QByuUiIf5BtIFA2wqVNiDiP7z8CMZ1+lRTyp6srCyWL1/OihUrWLVqFfv27UOn05GWlsbQoUP59ttv1fI1aMiZCxkpc2kFAilEGxBEMpLxf2IhrL5GsqaUA7N0VrmDeQdp/4F0bZvbu9/Ol9d+KW3rxE+w+lqX87qr0xNOtKzXkmOFx4LthirY17IyvGpwmYYXpYty2Gcvb/89923al01jN7nYt5cZP2A8bwx7w2X/sceP0aJeC49+7srahU6n45Kel9R6TakGCQ3IHqd+4VX7c9nfR4FALuIZSBDJiPgXSCG3ppTfY/obNWrEqFGj+OSTT1i1ahVTpkyhQYMGZGRk8N133/lrXiAQCASC0EWvoBZh+3utH2O8jLDyPiXP/fGGCY6LdTw/6HlZroUK4ZKQAvMUw1FzR/GfJf9xWxdKTq0okBMroNO5T1ZaRkpJ8U/GP3Sd1pUuU7tQWV0pyx9/sH+PumjfIm6aexObT22u9fMKBAKBQCCoPfxKSuXl5TF//nweeeQRunbtStOmTRk3bhzZ2dmkpaUxcuRItfzUBLm5uZLHImUpzJycHL744gtyctRf/UZLfqhp3x9bvugq0ZErK0dOtIHw8UHEv3I5yfj3klxyoN8n1o/RUdEeRXXeCqjr3CcTfhz1I7E6aG6A4ueKuaP7HfL9EwSUR399lO93fc/bf76tSM85Tge1dJwKajKZuGnuTQ77SkpL3Noy1BTRl2oD9y++3/q5oLQACFwfcPXsq5mzaw59p/cNyPlAG7//gfBD9AHK5cQzUHj5IdqAMjkR/+HlRzCu06fV95588klWrFjBjh07MJlMmEwmGjZsyA033MCQIUMYOnQonTt3VtvXoBMVJf3G0PKWUeptY7hgMBhITU3FYPApdELGDzXt+2PLF10lOnJl5ciJNhA+Poj4Vy4nGf96BUkp+3M6rag385qZ3PnTnbbz+ZiUGtBiAKfaQJIeYqITwr69hjKzd872Sc85Ts9JO8dhe8nBJczZNcdh3wdbPuB/V//PxVZUTRxJtYFqk+0PEBPmUUy1GVO1YTu3RPqFozNa+P0PhB+iD1AuJ56BwssP0QaUyYn4Dy8/gnGdPtWU0uv1pKamcsEFF1iTUF27dq0N/zSBqCklEHhHtAFBJCMZ/6WZsOMV6DdNkb380nxS30y1bpteNpE0KYniSvOCG/f0vIfpw6dLGzCWQP42aDjA9dismofG0Sb25+6n44cdFflmz/tDX+KxFa/6rC9QD6maUl9d+xW3db/Nuv3Zls8Y+/NYF/0TT5ygWd1mDrr5T+eTHJcsec7zPj+PDSc2ABDzfgwV+RU0a9aMrXu30jCxIQfzDtI6ubXXaYDu8FZTSo06UNsyttH/s/4OqyqKmlICXxDPQIJIRsS/QIparSm1detWcnJymDdvnnXqXiRQVSWvfkM4U1VVRXFxcdDvRW37oaZ9f2z5oqtER66sVr53LaCFeyHiXx2dgMR/fJrihBRAclwybVPaAvBw34cBx1EpXusEGRLcJ6TcnMcfOtf3PaElUJfKKnNNpwM5BzzK2ceRPc3fbU5VdZVbWak2kHEmw+X8mWcyafpOUwZ+MZD2H7Sn28fdlF2ID1SbqllycAnbMrYp0hv5w0iHhJQ3tPD7Hwg/RB/gvx/hilbuhWgD6uiINqAMrdyHUIp/ufiUlOrevbvafoQE2dnSK75EylzarKwspkyZQlZWVlj7oaZ9f2z5oqtER66sHDnRBsLHBxH/yuXUjn+dTseau9Yw98a5vDnsTcA2PQrkFa+WQ8PEhky+aDLntzjfYf89Pe+R7acnWtdp4rNvAmW0eq8Vm09tpuvHnl8UZp7JlDz29favHbY7fNCBMmOZ2zZQUVXBkYIj1m3LwHtjtRFjtZF1x9cBsDt7N/ty92EymVh/fD05JbYaFYVlhaw7tk4yUSaXubvncuk3l9Lzk54OPnkjs1j6XrhDC7//gfBD9AHK5cQzUHj5IdqAMjkR/+HlRzCu06+n2qNHjzJp0iRGjhzJpZdeyo033sikSZM4cuSISu5pi+TkZMljkTKXNiUlhVGjRpGSkhLWfqhp3x9bvugq0ZErK0dOtIHw8UHEv3K52oj/pnWacsPZNxAfHQ84jnDx+zxNr7R+fHrg06wds5aejXta970w+AVZDwjVXioA9EuLjJHUWiD9TDp9p/d1GfmzLWMbp06fsm4vP7Jc0sbenL0O23mleby17i23beCW+bc4yHoqzv/Ir48wbfM0zv/ifLpN60ZlVSXVpmr6fdaPgTMG8vhvj8u5REnsC7e/t+E9v2x5Qgu//4HwQ/QByuXEM1B4+SHagDI5Ef/h5UcwrtOnmlIAH374If/5z3+orKzE2UR0dDRvvvkmjz32mCpOBhtRU0og8I5oA4JIJhDxHzMxhspq8xSph/o+xIdXfOiboS1PQZfnITbVYffRgqNM3zKdqztezbnNz6Xoax31DtmOP1IPPih0NPXrDV9x+bzbJU91c8fL+G7f7w6jvHylbyz8JX+mlcCOhOgETjxxgpT4FAbPGMyaY2vcyl3R4Qp+2f+Lw75uad345/5/HPYZq41ET3RMQkW/F01lQSXUAZ5ytDu41WBWH11t3f7tlt9ondyaTh91su7bdt82uje2jcT3VFPKZDKhf9WWNtWhs8bYo/0e5f3L33d7fc7Um1yPovIih31SNaX25uxl1dFVjOwy0u9pr4LwQzwDCSIZEf8CKWq1ptQvv/zCo48+SnJyMpMmTeLPP//k8OHDbNiwgcmTJ5OSksKTTz7J4sWLfb4ALVJcXCx5zJKY8zHHFzIUFxezefNmj/ciHPxQ074/tnzRVaIjV1aOnGgD4eODiH/lcoGIf4eRUt5W3/NEr7ddElIArZJb8dqFr3Fu83MBiHY6xT31XE051yByprK6SrWphmfc3NpooK30AB1BDSWVJaS+mcr/Nv4PY7VRUs45IQWwPXO7SxsorlDWnp2n55kwUWYsc9h364JbOVF0gtQ3Urn828s92nNOctpvb07fDHiPTXDfXtceW8uxwmMO+6qqq+j8UWfuW3QfI74cIZ6BAmRL9AHaQwvPQIHwQ7QBZXIi/sPLj2Bcp09PilOmTKF+/fps2bKFp59+mnPPPZdWrVrRr18/xo8fz99//01qairvvPOO2v4GldOnT0sei5TGWFRUxC+//EJRUZF34RD2Q037/tjyRVeJjlxZOXKiDYSPDyL+lcsFIv5ro6aUJ5zTXrFu8mDVeK4fMffAH6r56i73dE0SNFW+sFvE8thvj/HniT8V6/n7m+CcIFpxeIVDkXSAnVk7afFuC/LL8vntwG9u7eSU5FBaWeqxBtX64+u59rtrafhWQ1YcXuHRL3cj+AbNGETnjzpTWFZIRVUFO7N2kl+Wb5VdlrFMPAMFyJboA7SHFp6BAuGHaAPK5ET8h5cfwbhOn6bvJScnc8stt/DRRx9Jyjz00EN8++23FBQU+OOfJhDT9wQC74g2IIhkAhH/9tOZHjv3Md677L1aOY+F8p/PJm7LHuv24dbQ5oijzIJrpnPdT2M92omNilW0wpkUfWJhs5OZG5Pg8gQYE9yao2FP5YuVGPQG63ZReRH1JjsNnXsbOI3b6Xt1YupwukL6xZ4SovXRfHD5B9y/+H5Z8lLT8cD9FEEL7176Lt/v+p4NJzYwpscYvtj2hSybgshEPAMJIhkR/wIpanX6XkVFBYmJiR5lEhMTqaio8MW8QCAQCAQCD/g1fU/uOVJ7OWy7G5BkrDYyu7EXOyoVPj3hZtZZXhUMTVDFvMADlpFO3+/8nheWv0BhWaEXDUfUSkgBVFZXyk5IgXk6nqWwuoUvt33pMSEFkF+az4YTGwAcElIA+3P3K/BYIBAIBAKBJ3xKSnXs2JGff/4Zo9F9XQKj0ciiRYvo2LGjX85pjby8PMljkbIUZm5uLt988w25ublh7Yea9v2x5YuuEh25snLkRBsIHx9E/CuXC3T8e1rpTC10/Wc4bOvdTd+Lrkv/OM921Jq+l+GmRNCyUjCE+Wo/WiAnN4e3vniLUfNG8d81/+Xx3x8PtkuyGTRjEDGvxRD1ahS6CTqqTdXc+dOdXvU8Fefv+GFwn29FH6COTij3AcFCC89AgfBDtAFlciL+w8uPYFynT0+Kd9xxB3v37uXSSy/l77//dji2efNmLr/8cvbu3csdd9yhipNaIdyXuZSDXq8nNjYWvb7265kE0w817ftjyxddJTpyZbXyvWsBLdwLEf/q6IRa/DdOsg1JapTYqNbP59znubv6KnS0ut3zQ2haYppqPt2Q5LqveYyodF7r6OCQ0bYU4/w984PojH9MXjtZltzE1RNr2RPfEX2AOjqh1gdoAa3cC9EG1NERbUAZWrkPoRT/cvGpplRVVRUjR45kwYIF6HQ64uPjSUtLIzMzk9LSUkwmE9dccw3z5s0L+pemBqKmlEDgHdEGBJFMIOJ/w4kNXPjlhTRKbMSeh/YQHx1fK+exUG2qJupV26S9jDbQ+LCjzNfXfc2t3W71OBXqr7F/0f+z/lSZvK+G5tWn9qA/4LjP1CmB8wvasT5jh9/2Be45/expFuxZwO0/3i4t5KGmVDgi6koJ7BHPQIJIRsS/QIparSkVFRXFvHnz+PLLLxkyZAixsbEcO3aM2NhYhg4dypdffsmCBQvCIiFlT7gPSZRDdXU1FRUVQb8Xte2Hmvb9seWLrhIdubJa+d61gBbuhYh/dXRCLf77N+9P+lPp7H9kf60npMA87W7OiDlc1+k6ttzxh28PDECfpn049sQx/m5h29ckPoUOPgxwch6wfFsdQG8g2q4It0B9Zu2YxfHC48F2Q1CD6APU0Qm1PkALaOVeiDagjo5oA8rQyn0IpfiXi19Zo9tuu41ly5aRm5tLZWUlubm5LF26lNtuu00t/zRFVpb08j6RMpc2MzOT119/nczMzLD2Q037/tjyRVeJjlxZOXKiDYSPDyL+lcsFKv7rxdULSD0pCzd2uZH5N82nZ5OebmtKGWQmg5rWaUqvO0qZWB8ujIc/LnuFH5tAkg+z4mPsdJL0gM6AXkyvr1XuW3Qfz694PthuCGoQfYA6OqHYBwQbLTwDBcIP0QaUyYn4Dy8/gnGdipJSGzZs4KKLLqJu3brUrVuXiy++mE2bNtWWb5qjXr16kscstTfCve5UcnIy119/PcnJyWHth5r2/bHli64SHbmycuREGwgfH0T8K5cL+/jXRbl9YGif2t6j2juXvGPbiIrjhVRY1hy6VB7h7Fj4p5VyV+z9qDYkgd5AVNFe5YYEAj85mHeQV1e9yp7sPQE9r+gD1NERfYBytPAMFAg/RBtQJifiP7z8CMZ1yq4ptWPHDs4991zKysoc9sfHx7Np0ya6dOlSKw5qAVFTSiDwjmgDgkgm7OO/8gyF39Uh2Vbrmgf6PMDUK6cC8Pyy55m0dpKDSvO6zTn2+DHHh9RZNZ/P+wb+vJXDldD2iHw3TB0g4QCU1jy53JuayCfN66HbfsqHixKoSgTWlGr6dlPSz6QTpYvC+JL7FakFkUHY9wECgQdE/AukUL2m1OTJkykrK+P5558nIyODzMxMnnvuOUpLS3njjTdUcVrrlJaWSh6z5PZ8qBsfUpSWlrJ9+3aP9yIc/FDTvj+2fNFVoiNXVo6caAPh44OIf+VyYR//uiiX6XtvDXvL+nnihRPp3KCzw/EDjxyQfmua0sNs1hdX7D5Xm4xgPOODFYHAP04UnSD9TDqAKkX8lSD6AHV0RB+gHC08AwXCD9EGlMmJ+A8vP4JxnbKTUmvWrGHgwIFMnDiRRo0a0bBhQ1577TXOP/98Vq1aVZs+aobCwkLJY5HSGAsKCliwYAEFBQVh7Yea9v2x5YuuEh25snLkRBsIHx9E/CuXC/v4dzN9L0pvW5lPr9PTr1k/h+OxhlivZn0pbOmgU1UOlUU+WBEI/KPFuy28C9USog9QR0f0AcrRwjNQIPwQbUCZnIj/8PIjGNcpe/pebGwsjz32GG+++abD/nHjxvHBBx+4TOsLJyzDzgoKCiTrSkXKsEWTyURVVRVRUVFBnTdc236oad8fW77oKtGRKytHTrSB8PFBxL9yubCPf1M1pd9GkXDQtqv8hXJiomKs23f9dBczt820qbzs5vHCMn1v+GFY2IaDFdD+qPtTvnLBK7yy6hVHNzrAfZnwaU0e6qs0uK0u6Pb7cE0CdYmw6XvOXN7+cl4c/CLntTiv1s8l+gB1dEQfoBwtPAMFwg/RBpTJifgPLz/UtK/69L3KykqSkpJc9iclJVFZWemblyFGuBdvk4NOp8NgMAT9XtS2H2ra98eWL7pKdOTKauV71wJauBci/tXREfGvAJ0e/chih116neMjhE7JZLzYVBjwLZ6q8Dwz8Bm3+99Ii+XWrjfzWNve3FJHwSkj+OsT1D6/HviVAV8MCMi5RB+gjo7oA5SjlXsh2oA6OqINKEMr9yGU4l8uvoycj1jy8/Mlj0XKUpj5+fl8//33Hu9FOPihpn1/bPmiq0RHrqwcOdEGwscHEf/K5SIh/vVR0Y7b/iSlAKLiqPIwVtt5+t/w1oMASDbE8L8LP2JQ9MMuda6kWN8c/m0lElOC8ED0AeroiD5AOVp4BgqEH6INKJMT8R9efgTjOg1KhL/55hs2bNjgsO/AgQMAXHHFFS7yOp2OxYsX++Getgj3ebJysAznC/a9qG0/1LTvjy1fdJXoyJXVyveuBbRwL0T8q6Mj4l8Zzkkob9seMZlAZ0DJ4+u5jbtC7hrQ6TGZTJRXx3hXquG8+JrTypRvYYDjYjE1gY+UGcuIM8TVmn3RB6ijI/oA5WjlXog2oI6OaAPK0Mp9CKX4l4vsmlJ6vfJBVTqdjqqqwK5IUhvImQsZKXNpBQIpRBsQRDKREP8mkwn9q7ZnAeeaUfcvup9P/v5E8jhgqyk1Ih+y1rD9j+F0PyZxvpdN6CbYhjZN6v8gz+ZOhZgUGJHnYM9bTSlTB6DXO8TOeZIKGU89L6TCa3ne5QR2RHhNKQuPn/s47218j8GtBrPqzshYCEgQGX2AQCCFiH+BFHJrSskeKXX48GFVHBMIBAKBQBB6eKstEKWL8njcHe2i3e9vXrc5APfXg49rFr4dltYBcgElI7LsiXa/UIk7nkpWlpR6JRVeEUksAfDexvcAWH10NcUVxSTGJAbXIYFAIBAINI7sJ7tWrVr59C+cyMjIkDwWKXNp09PTmTBhAunp6WHth5r2/bHli64SHbmycuREGwgfH0T8K5eLlPj3RJReSVLKBI0vIlEPd7U4B4C3hr3F/ns38HYD2HC3uVTA5PrwdAp81gj61E02qxpLrN8JACk95Z1SZ2Cs9Es6Kz1iIdnDpXyW5pqcE6WqBO44mH/Qu5APiD5AHR3RByhHC89AgfBDtAFlciL+w8uPYFynKHSuAE9DzixvkINdjb+2qVevHldffTX16sl/4xyKfqhp3x9bvugq0ZErK0dOtIHw8UHEv3K5SIl/TyiuKWVIAOCLET9getnEfwb8h/aNevLk4FdpVrcZAPWiYPKjJu6uB6T0MuumXWT9TgDo9qq8c+qimFQfHkyO4pVUabHUmstY1RyuqxvH700dj1+S4KrjruD6/xrKc0sQvlzxrWu9VTUQfYA6OqIPUI4WnoEC4YdoA8rkRPyHlx/BuE7ZNaUiGVFTSiDwjmgDgkgmUuLfvsaTc82ox397nPc3vi95HLDVlLohB2Lrm7ctn91x8AtoNwbWjoLzZ8NsPZz3FbS5zWbvmiPs+6E1Zx11VG0bDYcq4bvGcFMd4PzvYN0o0MdAdYXHOlSmDjUf6nSA0/sdZI+3hhZHHOU3tID+xx33TW8ET2TDmUh5yhI1pdzith0Iwo5I6QMEAneI+BdIIbemlBgppYDS0lLJY5bcXrjn+EpLS9mzZ4/HexEOfqhp3x9bvugq0ZErK0dOtIHw8UHEv3K5SIl/T8i+9uEHIcbDUCV72o0x/z/wO7C8gdVFW78TCx3c1Kba2RIOta5JSIGtFpVJ/vSCaoPrA5Tzi+Cb2l/EubW30JogxDleeNxl35b0LXyw8QMKygp8sin6AHV0RB+gHC08AwXCD9EGlMmJ+A8vP4JxnSIppYDCwkLJY5HSGAsKCpgzZw4FBQVh7Yea9v2x5YuuEh25snLkRBsIHx9E/CuXi5T494QJ27VLFj2/sRCS2rpmdpSg01m/EwDim7s1F6+HNg7JKktSyij7VBW6ZGh2tUeZD4e96Xa/qeafNz4S0/zCmq7TujpsZxVn0fvT3jz626M8sPgBn2yKPkAdHdEHKEcLz0CB8EO0AWVyIv7Dy49gXKeYvicDy7Cz/Px8kpOT3cpEyrDF6upqysvLiY2NRa8PXk6ztv1Q074/tnzRVaIjV1aOnGgD4eODiH/lcpES/56m7039ayoP/fIQABe2uZBlty/zbnCWDkbkQUyKPAdm6WDAbKpbjqS8vJz4BQkw2gSzdBj2Q5WdqHUKnoVB82DNDbZrkTF9z9TkMnT6aHQrf7Ye+7cVdLKbKph+3es03vmsi71Pa6bvFXt5yspoA8/nwudFnuU0j5i+J8mGuzfwd/rfdGrQiRdXvMj64+utx3yZ3if6AHV0RB+gHC08AwXCD9EGlMmJ+A8vP9S0L3f6nsGvs0QYwQw+raDX64mPjw+2G7Xuh5r2/bHli64SHbmyWvnetYAW7oWIf3V0RPyry9heY1m8fzHpp9OZcc0M+YpyE1J2uHwn8U2Y2iid+7I8aik+jw6duSi7Hc4PTqaElpL6ciYKphnMCawFZyAvvBcuilj6f95fVXuiD1BHR/QBytHKvRBtQB0d0QaUoZX7EErxL/ucAT1biJOfny95LFKWwszPz2f+/Pke70U4+KGmfX9s+aKrREeurBw50QbCxwcR/8rlIiX+n+v/HDG6GF45/xWXY9FR0SwevZgt922hZT3pRI0aWL6T8ua31Jy8HkZvA06UrA5YQ2VlBc6pJeepgiZ9rFtdE1AqcxCMXge57RS7J4hQRB+gjo7oA5SjhWegQPgh2oAyORH/4eVHMK5TjJRSgJjpaP6xKSoqCvqPTm37oaZ9f2z5oqtER66sVr53LaCFeyHiXx0dEf/KebLPk7Q51Ybrel6njsHLNiuT7/5fSO1NdaX5OzlzwfvEAkTFUd1wIGSvda835Deo39f8uWb1PTkY8v+ERoM9yiRFu69yLp4YBLWF6APU0RF9gHK0ci9EG1BHR7QBZWjlPoRS/MtF1JSSgZy5kJEyl1YgkEK0AUEkI+I/yPzWl/eLonl8z5/WXaZz+0BeTdJrtMm86t7sKPOIKVO1rJpSADS+BN2aJdbNg62hoAqey4VrE+H+axbDqitd7B1sDe2OuLff3AAnjHBzEsxqYtvvySfNI2pK+YR9Tam31r3F7J2zeefSdxjSekjwnBIoRvQBgkhGxL9ACrk1pcT0PYFAIBAIBKFN3maqStMd91lWAKzbqWbbsvqe+c3fmubQOxZe7zTQQe2mJGfjTtP3gF5x8FszuD8Z2PyQizvfN4a20S67rUysD0daw7eNpWUEkUVJZQnjl45na8ZWhn45NNjuCAQCgUAQMERSSgGZmZmSxyJlLm1GRgaTJk0iIyMjrP1Q074/tnzRVaIjV1aOnGgD4eODiH/lciL+g+9H1ZkjjkK5G83/X7XHtm/o79aPA+Nhc0t4hi0Oap1jnE5mck1KOeCcDAOG1tQHbSZRJMFkglbRrvWpBJHHF1u/4MYfbuTTvz+VrSP6AHV0RB+gHC33AVq1HwltQMR/ePkRjOsUNaUUkJTk8vrUiq7myVIX5k+YderU4aKLLqJOnTph7Yea9v2x5YuuEh25snLkRBsIHx9E/CuXE/EffD+qZBUjcPP9VJV4Vslc7rAZ72zCVOmiElUj45zfsqrYbyS1hzMHJE9/VbMrWXRysWcfBSHL3QvvBmDu7rmydUQfoI6O6AOUo+U+QKv2I6ENiPgPLz+CcZ2ippQMRE0pgcA7og0IIhkR/0Fm7SgmHj3ASwf+tu6y1oUabfeYc/IXWHWli/onhXB/lvnzkdbmUUzENoDyHAB+PAN3ZsKNSTA9zb0L9vWgCtpCvShofwQOuuas+KIR3FWvZiOpLZw5BMA1p2BhsaPsA73vZZqCUTRBQ9SUUhX7WlMC7SP6AEEkI+JfIIWoKVULlJeXB9uFoFNeXs6BAweCfi9q2w817ftjyxddJTpyZbXyvWsBLdwLEf/q6Ij4V45W7oWLHwO/o7zJZd4VS90/LN9dF+Y1gY3XfWROSIE1IQVwbRLktpVOSDkTpQN0BsmHrGvsB17bvRv8Ig3eqO8oGxIJKUFAEX2AOjqiD1COVu6FaAPq6Ig2oAyt3IdQin+5iKSUAvLz8yWPRcpc2ry8PL799lvy8vLC2g817ftjyxddJTpyZeXIiTYQPj6I+FcuJ+I/+H5c2u5S6+dHznYdDWXG/dQCgw6uT4J+aWdLnjPKWbVOB7dyUPNw1egCPmpo27exBcxtDDtbQmqUvbQtKVU/CsanSpoVCADRB6ilI/oA5Wi5D9Cq/UhoAyL+w8uPYFynmL4nA8uws7y8PFJSUtzKRMqwxaqqKoqLi0lMTCQqKsq7Qoj6oaZ9f2z5oqtER66sHDnRBsLHBxH/yuVE/GvDj482fcSx3R/wwuUzqHPsW9g/FUbbPSQf+Aw2jTV/HnkG5jjVirxoJSwbIs+J5O5Q8A+k9oG8zQ7T90raQXzTizGlL2V5KcTp4Px4CTuJraD4qMMue1ue6B0Lf2vlxbWYvqcq9tP3TCYTN/5wI9sztzN35Fy6NOgi+gAVdEQfoByt9wFatB8JbUDEf3j5oaZ9udP3RKFzBQQz+LRCVFSUx4AKFz/UtO+PLV90lejIldXK964FtHAvRPyroyPiXzlauRdSfjzU7yHo95B5o25raD/WUcC+CKsh0U8vqqHZ1XBykcsRy1l0OrgowYsZk29vlu+sAx83griDPqkLQojF+xczb888AK749gpOPHlC9AEq6Ig+QDlauRfiOUgdHdEGlKGV+xBK8S8XMX1PAYWFhZLHLAPOwn3gWWFhIT///LPHexEOfqhp3x9bvugq0ZErK0dOtIHw8UHEv3I5Ef8a9CO+CaR0d9pZky669qSEUs0UhOgUKvCStDJVgS4Kp7X0bGdxigWTQeIBr+S45/NI0DMOYsVTXERwvNAWIydPnxR9gEo6og9QTkj1ARqxHwltQMR/ePkRjOsUjzMKMBqNkscipTFWVlaSkZFBZaWb5YTCyA817ftjyxddJTpyZeXIiTYQPj6I+FcuJ+I/VPyoSUrFNnB/uOb7K+zzI6eMHahocJHtWLOrnWQtSSkpbCOgiqobkDdoi0JfPRPmoRbxLNizgJLKEsB1mXXRB6ijI/oA5YR+HxB4+5HQBkT8h5cfwbhOUVNKBnLmQkbKXFqBQArRBgSRjIj/EOHgDNg4BkZVgD4aZjlVL7/wD1g+DK7YAdtfhKpySP8VGg2Gjo/A2httsnU6QEpPc3Lq+DzqHU2iqOIMAMb2EJV2AWStMssOXghpF8AP9WS5Kaem1P8awiPJ8utPKeGFQS/w2prXlCmJmlKqkxSTxIizR5ASl8K7G9617revNyXQBqIPEEQyIv4FUsitKSVGSgkEAoFAIIgMnEacuGCt76Sr+Vfzx3/WatA5PTKZqmr2mWXWjfiC2xq34qcmNSv12deKiopD7UeuvCr1bD3olCub2HWYesYFPnOm4gwzt810SEgJBAKBQBBuiKSUArKysiSPRcpSmJmZmbz11ltkZmaGtR9q2vfHli+6SnTkysqRE20gfHwQ8a9cTsR/qPihc/rfiZrB4zm5uezbv5/yCvul7ZwemaqN5ul7NcmnrvXb89WFTzPcuqCfLRZmzVlAZna2eSO+iUKf3RPrJb+mhDecZzOWZqhnXKA6og9QR0f0AcoJ/T4g8PYjoQ1EevyXVJZQVF4UdD9Cxb47RFJKAQkJ0kvoWOb7O8/7DzcSExPp378/iYn+rlqkbT/UtO+PLV90lejIlZUjJ9pA+Pgg4l+5nIj/UPND6nsyP1DHJySQmppKlN6uZpRz/ShLTalKy4OoCdqOsTtuezhv1eMaEhPrmDcuXq3Y2yluSmDFewi1ifWV2U/Swz11zTa/ScPnFQEFgeGrvV/Rq18v0Qf4qSP6AOWETx8QOPuR0AYiOf4zz2TS/J3mNH27Kfty9wXNj1Cy7w5RU0oGoqaUQOAd0QYEkYyI/xDh0Jew4U4YZQR9FFSehh/s+vULFsOqK+GqvfDPc2A8A+m/1xxbBKuussnGNTbXlcpeY96+bDMkd4PvYszb9c+F3I3mzyNLzAms72PhxiLYOh4OfCzppn2dqG4x8E8r19pR7zaAx1Pc15Ta2RLOPwGFMnNLpg7m/ytMEKMDujyH7sdJ8pQtiJpSAeXNi99k3Pnjgu2GoAbRBwgimUiO/zt/vJMv//kSgAEtBrBuzLoge6QtRE2pWqCioiLYLgSdiooKjh07FvR7Udt+qGnfH1u+6CrRkSurle9dC2jhXoj4V0dHxL9ytHIvfPej5j2c5W1udB2n4+YsTmXZaUpKSqiutivc5FxTqiwDqsqc9O1kcjeaC6QDx06coKLSaDtn349ke9w1VraolUQ9bG8Jf3Q5R5FejOUl9y6FCSlBwHlxxYuiD/BTR/QBytHKvRDPQeroiDagDHf3Ibc01/o5q1i61E9t+xFK9t0hklIKyMvLkzwWKXNpc3NzmTFjBrm5ud6FQ9gPNe37Y8sXXSU6cmXlyIk2ED4+iPhXLifiP0T8sA4O91xTqjDvFD/tqEdhgxF2B908MuX95bjtPHUhoSUAX375Nbl5+ZDa2/P5a+gfZ/t8h3PeTAY6oGU0XJzS0OXYxPqQKp7+Qp6qqirRB/ipI/oA5YR8HxAE+5HQBkT8h5cfwbhOMX1PBpZhZ7m5uaSmprqViZRhi0ajkYKCApKTkzEYDGHrh5r2/bHli64SHbmycuREGwgfH0T8K5cT8R8ifhz8AjbeDTdX2xJIs2r+H34IEprDdzFUDVlKfkx3s/050ebjQ5fAikvc2617FlyyAaLrwWy7jE/rW+HIN+QMyyA5pb6jr7OkE1NZRngyB9pFw4Sa+lDO0/TeaQBPSEzfO9IaWkUDjS9hxNYlzDtjO2bqAGcdgX2VjvuccWfXI2L6XsCpfL5S9AF+6Ig+QDkh3wcEwX4ktIFIjv+rZ1/Non2LAGif2p79jyjtPNXxQ6v25U7fC96vSQgSzB9frWAwGGjQwE3F1TDzQ037/tjyRVeJjlxZrXzvWkAL90LEvzo6Iv6Vo5V74bsfTtP37ElqY/0YlTaIBlExjsedp+/Z03kcxCSbPw+YDetvdjhfgwYNPes70cgA3zSWLS6NLooRSTgkpQCiwrsWbcRgMBgwmUyqFxcWfYD/foQrWrkX4jlIHR3RBpTh7T4EaqxPKMW/XMQAbgUUFUkv9WgJwnAfeFZUVMTvv//u8V6Egx9q2vfHli+6SnTkysqRE20gfHwQ8a9cTsR/iPjRcDD0+dC7/TMlrvblJpWaXeWy6/ffl6h+zyyR9qan50YJn+1TGN1i3IpojmOtoaJ9sL3QFl///TWN327M0388rapd0QcolxN9QHj5IdqAMrlIjn+dl+n4gfIjlOy7QySlFOCp2FekNMby8nIOHjxIeXl5WPuhpn1/bPmiq0RHrqwcOdEGwscHEf/K5UT8h4gfdTtAx4dk2K+w2e/6knnlPHePTPW6mP832dXRcJMIOnjokOr3zBJpjyXD7Mbuj4EObxGZFiKDwFtEQ7QY4eXA7YtuJ6s4izfXv0m5Ub34En2AcjnRB4SXH6INKJMT8R9efgTjOkVNKRnImQsZKXNpBQIpRBsQRDIi/kOYreNgzxQYXfM4NEtn+wyw5x3Y8QoMWQxLzavp0X8mbLgT2o2Fg9Oh7zTocL/5WFUZfB9v/txqNByd5WjPgoeaUu5wrvH0VgP4T4r744daQ5tooOlVzN67iNEZtmOmDtDlKOyuec82LAGWNPN+Pq/UYk2ph+vBB4189CtCKHmuhPjo+GC7EbGIPkAQyURy/A+fPZyf9/0MQLuUdhx49ECQPdIWcmtKiZFSAoFAIBAIIpdmV0P7e6WPtx4NQ3/HYdJbSk/z//qaYUamKjuFwDxayXuj6Pt7R4/TAmsYUks5kF6xjtuTRSkTr6hdV0ogEAgEgkAhklIKyM7OljwWKUthZmVl8d5775GVlRXWfqhp3x9bvugq0ZErK0dOtIHw8UHEv3I5Ef8h7EejwdDvE2n78Y2h4XmOxdHjm5r/rzaa/7dPSlmm7zUcaN1VG/fMeZz76Dq2z80sU/KMThXOa5CTvhiXAnMaw93SLzb5qQnEuTHWKVrGCWQyKA4SFT6tvlZfvfNHIqHWB8zaMYv7fr6P44XHRR9Qy4RlH1DL9iPhOUjEf3j5EYzrFEkpBcTFxUkes7yhCvc3VfHx8XTr1o34+OAOEa9tP9S0748tX3SV6MiVlSMn2kD4+CDiX7mciP/w8sOrfcv3XFIzTcFdUsqutlQg7tnUhvBxI9jZEmIsYZi1ikQvIempiMONdeCzNPfHzouDulHwVwu4vx40rEmENTLAV36uHPhZI9vnjxpJy1n4panj9vnSj2tWuoRIgfdgEEp9wKnTp7hl/i18uuVTRs4dKfqAWkb0AYG1FSrPQSL+w8uPYFynqCklA1FTSiDwjmgDgkhGxH8Y4VxTykLGUlg+zPx5RB7MTYWmV8KpxdDzLej8H/Mxkwlm680jsOKbwdHZymtKJbaC4qMOu5xrKU2uD0+ner+cKhN0PwZ7K+DHpnBlInQ9CrtqakpdHA9/NPdsY3c5LC6Bc+Ng6AnzpMDtLaGr3TS75g/DyXxolgI/ToG+x737JoWpA/xTbh7R1c1pKp+7mlKmDo77nbfdkdMWGhzy3UetUfZ8GbEGx5uVfjqdu366i+Z1m/Pp1Z+il7uCZAix8shKhn451Lptejk4f9aIPkAQyURy/IuaUp4RNaVqgcrKymC7EHQqKytJT08P+r2obT/UtO+PLV90lejIldXK964FtHAvRPyroyPiXzlauRdBaQNFe+0knEZDOYyUsiSbzP+bEtvI8zUqwfY5tbdXH+X+6R2lg20tIaOtOSHlC2fHmqfzDY6Hw63hYGvHhJQzakzg6B7rmpCSi5zXrfWjfLOtVRImJXCy6KTDvqbvNOX3g7/z+dbP+W7nd7JthVIf4PxuXfQBtYtW7oV4DlJHR7QBZWjlPoRS/MtFJKUUkJubK3ksUubS5uTk8Omnn5KTkxPWfqhp3x9bvugq0ZErK0dOtIHw8UHEv3I5Ef9h5Mf1We7t2//xa0k8WZNS7r53s0xFdFPvvra8yVY0HaDa+4OgkvEgBp1jEsafCRYto2tW9vNAsIfgh3crdE+1qZqBMwYy7a9prDu2zuX4toxtsm2JPkC5nOgDwssP0QaUyYn4Dy8/gnGdYvqeDCzDznJycqhf3331zEgZtlhZWUlOTg4NGjQgOlrFSqYa80NN+/7Y8kVXiY5cWTlyog2Ejw8i/pXLifgPLz/c2k9fAisuNX++8TT8UAdaXA/H50O3idD1BZuBWTpIGwpxaVSXZpLZ5VtXX+2n740shgVNobLQvH3JRlhyroNPztPRJtWHZ2VM33PHOUdhp4Lpe3Kwn7538H9Q/xAUSzxhpuohz8PfLqYO0sdWl8IFTk3MebpeZXuI9jKDQs4Uv1Am8z+ZpE2xFQQbN2Acbw57U5ZuKPUByw8v56KvLrJuVzxXIfqAWiSi+4Ag2AqV56BIjn/76XttU9py8NGDQfFDq/bF9L1aIJg/vlohOjqaJk2aBP1e1LYfatr3x5Yvukp05Mpq5XvXAlq4FyL+1dER8a8crdyLoLSB5G62z5aRUo0vNv9vWYXPDXqdTtrXSzZYDOIwvqhBP2h9m0cf/Xmj+IJdMuuJFD8MSRCrhx2tzAkvd2S39d324HiY4CYZd1fNs27baAizmXk+sfroaq8yZyrO8PmWz9mVtcthv+gD/PcjXNHKvRDPQeroiDagDHf3IRjF3UMp/uUiklIKOH36tOQxy4CzcB94dvr0aZYvX+7xXoSDH2ra98eWL7pKdOTKypETbSB8fBDxr1xOxH94+eHevv2DZ83jU4PzIKEF7ieMmeWNVVXSvhpq6ki5e6htcb1HH/15gLsxCb5Og9mN4fIE7/K+0CYafm3m/pi+Fp7hP2wIcxvDuubm2/lOA/XPEUo4FzXXuZm0+divj3HPz/fQdVpXyoxl1v2h1Ac4/+aKPqB2iew+IPC2QuU5SMR/ePkRjOsUSSkFlJWVSR6LlMZYWlrK9u3bKS0tDWs/1LTvjy1fdJXoyJWVIyfaQPj4IOJfuZyI//Dyw619t8XMgZLjULjHjRUdmExUV1fL8NVNlsb+fE7E6+CBeh7MeUGvg1vrwqg67vNhamGoJdu942yfL6tJqiXo4YY60LimNFdtjAALJZyTUlsytjBpzSS+3f6tdd8X276wfj6YZ5ty4q19ZRdn8+DiB5n21zTJ87+57k26f9ydJfuX1GofYHIaMyj6gNolovuAINjS0nPQP//8w4Fs9/OiRfxr2w+TycTh/MO1Zl8NRE0pGciZCxkpc2kFAilEGxBEMiL+I4DqKsjbDEv6w03l8H0sXL4Vfu0JMSkwIs8mO0sHaRdBbCpUV8DgH13tzdLBFTvgl3PM9uY1AGPNW8nRJsjdDBvuhELz1Cr7+ken2kATg6vJYGJfU+rEh7b97uo2mTpA3AEol3gC9VRTCsw158flwP5KmNYImkrcC081o8K9ptTrF73Os8uedXts4z0bOZB3gFvm32Ldt/OBnXRp1EWW7eu/v54F/y4AYOt9W+nRuIfD8dLKUhIm2YbgmV727U+Nquoqfj3wK63qteKctHPcyiw9tJRhXw/z+1z+IvoAQbhz78/3Mn3LdJ467ymmXDLF4Vhtx39JZQkJ0bU0rNdP1K4pVW4sZ2fWTno26enycsEXPtn8Cfcvvh+AZ85/htcvft1vm0oQNaUEAoFAIBAI1EIfBQ1qio9bhhdFJUDdztBihKu8Tgd9P4b+M7zb1jnVlAKo3weG/u5WvHEYFE1a1xz6xcKLTvWh5IwA0+lgSkP4qal0QgrgTYkpfC0ldH5q4v3coYJUQgrg8d8ed0hIgeuII09YElIAG05scDleXlUu25YnPt/6OVfPvppuH3cj40yGWxnxbl0QiVSbqtlwYgMllSUBO+f0LdMBePvPtwN2ToDnlj1H3dfr8vqawCZTgsUVs66gz/Q+PLP0Gb/s5JTkcKzwmDUhBTB53WR/3as1RFJKAWIpWMjOzmbq1KlkZ2eHtR9q2vfHli+6SnTkysqRE20gfHwQ8a9cTsR/ePnh3X5NUqpuRzAkSsyB00FsKtmFRg+2LHp6rEkpu1pSubl5LhoO9H7f83ElXLVXPVsy6B0HG1vCq06LGjsnqaz0/VjxOcbZTeE7Lw7+aQkvp8JKN6sNbm8Jw5MUnyIk+fPEny77vthqm8qnpH1tPrXZZZ9z/SpnW6dOn+KW+bcwea35D6R9ufuYsn4KJ4tOOujdt+g+6+dvtn/j1Relvos+QDmiDwisLSndF5e/yHmfn8fQL4f6dT4lbcATtRn/r699nSpTFc8tf84n/cKyQt5a9xbLDy/32xd398u+0HnGmQze+fMd9mS7m9IvD4ufb61/S5Ef9mQVZ9HwrYa0eq+V7PPuytrFl9u+pLiiWLX4f37Z89wy7xbvgoiklCJiYmIkj1kCMhgV+ANJbGws7dq1IzY2Nqz9UNO+P7Z80VWiI1dWjpxoA+Hjg4h/5XIi/sPLD+/2dY6fTW4exNOGyrQF2A/RHzTP+jEm1vbcsbwZ9I+DqUNftMuB+RhvDc933VenA8QHf6iQ5LTEuh19srezJbzVAOY3gW6x8Ep9cxF2Z84JbkgHnXc3vMv+XPN8Rr1BT7t27dAZdGzL2OZxNNLnWz9nzdE1Dvucfwed4/+un+5i1o5ZPLvsWTac2ED3j7sz7o9xXP7t5Yr9dh7hJfqA2kX0AerZOlJwhFvn38onmz9RrDtp7SQANp3cRHFFsc++K2kDnvAU/9szt/PKylc4UnDEqz+1wRO/P8H4peO56KuLyDyT6VZmd/ZuHv31UdYfX+/Rlrf7VVJZwlNLnuLsqWe7PW6sNrLu2DrKjbbRpL8f+J3vd35PVbVrHckdmTt88uPVVa96vA53fned1pU7f7qTp5c+rUr8rzi8gklrJ7Fo3yJZ8qKmlAxETSmBwDuiDQgiGRH/EcQsHYwywncGc+2n38+F5HPg3M9sMpVnINrLsJtZOrhiJ+x5C86bCXOSwFhstmmhNAMWNAFDEhjPmPddvR9+rim61Pt/8PejNvnU3pD3t/draH4tnPjRcd9oE2x7Dnb7NkVCbk2pcSmu0+rsZSTrSV24FJZf7JNvUrg7r7s6U2lR8GWauQbWNemquqApOqR2YGDLgXy38zs+H/45n/z9CauOruKFQS8w8cKJVjndBMc/PJvXbc7xJ45bt0+Xn6buZNvzsnOdJ3v9Ho17sC1jm1tZe7kpw6bw1ICnXHxecnAJl35zqeS51MZkMrn9w1v0AaFHVXUVe3L20KVhF5+SiVKxIJeen/S0xv6hRw/RJqWNbF37tnHm2TMkxiR61fHXX/tzzr5hNs3rNmdgy4GA5/i36LVJbsOhxw75dV5f2re9/k+jfmL4WcNdZBInJVqnQio9xzXfXcPCvQtd9ruzc9dPdzFz20yuOesafhz1I5tPbabv9L4AfH3d19za7VYHfw16A5UvVlJtquaPg3+QlpRGj8Y92Jq+lbqxdWmX2s6tT/csvIfPt37u9pi9X1nFWezN2cvo+aM5UXTCrYyvvLTiJSaunghlwGRETSk1MRqNwXYh6BiNRnJycoJ+L2rbDzXt+2PLF10lOnJltfK9awEt3AsR/+roiPhXjlbuRVDbQFwjp+l65lX2HLBLSHn19byZNjvOfpjMxaOM1+ebdzS5HPT2by6ddEzVVDdync7hQpREwdhaHuVxSQJMru9dzi3uRqPVMiuawa6WcLA1XJoIVyfCquawtWXAXQkI+/P2M2PbDEqNpYyeP5pVR1cB8Nqa1zzqVVRVOGw7/+Frif9f9//KkJlDHI7ZJ6R8wfndem31AZlZmQz7ahjtP2jv19QcOfx+4Hc6fNCBV1a+UqvnsSfjTAbVMtpYOPUBty64lXOmncPDvzys2P4dP95B03easvLISp99tY/9A3nuV7Xz9znoaMFRyoxl7MjcQfsP2jN89nCH71lJG7Dn5nk3M2jGIIdVO71xuMC2+tvOrJ3cNPcmvt/5PWD+DXEe8eWJV1e9yiVfX8LeHHWmndvX5hq3ZBxb0re4lfvs789o/357nv3jWSqrKhWfZ+a2mQD8tPcn1hxd49DGn/j9CRd5Y7URk8nE9zu/57JvL6PnJz15bfVr9Pq0F2d9eBaH89yvqOc8hdqZcmM53T/uTtqUNAbPHOyQkAJbXJRXuK8PmFWc5bGe2cojK80JKQWIpJQCRE0p8xzWjz76SBNzyWvTDzXt+2PLF10lOnJl5ciJNhA+Poj4Vy4n4j+8/PBo//pMx+l2uClSLteW/R/vl7gWjM4uNFptABBdF/R289vShtg+X7Qczv2Mgka3SfrindpNSt1aB/Q+nyLwA/uHJMDZsZBY83XrdDA4HnpE+FQ/Z7KKsyittC0d7vwHkSX+r5h1hTXRpRSpVaicp+/VVh9w/7T7WXp4KYfyD3Hd99eZ9xdnW/8wVaMPqDZVM2HlBC779jIO5B1gwqoJiv5QB/PohDbvt2HxvsWydT7f8jlN327KhV9e6FXW0z0zmUzcNPcmzvrwLLZnblfktzMllSUMmjGIXp/0cjvlSo0+4Lud3wEwdfNUl2MbD2zkzY/edGt/V9YuvvrnKzLOZDD0y6GsOrKKebvnuZ1+5a+v/jwHfbHxC1q/35quU7ty+beXcyj/ED/v+5lGbzVi4qqJdPigA03facpbH71FVlaWpL1pf03jwpnuY+PLf74ElMf/gM8HMGfXHEbNG0XmmUzavN+Gpu80ZXf2bozVnhNku7J28fLKl/nj0B9cMesKSbmt6Vv5cNOHLvu9TRKb8ucUen/amxeWv+DwnRqrjYxdNJaDBQeZvH4yk9aYp1B6SwBZFmkoLCt02D945mAW77e105ySHJekPYD+VT2j54+2br+44kUAqkxVjPt1nIv8rqxdfLb1M5f9FhL+m0Dcf+M8ttGX/3iZhh81JO71OD7b8hlV1VU8+uujPLfsOdYcXUPalDQSJyWyL3ef9R5Vm6r5J+MfdBN0bmudeUMkpRSQmipVfRP0er3D/+FK/fr1ueuuu6hf39dXnaHhh5r2/bHli64SHbmycuREGwgfH0T8K5cT8R9efsiyf3XNPC93K+cptQWQ3AX6z3TRtf/ffD67pFRyV+jwICR3N9ewSu1FHefh8cndPZ/XAQ3XwwnCSCmBfKb+ZfvD3nmklBptVWrakfMfmLXVB7Tt2da6vTd3L78d+I2m7zTl7KlnU2Yso6LaPFrMuQ84nH+YyWsnczDvIKWVpR7/IP5y25e8suoVh33Oo9A8UVpZysTVEzlScISrZl8FwLzd83jq96cka+n8n73zDnOifOL4d5NcrvcKd1yhd5BepSO9KwIiIIK9IZafBVAQFEQRLFgA6UUQEBQp0pGqFEFpSofjeq/Jvb8/9pJLz26yyeWS+TzPPZfszszOvpm5SybvOy8APLntSTAwHLhxAL9c+QV/p/5tVvafgn+Q1TwLpd7Gs0R2/rsTGy5swOX0y+izqo9gv00x+9BsHL55GKeTT+P5HcYzmYS8dowxm3Zn3HdtHzqt74QvFF+A89OPuzJWZtQbqevyrhjxwwis+WuNSXtCfE0tSMXnJz43mjGlq8sYQ2q+cXFq7fm1+OToJ0hckIh159dpdZ7aw28U8G/mv7iTW7GJQHphOqbtn4arGVeRWpiKuZiLlmtaYuxm/guN9IJ0rWxGYQae/eVZHLqj3zfOEN33QKfunsKsg7PQfHFzDFw70KR8bkmu9vGbv72Ju7l3kVOcg0ZfNoLXTC98ceILk3qP/fgYtl3epn3+X2bFcsA9/+1Bn1V98NOln1BQWoAW37TACzte0NMfvG4wGn7ZELeyb8EaHxz6AJ8c/UT73HBm1IwDM3Ax7SK2Xtpq1saUnVNQbX41vLTjJfxy5Rer1xRbtN90dRMyCzP1jjX+qrFFnUJVocXzADD7xGzt40nbJkExU4FFJxZhzuE5ePD7B7Xn6n1eD80WN8MnRz+B/H05mn/dXJT/uljYSJcwxFKjc09BqVQiPr7y56072g8p7dtjyxZdMTpCZV3ldXcFXGEsKP6l0aH4F4+rjIVL5EBg7fIHlgs5lm0Z6NYcZ6Sr/R1T3k+Jkxv4URdQV0yj91IYvFfp8wff/0oPMx/UHLx8z6T1yE7AlcPWlSPaS+NEzfHAf98D4HtbfZFl3OOKMOZa5jWLPW9yinO0jw1nDvhH+CO7NNtQxST7ru1DtyTh37KP+GGE3vPMkkyH/A8ICQ7RO6Zpyn414ypaf9ta74O8Lh2WdkByXjL+99v/EKgMRP2I+jg68Sjksoo8TitIw6W0S/jh7x8E+b363GpsvrgZ07tMR5PoJtrjpWX6H5p/vfqrdnzOp57Hzsd2WrXdf01/AMDZp8+iaXRTvXOFpYXosaoHAGDBmQX457l/sPmfzagZWhMjG4/U+6B/L09887X7efeRVZSFehH1cCH1gva47g6PJ+6cwOJTi/HEA0+gU3wnZBRmYP5v8/HjxR/xRPMnMLXDVHAch5ziHHT9viuKVEXYN24fogOiLV771N1TaFW9FQBoC3oFqgLM/n02FvZdCIAvSLX5tg3+uGe6b9/jWx7HxbSL6JrYFb1q9QLAF8ZUnArx8fH4N+NfhPqGIszXeJLDmB/5Hcp8Fb4oeLvi77lujI7fMh7Lzy7Ho40f1dOdtG2S9vGoTaMwq9ssfP2H+ebppkjOT8aqc6uQW5yLrZe24tlWz+KL/l+YjWtz5Jfma3skAcDZ+2f1zo/cOBLrhq/TO3Yv1zhWnt/xPMY3H48tF7foHV/912oj2TqL6uDYxGPotZIf853/7sTZp88ayWm4mHYRnZd1xpgmY9AwsiG8Feanvr6+53X0qd1HL890afBFA7O6P136CZ8e+xQAsPDEQiw8sdCsrD2EzQ1D2bSySttk4ULqBby6y7jfn1jc+ytdicnLyzN7TlOJd/e+8Xl5eTh06JDFsXAHP6S0b48tW3TF6AiVFSJHOeA+PlD8i5ej+HcvP0TZ50z0lBJiK34k35/Kih//hL+vr6sMAbrvBh4u/6a5/ktAu2Xa04VFRfpGZAZFLItI/6Y2Uufycaa+Co1oZ93I4BuAMlgah25t1j58LRS4ngQ8EiiNaXdm4k8TAUBQDx3DD0cR8yIQMz9G0HW6r+hucpcuU0tkbmTdMOprUuPTGtiwa4PJ3GWMYc9/e7Q7bOnm5tFbR7HhwgaTS4fy8vJw48YNsz6fTzmvfWw4s0mzdAfgZ4ecvHsSm/7ZpCff9Kum6LSsE3Zc3WFkm+M4qMvU2Pj3Ruy9thcFpQV4bPNj2PTPJnRY2oG3W5yL9w+8j7V/rdXT1d3NcNe/u8z6b4rhG4YbHTMsNDX4ogHe2vsWHt30KM4mmy8CWENdpsa68+sQMz8G9b+oj9/++82k3MW0i2j7XVssO7MMnZd1xqFDh/Dklicx+/BsXEy7iNf3vK6drTR933ScTj6Nf9L+MZotY4rW37bGsdvHjGJq0YlF+O7P77D41GLI35ebLUhpmH14Nnqv6g3F+wqoy9Tos7oP/Gf7g3uPQ+1FtZH0WZLRMi5dDGex6MaoZqmcZtmhOd7Z9w5u5VifCWQKzawfzZLG43eOW5Q/k3wGv179VdunKqswy6L8hgsb9IpoAF9EMkXrb1vjsc2PWfX5asZVvPjri3rHBq8bbFHnRvYNzD48G49tfgwP//CwRdmmi5uiWFVscQahKaz5ICWy92WYd2Qentn+jNOuKTVUlBJBQYH5hl6e8oEkPz8fx44dQ36+uDXuVc0PKe3bY8sWXTE6QmWFyFEOuI8PFP/i5Sj+3csPcfY5i0vLzNrqtA7wtrxsKD8/H9vP+ZTrli8T5GT8rCkzu/sVFReZPC4M6YtSu2KB+l7A44FAF18TAnHDrBvxl2BWnE95UUTgjB1beUGi2pmroWlSbK5XyL+Z/6JEXQJ1mdpkAUlIE20NL//6MhYcW2BVbs9/e4yOlZaV4r0T75nM3V+v/opeK3uh49KOOHf/nDY3z989jw5LO2DkxpH45o9vjPTy8/Nx67awD/mp+alY8ucSFJYWIq/EdFFbd7nN/uv7Lc4qWnl2JT499ike/uFh9FjRA3uv7dWe09h/e+/bmL5/Op7++WmLvnVf3h3bLm2zKKPhasZVlLEyZBZm4sPDH+JS2iWL/99MLU2afWg2FO8rEP1xtFHBTJfPjn+GUZtGaZ9rZmsZYthv59ixY9h8ebPeMU0R46+Uv7THdB9bov2S9kj8LNHo+KRtk/DMz+I+7KuZGnU/r2tUDMwpzkGPFT0sNghfdHwRhq4fiqsZVyv1f+5ru17D45sftyiz7fI29F3dV2+mpDXM7QpnyD9pwjcUMFw6aaqwbQ8+H/ig1betJLUpNa/veR2L/1hc2W7YDMfc/R20BOTk5CA4ONjiVoa0FSzh6VAOEJ4Mxb8Hs68f4F8DaCNuuYRo9vYGlKFAp/WW5e78DBwYUPF8NAPWGBQJEkYBxalA8h59uXMzgPPvCffJOxwo5pd3xD0P3MkEYkOB28a9Zc3T9yy4hRV9r1gdEzKjy9+qGt6HGILqATnWd2rirlQ8NulLOR1uAUdN1P8+CAfeFrfipcrApjO97cpNEekXiXoR9XD4poAlmSJY2GchXmirP+NlyZ9L8OS2J41ke9bsifm952PVuVUY12wcGkU1grpMDcXMiql6wxoMw6qhq5BRmIG4T+P09OtH1Md3A79Dx/iO2mMzD8zEtP3TzDs4H0AugEAA5StZApWBer1zNCzuvxhPtXoKqjIVPj/xucldt4Qi5DUxpQPwM6z2XtuLIeuHmJT765m/0OSrimVLZ546Y7ZnzKxusxAdEG00C0aXz/t+jgBlAMY0HQNF+YYNt7JvIX6BcdF5SP0h2qVbMk6GYQ2GYePfG/VkLjx7AY2+bGSk+1TLp/SWr9WPqI9/ntMvcKQXpCNinmuv2/WSeeHHkT/i+O3jeKndS4icF1nZLpnHRPwTBACgCMCHsFhHAainFEEQBEEQhO10Wm/c56lS0fmAGt7GvEztp/SLUgCQdlTcpXodAbbXF6djhJMamGtm6rT6nF86uSUOKDO93bUeoS2AmhOAP/QLIutigNfSgFY+QFMl8L904IkgINeN+7EfvWU9PlILUpF6U/pdMYXOdtHQbDFf6Jz3+zysHrbaaNnhj//8iJDLISYbiV9Mu4hOyzpp+ypdz7puuSBlBlMFKQB4+uenUSusFuYcnqM388kWhM580mXqrqloWa0l1l1Yh58u/STYtqUmxu/seweL+i6yeF1Nw/ISdQkmteSLV7q7ipmjjJUZFaQAmCxIATDqp6S7hBLgZzTPOTzH6nUrm9KyUm2j8HMp9u1mSBCuDi3fE0F6uvmvvjxlO/C0tDR8++23SEtLc2s/pLRvjy1bdMXoCJUVIkc54D4+UPyLl6P4dy8/RNn3CgQUftLYkkA3O0dnGcVD5f1AEkbpC3EcTC7Vy/zTrF0V8zI+KEUxTuyues0/su06snL/6z4H+EQAHVYJ04sbAlTrbXQ43gtYX43vS/WQP/BnPPB8iEvvX2g3mh5GlcG3f35rdMzc8jjD2apjfhxjUt/aznbNFjdDSn4Kkj4z3+DdVnqt7GV3QQoABq0bJFpn/tH5GP3jaIsFKcC4cbo1dHdgtMRruyu2sTc3o05s/x5LZBVlIb8kH6XqUoz5cQyiP47G/KPzJbPvDKy9VgRR1aGilAgUCvMTyzRNHSur872z8PLyQkxMDLy8TLw5dSM/pLRvjy1bdMXoCJUVIkc54D4+UPyLl6P4dy8/qnIOKBQmZDvq9NvwjgRamZnRYKLJs4YdQZvMnrMLC9cEwM9S0qXey/rPQ1sIu47cD6g92arYAH/+9xuhukeFd7pw778AlUtxaSGwry9K1aV4b/97eHnnyyblvJTS/V2I/tjyrm3uzKyDs0TJpxYImyGXXZyN9IJ0/Hz5Z7Myl9Mvi7q2NVp/2xrKWUqs+WuNYD8JgnAe1FNKANRTiiCsQzlAeDIU/4TD2dub33mv0wbLcnd3Avv78I9H67zF0/RjCm4M9P8LSD0CnHwGyPqrQvb3scD18hlEXbYDIY2BrYkV5w17Og28AmzjGy/Z3FOq1xFwX1b07imrXT6RS4PhPTxaAqxTVhwLbWFxhhcAoOuvwLl3gLAWFb2/bm4EDhvvuqRmwKUSoIGy3I+mM4EaI4Cfdbb+7rEX+K27yUvNzQDecNOeUpXNlecuoubO+uil7i7JLCNJoZ46hCdD8U+YQ2BPKZopJQK1Wl3ZLlQ6arUaOTk5lT4WjvZDSvv22LJFV4yOUFlXed1dAVcYC4p/aXQo/sXjKmNBOWBBp8yKbHx5ISayI9QPndY/p/CveBzbH/BP0D7NyTG1u5KAeUEhzSyfZ2LHhQOafaBrQICORoYzcUwfOQc09DYojBmghtLsOTefLFmpPL51PORX4XoFKYIgCMIuqCglgtRU89M9PaWfSEpKCj799FOkpKS4tR9S2rfHli26YnSEygqRoxxwHx8o/sXLUfy7lx+umQPCqh1Z2dmWBZpUNGw28omZX0r36aefCrq+EWEtLZ83KEpZLzFxQKO39DW6/mpaNH6kKMtmr2egm5mZaVGacAxHbx+rbBcIgiAIB0BFKRGEhoaaPSeTyfR+uythYWEYM2YMwsLC3NoPKe3bY8sWXTE6QmWFyFEOuI8PFP/i5Sj+3cuPqpwDgYFmpseHNAVCmxvZ16PmRLN2x4wZY3xQMy3IO9yCR1aKQQaFsLKO6yzLG+kzILqL6XOdLNkSWD7yizM6FBQcLNhqtCttzEgQBEEQLoj5zt2EEd7e3pXtQqXj7e2N2rVrV7YbDvdDSvv22LJFV4yOUFlXed1dAVcYC4p/aXQo/sXjKmPhsTkgoA2oUmnmvUpwY6DonpF9+FYDCsuPR7Y3a7d27drACYNZQz7lTaCbfgDgaTOaVnw2aHTOagyzLK+7Pq7+FKDBVFgvMJnyQeDMqZrjgJLymVFxQwF1EZS+5r+kNKS7L7DW9CZxBEEQBEGAZkqJIj8/3+w5Tb94d+8bn5+fj+PHj1scC3fwQ0r79tiyRVeMjlBZIXKUA+7jA8W/eDmKf/fyoyrnQGFREQBAFd3X4AyDYfEmPz8fx6ttREGvC+YNRnYCAN6Pwbn65+S+/G+/WPP61nLCaPmeiBzyCuGLakJmPRn64Rcv/DpKvgilUpchKysT+V5JZkWteTIyQPhlCYIgCMIToKKUCPLyzH/V5SkfSHJzc/Hbb78hNzfXunAV9kNK+/bYskVXjI5QWSFylAPu4wPFv3g5in/38sMlc0BgB+3CgvKilNqgv5lfHOCfaGx/737kqC0sD2zKbwtv+h7KfWI615IJnISvaYDO1FDKKxqHyzlr693s6dqkoxvRVv9U76NWtVUqNTIy0iy+lobe6f5FiJID66pZ95IgCIIgPAmOufs7aAnIyclBcHCwxa0MaTtwwtOhHCA8GYp/wuHs6wMoAoHOP1iWu78P+K07UL0/0HV7xXFN4Yiz8n3kmvKyyujyt4cph4A9D1Y8X6NTdhlVBqyVAZ03I67ZUNzJBJ8Dc+9UyCSNA64tN75OaHMg8wzQ/TecRTjmHJ6Dhxs+jOENh+tfY7TO29Q1nL4fTWcCjd8BykqBdQY74vU8BER1AvKuAX41gHPvAoF1gFpPVMj8+Spw8ZOK66wxUfDSvV78I/xSvu67gIsLgD9fMRJfkAm8klbx/NEAYF35d5pRcuB+TYC7YnwZooozH0AugEAAr1ayLwThbCj+CXMUAfgQFusoAPWUIgiCIAiCcD8Md9KzVowyh9WZS4BRf6aGbwJ/f2j6XIVh/ldgLTTzT8C6ESIbnOvNSTJRTNLMLAsoX2rXfI6xjG91/ee1nwauLrZ8TU1xT+Fv1SuCIAiCIKxTpZfvXb58GYMHD0ZERASCgoLQsWNH7Nu3T0/m5s2bGDhwIPz9/REREYEXX3wRJSUlNl0vIyPD7DlP2Q48PT0d33//PdLT093aDynt22PLFl0xOkJlhchRDriPDxT/4uUo/t3LD9fNAeuT27NzcgAAeWH9pPGtvJ+SSTnOePleWVkZwCn4pYLhbSxc3cTSPzH4RBrbAoAH5oswYlBCsrL0sLikBHfv3eXHwUyxjqv+kIjrEwRBEARRpYtS/fv3h0qlwt69e/HHH3+gefPmGDBgAJKTkwEAarUa/fv3R35+Pg4fPox169Zh06ZNePVV2+YVcgL7ObgzMpkMQUFBlb7tuaP9kNK+PbZs0RWjI1TWVV53V8AVxoLiXxodin/xuMpYeGYOCHsPIisvlpTGj5XGN7kPAFiRKwPz1ikSyRTlM7VkFQ3GB1/XV9EWtPQbnYvDYEyC6gENppg+JwSFQRfy4fpFOI6TwUsh48chcYxJE3KvYPHXJQiCIAgPpsr2lEpLS0NkZCQOHjyIzp07A+AbdgYFBWHPnj3o0aMHduzYgQEDBuDWrVuoXp2for1u3TqMHz8eKSkpFtc16kI9pQjCOpQDhCdD8U84nH19+SVjnTdalks5COzpot+LSQyGPaXybwJbE4x7Suk+77gecR2nVOTAr88Alz8HAmoCAbWA6yv1ezaNZsCvrYCMP4ABl4Cguvo+HJ8E/PsdEN0D6LFH3zfNdTdFAfVfBhq9xc+2WiuvOLdWDvQ9A4Q0sXyvFz8F/pxS4ZO6GFjvU3HesJ9V4hig4DbQc7/+WGioNRG5NUYhbklP5JQB62KALXnGPaUmJAPfV+5eAYTUUE8dwpOh+CfMIbCnVJX92jc8PBwNGjTAihUrkJ+fD5VKha+//hrR0dFo2bIlAODo0aNo3LixtiAFAA899BCKi4vxxx9/iL6muy/LEEJZWRkKCwsrfSwc7YeU9u2xZYuuGB2hsq7yursCrjAWFP/S6FD8i8dVxsIjc+Der0DqIes6rEJXEt/Ke1FZlDNcgsfJ+ZlSlmaYR3UxrQtU7MwX2cG8vt5SRoPrjCyxXpAyhdy74nGbr42vyAC1WmV+HB6Yh8DqPXApAThRA3gkwLSXn0SaUiYIgiAIz6TKFqU4jsPu3btx+vRpBAYGwsfHB59++il+/fVXhISEAACSk5MRHR2tpxcaGgqlUqld4meK4uJi5OTk6P0AQEpKilkdT+kncv/+fcydOxf37993az+ktG+PLVt0xegIlRUiRzngPj5Q/IuXo/h3Lz9cNgdU+VZ10vK9cTW/lnQ5wPF9lvTkeh02ECrTz4G6zwIPHQf/NtPMjK0W5b2fTC3fq/c8v2Oe1cn8ZopeMiHN2S3oA0DtyUaHCotLcPv2Lf3xCm1uZC9GAbT2MV+TCxXqHkEQBEF4AC63fG/GjBl47733LMqcPHkSLVu2xJAhQ1BaWoq3334bvr6++O677/DTTz/h5MmTqFatGiZPnowbN25g586devpKpRIrVqzAo48+KsqHb775BgEBASY0gOeeew6ZmZkIDQ3FF198IfBuqx5qtRqFhYXw9fWFXF5576oc7YeU9u2xZYuuGB2hskLkKAfcxweKf/FyFP/u5Ycr5kBX2QJwKMNB7jXJrmdKdhQbDQBYy63RyinVqcgo9IWvry8ek43FZnyJIi5EK/87nsWA59ca5UAP9j4KEI5EHMFabo2R7VFsNHbgQ2Rx8Ua+DWIv4ho64S/uEe2xUWy0VncoewqX0A9/c4ONzgmlHtuBFlhp5JPh/WuO/8s6wb/sHvZwMyCXyzGKjcYhvIzOWAAA2IhvUcr5a20AwKP3gPXly/ei5cDtmkooUALuiihXCVeHli8RngzFP2EOgcv3XK4olZaWhrS0NIsyiYmJOHLkCHr37o3MzEy9G6xTpw4mTpyIN998E9OmTcPWrVtx9uxZ7fnMzEyEhYVh79696Natm0n7xcXFKC4u1j7PyclBjRo1qKcUQViAcoDwZCj+CYdzcAhQpgK6bnfsdQx7Rpk6P/Qe4BvDP99cHWj1JeLaP2+cA3u6Ab7VgRtreHsHhwK3t+j3o+p7BghtZnydLQlA0uNAs5n619b2lIoA6r8KNPqf8TmhXPwM+PNl/fs1d/9/zwNy/gZyLgO9j1TIdt4EHBrOPx+Rwe9WqNNryrAolVzXH1DlU1HK3aAP5YQnQ/FPmKOq9pSKiIhA/fr1Lf74+PigoKAAAIx2gpHJZNop5O3bt8f58+dx79497fldu3bB29tb23fKFN7e3ggKCtL7AaC9pik0tT0Xq/FJTkFBAf7880+LY+EOfkhp3x5btuiK0REqK0SOcsB9fKD4Fy9H8e9efrhkDvjEAD7R4nQkkrUoN+g/IG6w6RzgZAB0lrRG99Du5gcAGHwDCGlq1U+TMAa95XePODgmG74GlUqNvLxc43HwiRJhyOXeehMEQRBEpVJl/zO2b98eoaGhGDduHM6ePYvLly/jtddew7Vr19C/f38AQO/evdGwYUOMHTsWp0+fxm+//YapU6di0qRJgnfe00XTW8oUnvKBJDs7G9u2bUN2drZb+yGlfXts2aIrRkeorBA5ygH38YHiX7wcxb97+eGSOdDqc5PNt+25nu05oFMMkvPNk0zmQEgTINBgZz1d/OMtN0M3JLq7+XMKX+F2NGiu7SXsPWFJqQpZmRkG48UBfsbLD61eU4clUUBzbxOyBEEQBOEBuNzyPTGcOnUKb7/9Nk6dOoXS0lI0atQI06ZNQ9++fbUyN2/exLPPPou9e/fC19cXo0ePxscffwxvb+H//XNychAcHEzL9wjCApQDhCdD8U+4DdaW793fB0Q+aNRM3GIOaJbWXfocOPMaMLLQuh+7HwRqDAPqv2z6fP4tfqmcl+len4K4tBA48z9gpE4DeUv3f3wSkHkW6HOiQrbzj0D+TX4Z4PB0wDvM8vK97mOA66v1lu+xOkCHW8DRIttvhahkaPkS4clQ/BPmELh8T+E8j6SnVatWRk3MDYmPj8f27Q7uv0AQBEEQBOEJRJvuxykIMbOievwGcBYatfvXsN0PPUR8N8uZ2U2w/kvlvakE2JLxX4q29QGOFwE9bJjgRRAEQRDuRJVdvlcZZGRkmD3nKduBZ2RkYM2aNRbHwh38kNK+PbZs0RWjI1RWiBzlgPv4QPEvXo7i37388OgcaPGJTTYt5kBUF/63mMn5Mq/yIpAD8QoGfGMFixcVlyAjI81gHCwX2ozu2D8RAPBzdWBtDLCxmuDLEwRBEIRbQkUpEXBivuFzUziOg1wur/SxcLQfUtq3x5YtumJ0hMq6yuvuCrjCWFD8S6ND8S8eVxkLygFpdEzK1n9FEj/06LnfNj1HkzQW6HdOuDwnAwed94OhLQBfnaqSbtGten9jdUDb6D1cDjwaCIRYmAxGEARBEJ5Ale4p5SyopxRBWIdygPBkKP4Jt0LTA0oEgnLg8hfA6anCekpVFpZ6Sp18Dkj7Heh72rTesBTAJ5J/HDcYuL0VI+8BG8p7SsXIgXvD5gJnXjdSb38LOEY9paou1FOH8GQo/glzCOwpRTOlRED1O34MVCpVpY+Fo/2Q0r49tmzRFaMjVNZVXndXwBXGguJfGh2Kf/G4ylhQDkij4/QcCG4MJI61z0YlwgCwMrWFcTA+Xser4nEz2mGPIAiCIIygopQI7t+/b/acp/QTSU5OxgcffIDk5GS39kNK+/bYskVXjI5QWSFylAPu4wPFv3g5in/38oNyQLycoByI7gK0/caqX5XOo6UmDxcUFCEl5b75cdArVvEzrt4KA1oFR6OuF/BdlMR+EgRBEIQbQEUpEQQHB5s9p+kvUNl9NhxNSEgIhg4dipCQELf2Q0r79tiyRVeMjlBZIXKUA+7jA8W/eDmKf/fyg3JAvJxb5YDM9ObU3j4+CA4KFPV6+MmAE51H42ICEOdlXu7jCJE+EgRBEISbQD2lBEA9pQjCOpQDhCdD8U+4FY7qKVUVsHTvf38EpBwCum43rTc0GfCN5h8njQOuLefP9TwE7OnMP25uuqcUABwsBLqYGbo3Q4EPM0XeC+E8qKcO4clQ/BPmoJ5S0lNYaL4xp6a25+41vsLCQvz1118Wx8Id/JDSvj22bNEVoyNUVogc5YD7+EDxL16O4t+9/KAcEC/nNjlgoRhXmPg8/gqbZWEcdHQb/a/icVQnfTH/BJPaD/oCiaYnaaEV9aMiCIIg3BQqSokgOzvb7Dm3eTNmhaysLPz444/Iyspyaz+ktG+PLVt0xegIlRUiRzngPj5Q/IuXo/h3Lz8oB8TLeUIOZGXn4MfNWy2Mg869y5SSXntogKTmCIIgCMJloOV7AtAs38vMzDTbR8Btpq1boaysDCqVCgqFAjJZ5dU0He2HlPbtsWWLrhgdobJC5CgH3McHin/xchT/7uWHx+eAwRI2ygEei+OwpyvQZRvgFciP36D/gJ9q8udGM/4YwC/fq/YQsKOZyWskXQOuq/SP9fcDtsfyj59LAb40/x0pUVnQ8iXCk6H4J8whcPmemUnChCkq8w24qyCTyaBUSvvtnyv6IaV9e2zZoitGR6isq7zuroArjAXFvzQ6FP/icZWxoByQRses7KMldvvhjlgch5779Z8rw4DqA4C7Ov2nQpoBkZ0Av1hB1xviD3wSCSTovFund6IEQRCEu0H/20SQmWm+w6SnbAeemZmJH374weJYuIMfUtq3x5YtumJ0hMoKkaMccB8fKP7Fy1H8u5cfHp8DMi9hcjp4Qg6Iej2UwUDXbfrHGr4JRLa3qFZLZ+jjFECSFyDT2dDw+RDh/hIEQRBEVYCKUiKglY78m83i4uJKf9PpaD+ktG+PLVt0xegIlXWV190VcIWxoPiXRofiXzyuMhaUA9LoUA6Iw/5xsP4+8rtoIEbONzyfGW58vh5NWCMIgiDcDOopJQBNTylLayE9oZcCQViCcoDwZCj+CU+HckCHvGtAQBL/uDQP8Arge0p1WAMkjgKK04FNEUBkZyD1kJF6KeO/NZZzRqcAAJPuA9/lOM59wgaopw7hyVD8E+YQ2FOKZkoRBEEQBEEQhFRoClIAX5AyorzapAw1qe7FmS9IAcA3Uba7RhAEQRCuBhWlRJCcnGz2nCf0UgCAe/fu4f3338e9e/fc2g8p7dtjyxZdMTpCZYXIUQ64jw8U/+LlKP7dyw/KAfFynpADdsWFMhRQ+Okf4yxUnixgoxpBEARBuCS0+54IAgMDzZ7jyt8hcG7+TiEoKAj9+vWzOP3OHfyQ0r49tmzRFaMjVFaIHOWA+/hA8S9ejuLfvfygHBAv5wk5YFdcDLkFyH2ld4ogCIIgqjjUU0oA1FOKIKxDOUB4MhT/hKdDOSACVSHwS2MgpAlwe6tNJrgrEvtE2Af11CE8GYp/whzUU0p6ioqKzJ7T1PbcvcZXVFSES5cuWRwLd/BDSvv22LJFV4yOUFkhcpQD7uMDxb94OYp/9/KDckC8nCfkgGRxofAFBv0rjVMEQRAEUcWhopQIsrKyzJ7zhDdjAJCZmYl169YhMzPTrf2Q0r49tmzRFaMjVFaIHOWA+/hA8S9ejuLfvfygHBAv5wk54LC4C2slrT2CIAiCqELQ8j0BaJbvZWRkIDTU9E4pnjJtXa1Wo6ioCD4+PpDL5W7rh5T27bFli64YHaGyQuQoB9zHB4p/8XIU/+7lB+WAeDlPyAHJ4+7gUOD2FqDxNOD8+6JUafmei0HLlwhPhuKfMIfA5XvU6FwElfkG3FWQy+Xw9/evbDcc7oeU9u2xZYuuGB2hsq7yursCrjAWFP/S6FD8i8dVxoJyQBodygFxOG4cdJrDe0cAxWmitN8OBT7IBOQA1NI6RhAEQRAOh5bviYCW7/FjsGXLFotj4Q5+SGnfHlu26IrRESorRI5ywH18oPgXL0fx715+UA6Il/OEHJA87sJaVjyu9aTNZmaGA3/FA1cTgQj6/pQgCIKoYlBRSgRqtfnvnzzhzRgAqFQqZGRkQKVSubUfUtq3x5YtumJ0hMoKkaMccB8fKP7Fy1H8u5cflAPi5TwhBySPu8bvAL7VAI6zLhvd3ewpjgMaewOJXkB7H+Pz4fRunyAIgnBhqKeUADQ9pSythfSEXgoEYQnKAcKTofgnPB3KARv5sRpQ5xmg4DaQehDo+gvwUy1jufYrgKOPa5/q9pRidSoenykGHripr7owEngxVWK/CX2opw7hyVD8E+YQ2FOKvjshCIIgCIIgiMqgyTSgWh9+upMiEAioaVquWh9B5pp7A7/H6R9ra2L2FEEQBEG4ClSUEsH9+/fNnisrK9P77a4kJydjzpw5SE5Odms/pLRvjy1bdMXoCJUVIkc54D4+UPyLl6P4dy8/KAfEy3lCDjgk7uo8A0S0Ad/s3MLiBYUf/7vDGgD8BKsHfYFt1YxF2/vqP29jUJQa6A80VNrsMUEQBEFIChWlRGBpxxWuvB8AJ6QvQBUmICAAXbt2RUBAgFv7IaV9e2zZoitGR6isEDnKAffxgeJfvBzFv3v5QTkgXs4TcsCxcccBljpqKPwr5AAMDQAOxAEDzLjyXhgQLAO+jeKfvxpSca6XH3AhwW6HCYIgCEISqKeUAKinFEFYh3KA8GQo/glPh3LATk4+C6QdA/r+CawxKOwF1gUGXgKOjAbiHwYODRNksowBsnJT+WXA8ymAr4zvMaXg9PtSEXZCPXUIT4binzAH9ZSSnuLi4sp2odIpLi7Gf//9V+lj4Wg/pLRvjy1bdMXoCJV1ldfdFXCFsaD4l0aH4l88rjIWlAPS6FAOiMPx42Dle+KOawDvSMHWZDq1LX8ZsCwG+DKKL0hZooev5fMEQRAEISVUlBJBZmam2XOe0EsBADIyMrBy5UpkZGS4tR9S2rfHli26YnSEygqRoxxwHx8o/sXLUfy7lx+UA+LlPCEHHBt3VpbvafCJcsC1K/izBvBLrEMvQRAEQRB60PI9AWiW76WnpyMsLMykjKdMW1epVMjLy0NAQAAUCoXb+iGlfXts2aIrRkeorBA5ygH38YHiX7wcxb97+UE5IF7OE3LAoXF38nkg9RDQ72zF8j2fGKAoGQisAwy8zB/Luw78lCTJJU0t32N1zJ8jLEDLlwhPhuKfMIfA5XuV946yClKZb8BdBYVCgZCQkMp2w+F+SGnfHlu26IrRESrrKq+7K+AKY0HxL40Oxb94XGUsKAek0aEcEIdDx8FUg/j6rwBn3tA/FpAIjMgANpr+kpQgCIIgqhq0fE8E2dnZZs9pJpy5+8Sz7Oxs/PzzzxbHwh38kNK+PbZs0RWjI1RWiBzlgPv4QPEvXo7i3738oBwQL+cJOeDYuONg3FOKM/hd7kehhbfv9YVPUzhZQ7CoFlanYjaVPfi47yaNBEEQhEioKCWC0tJSs+c84c0YAJSUlOD27dsoKSlxaz+ktG+PLVt0xegIlRUiRzngPj5Q/IuXo/h3Lz8oB8TLeUIOODbuTPSUMjV7qtwPs7T4WPAVW/kAObWAwPJPA8uiBavazU7qW0UQBEGUQz2lBKDpKWVpLaQn9FIgCEtQDhCeDMU/4elQDtjJqZeA+78B/c9X9JR64GPg9FQgsC4w8JK+/BozU41GM/PnzHCrFLimAjr7VNTBXksFPs4ylpWq59TBOOBBdwoT6qlDeDIU/4Q5BPaUoplSBEEQBEEQBFGZcBaW7yU86tBL1/ACHvTVn5g1NwI4H+/QyxIEQRAEACpKiSIlJcXsOU/YChkA7t+/j/nz5+P+/ftu7YeU9u2xZYuuGB2hskLkKAfcxweKf/FyFP/u5QflgHg5T8gBx8adieV7AOAVBDR9z8gPR8NxQCNvh1+GIAiCIKgoJQZfX1+z57jyr5c4M+v/3QU/Pz+0bt0afn5+bu2HlPbtsWWLrhgdobJC5CgH3McHin/xchT/7uUH5YB4OU/IAcfGnYlx42QmC1WVnX8EQRAEISXUU0oA1FOKIKxDOUB4MhT/hKdDOWAn9/cDuVeB2k9W9IRqsQA49zbwSJ6xvIQ9pQAAIc2ArLNGhw17R0nVU+psPJBfBnRwl1ChnjqEJ0PxT5iDekpJT2XvNuQKlJSU4NatW5U+Fo72Q0r79tiyRVeMjlBZV3ndXQFXGAuKf2l0KP7F4ypjQTkgjQ7lgDgcOg7RXfmClEA/cquN45+MsmG5ZN3nTRwUZ0cu/qoAgFAZ8HAA0NQbaG9+AQJBEAThQVBRSgQZGRlmz3lCLwUASE9Px9KlS5Genu7Wfkhp3x5btuiK0REqK0SOcsB9fKD4Fy9H8e9eflAOiJfzhBxwevxzpvtMpaenY8HBGigK66bfndwaI4uBwTdM965ixq9bRpNlZk3tjQO8RU7I6u4LpNYENlSzLDfEH/g8UpxtgiAIoupCy/cEoFm+l5aWhvDwcJMynjJtvbS0FJmZmQgNDYWXl5fb+iGlfXts2aIrRkeorBA5ygH38YHiX7wcxb97+UE5IF7OE3LAafGvWX7XciFw5g1gZIFlPzTyIzIBZYjlpX0AcGEOcPYt/XNBDYCcf/QOqTpsgNfyR/SOaZbvAUCWGthVAIxMFnZbB+L4Xf50MbUM8M1QYEYY4PMv/zyAA/IEflrp5wcMDQAmGexN9HEEMDVNmA2boOVLhCdD8U+YQ+DyPYXzPKr6VOYbcFfBy8sLUVFRle2Gw/2Q0r49tmzRFaMjVNZVXndXwBXGguJfGh2Kf/G4ylhQDkijQzkgDqeNg1cQUJoDvvm5cTXGrB/KkIrHfjWAglum7Ud2Mj4WUBMoyQCKKnb2U8j0F1TUM3gbHCK3vowvRg58F81/4DAsSFnCWwasjwE25QHvhAFNbwrT+zmW/61blFobAzwa6OCiFEEQBGEztHxPBDk5OWbPaSacufvEs5ycHOzatcviWLiDH1Lat8eWLbpidITKCpGjHHAfHyj+xctR/LuXH5QD4uU8IQecFv8Jo4CwVmaX7wnyo+VC4deL7AyEtzU6XFBYqPd8S3Vj1QArnyQ4AP39gYf8hbvTzJv//UggsL4a0MRbuK4pRgTwvwOcsDGkzH03nyQIgnAYVJQSQXFxsdlznvBmDACKiopw+fJlFBUVubUfUtq3x5YtumJ0hMoKkaMccB8fKP7Fy1H8u5cflAPi5TwhB5wX/5oZUqYrHKL88Arhfyc9bl5GbrrqU6LW/5hQ3cS0qF5+QAtvQMkBjwVad8cSffyASUHAyAD77BjCDH4DwJPmV5FUCd4Pq2wPCIIgpIN6SglA01PK0lpIT+ilQBCWoBwgPBmKf8LToRyQkJPPAmnHgVoTgT9fAR41/6UogIoeUpqeUWs44MEtwMEhQM0JwH/LgIFXgcBa/PmUQ8CeByv0E8cCQXWBy5/rLd9Dl5/Bfddf+zS7JhAkBxDWEsj4Q3u8jAE5ZcBfJcCDBi99jBy4V9O867o9pXT7VVmSs4TGhq58cW2+aBZwFcgvH6JJQcC3Iia8tfUBjluqAZb31AkMBnJfEW7XVt4PA6aZ2H+plTdwykq4EITkUE8pwhwCe0rRTCmCIAiCIAiCcBnKZ0pxnMld8QQh9wU4GbSzrczt0ucXx//WfEfd6G2dk2a+tzb4PlvG8f2lOvkA4+ycLWWOaCvNq8YFAr/Fmj5n7ut3X50h6egDNDezTHBkAPCBwT5Ha2JMy3o5afleTz/jY6MC9O+JIAiiqkBFKRGkpqaaPecJWyEDQEpKChYuXIiUlBTrwlXYDynt22PLFl0xOkJlhchRDriPDxT/4uUo/t3LD8oB8XKekAPOi3/O4LcVPx6YbywU04vfjU+DucqMf6JOwYoDms0CACSXJiArK1NPtKKuZeI1flQFjgO+jwFGNxqpPezFAYVlIhpKmeFXMwUnAPg+mr9udz8gP2mK0XnNnc+LqDg2KRiYElLx/N0w4GcTPbMe8AZWxhgXm0aJLL6tihYnb4m+fkB7X74IqEuQzHqPL4IgCFeE/nSJwNvbfKdFrvw/NWfumyg3wcfHBw0bNoSPj4914Srsh5T27bFli64YHaGyQuQoB9zHB4p/8XIU/+7lB+WAeDlPyAGnxb8yGFCGwtzue0Z+NJgCDDRY38Zx/C5+pl4P32qAfxKQOMasC+djv4NSqTQ+EdocYGrj47LyqUy1nsScXnO1u/KtiwFkcvt3rzY3i2lyEDBOZ0WIQmG8sbhmBJ8MBpZGAduqAa19gLfCgGlhwOeRfCN2U5H7Rw2+INXRB6hbfhvLRBaYZoYDY4KA9hKFzXfl138qWP+4ggNCXOCT3RgHzZYjCMJ9oZ5SAqCeUgRhHcoBwpOh+Cc8HcoBCVGXAEwFXF/F95capRKnv4ar6C91/Eng3yXAoH+BABPNnfZ04QtUAbWAK18Cw+4BZaWAzAu4vQ3ckkFa0ZxaQGD4A3xR6+4v+nZGM/66XX4GYvvh+nIOBWVAQ28A3pFAsenVBl9lAW9lyPBmSBneaDEGuL7aWCi6G3B/n8m+Us8EA19G6Rxo9QVw6jm8mgp8kgU0UwKn482vXtQlWQVUu6Z/TLfPVWEZcFsF1Cmv1en5U95TJywEyHi54vCbocCc8hlaN0uBN9KAdXnWfWmsBM6XmD6n8WlVDjBWpwXY88FAmlqYfQ1PBAFLJdxMMlgGDPAHVudKZ9PZHIwDduQDczKtyxLlUE8pwhzUU0p6SktLK9uFSqe0tBT379+v9LFwtB9S2rfHli26YnSEyrrK6+4KuMJYUPxLo0PxLx5XGQvKAWl0KAfE4bRxkCsBhR8Q0xtov0K8H7rL9swsAdTSaSPQ8lPozsgqVQP379+HymAppvKBeXyfKr8aFgzydhK9ygtSMFjSOVr/u/BnQoCMZnXwRlw8XxwzoChqMMqY8Nl3qqAmAIAPI4BfqwP74oQVpITgK6soSAFAHTMTwD7S6T+lO2so3gtYW836dcYGAkMF7EBoy4e4p4OB/xKBhZHAnHDgqyhggsidCI/GmT/3a3WrEefytPQGZkdYlyMIQjqoKCWC9PR0s+c8oZcCAKSlpWHx4sVIS0tzaz+ktG+PLVt0xegIlRUiRzngPj5Q/IuXo/h3Lz8oB8TLeUIOOD3+AxKBxNHi/VCG6DyxUiLwiSxfKght9UZjP1XeAofj+N5FX/b7Et6NpvL2LDZfN16AUVBoads6y0s+//33CkpLzc8UM9TMyspCekkYvDh+SV6olQbplmxZ45fqfBN0Q14OBb6O4s83Nt/5wyzxCn273X1Nyw0zuLah//4c8ILBEr+vooAkL+CFEODNMH5XwqXRwK1E4f41NLGqU8MD3sDDAgpqrsqROMBPgk/Hk0UW+gjC06HlewLQLN9LTU1FRITp0rmnTFsvKSlBamoqIiMjTfcacBM/pLRvjy1bdMXoCJUVIkc54D4+UPyLl6P4dy8/KAfEy3lCDlTJ+D/xFHD1G/PL9zT89T5wdTEw9K6+/Y3eQPfdQExPXu7gMCC4AaAuBi7OB7r+CngFAJEd+eV7D/4ExA3kHwNQtfoOxbd2wf/+Bl5/NAO21QNyL1dcO6g+P/sqbjBw6nk9twoj+sFbXgLZ/T0ml+89Gwx8obN8r7TbQZSenwe/1G38AbkPoLZcFNNwXwXEWFi+B4Av4JWUz0RLGgdcW877Vb58KTQEyPjC8nVM3QfAF6OCZMCxGoC/DPg5H7hRCvTwA+rf4GXqeQEXE03beiGYn2HV/Q7/fHEUkFMGvK5TuzS6Hx0WZAKvCKi3ZtUEQv4zfY7V4Xvq97oD/FZo3dascOAd89/5Ox3d8TH3Ogmhsu+rtx+wq8CJF6Tle4Q5aPme9FTmGxBXQalUIjY2ttLHwtF+SGnfHlu26IrRESrrKq+7K+AKY0HxL40Oxb94XGUsKAek0aEcEIerjIMoP2o+Yb99Tme6UacNQJP3K54H1+cLUlr0v+tW1J0I/67Lgc6bKg4OvGR80W47gTrPGh32feAdyJq8C9SaiHbWGoXXexleIXXh5+tXUUQT8d27oJlSXiEVj2tPFmxbl4lmPpf9lwici+cLUgDQ3x94NgSop+SbsY8IALab2CFQl25+fHP5b6LMX8ccD5tpUN7aYLaXtRHlOODFEGHXrC7ndz6sioxy0RlhjwQA26zECUG4GlSUEkFurvmufZoJZ+4+8Sw3Nxf79++3OBbu4IeU9u2xZYuuGB2hskLkKAfcxweKf/FyFP/u5QflgHg5T8iBKhn/EW3tsx/aAvDR2W5OpqjYaU+orUPHkBvSy/hkg9cqHnOcyeZP+y8UI9f3AQDADzHACw376S1teylER7jlp8hV+SElJQUqlWaHQIN4DDceD3VQMwD8UjZd3jFVLNHz0bbuSfMjgOlh/P3oIjc9BACA50KAH6oBtS3UITW6IwOBScH8bny9/CrOPx1sWk9DrALoYWKp4GQrehqqWwiL0trA/ligoJbxucruQaXx27D4Zo1OZpZVAsBAf/Pnng8G/Dh+V0ZHYRjLBOHqUFFKBIWF5uehesKbMQAoKCjAn3/+iYICZ84Jdb4fUtq3x5YtumJ0hMoKkaMccB8fKP7Fy1H8u5cflAPi5TwhBzwy/vv+AQQ3NBZKGmt8LOFRoyWCFn1NGMn/VpiZogPo6cZ5AQvbTcSaGGD7qO04NvEY6hoUaQoKCpCRmQl1WXlRysvAduN3+N8DK9ZmZTZaDHiHI8SgqNLNVNEhdrDRId0ZSd4CigHBcmBGODDC/G1LRnNvYEU0X2D7SEARZFcscM+437wewTIgUWF8XHd2lOEwKDigix/fLN7VOBMPfB8N/GxhdtGCCH7Zoi6WXuqm3sDGGOCNUONzi6KA7Fp8Q3uCIHiop5QAND2lLK2F9IReCgRhCcoBwpOh+Cc8HcoBF2YNBwz6DwiwUG3Q6Sklyu7gG4B/vOlzgP5ue5nngNCmFedHM/73iCxAWT4d59DDwK2N/GPfWGBoeSwdfxL4dwm/W+DhERV21+iUBjTH8m8BrBT4qRbQeDpw/j3+eOJYoM3XwAY/YFgK8GMUEFALGHQV2BQJFKchQw28kgo0UgKvm5oppfEZAHr9DuzugGw1EP8ikJMFxIbJcHtReSP4PqeAXR2BsmKzQ6jbt8hSvych+i+FAAsidU4G1Abyroo3amB3SRQwMaXiOasDJKuAr7OBGRkVx+eE883TAeBqCVCnvA9WOx/gqM6Gjbq2l0YBN1TAezp2GiiBWl78DoE1r5v38ftoYPx9/WOD/YGt+YJuUe9+TKHr54II4KVQ/WPLo/meXS+k6ut18gEO6dzv8ynAF9nG18tWm+/NJZQxgcBqgwmTjwQA66vZ1xNLNCJ7Sq2LAR5NdrBPhGtAPaUIgiAIgiAIgrDeCcjG76iL7luX0aApSBmi1Fkfprt+bahOcVP7HboZP5t/WPHYvwY/Yyu4IdB0BuCfwB+v8xSgMJj+ZLCTYJgcWB5jpiClFWql9zRYDgRq3JaVT92q8ywQ1hKoMdSCIWBHdWBMvX74s4ZFMbM01ZkpVkN39lKbr4Gkx2wzCuDj8n2dGimB+iaWDMYojGcB6Y5kbSXfaP3xQGC9wTJFa/ydwPdESvKyLDcuCHjLwIe3RPanWhZtXUaXHdUBOfiZYo8GAs8Fw+prZ243v2A58HKIuOsbsiqGLxpKQWMntsobGQisERkXhHtDRSkRePpWyACQmpqKr776CqmpqdaFq7AfUtq3x5YtumJ0hMoKkaMccB8fKP7Fy1H8u5cflAPi5TwhB9w//jnx9kst97Wyaku3AToAtFyoLeyY1JWZ+OQs9wFqDDfW6X+hXKC8YmRi98Gc3Jxy+yYWY0U9qPc0u/nq8kflhTGTDaDKz3mVzwioNZFvFB/WyuQyyD7+wKo+H+IBa03czbChGhCnAFp5872KtNSeDMSPtM0ogCkhwOl44EQN88vUfAw+RRqWC58K5gt88VaKS/a0P3o7jJ8tNCIAKKzFF4yEwuoA4wU2g9e81H38gdtJwMUEvm8TxwEP+PDjbwvPCOzXpeFgnPGxCUH6y0Y72BhLzm5DVddKXNiCqrb0NgnnQEUpEXh5mc8ervyvFWeuQ6GboFQqkZiY6BI7zzjSDynt22PLFl0xOkJlhchRDriPDxT/4uUo/t3LD8oB8XKekANuHf+BdYDIzpLbt2qrxjD9574xgF+ceV2lwdSY4MbAgEtAYG3L12v0NuBbzejyCoXcvG9J4/Wfx/Y3LacHB0R3A5qW71AY0xOIHQR4RwJ9z5rXAfjCVXQPAdeooJ63AtcT+eKRt+GnuuD6/O8Rmfzv7nsAmbBKAMfx/ajMzfKRCnt7yPjJ+NlCP1QDfLxDnFJYiVGYGGtDYgdpH47X6R21KFJfzNDfTyPMF2suxAOdTfQ54zggOQkY5g+MC+Sb4lcF4k30JbPEYAvN4zXIrQQABzMbGBCVDvWUEgD1lCII61AOEJ4MxT/h6VAOuDBCekrZarf7b0BMd9PnAP2eUobnzZ37qRaQ95/++WMTgf+WAsPTgfwbQNgDwv3cmgQkjgGazeKfJ+8BoroB6xSAXw1gyE3gx2igKEVfT7d/lO69ZJ0HfmkC9D4G7GoHAIh7HriTCcRG+uD2+m5At18q9K5+A5SpgLrP6tvT0O888Etj3v7hR4CbPwCRnYDUw0DTWcC5dypkRxYB68unwowq48fk+JPGNnV7bmnuYzQDTj4HXPmyQq7mE7wNCxwrBNrrrqTU6cGk27doZriwD/zLsoEnUoAghRfuJpTi40z93lS69t9PBz7KBGaF8wWsV9NMywEAEkbh8pW1qHfDug8m9Q3QvbeFkcALIeZlW98ETpW3DuvoAxxuPxi4vVV7/rcC4K6KX/LnpRMCV0qAujr+sjrA1FRgfpbxNfJr8UW4menAl9nAJ5HAKAvN0s31lIqSA3W8gA6+wLzMiuNNlcC5En3ZIBk/E6unLzDwnvlrie0pxeoAqSog6pp1WQ1D/IEtBv3CPgoH3kjXt2upl9atRL4PWKObwq9L2An1lJIelUpV2S5UOiqVChkZGZU+Fo72Q0r79tiyRVeMjlBZV3ndXQFXGAuKf2l0KP7F4ypjQTkgjQ7lgDhcZRxcKv6tzIyTLP4blH/S5eQWC1Kmr2fgY0xPQMYv9FKXqa36xgJqQ+1fu0IupLEFaZl+jyyAX0pX91nzKrpjGN4G8DLQH3Kbb/oe/wgg9waC6uvomRh/3WKe3E//XOsv9J+bu5fIThXuxRnvOKhBd4fCJgIn1o0PAg7EARc6DIa/lU+i08KB7IeewiuhwBQTO9npwclQVwlEmlnD19SBExyNXoXQFnpPe/gBY4P0C1KA9Zk9pq7xbjhwN8lyQcoS92sCh2uY2V1Sh1M1gNSafPP8AQFAbQGT7HxlwMpoYJWZXl0NlcDX5T2wTP3p2FkdmC1gl0hdexpM9cTSnYwVLuN38CRcEypKiYB6SvFr9RctWuQS/RQc6YeU9u2xZYuuGB2hskLkKAfcxweKf/FyFP/u5QflgHg5T8iBKhv/XkHGxQmp7CvNTI3xjgCq95Mu/k30Y7KqI4DLaUFWZTOT3sasM4/py7VdAgQ3MJItkwcBbS3PPLJIeFugzjMVzzk54BcLcDIgsG7FMS1WFryMtLAVXWAdoN7LwIM/lds187HQxLJHDSuigd5+wDN1e2CQgOVVAF+MeNAXiPMN4J+bEuqxT/tQET/MlIQxAbUAAPtijU9NDrKvqbjoZYFNpgkSS1Lwuw0C/GwwodcSskq6l4mU1z1mbalUSx++b5aGD00Uix4L1JcBgMeCgDEmJsRUlwMXEoDJ5TVXw1uYHwH09gf+Fwb8HgcMD6g4p/tYQzU5L3+yBjA9DPilurGMbtHKjVeWA+CLblWZKu6+cwkNNV+il8lker/dlbCwMIwbNw5hYZW7INfRfkhp3x5btuiK0REqK0SOcsB9fKD4Fy9H8e9eflAOiJfzhByosvH/cDbgK3ybMVH2vc1MaxieCnT92fYxC6hlWtfKJ0uTOpEdtT2ndFFHP4T4+PhyWfN2AwMCjW3WeqKimbkOMrnceIc/q+hcO6oz0HwOf6x6P6DeSzoyEndc6X+BH09tMUo3d8uvNfi6+SFvvwpxCf2wMxb48tFdpuUSDXYA1CuoWXgtOdMNh14PBQKUAcY7ztUYoZ311ajeGBhOiPk62rh4YheJYyUxw3HA8Rp8EcZwJ0EjWZG2dScOJSj4Yt0W8/VFqwwM4AtBGob4AytjgGCJ/uTrzoRr7wtsrAbMjQAmBgFfRRrLny9vNt/KB5gRDtQwMQtqhE4xS7MRQLCYbvhm2GTHODqSpVFAYBX9F1xF3a4cvL1t3FrBjfD29kZiYmKlj4Wj/ZDSvj22bNEVoyNU1lVed1fAFcaC4l8aHYp/8bjKWFAOSKNDOSAOVxkHj4j/hJHSxX+HlUDN8Uaycrkc/n6+Vu17eSkr53X3jqwocHG6RSkJqisPzKtoei4vv69WnxvL+SeYt8HJeF/iBpufZWXo6yidpZJmdWBcfCzfCfGj7jOR9XomnjDctS5pbMW1mr6PVTHGJgfozOT6OML8pQXRYYWdBioIlPFFGM0tmysCGi79M0v5LpO6drw4oKuf5cb11swrOeCfBOBcPJBbC9hsYmaSLv8zKLJF2FAMei0U+C4aiFTo67f1AcIE2BsUAHwSAUwL4wuaABBrocF6gMAxNjULzRqGhbXrifyMQXtIMriXCcFAZk3r/dKEILTYKMW1ACpKiSIvL8/sOU2/eHfvG5+Xl4cjR45YHAt38ENK+/bYskVXjI5QWSFylAPu4wPFv3g5in/38oNyQLycJ+QAxb+EtprNMa/kVwNQhjk8/lVlQHp6Rrls+afRuKFAy0UVQkENUMACBNu0Kf5NFWfCWhosWeQAje2AJCC0ufjr6NlvXfE4uge/Q1+dpyqONZutc2Urn9Q1fml2DjTcUVGDwqAJkowvhj0XAihl/KfrDdpikplrJo6GXGaiGhE3SE+nqU79sHN5X/hgOXAxAdhaDXip0UDT9nVYWT65MIADHte4HtPLpGxvnSJFd83j+If1ZMp8a+gr1TLRoN4EzwcDe2KF959SK4TNSkzQKWgYFmrizBRuguVAE28gQCdkmU45QdfF2RH8eAfJAG8OJguFYpgdDoTJAH8OWC5w4icH4JVQ4L1wvt+VhsyawLOGhU0AP5tY+imE0trAMis+PR2i/zxBgv5WnUwUtcT0KbPELBG9vaRA5GaMnk1+vvl12Zp/Qj4+PigqKnKWS04nMzMTf/75J+Lj46FQVF74ONoPKe3bY8sWXTE6QmWFyMXGxsLLywtRUVGUA3agUCggl8stbquel5eHw4cPo1atWggIMLHQ3k6ktG+PLVt0xegIlRUi5wkfyAHHx56r+EE5IF7OE3KA4l9CW43eNK/UbRfAyZGXkmpC1/InLjG+p9eZh3Xr1mNk+zxoJb2CgJAmFUWbAX8jJzkZhw8vF2TTavz71QAKbvGPA+sCuZf5e2r+kb5cy08NFA2W7/nF879rjOCbaoc2A9ZamDpibqdDgJ9SowzhH4e3AZrO1M5Mso7O69FjD7/LHyvvK9d4OpCvs73aIzkVj70jAZ9oIOFRhN9Yh38m7sedHZ3QqbyAhLBWQI3hwK1NxtexdB/lsvWVwOeRwImQnvigdI9WpJ6S/0FAIlDnWf2dCA0YEwiE1X8bjW98gCArs3LeDgP+K+Vd0M4Q4vSrDmWM058NIhPWeX2R4VJFK6Q1XYfog/rLVY1efWUYGiED74YBBwuBBbVbYMLlP7WnhTQ1N2tbh3pK4HYSUMKAcIMxFFs7iVQAt5IAFYPV18MaIXLgiyjgrTCgxjX+Hn6uzs9c2lUd2F4ALMwyrft7nPExBcc38P8sCzhTvgtjNTkwJAA4XAistbMgZy/HawBtb4nTMRziI3FARwdurMsxd373IBE5OTkIDg62uJVhjRo10Lt3bwwbNgw1a9Z0socEUfncvn0barUacrkccXEm/mITgpHL5YiKikJwcLDF4hThOsTFxeHOnTuIjY3F7dsO/K9NEC4K5YAHsobjd4bzs3F6gS3XezgH8LJx2zFL5F0DDgziZyi1/16cTyFNEPfYX7iTCevxf+FD4Oz/+MejGa8/4BIQVNfydX6qxe++13wO7ycnAx7coi+zIQBQ5VsuQGl8HpYC+Jho1GMoN5rh1KHn0HpvRfGGvasC1imADmuAgpsAOKDh6/zJvP+AC3OAf78DHpgPZJ4BMk4CORcr/CofM9R+Cqj7nP71NIxmwIXZwNm3gW47eZsp+4GBV/nlaWsNZpeNZsCtH4FDw4FhqcCP5ffW9yywo5nxvY0qL5wZ2jFk8HVga2LF85heQPLuitfOHKMZcGQMcGNNxbHYQcCdnyqet/gEyDoH/Pe9zvVu4I0lCZibWXGI1QFfhCy4adlX3Wuv4TDoLrCtfD5FLf9QXK2uY1QZBpRkVDyv9woeOLgKZ3L4Zv5dAwOwL8bEzMDmHwFn3tA7FP4fh4y5DMgF/IKBfPN1Pj0y1ED4fxXPpVoGxl2peHw2Xn/WnCkulQDpaqC9T0Vdc2c+0OeusWxWTX62WAkDvK/yx+QAVOW+b8oFRiTzj2eF88VKc76xOkCX23xREADiFcBNK5uU1vcCLpZWPB8bCKzM5R+Hy4C0WhXnlmUDz6fyjeU/jdS/tjWCZcCdJCDg34pjlxOAujcM7gdAWR1j22+FArsLgJPFAIoAfAiLdRSAZkpJxogRI9C/f3+Eh4cjMTGRPkgSHkdxcTFUKhUUCgWSkpIq250qCWMMKpUKOTk5uHfvHgoLC1Gtmot2UyQIgiAIdyEgCfBPtK3g9dBJAD5WxbR4h/OFEy2C9luD1UbntZ8G7m4X5oO1gpQltMvnGNBQv0DB9zMyvB8T99f7mHb5nnnK9XwM1kUZfsbqoCn8aOQjgF5HgN0d9eUeOgkU3QcODDC2MTwN2KTTaCqsJZDxh7HvNSfwRSkA6PIzcKC/sdtxg03fTqcfgPU69+wVDLRbxs9OO/ks4BNl0AheBNX6Avd2CJc39TnVLxYoL0oxZSjAFQJMrS/jnyj8GnFDgNtbhMtLRAMl8E8J/9hS/ygN9YRNWANQ0SRdyQGro4Ef8vh+VRqGBfC7COaWAa+GGOu38wGOFQGTTNRmIuR8r6olOcbnNLwaCkxKqXgerRMuiQaz2yYEA2OD+FlcYjgYB9TzAvxN1Gube1fMBAOAYzWMZQD+NfggAshUAz+mA0IWqlJRSgTp6ekmK3xqtRo9e/ZESEgIZDIZfH3t7FrmwpSWliIrKwshISHw8pJgMayL+iGlfXts2aIrRkeorBA5TSGW4zj4+Ih4c1bFcEYOBAYGwtvbG2lpaYiKioJcrv8mJS0tDVu3bsXgwYMREWFvt05jpLRvjy1bdMXoCJUVIldWVqb3211xdOy5ih+UA+LlPCEHKP5NYGaXNJtsSaBrV/x3Wm+yKCDGpqD4Z8yG/el1lsU5GcMv2pcsWYKJQj7qxPbnZ0qZuleFiE7Roc34YlfKflgszEW0q3jsWw2I7qZ/7fBWQNoJfZ2O64EjI412kSxVqeAFICMjA3qTXRJH8T+A+ddQM4PtgbnA3Z+B0mwAQFpmDvSiR14+iDG9gaB6QEmmyd0sS5gP5GVlRsup9KjeR1uUSktLg2GUGi+M0ve9sLBAv3dYQE2g8UTgrxl6cjn5pTA/18UQy0VU3b5U2v5W9V8FLs4XfAVTbK8OzM7gCzyGSwb1kPsAatvbjYwO4n904Tj9XQQN2VEd+L0I6FH+0r8QXDFT6pUQ4I9is6q8fYPn74QB6/OAvDJgtYklgmILUgDQ2UJub60GJFyveN7GzMe9keW1/VA58HCAsKIUNToXgeEHQw2lpaWVWqBxJhzHwcvLq9JngjnaDynt22PLFl0xOkJlXeV1dwWcNRb+/v5gjKG0tNTonEKhQGRkpMP6uklp3x5btuiK0REqK0ROtyjrzjg69lzFD8oB8XKekAMU/wY8nAv4Wu7uK338W44vu+Jf4VexE51Ym+X9gazGv6nzQnJGr7jSlv9xEpzBjKbISM0sKzN+13sB6HmQL7QAgNLCp3ShtP3WuoxvNWBIeeOcgCSgx96KcwmjTeskPFLxuOuv/O/Wi8GVF1vlll5zPzPTRLTnY4GWC1HmzeeIQqEAWn5WcT6+/NqBtYDEsfxjuY/RqN7x6lZxTG79S1+FQoF9vguNX53wNjpP9AtGnEy/JMDAgEZv80+q9dEelxl+Fpb7WJu/p49XRXdxJccXaZ4pb+QOQH85p43U9OJ37BtpbdKjv7hVHbq7N9pKiBzo5w94lw/38ADguyhgcRQw2oZJmsFy4L9EfqmdmBlf5rBWGIr3AtbFANXl5huhn4kXsVOkDjRTSgQhISFmz7nzmzBdFAqFxXFwFz+ktG+PLVt0xegIlXWV190VcNZYWPqbEhISgkGDBjns2lLat8eWLbpidITKCpHzhA/kgONjz1X8oBwQL+cJOUDxb4CX9SbonhL//HK4O+Ljf8BFIKCWdbkWCwD/8iJI47fFXcOQh06Kk08YCeAT7dNBgwYBa8yLI6RJxePQpnzhst5Lwq41mgFFmqWNOuUOTga0+x7w0+lZ2ut3YHcHfX0/O3qaVn+I/x3TAwplCJB7BcHBIeblQxrzs5ySd/HPA+sAuQbNdWo+Dtm9ncCNNfx7x3SdyoOpXQRNkJSUCNwrt9vlZ2BvD4vyISEh6Db0BSz4+MWKg3If4KHjZvtg+Xh7G8du+Y6I6LgW2MgXFo0a/Sc9Dvy3BoCJ/lO1nwZub9U/1mUbsKeiiX4ff/5Hi68D+tN5RwLFqcbHm83ie5CZwHCG0c/VgS4OWAjFccBEE7sAmqOvP3AuHlieAzxePktLwYmfEdXXj5+x9WM14P0M4ED5bC1zuy7qMjLQcsHP1mk6NFNKBGq12rqQm8MYg1qtrvTddRzth5T27bFli64YHaGyrvK6uwKuMBZqtRq5ubkO+5skpX17bNmiK0ZHqKyjx7sq4SpjQTkgjQ7lgDhcZRwo/qXRcYn4D6onbKZUbD/9Yo89hLcSJc7J9D9m5ubmClduMBV4YB4Q/7B1Wc0sGt1+VwqdikXNcdqZQur+V5Dr09i6Te1sJhHv2WReUMeNQG7CS1BzvhUzvqz1U0ocY/JwWfn7RbVaXV7oMfF6+0QBAfyOeYZni5SJUPc4yD8Je4D/HVAL6H1cR4qrGJvyeNWFaV7DEBNN3wGUGSwN1XuPq9mZEYBas4iwwWvAw9lAq88BmZkyRET7iscdVvO/ozqbltXeho09tQZeASI6GB+v/ypQc7zx8UZvATWGGR8vP9bFF0gsL9B8N/A79PM33WNJjwfmiXJZLB+FA9UVQBNv4ONIMw3ca00UZOuXWCC1JtDdDwiToBrkoxO0ETa+hFSUEkFqqokqq4dRWlqK+/fvm1xS5E5+SGnfHlu26IrRESrrKq+7K+AKY5GSkoJPPvkEKSkp1oUr2b49tmzRFaMjVFaInCf00wEcH3uu4gflgHg5T8gBin/n2nLL+I8bCrT5xqpvtuGYL8uaRjdFQnACAOB/rf+HTz75xIqGjTycZXCAq+i7ZEBKgb8wP5QhfG8poTySB/gnVLzmWSXls9lqVyy3M0RTrJJ5A4P+NTpdXMz3LUpJSQHiRwJDTOyiV+tJfsmjCT7aUogUw+bXXsFARBv9Y+WFJI3vJkudZgqgBQWF+j2lzJDCNQXA8bv3eQUBMi98O7BiaWWAXLe0oBOPCaOAfuf0jVUfoOsY0Oiditlj9V+17Ej8I0B4O37J5mgGBNYGeh8xLVvtIeNjMjNr3cqLYorQZvgrAfhrzCZMbGGm0NPzgGUfTeElvCOXIZ1MpEKpn8GWhbUmC3eFA+AdobcMb4nl1dhm+T0O6O4LfBIBRNm4Do+KUiLw9OVLCxcuhLe3N3r16uUS/RQUCgXmzp2Lrl27IiYmBgEBAWjSpAk++ugjFBWZb1zXokULvPQSP414/Pjx4DhO++Pt7Y169eph1qxZ8PPz097njBkzwHEc0tLStHYMdf39/ZGYmIhBgwZh2bJlKC4u1voaFhYmaMy+//57cByHU6dOidbVHRuhOpZk16xZgwULFpiU4zgOM2bMEOyTIygtLcXXX3+N1q1bIywsDH5+fkhISMDgwYOxefNmrdz169f1XieZTIbw8HD069cPR48eFX3d9evXo1+/fggKCkJERARGjx6NW7duac9v3boVHMdh8eLFZm3s3r0bHMfZ/MYuNDQUo0aNQmioBH0aHGzfHlu26IrRESorRM4Tli4Bjo89V/GDckC8nCfkAMW/c22Z1LUSX06P/xojAE4hPP6D6gLxppcMSYP0+SeXyXFy0kn89vhveLvr2xg1qrzRt61FsNH2F880rwmPiHsObgi0X6V/7JH8isflM7NMv+Ym/A5vDdSeBHhH8OcDahqJKJVKrU3IlYBvdWM7HFdRkDHo4aX1Y8idiv5cuo3i++jvEqjxXR3d2/g62uvpT2fx8dYv0jAT95oZNRahYeH8MkWdYuHQBkO1DcW9vEL0rOjdn+FMP91c6fYr34tMQ9Lj/G/d2WecTtmi03qg5uOmZ0eZu4Yu1lY7eAUiQAY0rm1iNpXWtsEMMSErKPziLZ5ur9My7NEAYGH5pMEkBdDWB0bLU436XctEfj7n5GjoDfxRg991r4fYJYohTQGfaDzgA/wWB7xix78MKkqJwJ13FBPC0qVLAQB///03Tp4UuR5dYmQyGVJSUvDZZ5+hRYsW+Oabb/DTTz9hxIgRmDFjBgYMGGByedW1a9dw+vRpDB9e8YbA19cXR48exdGjR7Flyxa0bdsWM2fOxFNPPQWZzHKK6Opu374d77//Pvz9/TFp0iS0bNkSt2/fhkwmg4+Pj1Vb5u5TrK4YHUuyukUpQ7mjR4/iySeF7KXgOMaOHYsXXngB3bp1w6pVq7Bt2za88847UCgU2Llzp5H8Cy+8gKNHj+LQoUOYM2cOzp49i27duuH06dOCr7lo0SI8/vjjaN26NbZu3YqPPvoI+/fvR+fOnZGZmQkA6N+/P2JiYrT5Yoply5bBy8sLY8eOFX/j4P8W1a1b12F/k6S0b48tW3TF6AiVFSLnCR/IAcfHnqv4QTkgXs4TcoDi37m2qkT8d/4BkMndPv4j/SPRPak7/P38Ubdu3cp2R/uaiMYrAEgyWGZnYidAo9fc3OvabBa/FAyAuSKdXCYHoroKjmOuwRS951o//HSKWV226WqY9H16jw+0xxZ0m1YhmzQO6HtGT0ehUFiO3dEMoT1X8H70OQnUfVZ7SsbJKpZvKXwqZotpPofpNnfX4BsLBDWoeB7eml/CqL0lE59hRmTxs6005+o8A3TeqC/TQufLXs7MUklLCO19Zgq/GkA3488fAIDY8p50Vv4+PBwATAkBRgYAi6KA5x+/jpM1+Obhcg4wvB+Z0L83QfXxTRTgzwFvGhaOlGFo4cPvuif6z1fcEGBYskgl01BRSgT5+fnWhdyUU6dO4ezZs+jXrx8A4LvvvhOkp1artTOGpEStViMqKgr//vsvPvnkEwwaNAjdu3fH9OnTMXPmTPz22284csR4GufGjRsRFRWFTp06aY/JZDK0a9cO7dq1Q9++fbFixQp06tQJGzZswM2bJqbY6qCr261bNzz++ONYu3YtfvnlF1y+fBkjRoyAWq1Gfn6+zf0UxOqK0REqayjXrl07xMXZ0UzSTq5du4b169fjf//7H+bOnYt+/fqhR48emDRpEjZt2oQvv/zSSCc+Ph7t2rVDx44dMXnyZKxcuRLFxcUmZU1RXFyMd999FwMGDMCCBQvQs2dPTJw4EZs2bcKNGzfw8ccfA+D/sT/++OM4efIkzp8/b2QnKysLmzdvxqBBg3R2sBFHfn4+Tpw44bC/SVLat8eWLbpidITKCpHTFMHdve+ao2PPVfygHBAv5wk5QPHvXFsU/66HZix4HFyAC2qgt/ObeT+kR3zsmR8LlVqFnNwcwba8dXaAlHNy037o9HkCwM9CSnoM6POH1vcGwQ2wb9w+bK8ODKzVk5drNoefkeRbTU+9tLQUUf4VRaEIvwi983rjUb5szxSMmZgtVu9F/ed1ngO6bgcCEnXux7BSYiKPvAL5+xxl5fMNJwOq9wP8DWYlCdmxMrKj6d0ifQSsa5MpgGo6s9N0l41qfCnf1VF3F0It/f8GxwHzI4F1Dz6LCDnABSSglQ8QpJkQZXAPhU3m8w/afF1+xEwcdlyHScFAdi1gju5LW2siJFn26xNjtwkqSolAVGM/N2PJkiUAgFmzZqFVq1ZYv349CgoK9GQ0y6Tmzp2LWbNmISkpCd7e3ti3b592+du5c+fw8MMPIzg4GGFhYZgyZQpUKhUuXbqEPn36IDAwEImJiZg7d65Ff9RqNVQqlclvHdq04ddY6y6p0rBp0yYMHTrU6iwijY1r165ZlDNH7969MWnSJBw/fhz79+9Hdna2zUWpCRMmIDg4GFevXkW/fv0QEBCAGjVq4NVXXzUq+L333nto37494uLiEBoaihYtWmDJkiUm3yStWbMGHTt2RFRUFIKDg9G8eXPt69y1a1f8/PPPuHHjBjiOg0KhQEBAgPYedJfvnT17FhzH6S2Z07Bjxw5wHIeffvpJe+zKlSsYPXo0oqKi4O3tjQYNGuCLL74QNS7p6ekAgGrVqpk8L2SWWLt27QAAN27cEHTN8+fPIzs7Gw899JDe69m+fXuEhYVh06ZNWtmJE/n158uWLTOys3btWhQVFeGJJ54QdF1T5OTkYNeuXcjJMWwyIA1S2rfHli26YnSEygqR85QPJI6OPVfxg3JAvJwn5ADFv3NtGem2XQrILM828ej4l/sCChv2lTeHiWV2mrFwCjWGAB1Wmjyl54eg6R3iXhfRcdv8I74QYoLS0lJkZGQKtvVSu5cQpOCLPqv6rjL2o/tuY6XoLkDb74CwFnq+d03siv7+OjP4qj8EhLU0Ui8pKcGX/b5EoMIbQTJgYZ+FeueFjgcrEzDOrT8HQpsLa2reQmybC47/G9H15wr7muWQDx3T9ZT/pQzjf9d5FhZp/iEAoDTAQnP9mJ76zxu8XvG45Wd8sUwzk0q3gT8A1Jqk30hft+dVYN3yIhYHNNDvtZWlbM4/qG2ll1T5cku5JlUGXOR/N/vAtLxoDF739qbz1rIJwirZ2dkMAMvOzjZ5vrCwkO3atYudPHmSnTlzxsneOZ6CggIWHBzMWrduzRhj7LvvvmMA2Pfff68nd+3aNQaAxcbGsm7durGNGzeyXbt2sWvXrrHp06czAKxevXps5syZbPfu3ez1119nANjzzz/P6tevzxYuXMh2797NJkyYwACwTZs22eSv5lpnz57VO37r1i3GcRzbtWuX9ti4ceOYv7+/kY2hQ4cyAOzy5ct6NlNTU63qavj1118ZADZz5kzBvi9btowBYCdPntS7jlKpZA0aNGAff/wx27NnD5s2bRrjOI699957evrjx49nS5YsYbt372a7d+9mM2fOZL6+vkZy7777LgPAhg0bxn744Qe2a9cu9sknn7B3332XMcbYhQsXWMeOHVlMTAw7evSo9kcDADZ9+nTt8wceeIA1b97cKAceeeQRFhUVxUpLS7V2g4ODWZMmTdiKFSvYrl272KuvvspkMhmbMWOG4HHKy8tjISEhLCYmhn399dfs2rVrZmU1cTlv3jy942fPnmUA2OjRowVd8/fff2cA2NKlS43OVatWjclkMlZYWKg91qlTJxYVFcVKSkr0ZFu3bs1iY2OZSqWyeL3CwkL2999/69kkXJfY2Fjt3z+C8EQoBwhPxiXiX1XIWHGWc661GoxdW+Oca1nz4/o6yzJ7ujN2+FH7rvNTHcb+nGqb7uHRjO3uWvFcreL9tkD6wcfYlS3NrNteDcYyTluXybthfPzXNvy5zfGMnXqJMcZYzl8fsdy1fvq6AogNk5XHf3X+wMWFjKlLLOurihhbzRnL/DmVsfw7FcdXQ7Af7J8FjK3z5R/v6sjYX7MYSz1mbOvstAqd1eCvqZH5IZSxXZ30r3lvd3msra+wUXC34rGurOb5nR2mfd9Wn7Efq/PH18grzpcWVMiX5lXIZ/7F2Ln3+LFKPVohs86n4nqa3xmnGUvez9jtbfq+ZV8y9lX3fjXHf26qJ4cZFT+Xl+no/9pWfxw3RevbT96nfZz9LSzWUTRUbrdqokqwceNGZGdna2d/jBw5Ei+//DKWLFmCcePGGcn7+Phg586d8PIynto5efJkTJnCr5Xu2bMndu3ahc8//xw//vgjhg4dCoCfpbN9+3asXr0aw4ZZaDBngnPnzmHu3LkYOnQomjZtqndu06ZNCAkJQbduxrtwqFQqAPzSqjVr1mDLli1o3bo16tSpYyQrlIQEfqeSu3fv2mxDQ0lJCd577z08/DC/pW6PHj1w6tQprFmzBtOmTdPK6c7MKSsrQ9euXcEYw2effYZ3330XHMfh2rVrmD17NsaMGYNVqyqaPfbq1Uv7uGHDhggJCYG3t7d2RpElJkyYgBdffBE3btxA7dr8lraZmZnYunUrnn/+eW2D9ClTpiAwMBCHDx9GUFCQ9rrFxcX48MMP8eKLLwpqTurv74/Vq1dj3LhxeOqppwAA4eHh6N69O8aOHYuBAwca6ZSVlUGlUkGtVuPChQt4+umnAQBjxpjewteQevXqQSaT4ciRI5gwYYL2+L///ot79+5p71kze2vixImYMGECtm/fro3tCxcu4OTJk3j77beNmxMSBEEQBEHYityH//EkOJnZpWQSX8gJ16ggTOmNMB9v64JS0GAqv3sdgEAvH0Amwb1qmpZbamov9+aXEUZ31z/+wDygrFR/ppFQ9Jqn7+Zjo+g+UEPE58m4IfxMpdTDFcdielbcy5GRQNNZ+ksg6+v0AWv+IfDPPGhnD3Vcp28/fiTwb/mOhe2+B46a6C+rO5MqpDGQdkz//CN5FTPAwst3YQxrzTfcD20O3NnOH2v0FnBhNvRmMmlmh2nRGTPd3S4D6wK4rH0aqvuxpcMqYJuFz8h+4lu80PI9EWRkZNimeOIZ4MCgyv058YzN971kyRL4+vri0UcfhUqlQlFREYYPH45Dhw7hypUrRvKDBg0yWZACgAEDBug9b9CgATiOQ9++fbXHFAoFateubXFZlUqlQlpamraYBPDLBwcMGIAaNWqY7Hm1adMmDB482Ginufz8fHh5ecHLywuRkZF4+eWX0adPHyxZskTPvlhY+RTusrIyI1+FohlvjuOMCi1NmzY1GqO9e/eiR48eCAoKglwuh5eXF6ZNm4b09HTtVsa7d++GWq3Gc889Z3IczflhSW7MmDFQKpXYvn279tjatWtRXFysLeAUFRXht99+w9ChQ+Hn5weVSqX96devH4qKinDs2DGT9k3Rr18/3Lx5E5s3b8bUqVPRqFEjbNmyBYMGDcLzzz9vJP/GG2/Ay8sLPj4+aNmyJW7evImvv/5a2yfNGmFhYRgzZgxWrFiB+fPnIyUlBefOncOYMWO0BSbdZYOPPPIIAgMD9RqeL126FBzH6RW1bCE9PR0rVqzQLmOUGint22PLFl0xOkJlhcgJ3g68iuPo2HMVPygHxMt5Qg5Q/DvXFsW/66EZi8pG40dG13+A2MEOsy9FDhSXFCM5OVnHlpClhBzAmHU/+pwCgvWXlIn1fcXxYKR7t7EoI9SmTfFfXhDTQ+YFPPAR/7jJ++JtAoDCl+/z5BcLdN6kf063iGRIu6VA9f4mT2nuPxdR+ieaG7ad0Sn0JIw0Yan8vH88X6QSDK+Xnl2EFavW8P48dJw/1edERTHINxaI7MQ3X9el6SzLO/R1qWi3ci9bjl0P70Kn+E6Y12wgIrwDgc7lrVo0r5m2/1Z5TLcqb8fiLb5nLs2UEoHNO2q0+UpaR5zI1atXcfDgQQwfPhyMMWRlZSEvLw/Dhw/H8uXLsXTpUsyZM0dPx1yfH4D/YK+LUqmEn5+fUW8opVJpdd2y7kyTGzduoFu3blAoFPjtt9+MrpOcnIwjR47g9deNq+6+vr44ePAgAMDb2xsJCQnw8/Ozu4eYpmBUvXp1u2bFyGQyk2Pk7e2NoqIi7fMTJ06gd+/e6NKlCxYsWIDatWvDz88PW7ZswQcffIDCwkIAQGpqKgBoG5UL9c2SXFhYGLp06YJffvkFL7zAfzvy/fffo02bNmjUqBEA/g+5SqXCokWLsGjRIpN20tLSBPmiwdfXF0OGDMGQIUMAADdv3kTfvn3xxRdf4JlnntFeGwBeeuklPPbYY5DJZAgJCUFSUpLonP7qq6+gVqvx+uuvY+rUqZDJZBg7diyio6Oxc+dOhIeHa2X9/Pzw6KOPYtmyZUhOTkZERARWrVqFLl26oFatWqKua4hMJoO/v79NOzo62749tmzRFaMjVNbR412VcJWxoByQRodyQByuMg4U/9LoUPyLRzMWuU1+QGBM10r3g/OJBGRW3scqQ0T32pL2Necgk8tF2uKE+WGiP5RJHVMz6Mq/PJc2Bxwwo0wZWjEryBpyPxMzgXQYlsoXZZQmGo0LQHP/nJDX0uIMvvIijl8NoJPBTCpTvbYiO2j7Wmn8sBwXDwC9DgFXFlv3U0O1vno7IMrlcrSq1gqHJhwCWBnA1LxvA3UmpGia2CsCAKSU/wbflL7bTmDfQ4IvT0UpEQhZVuRuLF26FIwxbNy4ERs3bjQ6v3z5csyaNUuvYOGM7XAVCoX29bhx44Z2mdr+/ftN7gq3efNm+Pv76y1R0yCTydCqVSuj4/a+3prm3t27d7fZlkKhgFKptC4IYN26dfDy8sLPP/+sV8DasmWLnpxmx7fbt2+jRo0agnzTHW9zDB48GLt378axY8fg4+ODkydP4quvKgqyoaGhkMvlGDt2LJ577jmTNpKSkqz6Yon4+HhMnjwZL7/8Mi5cuKBXlIqLizP5OotBs2zw888/x61bt1C9enVERESgfv366NChg9EsvIkTJ+Lbb7/FihUrULduXaSkpGD+/Pl2+QDwYzl8+HC77TjDvj22bNEVoyNUVoic5o2Bu39ocXTsuYoflAPi5TwhByj+nWuL4t/1qJI50H6V6L3uTdq3sYm9t1KJqMhIINRgVolVmDQ5YG4JnZz/fCFJDnAVRbRKpeZ4IP5h8+d9IsyfC6xb8TikCdDobSMRzWehAP/y4kt0d+D+Xv34iu7BF8eiuwPDUqw4bCIuR5lYlRLckP9JO671Q1BchDbnf5uK3cE6O8zLfYHG7+idjorSiVlOxv8A+jPbNMcavQMcf6JiHDiZ/k6EAqCilAjcfUquIWq1GsuXL0etWrW0y+EYY2CMgeM4/Pzzz5g/fz527NhhtCzP0Wj8uHXrFrp27Qq1Wo39+/dr+zgZsmnTJgwYMADe3sIq7br3aUuRbffu3fjuu+/QoUMHdOzYEWVlZTbZ0vghBM0ueTKZTHu9oqIirFypvwNC7969IZfL8dVXX6Fdu3Zm79Pb21s7u0rIeLRv3x5RUVHYunUrrl27Bh8fH4waNUp73s/PD926dcPp06fRtGlTwcU2U+Tm5oLjOAQEBBid++effwDwM9QcAWMMwcHBCAkJ0e4seOnSJXz00UdGsm3btkXjxo2xbNky1K1bF8HBwZK8mSsrK0NpaSm8vLwc8gZASvv22LJFV4yOUFlHj3dVwlXGgnJAGh3KAXG4yjhQ/EujQ/EvHlcZC1F+KHwtnxdi344v3BkYGCsDysqEj1n59RyaA9E9wNJPoqS42P4c8I4CcE+Qf3r02Ad4h1uXE1rIs3UWlCJAZykagIBEoNksI7GysjLIAJQxxvdA6vEbsMYgNsJb8T8A4GNuGRvH78jnG6PjuxcQYzx5whSCX+MIE32BNZ8r/TVL+xjQZDo/G8vgGoJjVmb7ZzqtCbsteBCanjyewo4dO3D37l1MnjwZXbt2RdeuXdGxY0fUr18fHTt2xJtvvglvb28sWbLE6b6Vlpbi/Pnz6NatG+7du4c5c+YgJSUFx44d0/7cvn0bAL9s7MCBA6KKAaWlpUhOTkZpaalFubKyMu31Dhw4gJUrV2L06NHo27cv6tWrhw0bNgi2Zc4PTWHIGv3790deXh5GjRqFDRs2YPXq1ejcubNRIS4xMRFvvfUWVq5ciREjRmDp0qXYuXMnFi1ahOnTp2vlmjRpgpSUFHz11Vf4/fffsXPnTov3IJfL0a9fP+zfvx/Lly/HsGHDEBys/4/hs88+w82bN9G5c2d8//332L9/P7Zt24ZPP/0U3bt3N2PZmEuXLiEhIQHPPfccNmzYgEOHDuGnn37CU089ha+//hpdu3ZFhw4drBsSyaZNm7BgwQJs2LABW7ZswdSpUzF8+HA8/fTTGDzYdE+DJ554AhcvXsS2bdswatQo+PqKf3NkyP379/Hhhx/i/v37dttytH17bNmiK0ZHqKwQOU/pJ+Lo2HMVPygHxMt5Qg5Q/DvXFsW/60E5IJ6ioiLcuHHT9XJAGQqVXz3LsrWfFmSzrLzOITr+g+paL0o5egXOsFSg4f+A7nusimruPzs72/7r1ntRf1mlTAF032VZRxEAgHNs/PvGAuBXIjkzz2mmlAgMP2C7O0uWLIFSqdRryqxZxqVQKBAREYGhQ4di48aNTv/npFAocO/ePVy7dg0A8NhjjxnJTJ8+HTNmzMCWLVugVCr1mqkLsa+5T0sUFhaiffv2APj+RpGRkWjWrBm+/fZbbfPvsrIyQbbM+SF0dlf37t2xdOlSfPTRR/j5558RGxuLSZMmISoqSrtzoob3338fderUwaJFi/DCCy9AoVCgTp06ePHFF7UyL730Ei5cuIC33noL2dnZYIxBrVZb9GHgwIH4/vvvkZqaarKZd8OGDfHnn39i5syZeOedd5CSkoKQkBDUqVNHcMNxAKhduzamTJmCvXv3YuvWrUhNTYWXlxfq1KmDWbNmYcqUKQ75Bk8ul2PFihW4cuUKysrK0KhRI3z99dcWG5ePHTsWb775JkpKSvDEE09I4kdISAhGjBiBkJAQSew50r49tmzRFaMjVFaInGYGoTOWL1cmjo49V/GDckC8nCfkAMW/c21R/LselAPikVfvBV9ZTQSLtsUcmwN1X4Aq7nGMqHXPvGx5X2RrNqt0/GuW9Mmtz/YJCQlBgV9z+IXr7DzX5084bXfGkEbAo6UIKS4RHhexg/hd+TQYvUYGz4feBtZwCEzoAn8n5jnHhK4N8mBycnIQHByM7Oxs7Tb2uhQVFeHQoUMIDQ2Fl5cXmjVrVgleEubo168ffH19sWnTJuvChM2cPXtWO5WUcsB+ioqKcO3aNSQlJRk1uSdcj7i4ONy5cwexsbHaWZoE4UlQDhCeDMW/m5P3H98s3exyLBGUlQLrlOZ7PQHAiaeBjFP87nrO5NJC4OxbwCN5otQcGv//LgPOvcsXS9yBc9OBf5c4/35yLgM3fwAuLwSG6Uwm2RgONHwdaPhGxbEfgoEmM4D6r5i3t4ariOFrq4GjjwE9DwB/vccvayyXyVHUQfDIK2brKBpo+Z4ICgoKKtuFSketVqOgoMDqjBlX8uOXX34RXZCS8j7tsWWLrhgdobKu8rq7Aq4wFgUFBThz5ozD/iZJad8eW7boitERKitETvP9jrt/z+Po2HMVPygHxMt5Qg5Q/DvXFsW/6+GxORBQ0+aClJEtITEi8wI4ryqTAw6N/6THgQH/SG/XBiSLOztnlNnkR1Bd6zLlMAbcuXNHhP3y1z3qwYqCFAA8WiK4sEpFKRHk5ORUtguVjlqtRlZWVqUXJxzth5T21Wo1MjIyUFxcDJVKZfZHKj/E6AiVdebrrlarLY6TI3wQc01XyIHs7Gxs3bpVmjXtDrZvjy1bdMXoCJUVIucpH0gcHXuu4gflgHg5T8gBin/n2qL4dz0oB6SwJSBGms0Bum6vMjng0PiXyQGvQOnt2oCnxD9jDOfPn7ffvsxLsCgt3xOAZvleVlaWyb5SnrR8TzdcKnPdsKP9kNI+YwwzZszA+++/b1Hu2rVrSExMtNsPMTpCZYXISbV8LzExETdu3DB7vkuXLti/f7/N9k3RtWtXHDhwwOz5hIQEXL9+HYDzcsDS8j17d4e0hpT27bFli64YHaGyQuQ8ZemGo2PPVfygHBAv5wk5QPHvXFsU/64H5YAEttTFwHofy8v37PDDrhy4+h1w/n1gyE1RNin+RXBuOvDfUmDILef7cf4DQcv32A/BYI2ng6v/inn7f0wBWn7CP762Cjg61mRMW2uDpIEanYugSjZvkxhXGQNH+yGlfY7j8NRTT2HgwIEW5apXry6JH2J0hMo683Xftm0biouLzZ4PDJT+25Kvv/4aubm5Zs/rNpt3hRxw9JtBKe3bY8sWXTE6QmUr+823K+EqY0E5II0O5YA4XGUcKP6l0aH4F4+rjAXlgDQ6RrI1xwMJj0jihzsiyTjUnADE9KgcP2oMBQJr6x9r+RkQ2lzffkBtcN7hlpcZagpSAOAXB0R2Eu+PDrR8TwQZGRmV7UKlo1KpkJ6ebna5mbv4IaV9lUoFb29vNG/eHK1atTL7o1Qa7/pgix9idITKOvN1b9KkicVxqlevnuTXrFevnsVrNmnSRCvrCjmQkZGBtWvXOuxvkpT27bFli64YHaGyQuQ8ZTtwR8eeq/hBOSBezhNygOLfubYo/l0PygEpbAlfpOT0HJApAC/j2SzWbFL8iyAgke+9VBl+BDcEEkbqH0t6DAhprG+/9Q6sPeYl3H50V6DXIXG+GEBFKYIgCIIgCIIgCIIgCE9HprC7GbtYqKeUAKythfSknlIEYQ6pekoRPJZ6ShGuh6f0UyAIc1AOEJ4MxT8hGHURsN5XUE+pqgLFP2EO6inlAKh+R43OnW2rKjU69xRcYSyqdINPB+tWVpNbT8FVxoJyQBodygFxuMo4UPxLo0PxLx5XGQvKAWl0KAfE4SrjUJXiXyi0fE8E9+/fty7k5pSWluLevXsoLS11az+ktG+PLVt0xegIlXWV190VcIWxSE5OxsyZM5GcnOzy9u2xZYuuGB2hskLkPKWfgqNjz1X8oBwQL+cJOUDx71xbFP+uB+WAc21VlRyg+HcvPyrjPqkoJQJLU848BblcjpCQEMjlcrf2Q0r79tiyRVeMjlBZV3ndXQFXGIvg4GAMHjwYwcHBLm/fHlu26IrRESorRE7zTZK7f4Po6NhzFT8oB8TLeUIOUPw71xbFv+tBOSCBLU4O+Cc4zI/KyAGKf/fyozLuk3pKCYB6ShGEdainlLRQT6mqBfVTIDwdygHCk6H4JzwZin/CHEJ7StFMKREUFhZWtguVysKFC8FxHBo1alTp0zPLyspw//59zJo1C127dkVMTAwCAgLQpEkTfPTRRygqKjKr26JFC7z00ksAgPHjx2vXy3IcB29vb9SrVw/Tpk1DZmam9j5nzJgBjuOQlpamtWOo6+/vj8TERAwaNAjLli1DcXGx1tfCwkLRY2breOte7+7du5gxYwbOnDljJKe5JyG+2XoPQvjnn38wduxY1KxZEz4+PoiIiECLFi3w/PPPIycnRytn7rWaPn26xdfbFPfu3cP48eMRFRUFHx8fNG3aFEuWLNGTeeCBBxAbGwu1Wq13XHcsOnbsiIiICJSUlNg+ADZQWFiICxcuOOxvkpT27bFli64YHaGyQuQ03++4+/c8jo49V/GDckC8nCfkAMW/c21R/LselAPOtVVVcoDi3738qIz7pKKUCLKzsyvbhUpl6dKlAIC///4bv//+e6X6olKpcOHCBXz22Wdo0aIFvvnmG/z0008YMWIEZsyYgQEDBpj8w3jt2jWcPn0aw4cP1x7z9fXF0aNHcfToUWzZsgVt27bFzJkzMW7cOKhUKot+6Opu374d77//Pvz9/TFp0iS0bNkSt2/fhkqlQmZmplVbhtg63rrXu3v3Lt577z2TRaknn3wSBw8eFOSbrfdgjdOnT6Nly5b4+++/MW3aNPz6669YvHgx+vfvj507dyIjI0NP3tRr9f7772PcuHGCr5mdnY1OnTrht99+w9y5c7F161a0aNECTz75JD755BOt3MSJE3H37l3s3LlTT18zFprXZezYsVAqlfYNhEiysrKwceNGZGVlubx9e2zZoitGR6isEDlPeUPm6NhzFT8oB8TLeUIOUPw71xbFv+tBOeBcW1UlByj+3cuPSrlPRlglOzubAWCZmZkmzxcWFrJdu3axkydPsjNnzjjXOSdx8uRJBoD179+fAWBPPvmkID2VSsWKiook96esrIzl5OSw3Nxco3Pz5s1jANihQ4eMzs2dO5dFRUUxtVrNGGNs3LhxzN/f30iuc+fODAC7desWY4yx6dOnMwAsNTVVK2NOlzHGdu7cyby8vFjbtm1ZWVkZU6vVrKysTPD92TrejDG962nsLFu2zKqsUJvmOHPmjOgcePzxx5m/vz/Lyckxe10N1l6r27dvC7rmnDlzGAB26tQpveO9e/dm/v7+2jzPyMhgPj4+bPjw4UY+qdVq9vrrrzMA7Ny5c4KuK5bCwkL2999/s8LCQqNzarWaFRUVaeNYaqS0b48tW3TF6AiVFSIXGxvLALDY2FjBvlZFHB17ruIH5YB4OU/IAYp/59qi+Hc9KAeca6uq5ADFv3v5IaV9TR0lOzvbohzNlBKBTOa5w6VZ2vThhx+iQ4cOWL9+PQoKCvRkrl+/Do7jMHfuXMyaNQtJSUnw9vbGvn37tEvFzp07h4cffhjBwcEICwvDlClToFKpcOnSJfTp0weBgYFITEzE3LlzLfrDcRwCAwMREBBgdK5NmzYAgFu3bhmd27RpE4YOHWr1tWzXrh0A4ObNmxblzNG7d29MmjQJx48fx6FDhyCTyUQ1/xMy3gBw584dTJ48GTVq1IBSqUT16tXx8MMPIzU1FQcOHEDr1q0BABMmTNAue5sxYwYAfvmeTCbT+jZkyBAkJCSYXKLXrl07tGrVSnsPjDF8+eWXaN68OXx9fREaGoqpU6eKXkeenp6OoKAgk68jIKxhoua1unHjhqBrHjlyBNHR0WjZsqXe8QEDBiA/Px+//vorACA0NBRDhw7Ftm3bkJ6erucTYwyrVq1C69at0aRJE0HXlRKZTAZvb2+H/U2S0r49tmzRFaMjVNbR412VcJWxoByQRodyQByuMg4U/9LoUPyLx1XGgnJAGh3KAXG4yjhUpfgXfE2nXckNyMzMrGwXKoXCwkKsXbsWrVu3Rv369TFy5Ejk5ubihx9+MCm/cOFC7N27Fx9//DF27NiB+vXra8898sgjaNasGTZt2oRJkybh008/xSuvvIIhQ4agf//+2Lx5M7p374433ngDP/74o1mfLC0n27t3LwCgUaNGesdv376NEydO6C3dM8eVK1cA8IUJWxk0aBAAYP/+/aKWvgkd7zt37qB169bYvHkzpkyZgh07dmDBggUIDAzE9evX0bRpUyxbtgwA8M4772iXvT355JN6djS+PfHEE7h586Z2/DRcvHgRJ06cwMiRI7X38NRTT+Hll19Gz549sWXLFnz55Zf4999/MXHiRL0CjjXat2+Pe/fuYcyYMThw4IBNa5evXr0KAIiMjBQkX1JSAm9vb6PjmmPnzp3THps4cSJKSkqwatUq7TGVSoVNmzbh7t27mDhxomh/pSAzMxObNm1y2N8kKe3bY8sWXTE6QmWFyHnKdsiOjj1X8YNyQLycJ+QAxb9zbVH8ux6UA861VVVygOLfvfyojPtUOO1KbgCzYZ1sq29aITkv2QHeiCcmIAanJp8Srbdx40ZkZ2drP4APGjQIb7/9NpYsWWKyl4+Pjw927twJLy8vo3OTJ0/GlClTAAA9e/bErl278Pnnn+PHH3/E0KFDAQBdu3bF9u3bsXr1agwbNsysX4YNqAG+oDB37lwMHToUTZs21Tu3adMmhISEoFu3bkZ6mmJLVlYW1qxZg61bt+KBBx5AnTp1zF7fGgkJ/Havd+/eNemrOYSO97Rp05CWloazZ8+iQYMG2uPDhg1DVlYWgoKC0LhxYwBArVq1tDOKDNH41q9fP0RHR2PZsmXo2bOn9vyyZcugVCq1r8+xY8fw7bffYv78+drXEgDCw8MxaNAgrFy5Et27dxd0r1OnTsWpU6ewdu1arF27FnK5HE2bNkW/fv3w0ksvmSw0Gb5WW7ZsQevWrQW/Vg0bNsSePXtw8+ZNxMfHa48fPnwYAPSKat27d0dSUhKWLl2qbY4PACtXroSfnx9GjRol6JpSU1ZWhvz8fIf985fSvj22bNEVoyNU1tHjXZVwlbGgHJBGh3JAHK4yDhT/0uhQ/IvHVcaCckAaHcoBcbjKOFSl+BeM3QsFK5E//viD9ezZkwUHB7OwsDA2adIkox5DN27cYAMGDGB+fn4sPDycvfDCC6y4uFjUdaythbTUUyp2fizDDLjET+x829b5dunShfn6+rKsrCztsQkTJjAA7PLly9pj165dYwDYK6+8YmRD05Pp0qVLesdHjRrFOI4z6pvTvn171rJlS1F+Xrt2jdWoUYPVrVuXpaenG53v3LkzGz9+vN6xcePGMQB6PxzHsX79+un1KBLbU4oxxv7++28GgD3zzDOi7kPoeFerVo317t3boi1LPaU096TLq6++ynx8fLTXVqlUrFq1auzhhx/Wyrz99tuM4zh2//59Vlpaqv05deoUa9KkCWvcuLGo+2WMH6tPP/2UjRkzhsXFxTEALDw8nF28eFErI/S1EnItb29v1qlTJ3b+/HmWlpbGPv/8c6ZUKhkA9vTTT+vJv//++3o9qNLS0phSqWRjx44VfZ9isNRTinA9PKWfAkGYg3KA8GQo/glPhuKfMIfQnlJVdqbU3bt30bNnT4wcORKff/45cnJy8PLLL2P8+PHYuHEjAH4GSP/+/REZGYnDhw8jPT0d48aNA2MMixYtcoqfMQExTrmOEGzx5erVqzh48CCGDx8Oxpi2C/+IESOwbNkyLF26FHPmzNHTqVatmll7YWFhes+VSiX8/Pzg4+NjdDwnJ0ewnzdu3EC3bt2gUCjw22+/GV0nOTkZR44cweuvv26k6+vri4MHDwLgl3AlJCQgKChI8LUt+QQA1atXF6wjZrxTU1MRFxdnt5+6PPHEE5g/fz7WrVuHp556Cjt37sS9e/cwYcIErcz9+/fBGEN0dLRJG7b41KBBA+1sL8YYFixYgClTpuDdd9/Fhg0btHJSvFYNGjTA5s2b8dRTT2lnktWoUQPz58/HCy+8gNjYWD35CRMmYMaMGVi2bBlatmyJ1atXo6SkpNKW7hEEQRAEQRAEQbgNjq+POYavv/5abxc1xhg7ffo0A8CuXLnCGGPsl19+YTKZjN25c0crs3btWubt7W21WqeLpsJnOMtHgzvvvve///3PaHaK7k+1atWYSqVijFXMlJo3b56RHVMzjRgzP9uoS5curFGjRmb9Ki4uZnfu3GHFxcXs+vXrLDExkSUkJLDr16+blP/yyy9ZYGCg0U6A5q6va9+c/9ZmSj3zzDMMANu7d6+eLUuIGW9zM6V0fRcyU8rQtzZt2rC2bdsyxhgbMWIEq169OisoKNDKvfnmm4zjOHb48GF28uRJ7c/q1avZ8uXL2Q8//GD1PoUQEhLCGjRooH1ubbzFUlZWxi5fvsz+/vtvplKp2Jo1axgAduDAASPZPn36sNDQUFZUVMSaNWvGEhMTHbKrpC6WZkrdvXuXzZw5k929e9ch15bSvj22bNEVoyNUVohctWrVtDnqzjg69lzFD8oB8XKekAMU/861RfHvelAOONdWVckBin/38kNK+26/+15xcTGUSqVeV3hfX18AFb1hjh49isaNG+vNVHnooYdQXFyMP/74Q/Q1AwMD7fS6aqFWq7F8+XLUqlUL+/btw759+7Bnzx788ssv2LNnD1599VXcu3cPO3bscLpvcrkcwcHBuHPnDrp27Qq1Wo29e/dq+zgZsmnTJgwYMMBkg2tL9uVyuU3+7d69G9999x06dOiABx98UJAtsePdt29f7Nu3D5cuXTLru+Z+LTUQN/RtwoQJOH78OA4fPoxt27Zh3LhxUCqVWrkBAwaAMYY7d+6gVatW2p9GjRqhYcOGovpw3bt3z+Txu3fvIicnR9QsM7FwHIc6deqgQYMGUKvV+Oyzz9C8eXM8+OCDRrITJ05EZmYmpk2bhrNnz2LcuHFQKCpvomlQUBB69+4tyYw+R9u3x5YtumJ0hMoKkdPsFClml82qiKNjz1X8oBwQL+cJOUDx71xbFP+uB+WAc21VlRyg+HcvPyrlPu0uf1US58+fZwqFgs2dO5cVFxezjIwMNmzYMAaAzZ49mzHG2KRJk1ivXr2MdJVKJVuzZo1Z20VFRSw7O1v7c+vWLZt7SlVltm3bxgCwjz76yOT51NRU5u3tzYYMGcIYc+5MKcYYu3//PqtZsybz9vZmq1atYkePHtX7uXXrFmOM7wGkUCjYxo0bjWwInX1jbqaUr6+v9nr79+9nK1asYKNGjWJyuZw1btxYVK8jseN9+/ZtVq1aNRYVFcUWLFjAfvvtN7Zp0yY2adIk9s8//zDGGMvPz2e+vr6sY8eObN++fezkyZPamYOmekoxxlhWVhbz9fXV9nYyNUNw8uTJzM/Pj7322mts27ZtbO/evWz27Nls+PDh7K233hJ8zwMGDGCdOnVin376Kdu9ezfbu3cv+/LLL1mdOnWYQqFgu3bt0spKOVPq+eefZxs3bmT79u1jS5YsYc2aNWPh4eHs/PnzJuWLi4tZREQE4ziOyeVyUa+rrVBPqaoF9VMgPB3KAcKTofgnPBmKf8IcVban1IwZM/Dee+9ZlDl58iRatWqF5cuXY8qUKfjf//4HuVyOF198EdHR0XqzPkxVbBljFiu5c+bMMenD+vXrERAQYHTcy8tLW0ksKyvT272rKvPVV19BqVRi8ODBevdUVlYGmUwGjuPQr18/bNu2Df/88w+KiooAAPn5+UZjUFBQAADIyMjQG/vi4mIAMJIvLS2FWq22OJa///47/vvvPwDAY489ZnT+tddewxtvvIFVq1ZBqVSiTZs2RvbMXV/3Ps35X1xcjMLCQrRv3x4AP1MvPDwcjRo1wqeffooRI0ZAqVQiPT1dz5Y5xI53VFQUdu7ciY8++gizZ89GZmYmwsPD0bZtW704/OyzzzBv3jz07t0bpaWl2nHR3FNqaqqRb/369cOmTZvQtm1bhIeHG93D7Nmz0bhxYyxfvhxffvklysrKEB4ejmbNmqFhw4aCc2DcuHHYsmULFi9ejHv37qGgoADh4eFo3bo1Fi1ahBYtWmhtWXqtxPLvv//ihx9+QEZGBkJDQ9GjRw98//33iImJMWt/xIgRWLx4Mbp166Z9XR1JSUkJ8vPzsX37dpSWluqdKysrQ2FhIXx9fa3GlS1Iad8eW7boitERKitETpNPBQUFWLt2rSBfqyKOjj1X8YNyQLycJ+QAxb9zbVH8ux6UA861VVVygOLfvfyQ0r4mNqzinBqZcFJTU9k///xj8cdw5kBycjLLzc1leXl5TCaTsQ0bNjDGGHv33XdZ06ZN9WQzMjK0fX7MYW6mlCf2lDLEsNdSVfCjb9++bNiwYQ6z70hbtuiK0REqK0TuzJkzlAMSYq2n1IwZMxy6llwq+/bYskVXjI5QWSFyntRPwZGx5yp+UA6Il/OEHKD4d64tin/Xg3LAubaqSg5Q/LuXH1LaFzpTimOMMbvKXy7E0qVL8cILL+DOnTsICQnBjh07MGDAANy+fVu7I9z69esxbtw4pKSkCF4nmZOTg+DgYO2sCkOKiopw6NAhhIaGwsvLC82aNZP0vlwJxpjezB139UNK+/bYskVXjI5QWSFyZ8+eRWlpKeWARBQVFeHatWtISkoy2p1SrVajoKAAfn5+Nvc9s4SU9u2xZYuuGB2hskLk4uLicOfOHcTGxuL27duCfK2KODr2XMUPygHxcp6QAxT/zrVF8e96UA4411ZVyQGKf/fyQ0r7mjpKdna2xdqLyy3fE8Pnn3+ODh06ICAgALt378Zrr72GDz/8ECEhIQCA3r17o2HDhhg7dizmzZuHjIwMTJ06FZMmTbKpcVdlBp+rwHGcS4yDo/2Q0j7HceA4Dmq12qKcqcbZtvghRkeorFg/GGNW71cul0ta1HHWNV0hB+RyuUM3XpDSvj22bNEVoyNU1tHjXZVwlbGgHJBGh3JAHK4yDhT/0uhQ/IvHVcaCckAaHcoBcbjKOFSl+BdKld19DwBOnDiBXr16oUmTJvjmm2/w9ddf48UXX9Sel8vl+Pnnn+Hj44OOHTvikUcewZAhQ/Dxxx/bdL2srCyJPK+6qFQqZGVlQaVSubUfUtpXqVR466234OXlZfHn+vXrkvghRkeorFg/li9fbvV+Dxw4IMiWUA4cOGD1msuXL7f7Oq6QA1lZWfjpp58c9jdJSvv22LJFV4yOUFkhcppJx240+dgkjo49V/GDckC8nCfkAMW/c21R/LselAPOtVVVcoDi3738qIz7rNIzpVasWGFVJj4+Htu3b5fketZmYXgCjDGUlpZW+h8dR/shpX3GGMaMGYMhQ4aYnA2loXr16pL4IUZHqKxYPwYOHIiTJ09alKlXr54gW0Jp2bKl1WsmJSXZfR1XyAGVSoXU1FSHFmWlsm+PLVt0xegIlRUi5ylvyBwde67iB+WAeDlPyAGKf+faovh3PSgHnGurquQAxb97+VEZ9+lWPaUchbW1kJ7UU4ogzOEpPaWchaWeUoTr4Sn9FAjCHJQDhCdD8U94MhT/hDmE9pSq0sv3CIIgCIIgCIIgCIIgiKoJFaVEcP/+fbPnPGXCWWlpKe7du4fS0lK39kNK+/bYskVXjI5QWVd53V0BZ42Fpb8pycnJ+Oijj5CcnOyQa0tp3x5btuiK0REqK0SurKxM77e74ujYcxU/KAfEy3lCDlD8O9cWxb/rQTngXFtVJQco/t3Lj8q4TypKicDf39/kcYVC4TH9pmQyGQIDAyGTVW7oONoPKe3bY8sWXTE6QmVd5XV3BZw1Fpqil6md/gICAtCpUycEBAQ45NpS2rfHli26YnSEygqR0+zqKOWOkq6Io2PPVfygHBAv5wk5QPHvXFsU/64H5YBzbVWVHKD4dy8/KuM+qaeUAKythWSMYc2aNahbty6USiX10yE8EuopJR2MMdy+fRulpaWoWbNmZbtDCID6KRCeDuUA4clQ/BOeDMU/YQ6hPaWq9O57zqa4uNjkcY7j8OOPP+Lpp59GREQECgsL3bZSXFZWBpVKBYVCUamzZhzth5T27bFli64YHaGyQuR0d94oKioS5GtVxJGxp9nZLzs7G3l5eYiNjTUpV1xcjHv37qFatWrw9vaW1Aep7dtjyxZdMTpCZR093lUJVxkLygFpdCgHxOEq40DxL40Oxb94XGUsKAek0aEcEIerjENVin+hUFFKBJmZmYiMjDR57tixYwgJCcGgQYPceqcstVqN3NxcBAYGmlxW5C5+SGnfHlu26IrRESorRC41NRVqtRpyudyt/2E5Iwe8vb0RGxtr9huFjIwMLF++HJMnT0a1atUkv76U9u2xZYuuGB2hskLkPKWfgqNjz1X8oBwQL+cJOUDx71xbFP+uB+WAc21VlRyg+HcvPyrjPmn5ngA0087S09MRFhZmUkYzbbF27dr466+/nOyh81CpVMjLy0NAQAAUisqraTraDynt22PLFl0xOkJlhch16dIF9+/fR3R0NA4cOCDI16qIo2NPLpfDy8vLqg85OTkICgpyWPxLZd8eW7boitERKitEzlOmrjs69lzFD8oB8XKekAMU/861RfHvelAOONdWVckBin/38kNK+0KX71FRSgBCBtNTkpEgzEE5QHgyFP+Ep0M5QHgyFP+EJ0PxT5hDaFGKttISQXZ2ttlzuv103Jns7Gzs2LHD4li4gx9S2rfHli26YnSEygqRoxxwHx8o/sXLUfy7lx+UA+LlPCEHKP6da4vi3/WgHHCuraqSAxT/7uVHZdwnFaVEoNmi3RSekowlJSW4fv06SkpK3NoPKe3bY8sWXTE6QmWFyFEOuI8PFP/i5Sj+3csPygHxcp6QAxT/zrVF8e96UA4411ZVyQGKf/fyozLuk5bvCYCW7xGEdSgHCE+G4p/wdCgHCE+G4p/wZCj+CXPQ8j2CIAiCIAiCIAiCIAjCZam8tvFVCM1ksn///Re1atUyKaNSqbS/c3JynOabs0lJScGGDRvwyCOPICoqym39kNK+PbZs0RWjI1RWiBzlgPv4QPEvXo7i3738oBwQL+cJOUDx71xbFP+uB+WAc21VlRyg+HcvP6S0r4kHa4vzaPmeAG7fvo0aNWpUthsEQRAEQRAEQRAEQRBVhlu3biEuLs7seSpKCaCsrAx169bFH3/8AY7jTMrk5OSgRo0auHXrlsX1ku5A69atcfLkycp2w+F+SGnfHlu26IrRESprTY5ywL18oPgXJ0fx735+UA6Ik/OUHKD4d64tin/Xg3LAubaqQg5Q/LufH1LZZ4whNzcX1atXh0xmvnMULd8TgEwmg1KpRHBwsFXZoKAgt09GuVzuEvfoaD+ktG+PLVt0xegIlRUqRzngHj5Q/NsmR/HvPn5QDtgm5+45QPHvXFsU/64H5YBzbVWlHKD4dx8/pLQvpIZCjc4F8txzz1W2Cy6Dq4yFo/2Q0r49tmzRFaMjVNZVXndXwBXGguJfGh2Kf/G4ylhQDkijQzkgDlcZB4p/aXQo/sXjKmNBOSCNDuWAOFxlHKpS/AuBlu9JhNDtDgnCXaEcIDwZin/C06EcIDwZin/Ck6H4J+yFZkpJhLe3N6ZPnw5vb+/KdoUgKgXKAcKTofgnPB3KAcKTofgnPBmKf8JeaKYUQRAEQRAEQRAEQRAE4XRophRBEARBEARBEARBEAThdKgoRRAEQRAEQRAEQRAEQTgdKkoRBEEQBEEQBEEQBEEQToeKUgRBEARBEARBEARBEITToaKUE9i+fTvq1auHOnXq4LvvvqtsdwjC6QwdOhShoaEYMWJEZbtCEE7n1q1b6Nq1Kxo2bIimTZvihx9+qGyXCMJp5ObmonXr1mjevDmaNGmCb7/9trJdIginU1BQgISEBEydOrWyXSEIp6NQKNC8eXM0b94cTz75ZGW7Q7ggtPueg1GpVGjYsCH27duHoKAgtGjRAsePH0dYWFhlu0YQTmPfvn3Iy8vD8uXLsXHjxsp2hyCcyr1793D//n00b94cKSkpaNGiBS5dugR/f//Kdo0gHI5arUZxcTH8/PxQUFCAxo0b4+TJkwgPD69s1wjCabz99tu4cuUK4uPj8fHHH1e2OwThVCIiIpCWllbZbhAuDM2UcjAnTpxAo0aNEBsbi8DAQPTr1w87d+6sbLcIwql069YNgYGBle0GQVQK1apVQ/PmzQEAUVFRCAsLQ0ZGRuU6RRBOQi6Xw8/PDwBQVFQEtVoN+j6U8CSuXLmCixcvol+/fpXtCkEQhEtCRSkrHDx4EAMHDkT16tXBcRy2bNliJPPll18iKSkJPj4+aNmyJQ4dOqQ9d/fuXcTGxmqfx8XF4c6dO85wnSAkwd4cIIiqjpQ5cOrUKZSVlaFGjRoO9pogpEGK+M/KykKzZs0QFxeH119/HREREU7yniDsQ4r4nzp1KubMmeMkjwlCWqTIgZycHLRs2RKdOnXCgQMHnOQ5UZWgopQV8vPz0axZM3z++ecmz69fvx4vv/wy3n77bZw+fRqdO3dG3759cfPmTQAw+W0gx3EO9ZkgpMTeHCCIqo5UOZCeno7HH38c33zzjTPcJghJkCL+Q0JCcPbsWVy7dg1r1qzB/fv3neU+QdiFvfG/detW1K1bF3Xr1nWm2wQhGVL8D7h+/Tr++OMPLF68GI8//jhycnKc5T5RVWCEYACwzZs36x1r06YNe/rpp/WO1a9fn7355puMMcaOHDnChgwZoj334osvstWrVzvcV4JwBLbkgIZ9+/ax4cOHO9pFgnAotuZAUVER69y5M1uxYoUz3CQIh2DP/wANTz/9NNuwYYOjXCQIh2FL/L/55pssLi6OJSQksPDwcBYUFMTee+89Z7lMEJIixf+APn36sJMnTzrKRaKKQjOl7KCkpAR//PEHevfurXe8d+/e+P333wEAbdq0wfnz53Hnzh3k5ubil19+wUMPPVQZ7hKE5AjJAYJwZ4TkAGMM48ePR/fu3TF27NjKcJMgHIKQ+L9//772W/GcnBwcPHgQ9erVc7qvBCE1QuJ/zpw5uHXrFq5fv46PP/4YkyZNwrRp0yrDXYKQHCE5kJmZieLiYgDA7du38ffff6NmzZpO95VwbRSV7UBVJi0tDWq1GtHR0XrHo6OjkZycDIDfAnP+/Pno1q0bysrK8Prrr9OOM4TbICQHAOChhx7Cn3/+ifz8fMTFxWHz5s1o3bq1s90lCMkRkgNHjhzB+vXr0bRpU20vhpUrV6JJkybOdpcgJEVI/N++fRsTJ04EYwyMMTz//PNo2rRpZbhLEJIi9D0QQbgrQnLgn3/+wVNPPQWZTAaO4/DZZ5/RLvSEEVSUkgDDHlGMMb1jgwYNwqBBg5ztFkE4DWs5QDtOEu6OpRzo1KkTysrKKsMtgnAKluK/ZcuWOHPmTCV4RRDOwdp7IA3jx493kkcE4Vws5UCHDh3w119/VYZbRBWClu/ZQUREBORyudG3ISkpKUYVY4JwRygHCE+HcoDwZCj+CU+G4p/wdCgHCKmgopQdKJVKtGzZErt379Y7vnv3bnTo0KGSvCII50E5QHg6lAOEJ0PxT3gyFP+Ep0M5QEgFLd+zQl5eHq5evap9fu3aNZw5cwZhYWGIj4/HlClTMHbsWLRq1Qrt27fHN998g5s3b+Lpp5+uRK8JQjooBwhPh3KA8GQo/glPhuKf8HQoBwinUGn7/lUR9u3bxwAY/YwbN04r88UXX7CEhASmVCpZixYt2IEDByrPYYKQGMoBwtOhHCA8GYp/wpOh+Cc8HcoBwhlwjDHmjOIXQRAEQRAEQRAEQRAEQWignlIEQRAEQRAEQRAEQRCE06GiFEEQBEEQBEEQBEEQBOF0qChFEARBEARBEARBEARBOB0qShEEQRAEQRAEQRAEQRBOh4pSBEEQBEEQBEEQBEEQhNOhohRBEARBEARBEARBEAThdKgoRRAEQRAEQRAEQRAEQTgdKkoRBEEQBEEQBEEQBEEQToeKUgRBEARBEARBEARBEITToaIUQRAEQRAEIQnjx48Hx3Han8WLFzv1+levXtW7fmJiolOvTxAEQRCEOBSV7QBBEARBEIQlrl+/jqSkJIsyjDEneUMI4aWXXkJISAhatWqldzwxMRHJyckoKioyq+vj44OYmBhcv35d9HXDwsIwffp0AMCCBQtE6xMEQRAE4VyoKEUQBEEQRJWgVq1aeOyxxyrbDUIAL7/8cqXMUgoLC8OMGTMAAN9//73Tr08QBEEQhDioKEUQBEEQRJWgdu3a2oIDQRAEQRAEUfWhnlIEQRAEQbgFM2bMAMdx2L9/P5YvX46WLVvCz88PXbt21crk5uZi+vTpaNSoEXx9fRESEoI+ffrg8OHDJm1euHABAwYMQGBgIIKDg9GvXz+cP39e2ztJd4mZ7vUN+f7778FxnMnZO+fOncOjjz6KatWqQalUIiEhAS+88ALS09P15K5fvw6O4zB+/Hj8999/GDFiBEJDQ+Hv74+ePXvi7NmzJu8hJSUFU6dORb169eDj44OwsDC0a9cO8+fPBwD8999/kMlk6N+/v0n9zMxM+Pj4oFmzZibPOxrNfVv6sWWpH0EQBEEQlQ/NlCIIgiAIwq2YN28e9u3bh0GDBqFXr15QKPi3OxkZGXjwwQdx4cIFdO7cGQ899BCys7OxdetWdOvWDT/88AOGDBmitXP+/Hl07NgReXl5GDZsGOrUqYMTJ06gY8eOkhVofvrpJzzyyCOQy+UYNGgQatSogb///huff/45du7ciePHjyM0NFRP5/r162jbti0aNmyIJ554Av/++6/2Hv755x9ER0drZa9cuYJu3brhzp076NSpE4YMGYL8/HycP38eH3zwAV599VXUrFkTPXv2xK+//orbt28jLi5O73orV65EcXExJk2aJMk9iyUkJETbJ0qXwsJCfPLJJygrK4OPj08leEYQBEEQhL1QUYogCIIgiCrB1atXTS7f69OnD9q1a6d9fuDAARw/fhxNmjTRk3vhhRdw4cIFLF26FBMmTNAenz17Nlq3bo3JkyejT58+2gLH888/j5ycHKxatQpjxozRyr/11luYM2eO3feTnp6OsWPHIjIyEkeOHEF8fLz23Nq1azF69GhMmzYNixYt0tM7cOAAPvzwQ7zxxhvaY++++y5mzZqFZcuW4c0339Qef+yxx3Dnzh188803RkWl27dvax9PnjwZu3fvxtKlSzFt2jQ9uSVLlsDHx0eyfl4qlcriMkyVSqX3PCQkxEieMYZHH30UKpUK8+bNQ0xMjCS+EQRBEAThZBhBEARBEIQLc+3aNQbA7M+nn37KGGNs+vTpDAB75ZVXjGykpqYyuVzOevToYfIaCxcuZADYtm3bGGOM3bhxgwFgTZs2NZLNzc1lISEhDAC7du2a9rjm+vv27TPSWbZsGQPAli1bpj32ySefMABs5cqVJn1q0aIFi4iIMBqHpKQkplarTY7RsGHDtMdOnDjBALAHH3zQpH1dSkpKWHR0NEtMTGRlZWVGNh577DGrNhhjbNy4cUbjoktCQoLF11Lzk5CQYPE67777LgPAJkyYYFYmISHBqh2CIAiCICoXmilFEARBEESV4KGHHsKvv/5qVa5NmzZGx06ePAm1Wo2ioiKTs3SuXLkCALh48SIGDBig7c/UqVMnI9mAgAA0b97cZO8oMRw7dkz7++rVq0bni4qKkJaWhrS0NERERGiPN2vWDDKZfltQzZK7rKws7bETJ04AAHr37m3VFy8vLzzxxBOYM2cOdu/erdVZsmQJAODJJ58UcWeW8fb2RlFRkdnz1pbirV27FjNnzkTnzp2xePFiyfwiCIIgCML5UFGKIAiCIAi3QrenkoaMjAwAwJEjR3DkyBGzuvn5+QCA7OxsAEBUVJTga4hF49MXX3xhUS4/P1+vKBUcHGwko+mbpVartcc0BarY2FhB/kyaNAkffvghvvvuO/Tu3RsFBQVYu3Yt6tatiy5dugiy4WiOHTuGJ554AjVr1sSPP/4IpVJZ2S4RBEEQBGEHtPseQRAEQRBuBcdxRseCgoIAAK+++ioYY2Z/NA21NYWflJQUk9e4f/++0THN7CXDnkhARZHLlE9//fWXRZ8SEhKE3LYRISEhAIA7d+4Ikk9KSkKvXr2wdetWpKWlYcOGDcjJyZF0lpQ93Lx5E0OGDIFSqcS2bdv0CnUEQRAEQVRNqChFEARBEITb07p1a3Ach6NHjwqS1+yud/jwYaNzeXl5OHPmjNFxzS55popAp0+fNjrWtm1bABDsk1g0yxh37dolWGfy5MkoKSnBihUrsGTJEnh5eWHcuHEO8U8MeXl5GDhwINLS0rB+/Xo0bNiwsl0iCIIgCEICqChFEARBEITbExMTg0ceeQS///475s2bB8aYkczx48dRUFAAAIiPj8eDDz6Ic+fOYfXq1Xpys2fP1uvdpKFVq1YAgBUrVqCsrEx7/OjRo0Y2AGDChAkIDAzE22+/jQsXLhidLygo0PadsoXWrVujTZs2OHjwIL799luj86aKZ4MHD0ZMTAzmz5+Pw4cPY9CgQWaXMDqLsrIyjB49GufOncMnn3yCPn36VKo/BEEQBEFIB/WUIgiCIAjCI/jyyy9x6dIlvP7661i5ciXat2+P4OBg3Lp1C3/88QeuXLmCe/fuwc/PDwDf66ljx454/PHHsWXLFtSpUwcnT57EiRMn0LlzZxw6dEjPfrt27dC+fXvs3bsX7du3x4MPPogbN27gp59+wsCBA7F582Y9+cjISKxduxYPP/wwmjVrhj59+qB+/fooKirCjRs3cODAAXTo0EFQc3dzrFq1Cl27dsXkyZO191xUVIQLFy7g9OnTSE9P15NXKBR44oknMHv2bADSNji3lY0bN2Lbtm2oVq0aMjIyTDaqf/nll7XLFYn/t3f3LJFkURiA34LJ7ECMBEU06EzoP+A/EMTMRLAbE2MTEz/oRANFDBQMNTDQsFVQNO0GEw06FdRE/4Vu5MIwDrvuuqWz8zxZQd1bpyp8uecUAPw6hFIAwG+hr68vnU4n29vbOTw8zMHBQZ6fn9Pf359arZalpaXv5hSNjo6m3W5nYWEhZ2dnOT8/z9jYWNrtdjY2Nn4IpYqiSKvVyvz8fE5PT9PtdlOr1dJqtfL4+PhDKJUk4+Pjubm5yfr6ei4vL3NxcZGenp4MDg6m0Whkenr6X71ztVrN9fV11tbWcnx8nK2trVQqlVSr1SwuLr65ZmZmJqurqxkaGvpbf+77r72eXnt6ekqz2Xzznnq9LpQCgF9Q8fLW+XUAAH6qXq9nf38/d3d3GR4e/uxyPtTR0VGmpqbSbDazvLz8rrVf6bu8Pv/+/v5T6wAAfs5MKQAAkiQvLy/Z3NzMt2/fMjs7+4/3GRkZSVEU2d3d/cDq/trt7W2KokhRFHl4eCj12QDA+2nfAwD4zXW73ZycnKTT6eTq6ipzc3MZGBh49z6Tk5PfnZB6Hf5elr6+vqysrPx5raUPAL427XsAAO/0ldrUPsLe3l4ajUZ6e3szMTGRnZ2dVCqVzy4LAPifE0oBAAAAUDozpQAAAAAonVAKAAAAgNIJpQAAAAAonVAKAAAAgNIJpQAAAAAonVAKAAAAgNIJpQAAAAAonVAKAAAAgNIJpQAAAAAo3R/QfVSrFHJmzAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_analysis(processed_data_bkg, processed_data, Sxx_bkg, Sxx, filename_bkg, filename_data, peak_find_threshold=-60)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "3ed4e40e", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/TimeSeriesAnalyzer/TimeSeriesAnalyzer.py b/TimeSeriesAnalyzer/TimeSeriesAnalyzer.py new file mode 100644 index 0000000..56bcea6 --- /dev/null +++ b/TimeSeriesAnalyzer/TimeSeriesAnalyzer.py @@ -0,0 +1,333 @@ +import numpy as np +import matplotlib.pyplot as plt +import matplotlib.gridspec as gridspec +from scipy.signal import find_peaks, resample, detrend +import csv + +""" +NOTES + +When you compute the Fourier transform of a signal, you obtain a set of complex-valued coefficients corresponding to different frequency components present in the signal. These coefficients represent the amplitude and phase of sinusoidal components at specific frequencies. + +The frequency range covered by the Fourier transform output is divided into discrete frequency bins, each representing a specific frequency component. The width of these bins depends on the sampling rate and the length of the input signal. In a typical implementation, the frequency bins are evenly spaced. + +In practical terms, the power spectrum bins correspond to the frequency components at which the power spectral density (PSD) or magnitude squared of the Fourier coefficients are evaluated. These bins are used to represent the distribution of signal power across different frequency components, providing insights into the frequency content of the signal. + +The bin width, also called the resolution bandwidth, is simply sampling rate / Total number of samples = (1/dt)/N + +N can be re-written in terms of t, dt. Putting this in to the expression for Sxx = 2 * |fft|^2/(Resolution Bandwidth * Noise Power Bandwidth) We get the expression used here. Note that the fft computed above is scaled by N which results eventually in the factor dt^2/T. + +The noise power bandwidth is typically 1 Hz if no windowing/tapering function is used. + + +Compute the broadband noise level in Vrms2/Hz by summing all the power spectrum bins, excluding any peaks and the DC component, and dividing the sum by the equivalent noise bandwidth of the window + +The equivalent noise bandwidth (ENBW) of a window in the context of a power spectrum refers to a measure of the effective bandwidth of the window function applied to the signal before taking the Fourier transform. + +When you compute the power spectrum of a signal using a windowing function (e.g., Hamming window, Hann window, etc.), the window modifies the original signal by tapering its edges. This tapering reduces the spectral leakage and improves frequency resolution but also introduces a smoothing effect, which can affect the estimation of the signal's power at different frequencies. + +The equivalent noise bandwidth provides a way to quantify the effective bandwidth of the window function in terms of its impact on noise power. It represents the width of a rectangular filter that would have the same noise power as the windowed signal. + +In practical terms, when calculating the power spectrum of a signal using a window, the ENBW is used to adjust the power spectrum to account for the smoothing effect of the window. Dividing the sum of the power spectrum bins by the ENBW yields an estimate of the noise power per unit frequency bandwidth. + +ENBW is often used in the context of noise measurements or signal processing applications where accurate estimation of noise power is important. It helps ensure that the power spectrum accurately reflects the true power distribution of the signal, accounting for the effects of windowing. + + +The noise floor refers to the minimum level of signal that can be reliably distinguished from the background noise. It represents the lowest amplitude of a signal that can be detected or measured with reasonable accuracy. + +The noise floor is often defined as the RMS (Root Mean Square) value of the background noise in a given frequency band. + +To compute the noise floor value from the power spectral density (PSD) values, you typically need to analyze the portion of the PSD that corresponds to the background noise. + +""" + +def compute_autocorrelation(data): + + print("Calculating autocorrelation...") + yunbiased = data-np.mean(data) + ynorm = np.sum(yunbiased**2) + acor = np.correlate(yunbiased, yunbiased, "same")/ynorm + return acor + +def pre_process_data(data, new_sampling_rate): + # Resample the time series + # Define the new sampling rate and calculate the new time values + n_points = int((len(data[:, 0]) * (data[:, 0][1] - data[:, 0][0])) * new_sampling_rate) + t = np.linspace(data[:, 0][0], data[:, 0][-1], n_points) + x_array = resample(data[:, 1], n_points) + x = detrend(x_array - x_array.mean()) + + return np.column_stack((t, x)) + +def smoothen_data(data, window_size): + # Smooth data by doing a moving average + return np.convolve(data, np.ones(window_size, dtype=int)/window_size, mode='valid') + +def compute_psd(data, new_sampling_rate, window_size = 21): + """ + A power spectral density (PSD) takes the amplitude of the FFT, multiplies it by its complex conjugate and normalizes it to the frequency bin width. + + """ + + processed_data = pre_process_data(data, new_sampling_rate) + t, x = processed_data[:, 0], processed_data[:, 1] + + dt = t[1] - t[0] # Define the sampling interval + N = x.shape[0] # Define the total number of data points + T = N * dt # Define the total duration of the data + + # Calculate fft + print("Calculating power spectrum...") + fft_ts = np.fft.fft(x) # Compute Fourier transform of x + Sxx = 2 * (dt ** 2 / T) * (fft_ts * fft_ts.conj()) # Compute spectrum + Sxx = Sxx[:int(len(x) / 2)] # Ignore negative frequencies, we have accounted for this by the scaling factor of 2 in the previous step + + return processed_data, smoothen_data(Sxx.real, window_size) + +def compute_RIN(time, voltages, Sxx_smooth): + + dt = time[1] - time[0] # Define the sampling interval + N = voltages.shape[0] # Define the total number of data points + T = N * dt # Define the total duration of the data + df = 1 / T.max() + + # Compute the average power + average_P = np.mean(np.squared(voltages)) + + # Calculate the RIN + RIN_Sxx_smooth = 10 * np.log10(Sxx_smooth / (average_P * df)) + + return RIN_Sxx_smooth + +def find_noise_peaks(psd, faxis, freq_range, threshold): + """ + Compute the peak power in the specified frequency range. + + Parameters: + psd_values: array-like + Power spectral density values. + faxis: array-like + Frequencies corresponding to the PSD values. + freq_range: tuple + Tuple containing the start and end frequencies of the range of interest. + threshold: scalar + Threshold for peak heights + + Returns: + float: Peak power in the specified frequency range. + """ + start_freq, end_freq = freq_range + idx_start = np.argmax(faxis >= start_freq) + idx_end = np.argmax(faxis >= end_freq) + sliced_psd = psd[idx_start:idx_end] + sliced_faxis = faxis[idx_start:idx_end] + + peak_indices, _ = find_peaks(sliced_psd, height=threshold) + peak_powers = 10 * np.log10(sliced_psd[peak_indices]) + peak_frequencies = np.around(sliced_faxis[peak_indices], 2) + + return peak_powers, peak_frequencies + +def compute_noise_level(psd, resolution_bandwidth, exclude_peaks=False, faxis=None, freq_range=None, threshold=None): + """ + Compute the noise level from a power spectral density (PSD). + + Parameters: + psd: array-like + One-sided power spectral density. + resolution_bandwidth: float + Bin width + Returns: + float: Noise level (Vrms^2). + """ + + noise_level = None + # Exclude peaks from the sum + if exclude_peaks and threshold is not None: + + threshold = 10**(threshold/10) + + if freq_range is None: + peak_indices, _ = find_peaks(psd, height=threshold) + noise_level = resolution_bandwidth * np.sum([psd[i] for i in range(len(psd)) if i not in peak_indices]) + else: + start_freq, end_freq = freq_range + idx_start = np.argmax(faxis >= start_freq) + idx_end = np.argmax(faxis >= end_freq) + sliced_psd = psd[idx_start:idx_end] + peak_indices, _ = find_peaks(sliced_psd, height=threshold) + noise_level = resolution_bandwidth * np.sum([sliced_psd[i] for i in range(len(sliced_psd)) if i not in peak_indices]) + else: + + if freq_range is None: + noise_level = resolution_bandwidth * np.sum([psd[i] for i in range(len(psd))]) + else: + start_freq, end_freq = freq_range + idx_start = np.argmax(faxis >= start_freq) + idx_end = np.argmax(faxis >= end_freq) + sliced_psd = psd[idx_start:idx_end] + noise_level = resolution_bandwidth * np.sum([sliced_psd[i] for i in range(len(sliced_psd))]) + + return noise_level + +def extract_data(filepath): + + # Open the CSV file + with open(filepath, newline='') as csvfile: + # Skip the first line (header) + next(csvfile) + + # Read the CSV file using csv.reader + reader = csv.reader(csvfile) + + # Read the headers from the second line + next_header = next(reader) + string_number = next_header[-1] + + try: + time_step = int(string_number) + except ValueError: + try: + time_step = float(string_number) + except ValueError: + print("The string does not represent a valid number.") + + # Initialize lists to store the first and second values + first_column = [] + second_column = [] + + # Iterate over each row in the CSV file + for row in reader: + # Extract the first and second values from the row and convert to float + first_value = float(row[0]) + second_value = float(row[1]) + + # Append the values to their respective lists + first_column.append(first_value) + second_column.append(second_value) + + # Convert the lists into numpy arrays + time_array = np.arange(0, len(first_column)*time_step, time_step) + voltage_array = np.array(second_column) + + # Stack the arrays horizontally to form a single 2D array + data_array = np.column_stack((time_array, voltage_array)) + + return data_array + +def plot_analysis(data, data_bkg, Sxx, Sxx_bkg, data_str, bkg_str, peak_find_threshold, window_size = 21, plot_only_psd = True): + + + time, voltages = data[:, 0], data[:, 1] + time_bkg, voltages_bkg = data_bkg[:, 0], data_bkg[:, 1] + + dt = time[1] - time[0] # Define the sampling interval + N = voltages.shape[0] # Define the total number of data points + T = N * dt # Define the total duration of the data + df = 1 / T.max() + + fNQ = 1 / dt / 2 # Determine Nyquist frequency + faxis = smoothen_data(np.linspace(0,fNQ,N//2), window_size) # Construct frequency axis + + """ Noise levels in units of Vrms^2/Hz""" + # resolution_bandwidth = (1/dt)/N + # broadband_noise_level = compute_noise_level(Sxx, resolution_bandwidth) # Integrates across PSD from DC to Nyquist frequency, gives result in in units of Vrms^2/Hz + # noise_floor = np.mean(Sxx_bkg) + + freq_range = (50, max(faxis)) + threshold = 10**(peak_find_threshold/10) + peak_powers, peak_frequencies = find_noise_peaks(Sxx, faxis, freq_range, threshold) + + if plot_only_psd: + + plt.figure(figsize=(12, 8)) + + # Plot Power Spectrum in dB + plt.semilogx(faxis, 10 * np.log10(Sxx_bkg), color='orange', linewidth=0.5, label = bkg_str) + plt.semilogx(faxis, 10 * np.log10(Sxx), color='green', linewidth=2, label = data_str) + + # plt.axhline(y=10 * np.log10(broadband_noise_level), color='red', linewidth=2, linestyle='--', label=f'Broadband cumulative noise level: {10 * np.log10(broadband_noise_level):.1f} dB') + # plt.axhline(y=10 * np.log10(noise_floor), color='blue', linewidth=2, linestyle='--', label=f'Broadband noise floor: {10 * np.log10(noise_floor):.1f} dB') + + plt.plot(peak_frequencies, peak_powers, 'o', markerfacecolor='none', markeredgecolor='r', markersize=10) # Plot power against frequency as hollow circles + for freq, power in zip(peak_frequencies, peak_powers): + plt.text(freq, power, str(freq)+' Hz', verticalalignment='bottom', horizontalalignment='right') # Add text next to each circle indicating the frequency + + plt.grid(True, which="both", linestyle='-', linewidth=0.5, color='gray') # Thin lines for non-decade grid + plt.grid(True, which="both", linestyle=':', linewidth=1, color='gray', axis='x') # Thick lines for decade grid + + # Calculate the x-axis values for multiples of 10 + x_multiples_of_10 = [10**i for i in range(int(np.log10(min(faxis[faxis > 0]))), int(np.log10(max(faxis[faxis > 0]))) + 1)] + # Add thick lines for multiples of 10 + for val in x_multiples_of_10: + plt.axvline(x=val, color='black', linestyle='-', linewidth=2) # Thick lines for multiples of 10 + + f_sig_idx = np.argmax(Sxx) + # SNR_f = 10 * np.log10(Sxx[f_sig_idx] / np.sum(np.delete(Sxx, f_sig_idx))) + # SNR_f = 10 * np.log10(Sxx[f_sig_idx] / noise_floor) + + plt.xlim([min(faxis), max(faxis)]) + # plt.ylim([-100, 10]) + plt.legend(loc = 3, fontsize=12) + plt.xlabel('Frequency [Hz]', fontsize=14) + plt.ylabel('Power Spectral Density [dB/Hz]', fontsize=14) + # plt.title('SNR= %.2f dB' % (SNR_f), fontsize=14) + + # Adjust layout + plt.tight_layout() + + # Show plot + plt.show() + + else: + # Create subplots + plt.figure(figsize=(12, 8)) + gs = gridspec.GridSpec(2, 3, width_ratios=[1, 1, 1], height_ratios=[1, 1]) + + # Plot 1: Time vs Voltage + axs1 = plt.subplot(gs[0, 0:]) + axs1.plot(time_bkg, voltages_bkg, marker='o', color='orange', linewidth=0.5, ms=1, label = bkg_str) + axs1.plot(time, voltages, marker='o', color='green', linewidth=0.5, ms=1, label = data_str) + axs1.set_ylim([-0.5, 0.5]) + axs1.set_xlabel('Time (s)', fontsize=14) + axs1.set_ylabel('Voltage (V)', fontsize=14) + axs1.legend(loc = 1, fontsize=12) + axs1.autoscale(tight=True) + axs1.grid(True) + + # Plot 2: Power Spectrum in dB + axs2 = plt.subplot(gs[1, 0:]) + axs2.semilogx(faxis, 10 * np.log10(Sxx_bkg), color='orange', linewidth=0.5, label = bkg_str) + axs2.semilogx(faxis, 10 * np.log10(Sxx), color='green', linewidth=2, label = data_str) + + # axs2.axhline(y=10 * np.log10(broadband_noise_level), color='red', linewidth=2, linestyle='--', label=f'Broadband cumulative noise level: {10 * np.log10(broadband_noise_level):.1f} dB') + # axs2.axhline(y=10 * np.log10(noise_floor), color='blue', linewidth=2, linestyle='--', label=f'Broadband noise floor: {10 * np.log10(noise_floor):.1f} dB') + + axs2.plot(peak_frequencies, peak_powers, 'o', markerfacecolor='none', markeredgecolor='r', markersize=10) # Plot power against frequency as hollow circles + for freq, power in zip(peak_frequencies, peak_powers): + axs2.text(freq, power, str(freq)+' Hz', verticalalignment='bottom', horizontalalignment='right') # Add text next to each circle indicating the frequency + + axs2.grid(True, which="both", linestyle='-', linewidth=0.5, color='gray') # Thin lines for non-decade grid + axs2.grid(True, which="both", linestyle=':', linewidth=1, color='gray', axis='x') # Thick lines for decade grid + # Calculate the x-axis values for multiples of 10 + x_multiples_of_10 = [10**i for i in range(int(np.log10(min(faxis[faxis > 0]))), int(np.log10(max(faxis[faxis > 0]))) + 1)] + # Add thick lines for multiples of 10 + for val in x_multiples_of_10: + axs2.axvline(x=val, color='black', linestyle='-', linewidth=2) # Thick lines for multiples of 10 + + f_sig_idx = np.argmax(Sxx) + # SNR_f = 10 * np.log10(Sxx[f_sig_idx] / np.sum(np.delete(Sxx, f_sig_idx))) + # SNR_f = 10 * np.log10(Sxx[f_sig_idx] / noise_floor) + + axs2.set_xlim([min(faxis), max(faxis)]) + # axs2.set_ylim([-100, 10]) + axs2.legend(loc = 3, fontsize=12) + axs2.set_xlabel('Frequency [Hz]', fontsize=14) + axs2.set_ylabel('Power Spectral Density [dB/Hz]', fontsize=14) + # axs2.set_title('SNR= %.2f dB' % (SNR_f), fontsize=14) + + # Adjust layout + plt.tight_layout() + + # Show plot + plt.show() diff --git a/ULE Cavity Characterisitics/Code/ReflectanceCurve_ULECavity.m b/ULE Cavity Characterisitics/Code/ReflectanceCurve_ULECavity.m new file mode 100644 index 0000000..f6c3e42 --- /dev/null +++ b/ULE Cavity Characterisitics/Code/ReflectanceCurve_ULECavity.m @@ -0,0 +1,50 @@ +%read CSV file +filename = 'C:\Users\Karthik\Documents\Git Repos\ULE Cavity Characterisitics\ReflectivityCurve_ULECavity.csv'; +delimiter = ','; +startRow = 1; +formatSpec = '%f%f'; +fileID = fopen(filename,'r'); +dataset = textscan(fileID, formatSpec, 'Delimiter', delimiter, 'EmptyValue', NaN, 'ReturnOnError', false, 'EndOfLine', '\r\n'); +fclose(fileID); + +wavelengths = dataset{1}; +reflectance = dataset{2}; + +figure(1); +clf; + +xq = 549:1:1100; +vq1 = interp1(wavelengths(30:end),reflectance(30:end),xq); +plot(wavelengths,reflectance,'o',xq, vq1,':.'); +%scatter(wavelengths, reflectance, 'LineWidth', 2) + +R_626 = vq1(xq==626); +R_842 = vq1(xq==842); +F_626 = pi * sqrt(R_626) / (1 - R_626); +F_842 = pi * sqrt(R_842) / (1 - R_842); +hold on +plot(626, R_626, 'o', 'MarkerSize', 15, 'LineWidth', 3) +line([626 626], [0 2],'Color','red','LineStyle','--') +line([500 1100], [R_626 R_626],'Color','red','LineStyle','--') +text(630, R_626 - 0.1, sprintf('626, %.3f', R_626)) +text(630, R_626 - 0.15, sprintf('F = %.3f', F_626)) +%annotation('arrow', [0.293 0.293], [0.11 0.3]); + +plot(842, R_842, 'o', 'MarkerSize', 15, 'LineWidth', 3) +line([842 842], [0 2],'Color','red','LineStyle','--') +line([500 1100], [R_842 R_842],'Color','red','LineStyle','--') +text(846, R_842 - 0.1, sprintf('842, %.3f', R_842)) +text(846, R_842 - 0.15, sprintf('F = %.3f', F_842)) +%annotation('arrow', [0.571 0.571], [0.11 0.2]); + +hold off + + +hXLabel = xlabel('Wavelength (nm)'); +hYLabel = ylabel('?? Mirror Reflectivity R(%) ??'); +hTitle = sgtitle('??Reflectivity Curve of the ULE Cavity Mirrors??'); +set([hXLabel, hYLabel] , ... + 'FontSize' , 14 ); +set( hTitle , ... + 'FontSize' , 18 ); +grid on \ No newline at end of file diff --git a/ULE Cavity Characterisitics/Code/TransmissionCurve_ULECavity.m b/ULE Cavity Characterisitics/Code/TransmissionCurve_ULECavity.m new file mode 100644 index 0000000..9b9d5e2 --- /dev/null +++ b/ULE Cavity Characterisitics/Code/TransmissionCurve_ULECavity.m @@ -0,0 +1,94 @@ +%read CSV file +filename = 'C:\Users\Karthik\Documents\Git Repos\ULE Cavity Characterisitics\TransmissionCurve_ULECavity.csv'; +delimiter = ','; +startRow = 1; +formatSpec = '%f%f'; +fileID = fopen(filename,'r'); +dataset = textscan(fileID, formatSpec, 'Delimiter', delimiter, 'EmptyValue', NaN, 'ReturnOnError', false, 'EndOfLine', '\r\n'); +fclose(fileID); + +wavelengths = dataset{1}; +transmission = dataset{2}; + +f_h = Helper.getFigureByTag('CavityCharacteristics'); +set(groot,'CurrentFigure',f_h); +a_h = get(f_h, 'CurrentAxes'); +if ~isempty(get(a_h, 'Children')) + clf(f_h); +end +f_h.Name = 'Wavelength dependence'; +f_h.Units = 'pixels'; + +set(0,'units','pixels'); +screensize = get(0,'ScreenSize'); +f_h.Position = [[screensize(3)/30 screensize(4)/4] 1812 429]; +clf; + +W = 600:1:850; +T = interp1(wavelengths(51:149), transmission(51:149), W); + +subplot(1,3,1) +plot(wavelengths,transmission,'o', 'MarkerSize', 5); +hold on +plot(W, T,':.'); + +FSR = 1.5e+9; + +T_626 = T(W==626) * 1e-2; +R_626 = 1 - T_626; +T_842 = T(W==842) * 1e-2; +R_842 = 1 - T_842; +F_626 = pi * sqrt(R_626) / (1 - R_626); +F_842 = pi * sqrt(R_842) / (1 - R_842); +L_626 = FSR / F_626; +L_842 = FSR / F_842; + +R = 1 - (T * 1e-2); +F = pi .* sqrt(R) ./ (1 - R); +L = FSR ./ F; + +% plot(626, T_626 * 1e2, 'o', 'MarkerSize', 15, 'LineWidth', 3) +% line([626 626], [0 0.06],'Color',[0.9586 0.7372 0.2537],'LineStyle','--') +% line([500 1000], [T_626 T_626] * 1e2,'Color',[0.9586 0.7372 0.2537],'LineStyle','--') +text(630, T_626 * 1e2 - 0.002, sprintf('R @ 626 = %.5f', R_626), 'FontSize' , 10) +% text(630, T_626 * 1e2 - 0.006, sprintf('F = %.3f', F_626), 'FontSize' , 10) +% annotation('arrow', [0.293 0.293], [0.11 0.3]); + +% plot(842, T_842 * 1e2, 'o', 'MarkerSize', 15, 'LineWidth', 3) +% line([842 842], [0 0.06],'Color','red','LineStyle','--') +% line([500 1000], [T_842 T_842] * 1e2,'Color','red','LineStyle','--') +text(825, T_842 * 1e2 + 0.006, sprintf('R @ 842 = %.5f', R_842), 'FontSize' , 10) +% text(846, T_842 * 1e2 + 0.002, sprintf('F = %.3f', F_842), 'FontSize' , 10) +% annotation('arrow', [0.571 0.571], [0.11 0.2]); + +hold off + +hXLabel = xlabel('Wavelength (nm)'); +hYLabel = ylabel('Mirror Transmission T(%)'); +set([hXLabel, hYLabel] , ... + 'FontSize' , 14 ); +grid on + +subplot(1,3,2) +plot(W, F * 1e-4) +text(626, F_626 * 1e-4 + 0.2, sprintf('F @ 626 = %1.f', F_626), 'FontSize' , 10) +text(750, F_842 * 1e-4 - 0.5, sprintf('F @ 842 = %1.f', F_842), 'FontSize' , 10) +hXLabel = xlabel('Wavelength (nm)'); +hYLabel = ylabel('Finesse (x 10^{4})'); +set([hXLabel, hYLabel] , ... + 'FontSize' , 14 ); +grid on + +subplot(1,3,3) +plot(W, L * 1e-3) +text(626, L_626 * 1e-3 - 5, sprintf('L @ 626 = %1.f kHz', L_626* 1e-3), 'FontSize' , 10) +text(750, L_842 * 1e-3 + 12, sprintf('L @ 842 = %1.f kHz', L_842* 1e-3), 'FontSize' , 10) +hXLabel = xlabel('Wavelength (nm)'); +hYLabel = ylabel('Linewidth (kHz)'); +set([hXLabel, hYLabel] , ... + 'FontSize' , 14 ); +grid on + +hTitle = sgtitle('SLS ULE Cavity Characterisitics'); +set( hTitle , ... + 'FontSize' , 18 ); \ No newline at end of file