Added new script to extract correlation only in a window, modified autocorrelation script with new definition of g2 and with unnormalized angular spectral distribution

This commit is contained in:
Karthik 2025-07-08 16:50:15 +02:00
parent 47863ef02d
commit 39aa2072cf
4 changed files with 817 additions and 128 deletions

View File

@ -1,27 +1,27 @@
%% Settings %% ===== Settings =====
groupList = ["/images/MOT_3D_Camera/in_situ_absorption", "/images/ODT_1_Axis_Camera/in_situ_absorption", ... groupList = ["/images/MOT_3D_Camera/in_situ_absorption", "/images/ODT_1_Axis_Camera/in_situ_absorption", ...
"/images/ODT_2_Axis_Camera/in_situ_absorption", "/images/Horizontal_Axis_Camera/in_situ_absorption", ... "/images/ODT_2_Axis_Camera/in_situ_absorption", "/images/Horizontal_Axis_Camera/in_situ_absorption", ...
"/images/Vertical_Axis_Camera/in_situ_absorption"]; "/images/Vertical_Axis_Camera/in_situ_absorption"];
folderPath = "D:/Data - Experiment/2025/07/04/"; folderPath = "D:/Data - Experiment/2025/07/04/";
run = '0018'; run = '0016';
folderPath = strcat(folderPath, run); folderPath = strcat(folderPath, run);
cam = 5; cam = 5;
angle = 0; angle = 0;
center = [1430, 2040]; center = [1430, 2040];
span = [200, 200]; span = [200, 200];
fraction = [0.1, 0.1]; fraction = [0.1, 0.1];
pixel_size = 5.86e-6; pixel_size = 5.86e-6; % in meters
magnification = 23.94; magnification = 23.94;
removeFringes = false; removeFringes = false;
ImagingMode = 'HighIntensity'; ImagingMode = 'HighIntensity';
PulseDuration = 5e-6; % in s PulseDuration = 5e-6; % in s
% Fourier analysis settings % Fourier analysis settings
@ -42,6 +42,7 @@ Angular_WindowSize = 5;
zoom_size = 50; % Zoomed-in region around center zoom_size = 50; % Zoomed-in region around center
% Plotting and saving
% scan_parameter = 'ps_rot_mag_fin_pol_angle'; % scan_parameter = 'ps_rot_mag_fin_pol_angle';
scan_parameter = 'rot_mag_field'; scan_parameter = 'rot_mag_field';
% scan_parameter_text = 'Angle = '; % scan_parameter_text = 'Angle = ';
@ -58,6 +59,7 @@ elseif strcmp(savefileName, 'StripesToDroplets')
scan_groups = 45:-5:0; scan_groups = 45:-5:0;
end end
% Flags
skipPreprocessing = true; skipPreprocessing = true;
skipMasking = true; skipMasking = true;
skipIntensityThresholding = true; skipIntensityThresholding = true;
@ -65,7 +67,7 @@ skipBinarization = true;
skipMovieRender = true; skipMovieRender = true;
skipSaveFigures = false; skipSaveFigures = false;
%% Load and compute OD image, rotate and extract ROI for analysis %% ===== Load and compute OD image, rotate and extract ROI for analysis =====
% Get a list of all files in the folder with the desired file name pattern. % Get a list of all files in the folder with the desired file name pattern.
filePattern = fullfile(folderPath, '*.h5'); filePattern = fullfile(folderPath, '*.h5');
@ -87,7 +89,7 @@ for k = 1 : length(files)
absimages(:,:,k) = subtractBackgroundOffset(cropODImage(calculateODImage(atm_img, bkg_img, dark_img, ImagingMode, PulseDuration), center, span), fraction)'; absimages(:,:,k) = subtractBackgroundOffset(cropODImage(calculateODImage(atm_img, bkg_img, dark_img, ImagingMode, PulseDuration), center, span), fraction)';
end end
% Fringe removal %% ===== Fringe removal =====
if removeFringes if removeFringes
optrefimages = removefringesInImage(absimages, refimages); optrefimages = removefringesInImage(absimages, refimages);
@ -106,7 +108,7 @@ else
end end
end end
%% Get rotation angles %% ===== Get rotation angles =====
scan_parameter_values = zeros(1, length(files)); scan_parameter_values = zeros(1, length(files));
% Get information about the '/globals' group % Get information about the '/globals' group
@ -125,7 +127,7 @@ for k = 1 : length(files)
end end
end end
%% Unshuffle if necessary to do so %% ===== Unshuffle if necessary to do so =====
if ~skipUnshuffling if ~skipUnshuffling
n_values = length(scan_groups); n_values = length(scan_groups);
@ -162,7 +164,7 @@ if ~skipUnshuffling
od_imgs = ordered_od_imgs; od_imgs = ordered_od_imgs;
end end
%% Run Fourier analysis over images %% ===== Run Fourier analysis over images =====
fft_imgs = cell(1, nimgs); fft_imgs = cell(1, nimgs);
spectral_contrast = zeros(1, nimgs); spectral_contrast = zeros(1, nimgs);

View File

@ -1,40 +1,73 @@
%% Parameters %% ===== Settings =====
groupList = ["/images/MOT_3D_Camera/in_situ_absorption", "/images/ODT_1_Axis_Camera/in_situ_absorption", ...
"/images/ODT_2_Axis_Camera/in_situ_absorption", "/images/Horizontal_Axis_Camera/in_situ_absorption", ...
"/images/Vertical_Axis_Camera/in_situ_absorption"];
groupList = ["/images/MOT_3D_Camera/in_situ_absorption", "/images/ODT_1_Axis_Camera/in_situ_absorption", ... folderPath = "D:/Data - Experiment/2025/07/04/";
"/images/ODT_2_Axis_Camera/in_situ_absorption", "/images/Horizontal_Axis_Camera/in_situ_absorption", ...
"/images/Vertical_Axis_Camera/in_situ_absorption"];
folderPath = "//DyLabNAS/Data/TwoDGas/2025/06/23/"; run = '0016';
run = '0300'; folderPath = strcat(folderPath, run);
folderPath = strcat(folderPath, run); cam = 5;
cam = 5; angle = 0;
center = [1430, 2040];
span = [200, 200];
fraction = [0.1, 0.1];
angle = 0; pixel_size = 5.86e-6; % in meters
center = [1410, 2030]; magnification = 23.94;
span = [200, 200]; removeFringes = false;
fraction = [0.1, 0.1];
pixel_size = 5.86e-6; ImagingMode = 'HighIntensity';
removeFringes = false; PulseDuration = 5e-6; % in s
scan_parameter = 'ps_rot_mag_fin_pol_angle'; % Fourier analysis settings
% scan_parameter = 'rot_mag_field';
scan_parameter_text = 'Angle = ';
% scan_parameter_text = 'BField = ';
savefolderPath = 'D:/Results - Experiment/B2.42G/'; % Radial Spectral Distribution
savefileName = 'DropletsToStripes.mat'; theta_min = deg2rad(0);
theta_max = deg2rad(180);
N_radial_bins = 500;
Radial_Sigma = 2;
Radial_WindowSize = 5; % Choose an odd number for a centered moving average
% Angular Spectral Distribution
r_min = 10;
r_max = 20;
N_angular_bins = 180;
Angular_Threshold = 75;
Angular_Sigma = 2;
Angular_WindowSize = 5;
zoom_size = 50; % Zoomed-in region around center
% Plotting and saving
% scan_parameter = 'ps_rot_mag_fin_pol_angle';
scan_parameter = 'rot_mag_field';
% scan_parameter_text = 'Angle = ';
scan_parameter_text = 'BField = ';
savefolderPath = 'E:/Results - Experiment/B2.35G/';
savefileName = 'Droplets';
font = 'Bahnschrift'; font = 'Bahnschrift';
skipUnshuffling = true;
if strcmp(savefileName, 'DropletsToStripes')
scan_groups = 0:5:45;
elseif strcmp(savefileName, 'StripesToDroplets')
scan_groups = 45:-5:0;
end
% Flags
skipPreprocessing = true; skipPreprocessing = true;
skipMasking = true; skipMasking = true;
skipIntensityThresholding = true; skipIntensityThresholding = true;
skipBinarization = true; skipBinarization = true;
skipMovieRender = true;
skipSaveFigures = false;
%% Compute OD image, rotate and extract ROI for analysis %% ===== Load and compute OD image, rotate and extract ROI for analysis =====
% Get a list of all files in the folder with the desired file name pattern. % Get a list of all files in the folder with the desired file name pattern.
filePattern = fullfile(folderPath, '*.h5'); filePattern = fullfile(folderPath, '*.h5');
@ -53,11 +86,10 @@ for k = 1 : length(files)
dark_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/dark")), angle)); dark_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/dark")), angle));
refimages(:,:,k) = subtractBackgroundOffset(cropODImage(bkg_img, center, span), fraction)'; refimages(:,:,k) = subtractBackgroundOffset(cropODImage(bkg_img, center, span), fraction)';
absimages(:,:,k) = subtractBackgroundOffset(cropODImage(calculateODImage(atm_img, bkg_img, dark_img), center, span), fraction)'; absimages(:,:,k) = subtractBackgroundOffset(cropODImage(calculateODImage(atm_img, bkg_img, dark_img, ImagingMode, PulseDuration), center, span), fraction)';
end end
% Fringe removal %% ===== Fringe removal =====
if removeFringes if removeFringes
optrefimages = removefringesInImage(absimages, refimages); optrefimages = removefringesInImage(absimages, refimages);
@ -76,7 +108,7 @@ else
end end
end end
%% Get rotation angles %% ===== Get rotation angles =====
scan_parameter_values = zeros(1, length(files)); scan_parameter_values = zeros(1, length(files));
% Get information about the '/globals' group % Get information about the '/globals' group
@ -86,7 +118,7 @@ for k = 1 : length(files)
info = h5info(fullFileName, '/globals'); info = h5info(fullFileName, '/globals');
for i = 1:length(info.Attributes) for i = 1:length(info.Attributes)
if strcmp(info.Attributes(i).Name, scan_parameter) if strcmp(info.Attributes(i).Name, scan_parameter)
if strcmp(scan_parameter, 'rot_mag_fin_pol_angle') if strcmp(scan_parameter, 'ps_rot_mag_fin_pol_angle')
scan_parameter_values(k) = 180 - info.Attributes(i).Value; scan_parameter_values(k) = 180 - info.Attributes(i).Value;
else else
scan_parameter_values(k) = info.Attributes(i).Value; scan_parameter_values(k) = info.Attributes(i).Value;
@ -95,45 +127,58 @@ for k = 1 : length(files)
end end
end end
%% Extract g2 from experiment data %% ===== Extract g2 from experiment data =====
fft_imgs = cell(1, nimgs); fft_imgs = cell(1, nimgs);
spectral_distribution = cell(1, nimgs); spectral_distribution = cell(1, nimgs);
theta_values = cell(1, nimgs); theta_values = cell(1, nimgs);
N_bins = 32;
Threshold = 75;
Sigma = 2;
N_shots = length(od_imgs); N_shots = length(od_imgs);
% Display the cropped image % Compute FFT
for k = 1:N_shots for k = 1:N_shots
IMG = od_imgs{k}; IMG = od_imgs{k};
[IMGFFT, IMGPR] = computeFourierTransform(IMG, skipPreprocessing, skipMasking, skipIntensityThresholding, skipBinarization); [IMGFFT, IMGPR] = computeFourierTransform(IMG, skipPreprocessing, skipMasking, skipIntensityThresholding, skipBinarization);
% Calculate the x and y limits for the cropped image % Size of original image (in pixels)
y_min = center(1) - span(2) / 2; [Ny, Nx] = size(IMG);
y_max = center(1) + span(2) / 2;
x_min = center(2) - span(1) / 2;
x_max = center(2) + span(1) / 2;
% Generate x and y arrays representing the original coordinates for each pixel % Real-space pixel size in micrometers after magnification
x_range = linspace(x_min, x_max, span(1)); dx = pixel_size / magnification;
y_range = linspace(y_min, y_max, span(2)); dy = dx; % assuming square pixels
[rows, cols] = size(IMGFFT); % Real-space axes
zoom_size = 50; % Zoomed-in region around center x = ((1:Nx) - ceil(Nx/2)) * dx * 1E6;
mid_x = floor(cols/2); y = ((1:Ny) - ceil(Ny/2)) * dy * 1E6;
mid_y = floor(rows/2);
fft_imgs{k} = IMGFFT(mid_y-zoom_size:mid_y+zoom_size, mid_x-zoom_size:mid_x+zoom_size);
[theta_vals, S_theta] = computeNormalizedAngularSpectralDistribution(fft_imgs{k}, 10, 20, N_bins, Threshold, Sigma); % Reciprocal space increments (frequency domain, μm¹)
dvx = 1 / (Nx * dx);
dvy = 1 / (Ny * dy);
% Frequency axes
vx = (-floor(Nx/2):ceil(Nx/2)-1) * dvx;
vy = (-floor(Ny/2):ceil(Ny/2)-1) * dvy;
% Wavenumber axes
kx_full = 2 * pi * vx * 1E-6; % μm¹
ky_full = 2 * pi * vy * 1E-6;
% Crop FFT image around center
mid_x = floor(Nx/2);
mid_y = floor(Ny/2);
fft_imgs{k} = IMGFFT(mid_y-zoom_size:mid_y+zoom_size, mid_x-zoom_size:mid_x+zoom_size);
% Crop wavenumber axes to match fft_imgs{k}
kx = kx_full(mid_x - zoom_size : mid_x + zoom_size);
ky = ky_full(mid_y - zoom_size : mid_y + zoom_size);
[theta_vals, S_theta] = computeAngularSpectralDistribution(fft_imgs{k}, r_min, r_max, N_angular_bins, Angular_Threshold, Angular_Sigma, []);
spectral_distribution{k} = S_theta; spectral_distribution{k} = S_theta;
theta_values{k} = theta_vals; theta_values{k} = theta_vals;
end end
% Create matrix of shape (N_shots x N_bins) % Create matrix of shape (N_shots x N_angular_bins)
delta_nkr_all = zeros(N_shots, N_bins); delta_nkr_all = zeros(N_shots, N_angular_bins);
for k = 1:N_shots for k = 1:N_shots
delta_nkr_all(k, :) = spectral_distribution{k}; delta_nkr_all(k, :) = spectral_distribution{k};
end end
@ -142,26 +187,27 @@ end
[unique_scan_parameter_values, ~, idx] = unique(scan_parameter_values); [unique_scan_parameter_values, ~, idx] = unique(scan_parameter_values);
% Number of unique alpha values % Number of unique alpha values
N_alpha = length(unique_scan_parameter_values); N_alpha = length(unique_scan_parameter_values);
% Preallocate result arrays % Preallocate result arrays
g2_all = zeros(N_alpha, N_bins); g2_all = zeros(N_alpha, N_angular_bins);
g2_error_all = zeros(N_alpha, N_bins); g2_error_all = zeros(N_alpha, N_angular_bins);
% Compute g2
for i = 1:N_alpha for i = 1:N_alpha
group_idx = find(idx == i); % Indices of 20 shots for this alpha group_idx = find(idx == i);
group_data = delta_nkr_all(group_idx, :); % (20 x N_bins) array group_data = delta_nkr_all(group_idx, :);
for dtheta = 0:N_bins-1 for dtheta = 0:N_angular_bins-1
temp = zeros(length(group_idx), 1); temp = zeros(length(group_idx), 1);
for j = 1:length(group_idx) for j = 1:length(group_idx)
profile = group_data(j, :); profile = group_data(j, :);
profile_shifted = circshift(profile, -dtheta, 2); profile_shifted = circshift(profile, -dtheta, 2);
num = mean(profile .* profile_shifted); num = mean(profile .* profile_shifted);
denom = mean(profile)^2; denom = mean(profile.^2);
temp(j) = num / denom - 1; temp(j) = num / denom;
end end
g2_all(i, dtheta+1) = mean(temp); g2_all(i, dtheta+1) = mean(temp);
g2_error_all(i, dtheta+1) = std(temp) / sqrt(length(group_idx)); % Standard error g2_error_all(i, dtheta+1) = std(temp) / sqrt(length(group_idx)); % Standard error
@ -185,19 +231,25 @@ legend_entries = cell(nAlpha, 1);
for i = 1:nAlpha for i = 1:nAlpha
errorbar(theta_vals/pi, g2_all(i, :), g2_error_all(i, :), ... errorbar(theta_vals/pi, g2_all(i, :), g2_error_all(i, :), ...
'o-', 'Color', cmap(i,:), 'LineWidth', 1.2, ... 'o', 'Color', cmap(i,:), ...
'MarkerSize', 5, 'CapSize', 3); 'MarkerSize', 3, 'MarkerFaceColor', cmap(i,:), ...
legend_entries{i} = sprintf('$\\alpha = %g^\\circ$', unique_scan_parameter_values(i)); 'CapSize', 4);
if strcmp(scan_parameter, 'ps_rot_mag_fin_pol_angle')
legend_entries{i} = sprintf('$\\alpha = %g^\\circ$', unique_scan_parameter_values(i));
elseif strcmp(scan_parameter, 'rot_mag_field')
legend_entries{i} = sprintf('B = %.2f G', unique_scan_parameter_values(i));
end
end end
ylim([-1.5 3.0]); % Set y-axis limits here ylim([-1.5 3.0]); % Set y-axis limits here
set(gca, 'FontSize', 14); set(gca, 'FontSize', 14);
hXLabel = xlabel('$\delta\theta / \pi$', 'Interpreter', 'latex'); hXLabel = xlabel('$\delta\theta / \pi$', 'Interpreter', 'latex');
hYLabel = ylabel('$g^{(2)}(\delta\theta)$', 'Interpreter', 'latex'); hYLabel = ylabel('$g^{(2)}(\delta\theta)$', 'Interpreter', 'latex');
hTitle = title('Change across transition', 'Interpreter', 'tex'); % hTitle = title('Change across transition', 'Interpreter', 'tex');
legend(legend_entries, 'Interpreter', 'latex', 'Location', 'bestoutside'); legend(legend_entries, 'Interpreter', 'latex', 'Location', 'bestoutside');
set([hXLabel, hYLabel], 'FontName', font) set([hXLabel, hYLabel], 'FontName', font)
set([hXLabel, hYLabel], 'FontSize', 14) set([hXLabel, hYLabel], 'FontSize', 14)
set(hTitle, 'FontName', font, 'FontSize', 16, 'FontWeight', 'bold'); % Set font and size for title % set(hTitle, 'FontName', font, 'FontSize', 16, 'FontWeight', 'bold'); % Set font and size for title
grid on; grid on;
%% Helper Functions %% Helper Functions
@ -272,7 +324,7 @@ function [IMGFFT, IMGPR] = computeFourierTransform(I, skipPreprocessing, skipMas
end end
end end
function [theta_vals, S_theta] = computeNormalizedAngularSpectralDistribution(IMGFFT, r_min, r_max, num_bins, threshold, sigma) function [theta_vals, S_theta] = computeAngularSpectralDistribution(IMGFFT, r_min, r_max, num_bins, threshold, sigma, windowSize)
% Apply threshold to isolate strong peaks % Apply threshold to isolate strong peaks
IMGFFT(IMGFFT < threshold) = 0; IMGFFT(IMGFFT < threshold) = 0;
@ -285,42 +337,40 @@ function [theta_vals, S_theta] = computeNormalizedAngularSpectralDistribution(IM
Theta = atan2(Y - cy, X - cx); % range [-pi, pi] Theta = atan2(Y - cy, X - cx); % range [-pi, pi]
% Choose radial band % Choose radial band
radial_mask = (R >= r_min) & (R <= r_max); radial_mask = (R >= r_min) & (R <= r_max);
% Initialize the angular structure factor array % Initialize angular structure factor
S_theta = zeros(1, num_bins); % Pre-allocate for 180 angle bins S_theta = zeros(1, num_bins);
% Define the angle values for the x-axis theta_vals = linspace(0, pi, num_bins);
theta_vals = linspace(0, pi, num_bins);
% Loop through each angle bin % Loop through angle bins
for i = 1:num_bins for i = 1:num_bins
angle_start = (i-1) * pi / num_bins; angle_start = (i-1) * pi / num_bins;
angle_end = i * pi / num_bins; angle_end = i * pi / num_bins;
% Define a mask for the given angle range
angle_mask = (Theta >= angle_start & Theta < angle_end); angle_mask = (Theta >= angle_start & Theta < angle_end);
bin_mask = radial_mask & angle_mask; bin_mask = radial_mask & angle_mask;
% Extract the Fourier components for the given angle
fft_angle = IMGFFT .* bin_mask; fft_angle = IMGFFT .* bin_mask;
S_theta(i) = sum(sum(abs(fft_angle).^2));
% Integrate the Fourier components over the radius at the angle end
S_theta(i) = sum(sum(abs(fft_angle).^2)); % sum of squared magnitudes
% Smooth using either Gaussian or moving average
if exist('sigma', 'var') && ~isempty(sigma)
% Gaussian convolution
half_width = ceil(3 * sigma);
x = -half_width:half_width;
gauss_kernel = exp(-x.^2 / (2 * sigma^2));
gauss_kernel = gauss_kernel / sum(gauss_kernel);
% Circular convolution
S_theta = conv([S_theta(end-half_width+1:end), S_theta, S_theta(1:half_width)], ...
gauss_kernel, 'same');
S_theta = S_theta(half_width+1:end-half_width);
elseif exist('windowSize', 'var') && ~isempty(windowSize)
% Moving average via convolution (circular)
pad = floor(windowSize / 2);
kernel = ones(1, windowSize) / windowSize;
S_theta = conv([S_theta(end-pad+1:end), S_theta, S_theta(1:pad)], kernel, 'same');
S_theta = S_theta(pad+1:end-pad);
end end
% Create a 1D Gaussian kernel
half_width = ceil(3 * sigma);
x = -half_width:half_width;
gauss_kernel = exp(-x.^2 / (2 * sigma^2));
gauss_kernel = gauss_kernel / sum(gauss_kernel); % normalize
% Apply convolution (circular padding to preserve periodicity)
S_theta = conv([S_theta(end-half_width+1:end), S_theta, S_theta(1:half_width)], gauss_kernel, 'same');
S_theta = S_theta(half_width+1:end-half_width); % crop back to original size
% Normalize to 1
S_theta = S_theta / max(S_theta);
end end
function ret = getBkgOffsetFromCorners(img, x_fraction, y_fraction) function ret = getBkgOffsetFromCorners(img, x_fraction, y_fraction)
@ -371,28 +421,51 @@ function ret = cropODImage(img, center, span)
ret = img(y_start:y_end, x_start:x_end); ret = img(y_start:y_end, x_start:x_end);
end end
function ret = calculateODImage(imageAtom, imageBackground, imageDark) function imageOD = calculateODImage(imageAtom, imageBackground, imageDark, mode, exposureTime)
% Calculate the OD image for absorption imaging. %CALCULATEODIMAGE Calculates the optical density (OD) image for absorption imaging.
% :param imageAtom: The image with atoms %
% :type imageAtom: numpy array % imageOD = calculateODImage(imageAtom, imageBackground, imageDark, mode, exposureTime)
% :param imageBackground: The image without atoms %
% :type imageBackground: numpy array % Inputs:
% :param imageDark: The image without light % imageAtom - Image with atoms
% :type imageDark: numpy array % imageBackground - Image without atoms
% :return: The OD images % imageDark - Image without light
% :rtype: numpy array % mode - 'LowIntensity' (default) or 'HighIntensity'
% exposureTime - Required only for 'HighIntensity' [in seconds]
%
% Output:
% imageOD - Computed OD image
%
arguments
imageAtom (:,:) {mustBeNumeric}
imageBackground (:,:) {mustBeNumeric}
imageDark (:,:) {mustBeNumeric}
mode char {mustBeMember(mode, {'LowIntensity', 'HighIntensity'})} = 'LowIntensity'
exposureTime double = NaN
end
% Compute numerator and denominator
numerator = imageBackground - imageDark; numerator = imageBackground - imageDark;
denominator = imageAtom - imageDark; denominator = imageAtom - imageDark;
% Avoid division by zero
numerator(numerator == 0) = 1; numerator(numerator == 0) = 1;
denominator(denominator == 0) = 1; denominator(denominator == 0) = 1;
ret = -log(double(abs(denominator ./ numerator)));
if numel(ret) == 1 % Calculate OD based on mode
ret = ret(1); switch mode
case 'LowIntensity'
imageOD = -log(abs(denominator ./ numerator));
case 'HighIntensity'
if isnan(exposureTime)
error('Exposure time must be provided for HighIntensity mode.');
end
imageOD = abs(denominator ./ numerator);
imageOD = -log(imageOD) + (numerator - denominator) ./ (7000 * (exposureTime / 5e-6));
end end
end end
function [optrefimages] = removefringesInImage(absimages, refimages, bgmask) function [optrefimages] = removefringesInImage(absimages, refimages, bgmask)
@ -464,5 +537,4 @@ function [optrefimages] = removefringesInImage(absimages, refimages, bgmask)
% Compute optimised reference image % Compute optimised reference image
optrefimages(:,:,j)=reshape(R*c,[ydim xdim]); optrefimages(:,:,j)=reshape(R*c,[ydim xdim]);
end end
end end

View File

@ -0,0 +1,615 @@
%% ===== Settings =====
groupList = ["/images/MOT_3D_Camera/in_situ_absorption", "/images/ODT_1_Axis_Camera/in_situ_absorption", ...
"/images/ODT_2_Axis_Camera/in_situ_absorption", "/images/Horizontal_Axis_Camera/in_situ_absorption", ...
"/images/Vertical_Axis_Camera/in_situ_absorption"];
folderPath = "D:/Data - Experiment/2025/07/04/";
run = '0016';
folderPath = strcat(folderPath, run);
cam = 5;
angle = 0;
center = [1430, 2040];
span = [200, 200];
fraction = [0.1, 0.1];
pixel_size = 5.86e-6; % in meters
magnification = 23.94;
removeFringes = false;
ImagingMode = 'HighIntensity';
PulseDuration = 5e-6; % in s
% Fourier analysis settings
% Radial Spectral Distribution
theta_min = deg2rad(0);
theta_max = deg2rad(180);
N_radial_bins = 500;
Radial_Sigma = 2;
Radial_WindowSize = 5; % Choose an odd number for a centered moving average
% Angular Spectral Distribution
r_min = 10;
r_max = 20;
N_angular_bins = 180;
Angular_Threshold = 75;
Angular_Sigma = 2;
Angular_WindowSize = 5;
zoom_size = 50; % Zoomed-in region around center
% Plotting and saving
% scan_parameter = 'ps_rot_mag_fin_pol_angle';
scan_parameter = 'rot_mag_field';
% scan_parameter_text = 'Angle = ';
scan_parameter_text = 'BField = ';
savefolderPath = 'E:/Results - Experiment/B2.35G/';
savefileName = 'Droplets';
font = 'Bahnschrift';
skipUnshuffling = true;
if strcmp(savefileName, 'DropletsToStripes')
scan_groups = 0:5:45;
elseif strcmp(savefileName, 'StripesToDroplets')
scan_groups = 45:-5:0;
end
% Flags
skipPreprocessing = true;
skipMasking = true;
skipIntensityThresholding = true;
skipBinarization = true;
skipMovieRender = true;
skipSaveFigures = false;
%% ===== Load and compute OD image, rotate and extract ROI for analysis =====
% Get a list of all files in the folder with the desired file name pattern.
filePattern = fullfile(folderPath, '*.h5');
files = dir(filePattern);
refimages = zeros(span(1) + 1, span(2) + 1, length(files));
absimages = zeros(span(1) + 1, span(2) + 1, length(files));
for k = 1 : length(files)
baseFileName = files(k).name;
fullFileName = fullfile(files(k).folder, baseFileName);
fprintf(1, 'Now reading %s\n', fullFileName);
atm_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/atoms")), angle));
bkg_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/background")), angle));
dark_img = double(imrotate(h5read(fullFileName, append(groupList(cam), "/dark")), angle));
refimages(:,:,k) = subtractBackgroundOffset(cropODImage(bkg_img, center, span), fraction)';
absimages(:,:,k) = subtractBackgroundOffset(cropODImage(calculateODImage(atm_img, bkg_img, dark_img, ImagingMode, PulseDuration), center, span), fraction)';
end
%% ===== Fringe removal =====
if removeFringes
optrefimages = removefringesInImage(absimages, refimages);
absimages_fringe_removed = absimages(:, :, :) - optrefimages(:, :, :);
nimgs = size(absimages_fringe_removed,3);
od_imgs = cell(1, nimgs);
for i = 1:nimgs
od_imgs{i} = absimages_fringe_removed(:, :, i);
end
else
nimgs = size(absimages(:, :, :),3);
od_imgs = cell(1, nimgs);
for i = 1:nimgs
od_imgs{i} = absimages(:, :, i);
end
end
%% ===== Get rotation angles =====
scan_parameter_values = zeros(1, length(files));
% Get information about the '/globals' group
for k = 1 : length(files)
baseFileName = files(k).name;
fullFileName = fullfile(files(k).folder, baseFileName);
info = h5info(fullFileName, '/globals');
for i = 1:length(info.Attributes)
if strcmp(info.Attributes(i).Name, scan_parameter)
if strcmp(scan_parameter, 'ps_rot_mag_fin_pol_angle')
scan_parameter_values(k) = 180 - info.Attributes(i).Value;
else
scan_parameter_values(k) = info.Attributes(i).Value;
end
end
end
end
%% ===== Correlation of a single (highest) peak with a possible peak between 50-70 degrees from experiment data =====
fft_imgs = cell(1, nimgs);
spectral_distribution = cell(1, nimgs);
theta_values = cell(1, nimgs);
N_shots = length(od_imgs);
% Compute FFT
for k = 1:N_shots
IMG = od_imgs{k};
[IMGFFT, IMGPR] = computeFourierTransform(IMG, skipPreprocessing, skipMasking, skipIntensityThresholding, skipBinarization);
% Size of original image (in pixels)
[Ny, Nx] = size(IMG);
% Real-space pixel size in micrometers after magnification
dx = pixel_size / magnification;
dy = dx; % assuming square pixels
% Real-space axes
x = ((1:Nx) - ceil(Nx/2)) * dx * 1E6;
y = ((1:Ny) - ceil(Ny/2)) * dy * 1E6;
% Reciprocal space increments (frequency domain, μm¹)
dvx = 1 / (Nx * dx);
dvy = 1 / (Ny * dy);
% Frequency axes
vx = (-floor(Nx/2):ceil(Nx/2)-1) * dvx;
vy = (-floor(Ny/2):ceil(Ny/2)-1) * dvy;
% Wavenumber axes
kx_full = 2 * pi * vx * 1E-6; % μm¹
ky_full = 2 * pi * vy * 1E-6;
% Crop FFT image around center
mid_x = floor(Nx/2);
mid_y = floor(Ny/2);
fft_imgs{k} = IMGFFT(mid_y-zoom_size:mid_y+zoom_size, mid_x-zoom_size:mid_x+zoom_size);
% Crop wavenumber axes to match fft_imgs{k}
kx = kx_full(mid_x - zoom_size : mid_x + zoom_size);
ky = ky_full(mid_y - zoom_size : mid_y + zoom_size);
[theta_vals, S_theta] = computeAngularSpectralDistribution(fft_imgs{k}, r_min, r_max, N_angular_bins, Angular_Threshold, Angular_Sigma, []);
spectral_distribution{k} = S_theta;
theta_values{k} = theta_vals;
end
% Create matrix of shape (N_shots x N_angular_bins)
delta_nkr_all = zeros(N_shots, N_angular_bins);
for k = 1:N_shots
delta_nkr_all(k, :) = spectral_distribution{k};
end
% Grouping by scan parameter value (e.g., alpha)
[unique_scan_parameter_values, ~, idx] = unique(scan_parameter_values);
% Number of unique alpha values
N_params = length(unique_scan_parameter_values);
% Define angular range and bins
angle_range = 180; % total angular span of the profile
angle_per_bin = angle_range / N_angular_bins;
max_peak_angle = 60;
max_peak_bin = round(max_peak_angle / angle_per_bin);
window_size = 10;
angle_threshold = 100;
ref_peak_angles = [];
angle_at_max_g2 = [];
g2_values = [];
for i = 1:N_params
group_idx = find(idx == i);
group_data = delta_nkr_all(group_idx, :);
for j = 1:size(group_data, 1)
profile = group_data(j, :);
% Restrict search for peak only in 0° to 90°
restricted_profile = profile(1:max_peak_bin);
[~, peak_idx_rel] = max(restricted_profile);
% Convert relative peak index to global index in profile
peak_idx = peak_idx_rel;
peak_angle = (peak_idx - 1) * angle_per_bin; % zero-based bin index to angle
% Determine shift direction based on peak angle
if peak_angle < angle_threshold
offsets = round(50 / angle_per_bin) : round(70 / angle_per_bin);
else
offsets = -round(70 / angle_per_bin) : -round(50 / angle_per_bin);
end
% Reference window around largest peak
ref_window = mod((peak_idx - window_size):(peak_idx + window_size) - 1, N_angular_bins) + 1;
ref = profile(ref_window);
% Store reference peak angle
ref_peak_angles(end+1) = peak_angle;
correlations = zeros(size(offsets));
angles = zeros(size(offsets));
for k = 1:length(offsets)
shifted_idx = mod(peak_idx + offsets(k) - 1, N_angular_bins) + 1;
sec_window = mod((shifted_idx - window_size):(shifted_idx + window_size) - 1, N_angular_bins) + 1;
sec = profile(sec_window);
% Calculate g2 correlation
num = mean(ref .* sec);
denom = mean(ref.^2);
g2 = num / denom;
correlations(k) = g2;
% Compute angle for this shifted window (map to 0-180 degrees)
angle_val = mod((peak_idx - 1 + offsets(k)) * angle_per_bin, angle_range);
angles(k) = angle_val;
end
[max_corr, max_idx] = max(correlations);
g2_values(end+1) = max_corr;
angle_at_max_g2(end+1) = angles(max_idx);
end
end
% Plot histograms within 0-180 degrees only
figure(1);
hold on;
bin_edges = 0:10:180;
h1 = histogram(ref_peak_angles, 'BinEdges', bin_edges, ...
'FaceColor', [0.3 0.7 0.9], 'EdgeColor', 'none', 'FaceAlpha', 0.6);
h2 = histogram(angle_at_max_g2, 'BinEdges', bin_edges, ...
'FaceColor', [0.9 0.4 0.4], 'EdgeColor', 'none', 'FaceAlpha', 0.6);
h1.Normalization = 'probability';
h2.Normalization = 'probability';
xlabel('Angle (degrees)', 'FontSize', 12);
ylabel('Probability', 'FontSize', 12);
legend({'Reference Peak Angle', 'Angle at Max g'}, 'FontSize', 12);
title('Comparison of Reference Peak and Max g Angles', 'FontSize', 14);
grid on;
xlim([0 180]);
hold off;
% Assume ref_peak_angles and angle_at_max_g2 are row or column vectors of angles in [0,180]
% Define fine angle grid for KDE evaluation
angle_grid = linspace(0, 180, 1000);
% KDE for reference peak angles
[f_ref, xi_ref] = ksdensity(ref_peak_angles, angle_grid, 'Bandwidth', 5);
% KDE for max g2 angles
[f_g2, xi_g2] = ksdensity(angle_at_max_g2, angle_grid, 'Bandwidth', 5);
% Plot KDEs
figure(2);
plot(xi_ref, f_ref, 'LineWidth', 2, 'DisplayName', 'Reference Peak Angles');
hold on;
plot(xi_g2, f_g2, 'LineWidth', 2, 'DisplayName', 'Max g_2 Angles');
xlabel('Angle (degrees)');
ylabel('Probability Density');
title('KDE of Angle Distributions');
legend;
grid on;
% Find modes (angle at max KDE value)
[~, mode_idx_ref] = max(f_ref);
mode_ref = xi_ref(mode_idx_ref);
[~, mode_idx_g2] = max(f_g2);
mode_g2 = xi_g2(mode_idx_g2);
% Calculate difference in mode
mode_diff = abs(mode_ref - mode_g2);
fprintf('Mode difference between distributions: %.2f degrees\n', mode_diff);
% Add vertical dashed lines at mode positions
yl = ylim; % get y-axis limits for text positioning
% Reference peak mode line and label
xline(mode_ref, 'k--', 'LineWidth', 1.5, 'DisplayName', sprintf('Ref Mode: %.1f°', mode_ref));
text(mode_ref, yl(2)*0.9, sprintf('%.1f°', mode_ref), 'HorizontalAlignment', 'center', 'VerticalAlignment', 'bottom', 'FontSize', 12, 'Color', 'k');
% Max g2 mode line and label
xline(mode_g2, 'r--', 'LineWidth', 1.5, 'DisplayName', sprintf('g_2 Mode: %.1f°', mode_g2));
text(mode_g2, yl(2)*0.75, sprintf('%.1f°', mode_g2), 'HorizontalAlignment', 'center', 'VerticalAlignment', 'bottom', 'FontSize', 12, 'Color', 'r');
%% Helper Functions
function [IMGFFT, IMGPR] = computeFourierTransform(I, skipPreprocessing, skipMasking, skipIntensityThresholding, skipBinarization)
% computeFourierSpectrum - Computes the 2D Fourier power spectrum
% of binarized and enhanced lattice image features, with optional central mask.
%
% Inputs:
% I - Grayscale or RGB image matrix
%
% Output:
% F_mag - 2D Fourier power spectrum (shifted)
if ~skipPreprocessing
% Preprocessing: Denoise
filtered = imgaussfilt(I, 10);
IMGPR = I - filtered; % adjust sigma as needed
else
IMGPR = I;
end
if ~skipMasking
[rows, cols] = size(IMGPR);
[X, Y] = meshgrid(1:cols, 1:rows);
% Elliptical mask parameters
cx = cols / 2;
cy = rows / 2;
% Shifted coordinates
x = X - cx;
y = Y - cy;
% Ellipse semi-axes
rx = 0.4 * cols;
ry = 0.2 * rows;
% Rotation angle in degrees -> radians
theta_deg = 30; % Adjust as needed
theta = deg2rad(theta_deg);
% Rotated ellipse equation
cos_t = cos(theta);
sin_t = sin(theta);
x_rot = (x * cos_t + y * sin_t);
y_rot = (-x * sin_t + y * cos_t);
ellipseMask = (x_rot.^2) / rx^2 + (y_rot.^2) / ry^2 <= 1;
% Apply cutout mask
IMGPR = IMGPR .* ellipseMask;
end
if ~skipIntensityThresholding
% Apply global intensity threshold mask
intensity_thresh = 0.20;
intensity_mask = IMGPR > intensity_thresh;
IMGPR = IMGPR .* intensity_mask;
end
if ~skipBinarization
% Adaptive binarization and cleanup
IMGPR = imbinarize(IMGPR, 'adaptive', 'Sensitivity', 0.0);
IMGPR = imdilate(IMGPR, strel('disk', 2));
IMGPR = imerode(IMGPR, strel('disk', 1));
IMGPR = imfill(IMGPR, 'holes');
F = fft2(double(IMGPR)); % Compute 2D Fourier Transform
IMGFFT = abs(fftshift(F))'; % Shift zero frequency to center
else
F = fft2(double(IMGPR)); % Compute 2D Fourier Transform
IMGFFT = abs(fftshift(F))'; % Shift zero frequency to center
end
end
function [theta_vals, S_theta] = computeAngularSpectralDistribution(IMGFFT, r_min, r_max, num_bins, threshold, sigma, windowSize)
% Apply threshold to isolate strong peaks
IMGFFT(IMGFFT < threshold) = 0;
% Prepare polar coordinates
[ny, nx] = size(IMGFFT);
[X, Y] = meshgrid(1:nx, 1:ny);
cx = ceil(nx/2);
cy = ceil(ny/2);
R = sqrt((X - cx).^2 + (Y - cy).^2);
Theta = atan2(Y - cy, X - cx); % range [-pi, pi]
% Choose radial band
radial_mask = (R >= r_min) & (R <= r_max);
% Initialize angular structure factor
S_theta = zeros(1, num_bins);
theta_vals = linspace(0, pi, num_bins);
% Loop through angle bins
for i = 1:num_bins
angle_start = (i-1) * pi / num_bins;
angle_end = i * pi / num_bins;
angle_mask = (Theta >= angle_start & Theta < angle_end);
bin_mask = radial_mask & angle_mask;
fft_angle = IMGFFT .* bin_mask;
S_theta(i) = sum(sum(abs(fft_angle).^2));
end
% Smooth using either Gaussian or moving average
if exist('sigma', 'var') && ~isempty(sigma)
% Gaussian convolution
half_width = ceil(3 * sigma);
x = -half_width:half_width;
gauss_kernel = exp(-x.^2 / (2 * sigma^2));
gauss_kernel = gauss_kernel / sum(gauss_kernel);
% Circular convolution
S_theta = conv([S_theta(end-half_width+1:end), S_theta, S_theta(1:half_width)], ...
gauss_kernel, 'same');
S_theta = S_theta(half_width+1:end-half_width);
elseif exist('windowSize', 'var') && ~isempty(windowSize)
% Moving average via convolution (circular)
pad = floor(windowSize / 2);
kernel = ones(1, windowSize) / windowSize;
S_theta = conv([S_theta(end-pad+1:end), S_theta, S_theta(1:pad)], kernel, 'same');
S_theta = S_theta(pad+1:end-pad);
end
end
function ret = getBkgOffsetFromCorners(img, x_fraction, y_fraction)
% image must be a 2D numerical array
[dim1, dim2] = size(img);
s1 = img(1:round(dim1 * y_fraction), 1:round(dim2 * x_fraction));
s2 = img(1:round(dim1 * y_fraction), round(dim2 - dim2 * x_fraction):dim2);
s3 = img(round(dim1 - dim1 * y_fraction):dim1, 1:round(dim2 * x_fraction));
s4 = img(round(dim1 - dim1 * y_fraction):dim1, round(dim2 - dim2 * x_fraction):dim2);
ret = mean([mean(s1(:)), mean(s2(:)), mean(s3(:)), mean(s4(:))]);
end
function ret = subtractBackgroundOffset(img, fraction)
% Remove the background from the image.
% :param dataArray: The image
% :type dataArray: xarray DataArray
% :param x_fraction: The fraction of the pixels used in x axis
% :type x_fraction: float
% :param y_fraction: The fraction of the pixels used in y axis
% :type y_fraction: float
% :return: The image after removing background
% :rtype: xarray DataArray
x_fraction = fraction(1);
y_fraction = fraction(2);
offset = getBkgOffsetFromCorners(img, x_fraction, y_fraction);
ret = img - offset;
end
function ret = cropODImage(img, center, span)
% Crop the image according to the region of interest (ROI).
% :param dataSet: The images
% :type dataSet: xarray DataArray or DataSet
% :param center: The center of region of interest (ROI)
% :type center: tuple
% :param span: The span of region of interest (ROI)
% :type span: tuple
% :return: The cropped images
% :rtype: xarray DataArray or DataSet
x_start = floor(center(1) - span(1) / 2);
x_end = floor(center(1) + span(1) / 2);
y_start = floor(center(2) - span(2) / 2);
y_end = floor(center(2) + span(2) / 2);
ret = img(y_start:y_end, x_start:x_end);
end
function imageOD = calculateODImage(imageAtom, imageBackground, imageDark, mode, exposureTime)
%CALCULATEODIMAGE Calculates the optical density (OD) image for absorption imaging.
%
% imageOD = calculateODImage(imageAtom, imageBackground, imageDark, mode, exposureTime)
%
% Inputs:
% imageAtom - Image with atoms
% imageBackground - Image without atoms
% imageDark - Image without light
% mode - 'LowIntensity' (default) or 'HighIntensity'
% exposureTime - Required only for 'HighIntensity' [in seconds]
%
% Output:
% imageOD - Computed OD image
%
arguments
imageAtom (:,:) {mustBeNumeric}
imageBackground (:,:) {mustBeNumeric}
imageDark (:,:) {mustBeNumeric}
mode char {mustBeMember(mode, {'LowIntensity', 'HighIntensity'})} = 'LowIntensity'
exposureTime double = NaN
end
% Compute numerator and denominator
numerator = imageBackground - imageDark;
denominator = imageAtom - imageDark;
% Avoid division by zero
numerator(numerator == 0) = 1;
denominator(denominator == 0) = 1;
% Calculate OD based on mode
switch mode
case 'LowIntensity'
imageOD = -log(abs(denominator ./ numerator));
case 'HighIntensity'
if isnan(exposureTime)
error('Exposure time must be provided for HighIntensity mode.');
end
imageOD = abs(denominator ./ numerator);
imageOD = -log(imageOD) + (numerator - denominator) ./ (7000 * (exposureTime / 5e-6));
end
end
function [optrefimages] = removefringesInImage(absimages, refimages, bgmask)
% removefringesInImage - Fringe removal and noise reduction from absorption images.
% Creates an optimal reference image for each absorption image in a set as
% a linear combination of reference images, with coefficients chosen to
% minimize the least-squares residuals between each absorption image and
% the optimal reference image. The coefficients are obtained by solving a
% linear set of equations using matrix inverse by LU decomposition.
%
% Application of the algorithm is described in C. F. Ockeloen et al, Improved
% detection of small atom numbers through image processing, arXiv:1007.2136 (2010).
%
% Syntax:
% [optrefimages] = removefringesInImage(absimages,refimages,bgmask);
%
% Required inputs:
% absimages - Absorption image data,
% typically 16 bit grayscale images
% refimages - Raw reference image data
% absimages and refimages are both cell arrays containing
% 2D array data. The number of refimages can differ from the
% number of absimages.
%
% Optional inputs:
% bgmask - Array specifying background region used,
% 1=background, 0=data. Defaults to all ones.
% Outputs:
% optrefimages - Cell array of optimal reference images,
% equal in size to absimages.
%
% Dependencies: none
%
% Authors: Shannon Whitlock, Caspar Ockeloen
% Reference: C. F. Ockeloen, A. F. Tauschinsky, R. J. C. Spreeuw, and
% S. Whitlock, Improved detection of small atom numbers through
% image processing, arXiv:1007.2136
% Email:
% May 2009; Last revision: 11 August 2010
% Process inputs
% Set variables, and flatten absorption and reference images
nimgs = size(absimages,3);
nimgsR = size(refimages,3);
xdim = size(absimages(:,:,1),2);
ydim = size(absimages(:,:,1),1);
R = single(reshape(refimages,xdim*ydim,nimgsR));
A = single(reshape(absimages,xdim*ydim,nimgs));
optrefimages=zeros(size(absimages)); % preallocate
if not(exist('bgmask','var')); bgmask=ones(ydim,xdim); end
k = find(bgmask(:)==1); % Index k specifying background region
% Ensure there are no duplicate reference images
% R=unique(R','rows')'; % comment this line if you run out of memory
% Decompose B = R*R' using singular value or LU decomposition
[L,U,p] = lu(R(k,:)'*R(k,:),'vector'); % LU decomposition
for j=1:nimgs
b=R(k,:)'*A(k,j);
% Obtain coefficients c which minimise least-square residuals
lower.LT = true; upper.UT = true;
c = linsolve(U,linsolve(L,b(p,:),lower),upper);
% Compute optimised reference image
optrefimages(:,:,j)=reshape(R*c,[ydim xdim]);
end
end