Calculations/ODT Calculator/ODTCalculations.ipynb

1306 lines
1.1 MiB
Plaintext
Raw Normal View History

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "a4246751",
"metadata": {},
"outputs": [],
"source": [
"from Calculator import *\n",
"from Potentials import *\n",
"from Helpers import *\n",
"from Plotter import *\n",
"# %matplotlib notebook"
]
},
{
"cell_type": "markdown",
"id": "c68468e4",
"metadata": {},
"source": [
"## Plot ideal trap potential resulting for given parameters only"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "38c770ac",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\Karthik\\anaconda3\\envs\\Py39VEnv\\lib\\site-packages\\scipy\\optimize\\_minpack_py.py:1010: OptimizeWarning: Covariance of the parameters could not be estimated\n",
" warnings.warn('Covariance of the parameters could not be estimated',\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA3kAAAKyCAYAAABoqBcWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADRzUlEQVR4nOzdd3xV9eH/8de52XtvyCBhg4KAMlRABVFr1fpta62D1tH+1NYW21q6HK3a1tHdfmv1q7W12trWuiu4F8oQkB0SSAjZi+xxc+/5/XFuIpGVQHLPHe/n45HHXSfhnUMIeefzOZ+PYZqmiYiIiIiIiAQEh90BREREREREZOSo5ImIiIiIiAQQlTwREREREZEAopInIiIiIiISQFTyREREREREAohKnoiIiIiISABRyRMREREREQkgKnkiIiIiIiIBRCVPREREREQkgKjkiYiIiIiIBJCgLnm///3vKSgoIDIyklmzZvH222/bHUlEREREROSEBG3J+/vf/843vvENvv/977Nx40bOOOMMzjvvPPbt22d3NBERERERkeNmmKZp2h3CDqeddhqnnHIKf/jDHwaemzx5MhdffDH33HOPjclERERERESOX1CO5PX29rJhwwaWLl066PmlS5fy3nvv2ZRKRERERETkxIXaHcAODQ0NuFwuMjIyBj2fkZFBTU3NYd+np6eHnp6egcdut5umpiZSUlIwDGNU84qIiIiIiJimSVtbG9nZ2TgcRx6vC8qS1++T5cw0zSMWtnvuuYc77rjDG7FERERERESOqKKigjFjxhzx9aAseampqYSEhBwyaldXV3fI6F6/lStXsmLFioHHLS0t5ObmsnfvXuLi4kY171A4nU5ef/11Fi9eTFhYmN1xAprOtcU0TXpdJr1OF919brr7XPQ63WQlRhIdbn1r2V3bxqb9LbR29dHW00dbdx/tPU7aul0c6HJyx6cmMT7D+vfz6JpyfvVq6RH/vF98bjqLJqQBUNPaTV1rD0XpMQN/lpwYfV17j8619wTkua7bTug/rsDobsZMm0LfZ/4P4g7/s8toONDZy87adnbWtOFymVxzev7Aa0t+8TYNHc7Dvl9uchTP3DBv4PFP/7uLtq4+EmPCiI8MIzYyhOjwEKLDQkmKCePU/OSBY5s7egl1GISFOggLcRDi0AyqgPza9lG+dq7b2tooKCg4Zv8Iyp+OwsPDmTVrFqtXr+aSSy4ZeH716tVcdNFFh32fiIgIIiIiDnk+OTmZ+Pj4Ucs6VE6nk+joaFJSUnziCzCQ6VwPXUpKCnOnDO3YL54Rw5wJY6lr62F/cyf7Gjspa+xgd3UzbU6DqQXZpKRY/9ae2lrKT1/aicOASZnxzM5PYnZ+MrPzkshOjBrFzyhw6evae3SuvSfgznX1R/DslWAegIJZcOXTEJU4qn9kcW0bH+xp5P29TWzad4DKA10Dr2UnRPKdi1IGHp85NZfi8kpmTcwjOymGrIRIMhMiyUqIJCM+ksiwkIFj7/3i/CFnSEk59jHBJuC+tn2Yr53r/gzHulwsKEsewIoVK7jyyiuZPXs28+bN48EHH2Tfvn189atftTuaSFDK9PwwcDCn08mLL77IonOWEhv18Wtu0yQ1NoKG9h62V7eyvbqVx9aUA5CXEs3DV8+hKD3Wq/lFREZV3Q547NPQ1Qw5s+HKf0Nkwoj/MW3dTuIiP/5B9tv//IjNFQcGHZOXEs207ASm5sQPutTl3v+ZzosvVnD++ZN94odhkWAWtCXv85//PI2Njdx5551UV1czbdo0XnzxRfLy8uyOJiKfEB0eOmh6zg2LirhhURG1rd2sL2tmfXkT68ua2V7dSm1rN2OSPh7Ne/6jKtwmnDM5XVM7RcQ/HaiAv3xm1ApedUsXz26q4r/bathR3cqHP1wy8P1y4YQ04iJCOa0gmVn5SUzLSSA+UgVOxNcF9U88N9xwAzfccIPdMUTkOGXER3LBSVlccFIWAO09feyqaRuYEmSaJg+sKmZPQwfR4SGcMzmDz80ey4IirYorIn6iswn++hloq4LUifDFp0ak4HX29vH85mqe3ljJ+3sbOXjX5I37DrCgKBWAFUsmnPCfJSLeF9QlT0QCS2xEKLPykgYe97rcnD89i2c2V1LR1MWzm6t4dnMV41JjuGJuHpfOGkNClH4jLSI+ytkFf/scNBRDfI41ghedfOz3O4ZXd9Tyjb9voq27b+C5U/OTuXBGNksmZxwydV5E/I9KnogErIjQEL517kRuWTqBTRUH+PeHlTy9sZI9DR3c+fx21pc38fsvzrI7pojIoUwTnv067F8HkYnWIisJR14u/VicLjdhIdaeWhMy4ujo6SM/JZrPzh7LRTOyGZMUPULBRcQXqOSJSMAzDIOZuUnMzE3i1vMm8fTGSv6ypozrzywcOKal04nT7SY19tBVdEVEvO69X8OWf4ARAp//C6RNPK4Ps7WyhV++spuwEIM/XGH9UmtscjT/uXEB07ITcGg7ApGApJInIkElNiKUK+fmccVpuYOuy/vFK8X8c8N+blxcxJcW5A9a6ltExKt2r4bVt1n3z/sZFJw57A9R09LNz/+7k39vrAQgxGFQ3dJFVoK1MNVJYxJHKq2I+CCVPBEJSgcXvD6Xm837D9De08fP/ruTv75fzh2fnso5U7y3wbCICADNZfDPawATTrkK5lw7rHfv6XPxp7f28LvXS+lyugC4eEY2Xzt7/EDBE5HAp5InIkEvNMTBv746n/9squTn/91F5YEurn1sPReenM1tF07RFE4R8Q6X0yp4PS0wZg6cfz8MYyXgvQ0dfOUv6ymubQdgVl4St104RaN2IkHIYXcAERFf4HAYfOaUMbz2rYV8ZeE4HAY8t7mKJQ+8yXslDXbHE5Fg8NqPoXK9tUXCpQ9DaPiw3j05JpzWrj5SYsL55edn8M+vzlPBEwlSGskTETlIdHgoK8+bzAXTs/jOPz+itrWbgrQYu2OJSKAreQXe/ZV1/9O/haS8Ib1bQ3vPwGyDhKgwHrxqFmOSokmOGV5BFJHAopE8EZHDOGlMIs997XT+/pV5g65jae122phKRAJSRyM8/VXr/pxrYcqnh/Ru/91aw+L73uAf6ysGnjtpTKIKnoio5ImIHElYiIMJGXEDj1/eVsOZP3+dd3Zr+qaIjKCXvg0d9ZA2GZbedczDTdPkgVW7+OpfN9DW3cczmyoxTdMLQUXEX6jkiYgMgWma/PX9cg50Orn6kbU8tqbM7kgiEgi2Pwtb/2Xth3fx7yEs8qiHdztdfP3JTfz6tRIArj29gEe/dOqgFYNFRFTyRESGwDAM/nTVbD4zMweX2+RHz2zj7hd36LfnInL8OhrhhRXW/QU3Q84pRz38QGcvX3zoA57bXEWow+Dnl57EDz41hbAQ/TgnIoPpu4KIyBBFhoVw/+dO5jvLJgLw4Ft7+N7TW3C5VfRE5Dj891bPNM1JsOi7Rz202+nisgffZ0N5M/GRoTx2zal8bs5YLwUVEX+jkiciMgyGYXDDoiJ+fulJOAx4Ym0FX39yI06X2+5oIuJP9rwBW54Cw2FN0ww9+n6ckWEhnD89i7S4CP75/+YzvzDVOzlFxC9pCwUROX59PdDVbL11Nn18v6sZulugtwOcHdDbOfi+sxOcXWC6wDTB7fLcd1v3HaEQGkFoSBiLO3sJqXkAwqIhKgmik6zbqGSISYOEMZCYa90e44ekkfS5OWOJjQzl5ic3khgVRoiuhxGRoerrhRe/bd2fcy3kzBrSu33trCKumJun1TNF5JhU8kTkYy4ndDRARx20e9466qC9HtprrfsHlzln56jGMYB4gOr9Q3uHuCxInQAZU6239CmQMW3YGwoP1fnTsyhKj2V8eqwWPRCRoXv/d9BQbP2iavH3j3hYc0cv96/excrzJhMTEYphGCp4IjIkKnkigc40rVG1tmporfSUt1qruHV84n5n4/A/vuGAyETPKFuyZ5QtCSITIDwGwmKs2/Boz/1o63FoFDhCrPc3HJ77nsemC/q66evpZO27b3HqrBmEunug+8DHJbOzycp8oAJaKqzC2VZtve198+N
"text/plain": [
"<Figure size 900x700 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"Power = 40*u.W\n",
"Wavelength = 1.064*u.um\n",
"w_x, w_z = 30*u.um, 30*u.um # Beam Waists in the x and y directions\n",
"\n",
"#Power = 11*u.W\n",
"#w_x, w_z = 67*u.um, 67*u.um # Beam Waists in the x and y directions\n",
"\n",
"options = {\n",
" 'axis': 2, # axis referenced to the beam along which you want the dipole trap potential\n",
" 'extent': 1e2, # range of spatial coordinates in one direction to calculate trap potential over\n",
" 'crossed': False,\n",
" 'delta': 70, # angle between arms in degrees\n",
" 'modulation': True,\n",
" 'aspect_ratio': 4, # required aspect ratio of modulated arm\n",
" 'gravity': True,\n",
" 'tilt_gravity': False,\n",
" 'theta': 0.75, # gravity tilt angle in degrees\n",
" 'tilt_axis': [1, 0, 0], # lab space coordinates are rotated about x-axis in reference frame of beam\n",
" 'astigmatism': False,\n",
" 'disp_foci': 2.5*u.mm, #0.9 * z_R(w_0 = np.asarray([30]), lamb = 1.064)[0]*u.um, # difference in position of the foci along the propagation direction (Astigmatism)\n",
" 'extract_trap_frequencies': False\n",
"}\n",
"\n",
"ComputedPotentials = [] \n",
"Params = [] \n",
"\n",
"Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies = computeTrapPotential(w_x, w_z, Power, options)\n",
"ComputedPotentials.append(IdealTrappingPotential)\n",
"ComputedPotentials.append(TrappingPotential)\n",
"Params.append([TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies])\n",
"\n",
"cpots = np.asarray(ComputedPotentials)\n",
"plotPotential(Positions, cpots, options, Params)"
]
},
{
"cell_type": "markdown",
"id": "fc9809de",
"metadata": {},
"source": [
"## Plot harmonic fit for trap potential resulting for given parameters only"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "0f3e80f7",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxU9foH8M8w7AIii4CAgGaaqWVaLomAhoVlKqKWXtNrWv6oFGkxr5lYLmnmRXPLMpc0MxUty1LMJUosc8nSule7uBG44ILsMJzfH8czMjDAmX37vF8vXgxnvnPO851xGZ55vs9XIQiCACIiIiIiIiIiIjNysnQARERERERERETkeJiUIiIiIiIiIiIis2NSioiIiIiIiIiIzI5JKSIiIiIiIiIiMjsmpYiIiIiIiIiIyOyYlCIiIiIiIiIiIrNjUoqIiIiIiIiIiMyOSSkiIiIiIiIiIjI7JqWIiIiIiIiIiMjsmJQicmBr1qyBQqHQ+vXKK6/g7NmzUCgUWLNmjfoxBw8eRFpaGm7cuCHrGjt37kRaWprRY09LS9OI19XVFVFRUZg0aZLs2GqaM2cOtm/fbvQ4tWnoOYmMjMSYMWP0Oq8hjyUiIiLLMMf7sdrvm1xcXNCyZUuMHz8e+fn5ppkYgDFjxiAyMlLWWIVCYZL3jPrGQ0Tm4WzpAIjI8lavXo127dppHGvRogWCgoKQnZ2N1q1bq48fPHgQM2fOxJgxY+Dr69vouXfu3ImlS5ea7E3Gt99+i6ZNm+LWrVvYuXMnFi1ahJ9//hkHDx6EQqGQfZ45c+YgKSkJgwYNMkmcNTX0nGzbtg0+Pj4mj4GIiIisiynfj0mk901FRUXYvXs33nvvPRw8eBDHjx+Hi4uLsaaiNn36dEyaNMno5yUi+8GkFBGhQ4cO6Nq1q9b7unfvbuZodNOlSxcEBAQAAOLj41FQUIBPPvkEBw8exMMPP2zh6HTXuXNnS4dAREREFmCO92M13zc98sgjuHr1KlavXo0ffvgBcXFxRrlGTTUTaURE2nD5HhHVq3a5eFpaGl599VUAQFRUlLoEfP/+/VofP2bMGCxduhQANErGz549CwAoKyvD1KlTERUVBVdXV4SGhuKFF17Qa/mdRHrTdu7cOQDAtWvXkJycjNDQULi6uqJVq1aYNm0aysvL1Y9RKBQoLi7G2rVr1THGxsaq78/Pz8fzzz+PsLAw9TLBmTNnoqqqqs5ztWDBAixcuBBRUVHw8vJCjx49cOjQIdnPSe0leGVlZXj55Zdx//33o2nTpvDz80OPHj3wxRdf6P0cERERke0w9P1YQ6Qk2KVLlzSO79mzB3379oWPjw88PT3x8MMP47vvvtMYc+XKFTz33HMIDw+Hm5sbAgMD8fDDD2PPnj3qMdqWyxUWFmL8+PHw9/eHl5cXHnvsMfz3v/+tE1t9S+2kpYg1LV26FL1790bz5s3RpEkTdOzYEfPnz0dlZWWjz8HmzZvRrVs3NG3aFJ6enmjVqhXGjh3b6OOIyDhYKUVEUKlUGgkWAHB2rvvPw7hx43Dt2jW8//77yMjIQEhICACgffv2Ws87ffp0FBcXY8uWLcjOzlYfDwkJgSAIGDRoEL777jtMnToV0dHROHHiBGbMmIHs7GxkZ2fDzc1N57mcOXMGABAYGIiysjLExcXhr7/+wsyZM9GpUydkZWVh7ty5OH78OL7++msAQHZ2Nvr06YO4uDhMnz4dANRL6PLz8/HQQw/ByckJb775Jlq3bo3s7GzMmjULZ8+exerVqzWuv3TpUrRr1w7p6enq56B///7IyclB06ZNG3xOtCkvL8e1a9fwyiuvIDQ0FBUVFdizZw8SExOxevVqPPPMMzo/R0RERGR9TPV+rCE5OTkAgLvvvlt9bP369XjmmWcwcOBArF27Fi4uLvjggw/w6KOPYteuXejbty8AYNSoUTh69Chmz56Nu+++Gzdu3MDRo0dRUFBQ7/Wk938HDx7Em2++iQcffBA//vgjEhISdI69pr/++gsjRoxQf9D566+/Yvbs2fjzzz/x8ccf1/u47OxsDB8+HMOHD0daWhrc3d1x7tw57N2716B4iEg+JqWISGtJuLZPlsLCwtCyZUsA4jKzxhpFtm7dGkFBQVqvsWvXLuzatQvz589Xf9oXHx+P8PBwDB8+HOvWrcP48eMbjV16A1dUVISvv/4aK1asQHh4OKKjo7F27VqcOHECn3/+OYYOHaq+hpeXF6ZMmYLMzEzEx8eje/fucHJyQmBgYJ0409LScP36dZw8eVI99759+8LDwwOvvPIKXn31VY03gd7e3vjqq6+gVCoBiL0gHnroIXzzzTd46qmnGnxOtGnatKlG4kulUqFv3764fv060tPTmZQiIiKyE6Z6P1ZTzfdNmZmZWL58OZ5++mk88MADAICSkhJMmjQJTzzxBLZt26Z+XP/+/fHAAw/gX//6F3766ScAwI8//ohx48ZpvF8bOHBgg9fftWsX9u3bh0WLFmHixIkAxPdmrq6umDZtmux51LZw4UL17erqakRHR8Pf3x///Oc/8d5776FZs2ZaH3fw4EEIgoAVK1agadOm6uPcOIbIfLh8j4iwbt06HD58WONL2ydzxiR9AlX7P/2hQ4eiSZMmdUrE6xMcHAwXFxc0a9YM//jHP/DAAw/g22+/hbu7O/bu3YsmTZogKSlJ4zHSNeVc46uvvkJcXBxatGiBqqoq9Zf0id6BAwc0xj/++OPqhBQAdOrUCcCd5YT62Lx5Mx5++GF4eXnB2dkZLi4uWLVqFf744w+9z0lERETWxRzvx2q+bxo2bBi6dOmCtWvXqu8/ePAgrl27htGjR2u876mursZjjz2Gw4cPo7i4GADw0EMPYc2aNZg1axYOHToka6ncvn37AAAjR47UOD5ixAiD5nXs2DE8+eST8Pf3h1KphIuLC5555hmoVCqtSwMlDz74IABg2LBh+Pzzz5Gbm2tQHESkO1ZKERHuueeeehtrmkpBQQGcnZ0RGBiocVyhUCA4OLjB0u+a9uzZg6ZNm8LFxQVhYWHw9/fXuEZwcHCdvgPNmzeHs7OzrGtcunQJO3bsqHdHmqtXr2r8XPP6ANRLEEtLS2XNp7aMjAwMGzYMQ4cOxauvvorg4GA4Oztj+fLlDZajExERkW0xx/sx6X3TtWvXsHLlSmzduhUvvfQSVqxYAeBOb6naH+jVdO3aNTRp0gSbNm3CrFmz8NFHH2H69Onw8vLC4MGDMX/+fAQHB2t9rPT+r/b7pfrGy3H+/HlER0ejbdu2WLRoESIjI+Hu7o6ff/4ZL7zwQoPvwXr37o3t27dj8eLFeOaZZ1BeXo57770X06ZNw9NPP613TEQkH5NSRGQR/v7+qKqqwpUrVzQSU4IgID8/X/3JVWPuu+8+9S4y2q7x008/QRAEjcTU5cuXUVVVVe/jagoICECnTp0we/Zsrfe3aNFCVpz6Wr9+PaKiorBp0yaNOdRs1E5EREQkR833TfHx8Xj00UexcuVKPPvss3jwwQfV973//vv1thmQ2hAEBAQgPT0d6enpOH/+PL788ku8/vrruHz5Mr799lutj5Xe/xUUFGgkpvLz8+uMdXd31/p+p/YHgtu3b0dxcTEyMjIQERGhPn78+PEGnok7Bg4ciIEDB6K8vByHDh3C3LlzMWLECERGRqJHjx6yzkFE+uPyPSLSia6VP/WNl5pkrl+/XuP41q1bUVxcrL7fEH379kVRURG2b9+ucXzdunUaMUhxapvTE088gd9//x2tW7dG165d63zpk5TS5TlUKBRwdXXVSEjl5+dz9z0iIiIHZmglNiC+x1i6dCmUSiXeeOMNAMDDDz8MX19fnDp1Suv7nq5du8LV1bXOuVq2bIkXX3wR8fHxOHr0aL3XjIuLAwBs2LBB4/inn35aZ2xkZCQuX76ssTNgRUUFdu3aVWceADQ2yBEEAR9++GFjT4EGNzc3xMTEYN68eQDEJYFEZHqslCIinXTs2BEAsGjRIowePRouLi5o27YtvL29Gxw/b948JCQkQKlUolOnTupP56ZMmYLCwkI8/PDD6t33Onf
"text/plain": [
"<Figure size 1200x600 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"v, dv, popt, pcov = extractTrapFrequency(Positions, TrappingPotential, options['axis'])\n",
"plotHarmonicFit(Positions, TrappingPotential, TrapDepthsInKelvin, options['axis'], popt, pcov)"
]
},
{
"cell_type": "markdown",
"id": "37b40607",
"metadata": {},
"source": [
"## Plot trap potential resulting for given parameters (with one parameter being a list of values and the potential being computed for each of these values) only"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "8504f99f",
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\Karthik\\anaconda3\\envs\\Py39VEnv\\lib\\site-packages\\scipy\\optimize\\_minpack_py.py:1010: OptimizeWarning: Covariance of the parameters could not be estimated\n",
" warnings.warn('Covariance of the parameters could not be estimated',\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA3kAAAKyCAYAAABoqBcWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hb5dnH8e/Rlrz33s7eOyGEDEgIYYW9ymjLTIECpRRoeYGWlpYyWqBQoC2jQNk7BBIIZJCE7L3j2I73nto65/1DtsHEdgLYksf9uS5diX1uWT8dhKNbz3OeR9E0TUMIIYQQQgghRL+gC3YAIYQQQgghhBDdR5o8IYQQQgghhOhHpMkTQgghhBBCiH5EmjwhhBBCCCGE6EekyRNCCCGEEEKIfkSaPCGEEEIIIYToR6TJE0IIIYQQQoh+RJo8IYQQQgghhOhHpMkTQgghhBBCiH5EmjwhhBBCCCGE6EekyTuGp556iqysLCwWCxMmTGDVqlXBjiSEEEIIIYQQnZImrwuvv/46t9xyC7/97W/ZsmULM2bM4LTTTqOwsDDY0YQQQgghhBCiQ4qmaVqwQ/RWU6ZMYfz48Tz99NNt3xs2bBgLFy7kwQcfDGIyIYQQQgghhOiYIdgBeiu3282mTZu48847231/3rx5rFmz5pj31zSNxsbGnoonhBBCCCGEGKDCwsJQFKXT49LkdaKqqgqfz0dCQkK77yckJFBWVnZUvcvlwuVytX1dX19Penp6j+cUQgghhBBCDCx1dXVERER0elyavGP4boesaVqHXfODDz7I/ffff9T3//Wvf2Gz2Xos3/exLq8Md0Pns3OH5kYQH+rP+nV+Oa5a9VtH2z/nnJxQUsJDAdhQWIGjWqUz6RkhZEaHAbDpSCX2Kl+ntYlpVgbF+l+wW4sqaazovDY21cyw+CgAtpdUU1/m+Vba9nnDkwyMTooBYFd5DbVFHjoTmqBjbGocAHsr6qg64uq01hqvY0Kav/ZgVT3l+Z3XGmI1pmT6PzQoqG2k6JCj01pdlMq0nEQAihubKdjb3GmtFqkyfZC/trLZwYHdTZ3W+sI9zBiSDECj08XOHQ3f+kH+86ZoCgo63KEuThzh/7kOt4f9G1wtxxQUTYeiKeg0HQoKdeE1TB0XD4Dq0yhdHtZphtLwQiZOiW77uvAzM3rN2GFtla2MMdND277+bMtePIYmGoyNNBid1BvcNKLH540kmgRuyxnUVvunrXrq3R1/whVr0fj16G9eW68e1OHwQpgJIk0QadKIMvv/jDSDUa5eFkIEkaL5iGzOI6FhB3GNOwh3lbQ7rqKnzppObcgg6myZ1FszcJhi4Kj3MOBWwazTMJWWErF5C8btu7A5m9GAmlArR6LDqQiztVu1wWANxZacygf2dA4ZkvDqWn9n+1BMteiMVYTb6jgzxcoI0wgAntmikGBZSZg7ihBXBDZPODZPBFaP/3f6jiGfMD/9RAA+3WZkZIW50+e/K/tz5uVMAWD1XiNZR/y1quJruan4FB+qTqU8fQczskYDsC5Pj620CZ/iRVM0QENT8P8JeFOKmJo2EoBNR3SopXWoigcNDU3R/FWKv1oXX8m0ltqtJTocpdX4lI7/zdfHVTMtzX8etpcpNBfX4VOc/v8G3/lnyRBTzbT04QDsrFJoKKzHq9g7+Kka+qhapmUMRafo2FOjUJtfj0fX8fsDQ2QdkzNyMSpGDtQpVOY14tV1PMPMENbI+Ox0LIqFvEYoO9iEV+mkNrSZsdnJ2HQ2CpvgyMEmfHRSa3MwOjeeUF0oRU2Qf6gJVeu41mhxMWxwJJG6SErtcPBAE1pntWYPQwaHEq2PptIBew80o6kNHdaajF5yhlqI08dR44Sd++2g1ndYazaoZAzVk2hIpN4FW/c7UHx1AJw0NqnD+wSD3W7n6quvPmadXJPXCbfbjc1m48033+Scc85p+/4vf/lLtm7dyooVK9rVf3ckr6GhgbS0NKqqqggPDw9Y7s54PB6WLVvG3LlzMRo7fkMtuoeca9BUDZ9XxetR8bpVvG4fDrcLp9OJwawnLT2+re6jt7/GZffgcnhwO3x4HCqqXQd2A4Y0F1ffOh8An+rj2VtWotfafzblU7zUWyppTKzkj7f9ou3757+7CM1nwUIKBm8ymjsJh9NKbbOH9Ggr/7lyQlvtjL+uoKyh43+s06KsLL9tRtvXS3aWEWo2kB0XQlK4BZ2u86kS/YG8ngNDznNg9KnzrPpQCr5Ct/sdlH2LURy1bYc0RYeWMhEtYwZa+jS01ElgCmk77vKqHKpsYl9ZE4ermymsdpBf00xlaQ0X1WxnYdlm3Pv2AeDVKRyMiyEvLhr033z41WAIoy5pJHfecCExaRkoisKjn+1lff3/sGulNPtK0TVqRDUnEWtPIaY5BcfIIh6++H48Hg+v/ecLHDutHT41TadinVXHFeecDUBNSTPLlmzCYFWwhpiwhZixWS1YLGasFhMxSWFER4e3nBYN1aeiN+q6nKo2EPSp13Mf1tvOc0NDA7GxsdTX13fZY8hIXidMJhMTJkxg2bJl7Zq8ZcuWcfbZZx9VbzabMZuP/hTKaDT2ihdEq96Wpz8b8Oe68w9l2zn30hmdHlNVra2J0vv0zDhvCFXlDdSUN9JY7cRZo6LXDEQ7kojVh7Wd72ZXM+PXzaDWWk5ZeB4lYV9SYyshOTGZqXFjmJk6s91/m79eMIbyBhflDU6Kah2U1PlvxXUOUqKs7Wr/8PE+Khv9DWGISc+I5AhGpUYwKiWCMWmRZMWG0B8N+NdzgMh5Doxee541DUo2w7bXYNd70FzxzTFrFOSeAoNORck9GcXmnxHhcPsornOQG/LN8znxr59R/q0PruLtNZx9aDXzC77G5nXhBtxWC8XjR7HX0Yjm8wA+dCYzGZNnkHPCNOrinGyq3MRbDZ9wk+kmAK6fmEPhv0xE1k4lrikDo2pqF19PXNt5DY9SiR0XQVxiBOHRVkIizYREmgmNNGMJMaJ86wOyhIxIfnL9ycd3jnrhf7Zg67Wv536mt5zn480gTV4XbrvtNi6//HImTpzItGnTePbZZyksLOT6668PdjQh+jZNA00F1QeqFzRfy9993/xd86HTVEABRYdOURg3xQzEg5KAx+tj2WefM3XSLBoqvZhDjOBxgN5MY5WbWHsqsfZUBlX7R+ychmaOROzlQNRuTO71LMhe0BJFo1r5iulDppAUmvudmBpOzzdTkT0+lQnpURyqbCK/uplmt4/1+TWsz68BYFJmFG9ef0Jb/b6yRnLiQjDoZb6nEKILzgbY8SZseh7KdnzzfWsUDD8bRp4HGdNBp6e6ycWaA9VsKtjFpoJadpc2kBxpYdUdc9rulhsfitOjcoK5mTO3fEzmjjUoqv93mZqbQ9Hooew9chhvk/93V2RSMrEnjOFgajNv1a5n964X8Kk+YuwpRFjDuWmcv8lzNnsZXnBS2+MYzDpiU0OJSw0jNi2MlCFRbceMoSqnXTi6V7wpFmIgkiavCxdddBHV1dX8/ve/p7S0lJEjR/Lxxx+TkZER7GhCdEhTVVRHM97GOrxNDXia6/E1N+JtbsbraMLrtOOzO/x/Op143S58Lhc+twufx4PP40XzevB5vWheH5rqQ1VV/89VfWiqhqaqaJrm/76mfXNT/dc7KKracn2fiqJpKIBCyzE0dGjoNBU9/psBDYOiYtCpGHQ+jDofZp0Pi96DWe9Fb9DQGTT0Jg29SUVnUtGbVIx6WACwE6K/cx5iFRtnx4+k1DOMUtcQypxZ4A1hUPUEBlVPINaxERqvB3M4+3U+7ilfCkCuNZ55CVM5NfNUspMmoJhCsJr0bT/XqNfxz8v9TaPHp5JX2cyO4np2FtezvaiOiZnfJGlyeVnw+CosBh2TsqKZPSSeOUPjSYvuHdfoCiF6gaqDsPZJ2P46eFquw9KbYfhZMPoiyJ4Fen+T9O/Vh3lncxG7So6+9sjj1Wh0egiz+Gv/MTcV+3PPUP/Gu+DzT8E0T51CydgRbNm6HvehvQAkZOcy9bxL+EPFP9hc+U/YD/FNGUytWkhu7TisrjBso9yomop
"text/plain": [
"<Figure size 900x700 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"Potentials = [] \n",
"Params = [] \n",
"Power = [10, 30, 40]*u.W # Single Beam Power\n",
"for p in Power: \n",
" Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies = computeTrapPotential(w_x, w_z, p, options)\n",
" Potentials.append(IdealTrappingPotential)\n",
" Potentials.append(TrappingPotential)\n",
" Params.append([TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies])\n",
"\n",
"cpots = np.asarray(Potentials)\n",
"plotPotential(Positions, cpots, options, Params)"
]
},
{
"cell_type": "markdown",
"id": "951010c6",
"metadata": {},
"source": [
"## Plot transverse intensity profile and trap potential resulting for given parameters only"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "f3e4afd9",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAJOCAYAAABm7rQwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hTZf/H8fdJuktLW1ZZHWyQKSAbiggKiltRhqA4cSGi4vhJQdFHVB5cuFgiiDwquEGQvUE2IqtQyiiy20LpSs7vj9CQnLRJ0yY9Tft9Xde5mpz5zWmaJnfu+3MUVVVVhBBCCCGEEEIIIYQoRQa9CxBCCCGEEEIIIYQQFY80SgkhhBBCCCGEEEKIUieNUkIIIYQQQgghhBCi1EmjlBBCCCGEEEIIIYQoddIoJYQQQgghhBBCCCFKnTRKCSGEEEIIIYQQQohSJ41SQgghhBBCCCGEEKLUSaOUEEIIIYQQQgghhCh10iglhBBCCCGEEEIIIUqdNEoJIYQQQgghRBmjKEqRphUrVuha57Bhw+zqCQwMpHHjxowdO5asrCy39pWZmUliYmKpPaZvvvmGyZMnF7hMURQSExOLtd+SbCtEReOndwFCCCGEEEIIIeytX7/e7v4bb7zB8uXLWbZsmd38Zs2alWZZBQoODrbWdf78eebOncv48ePZu3cv8+bNK/J+MjMzGTduHAAJCQneKNXON998w+7duxk5cqTDsvXr11OnTh2v1yBERSeNUkIIIQqUnZ3N448/zp9//klaWhrNmjVj0qRJdO7cWe/ShBBCiHKvY8eOdverVauGwWBwmK+VmZlJSEiIN0tzoK2rb9++JCcn87///Y9JkyZRu3btUq3HE1ydZyGEZ8jwPSGEEAXKy8sjPj6etWvXcuHCBZ544gluvfVWMjMz9S5NCCGEEFh6EzVv3pxVq1bRuXNnQkJCeOihhwCYN28effr0oWbNmgQHB9O0aVPGjBnDpUuX7PYxbNgwKlWqxN9//02vXr0IDQ2lWrVqPPXUUyX6n5/fqHPkyBEAUlJSGDx4MNWrVycwMJCmTZvy/vvvYzabAUhOTqZatWoAjBs3zjoccNiwYdZ9HjhwgIEDB9rt45NPPrE77ooVK1AUhblz5/Lqq69Sq1YtwsPDueGGG9i3b5/dufvtt984cuSI3fDDfNoheKdPn2bEiBE0a9aMSpUqUb16da6//npWr15d7HMkhJCeUkIIIQoRGhrK66+/br0/dOhQnnvuOQ4cOECrVq10rEwIIYQQ+VJTUxk8eDAvvvgib731FgaDpd/BgQMH6NevHyNHjiQ0NJS9e/fyzjvvsGnTJochgLm5ufTr14/HHnuMMWPGsG7dOt58802OHDnCL7/8Uqy6Dh48CFh6eJ0+fZrOnTuTk5PDG2+8QVxcHL/++iujR48mKSmJKVOmULNmTRYtWsRNN93E8OHDefjhh63bA+zZs4fOnTsTExPD+++/T3R0NH/88QfPPPMMZ86cYezYsXbHf+WVV+jSpQtTp04lPT2dl156if79+/PPP/9gNBqZMmUKjz76KElJSSxYsMDl4zl37hwAY8eOJTo6mosXL7JgwQISEhJYunRpqQw3FKJcUoWoYGbMmKEC6ubNm93edu3aterYsWPV8+fPe76wYsh/LIcPH7bO80aN+cfJn4xGo1q7dm112LBh6rFjxzx2nHzffvut2qxZMzUoKEgF1G3bthX4WAua5wnjxo1TmzZtqppMJrv5v/32m/UcfPXVVw7bZWdnqw0aNFABtWnTpqqqquqsWbNUQF27dq3duiaTybqudlleXp4aExOjdu7c2W5etWrV1EmTJnnqYbrtn3/+UYOCgtSMjAzrvKlTp6q1atVSL168qFtdQgghREUwdOhQNTQ01G5ejx49VEBdunSp023NZrOam5urrly5UgXUHTt22O0XUD/44AO7bSZMmKAC6po1a4pUV25urpqbm6uePn1a/eCDD1RFUdT27durqqqqY8aMUQF148aNdts+8cQTqqIo6r59+1RVVdXTp0+rgDp27FiH49x4441qnTp11LS0NLv5Tz31lBoUFKSeO3dOVVVVXb58uQqo/fr1s1vvf//7nwqo69evt867+eab1djY2AIfV2F15MvLy1Nzc3PVXr16qXfccYdb2wohrpLhe0K4Yd26dYwbN44LFy7oXQoAN998M+vXr6dmzZrWed6sccaMGaxfv54lS5bwyCOPMHfuXLp16+bQDbwkTp8+zZAhQ6hfvz6LFi1i/fr1NGrUqMDH6g0nTpxg4sSJjB8/3vpNY76tW7cCEB4ezq5duxy2nTRpEidPngSgbdu2AERERACQlpZmt+7PP/9s/QZRu+z7778nJSWF559/3jpv1apVnD59mjvvvLMEj674MjMzGTJkCK+99hqVKlWyzh86dCihoaFMnDhRl7qEEEKIii4yMpLrr7/eYf6hQ4cYOHAg0dHRGI1G/P396dGjBwD//POPw/qDBg2yuz9w4EAAli9f7rKGS5cu4e/vj7+/P9WqVWPkyJH07dvX2gNp2bJlNGvWjOuuu85uu2HDhqGqqkPPLa2srCyWLl3KHXfcQUhICHl5edapX79+ZGVlsWHDBrttbr31Vrv7LVu2BK4OJyyOzz77jGuvvZagoCD8/Pzw9/dn6dKlBZ5PIUTRyPA9IXxYtWrVrF2aS0Pz5s1p164dAD179sRkMvHGG2/w448/OryRyedu2Ob+/fvJzc1l8ODB1jdOACEhIaXyWD/44AMiIiIKbPzZunUr1apVo2vXrg6NUqmpqUyYMIEBAwYwbdo0l41S77//PgkJCaxcudJh2X//+1/q16/P7bffbp33/fff065dO2JjYz3wKN2Tm5vLvffeS7NmzXjllVfslvn5+fHYY4/xxhtv8NJLL5V6sKoQQghR0RX0hd3Fixfp1q0bQUFBvPnmmzRq1IiQkBCOHj3KnXfeyeXLl+3W9/Pzo0qVKnbzoqOjATh79qzLGoKDg1m1ahUAgYGBxMbGEh4ebl1+9uxZ4uLiHLarVatWkY5x9uxZ8vLy+Oijj/joo48KXOfMmTN297WPJzAwEMDhsRfVpEmTeP7553n88cd54403qFq1Kkajkf/7v/+TRikhSkB6SokKLzExEUVR+Pvvv7n//vupXLkyNWrU4KGHHrJrLEhMTOSFF14AID4+3hqGuGLFCus6RQlfLOrxTp8+zaOPPkrdunUJDAykWrVqdOnShT///NO6zsyZM1EUheTkZKc1vvHGG9bAR61Zs2ahKAqbN292+9xpAyzzH9vWrVu5++67iYyMpH79+tb116xZQ69evQgLCyMkJITOnTvz22+/WZcPGzaMrl27AjBgwAAURbGOz9c+VmeK8nsoSE5ODtOmTWPgwIEOvaQAtmzZwrXXXkvr1q0dGqVeeukl6tSpY70y3bXXXgtcbZRKT0+3rrtp0ybWrFnDiy++SGhoqN3vfd26dWzcuJHnnnvOWoOqqixYsIC77rrLoabVq1dzxx13UL16dYKCgqhfvz4vvviidXmfPn3o2rUrixcvpmvXroSEhBAXF2e9PPO8efNo164dISEhNGvWzOHbULPZzAMPPIDRaGTatGl2AaD5Bg0aRHp6Ot9++23hJ1cIIYQQXlHQ/+Zly5Zx4sQJpk+fzsMPP0z37t1p164dYWFhBe4jLy/PoWEov/e3tnGnIAaDgXbt2tGuXTtatGhh1yCVv4/U1FSH7U6cOAFA1apVne4/MjISo9HIsGHD2Lx5c4FTv379XNZZErNnzyYhIYFPP/2Um2++mQ4dOtCuXTsyMjK8elwhyjvpKSXEFXfddRcDBgxg+PDh7Nq1i5dffhmA6dOnA/Dwww9z7tw5PvroI+bPn2/9VqpZs2aA++GLro43ZMgQtm7dyoQJE2jUqBEXLlxg69atTr9JclbjggUL+OSTT7j//vvttvn4449p37497du3d/uc2QZY2rrzzju57777ePzxx61D+1auXEnv3r1p2bIl06ZNIzAwkClTptC/f3/mzp3LgAED+L//+z+uu+46nnzySd566y169uzp8KbGFXd
"text/plain": [
"<Figure size 1200x600 with 3 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"Power = 40*u.W\n",
"Wavelength = 1.064*u.um\n",
"w_x, w_z = 30*u.um, 30*u.um # Beam Waists in the x and y directions\n",
"\n",
"options = {\n",
" 'axis': 2, # axis referenced to the beam along which you want the dipole trap potential\n",
" 'extent': 60, # range of spatial coordinates in one direction to calculate trap potential over\n",
" 'crossed': False,\n",
" 'delta': 70, # angle between arms in degrees\n",
" 'modulation': True,\n",
" 'modulation_function': 'arccos',\n",
" 'modulation_amplitude': 2.16,\n",
" 'aspect_ratio': 4, # required aspect ratio of modulated arm\n",
" 'gravity': True,\n",
" 'tilt_gravity': False,\n",
" 'theta': 0.75, # gravity tilt angle in degrees\n",
" 'tilt_axis': [1, 0, 0], # lab space coordinates are rotated about x-axis in reference frame of beam\n",
" 'astigmatism': False,\n",
" 'disp_foci': 2.5*u.mm, #0.9 * z_R(w_0 = np.asarray([30]), lamb = 1.064)[0]*u.um, # difference in position of the foci along the propagation direction (Astigmatism)\n",
" 'extract_trap_frequencies': False\n",
"}\n",
"\n",
"positions, waists, I, U, p = computeIntensityProfileAndPotentials(Power, [w_x, w_z], Wavelength, options)\n",
"plotIntensityProfileAndPotentials(positions, waists, I, U)"
]
},
{
"cell_type": "markdown",
"id": "db0df307",
"metadata": {},
"source": [
"## Plot gaussian fit for trap potential resulting from modulation for given parameters only"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "7afa7d82",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKYAAAJOCAYAAACN2Q8zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADwJ0lEQVR4nOzde1xT9f8H8Ndh3EFBQYUYirc077dK1Amk4K1CF3kr09Ksn11Qu9pFsVLL0qC+WVkm3TQTp2VqigqKimkqamoXLyggeEEFRbmN8/vjuMlgwAYb29jr+Xj42PY5n53zOZ/hdvbe5/P+CKIoiiAiIiIiIiIiIqpnDpZuABERERERERER2ScGpoiIiIiIiIiIyCIYmCIiIiIiIiIiIotgYIqIiIiIiIiIiCyCgSkiIiIiIiIiIrIIBqaIiIiIiIiIiMgiGJgiIiIiIiIiIiKLYGCKiIiIiIiIiIgsgoEpIiIiIiIiIiKyCAamiMgg8fHxEARB77+XX34Z6enpEAQB8fHx2ufs2bMHMTExuHbtmkHH2LhxI2JiYkze9piYGJ32Ojs7o3Xr1oiOjja4beXNnz8f69atM3k79amuT4KCgjBp0qRa7bcuzyUiIqK6q49rq4rXQE5OTmjZsiWefvpp5OTkmOfEAEyaNAlBQUEG1RUEwSzXf7VtDxHVP0dLN4CIbMvy5cvRsWNHnbK77roLLVq0QGpqKtq2bast37NnD+bOnYtJkybB29u7xn1v3LgRn332mdkuTn7//Xd4eXnh+vXr2LhxI+Li4rBv3z7s2bMHgiAYvJ/58+cjKioKI0eONEs7y6uuT9auXYvGjRubvQ1ERERkPua8ttLQXAPduHEDW7ZswaJFi7Bnzx6kpaXBycnJVKei9fbbbyM6Otrk+yWihomBKSIySpcuXdCnTx+92/r27VvPrTFO79694evrCwAIDw9Hbm4uvv/+e+zZswf9+/e3cOuM17NnT0s3gYiIiOqoPq6tyl8DDR48GJcvX8by5cuxa9cuhIWFmeQY5ZUPphER1YRT+YjIJCoON4+JicErr7wCAGjdurV2CHlycrLe50+aNAmfffYZAOgMOU9PTwcAFBYWYtasWWjdujWcnZ0REBCA5557rlZT8TQ0F3tnz54FAFy5cgXTpk1DQEAAnJ2d0aZNG7z55psoKirSPkcQBBQUFODbb7/VtjE0NFS7PScnB8888wzkcrl2yuDcuXNRWlpaqa8++ugjLF68GK1bt4anpyeCg4Oxd+9eg/uk4nS8wsJCvPTSS+jRowe8vLzQtGlTBAcH45dffql1HxEREZFl1PXaqjqaQNiFCxd0yrdu3YpBgwahcePGcHd3R//+/bFt2zadOpcuXcLUqVMRGBgIFxcXNGvWDP3798fWrVu1dfRNncvPz8fTTz8NHx8feHp6YujQofj3338rta2qaXeaaYnlffbZZxg4cCCaN28ODw8PdO3aFQsXLkRJSUmNfbB69Wrcf//98PLygru7O9q0aYOnnnqqxucRkelxxBQRGUWtVusEWQDA0bHyW8mUKVNw5coVfPrpp1CpVPD39wcAdOrUSe9+3377bRQUFCAhIQGpqanacn9/f4iiiJEjR2Lbtm2YNWsWFAoFjhw5gjlz5iA1NRWpqalwcXEx+lxOnjwJAGjWrBkKCwsRFhaGU6dOYe7cuejWrRtSUlKwYMECpKWlYcOGDQCA1NRUPPDAAwgLC8Pbb78NANrpdDk5Objvvvvg4OCA2bNno23btkhNTcV7772H9PR0LF++XOf4n332GTp27IjY2FhtHwwfPhxnzpyBl5dXtX2iT1FREa5cuYKXX34ZAQEBKC4uxtatW6FUKrF8+XI88cQTRvcRERERmZe5rq2qc+bMGQDA3XffrS374Ycf8MQTTyAyMhLffvstnJyc8OWXX2LIkCHYvHkzBg0aBACYMGECDh48iHnz5uHuu+/GtWvXcPDgQeTm5lZ5PM213J49ezB79mzce++92L17N4YNG2Z028s7deoUxo8fr/3h8vDhw5g3bx7+/vtvfPPNN1U+LzU1FWPGjMGYMWMQExMDV1dXnD17Ftu3b69Te4iodhiYIiKj6BtSru9XKblcjpYtWwKQppzVlHCybdu2aNGihd5jbN68GZs3b8bChQu1vxSGh4cjMDAQY8aMwXfffYenn366xrZrLvxu3LiBDRs24IsvvkBgYCAUCgW+/fZbHDlyBD///DMeffRR7TE8PT3x2muvITExEeHh4ejbty8cHBzQrFmzSu2MiYnB1atXcezYMe25Dxo0CG5ubnj55Zfxyiuv6Fw8NmrUCL/99htkMhkAKZ/Efffdh02bNmHs2LHV9ok+Xl5eOsEvtVqNQYMG4erVq4iNjWVgioiIyAqZ69qqvPLXQImJifj8888xbtw49OrVCwBw8+ZNREdH48EHH8TatWu1zxs+fDh69eqFN954A3/88QcAYPfu3ZgyZYrOtVdkZGS1x9+8eTOSkpIQFxeHF198EYB0neXs7Iw333zT4POoaPHixdr7ZWVlUCgU8PHxwZNPPolFixahSZMmep+3Z88eiKKIL774Al5eXtpyLgxDZBmcykdERvnuu++wf/9+nX/6ftUzJc2vVxUvFh599FF4eHhUGmJeFT8/Pzg5OaFJkyZ4/PHH0atXL/z+++9wdXXF9u3b4eHhgaioKJ3naI5pyDF+++03hIWF4a677kJpaan2n+bXwB07dujUHzFihDYoBQDdunUDcGdqYW2sXr0a/fv3h6enJxwdHeHk5IRly5bhxIkTtd4nERERmU99XFuVvwYaPXo0evfujW+//Va7fc+ePbhy5QomTpyocw1TVlaGoUOHYv/+/SgoKAAA3HfffYiPj8d7772HvXv3GjRtLikpCQDw2GOP6ZSPHz++Tud16NAhPPzww/Dx8YFMJoOTkxOeeOIJqNVqvdMENe69914AwOjRo/Hzzz8jKyurTu0gorrhiCkiMso999xTZYJOc8nNzYWjoyOaNWumUy4IAvz8/KodOl7e1q1b4eXlBScnJ8jlcvj4+Ogcw8/Pr1LugubNm8PR0dGgY1y4cAHr16+vcnWby5cv6zwuf3wA2umIt27dMuh8KlKpVBg9ejQeffRRvPLKK/Dz84OjoyM+//zzaoezExERkeXUx7WV5hroypUrWLp0KdasWYMXXngBX3zxBYA7uaYq/kBX3pUrV+Dh4YFVq1bhvffew9dff423334bnp6eGDVqFBYuXAg/Pz+9z9Vcy1W89qmqviHOnTsHhUKBDh06IC4uDkFBQXB1dcW+ffvw3HPPVXs9NXDgQKxbtw6ffPIJnnjiCRQVFaFz58548803MW7cuFq3iYhqh4EpIrJ6Pj4+KC0txaVLl3SCU6IoIicnR/urV026d++uXZFG3zH++OMPiKKoE5y6ePEiSktLq3xeeb6+vujWrRvmzZund/tdd91lUDtr64cffkDr1q2xatUqnXMon7ydiIiI7E/5a6Dw8HAMGTIES5cuxeTJk3Hvvfdqt3366adVpg/QpBfw9fVFbGwsYmNjce7cOfz66694/fXXcfHiRfz+++96n6u5lsvNzdUJTuXk5FSq6+rqqvfapeIPfOvWrUNBQQFUKhVatWqlLU9LS6umJ+6IjIxEZGQkioqKsHfvXixYsADjx49HUFAQgoODDdoHEZkGp/IRkdkYOwKoqvqaZJs//PCDTvmaNWtQUFCg3V4XgwYNwo0bN7Bu3Tqd8u+++06nDZp26junBx98EH/99Rfatm2LPn36VPpXm8CUMX0oCAKcnZ11glI5OTlclY+IiKiBqOvoakC6Xvjss88gk8nw1ltvAQD69+8Pb29vHD9+XO81TJ8+feDs7FxpXy1btsTzzz+P8PBwHDx4sMpjhoWFAQB+/PFHnfIVK1ZUqhsUFISLFy/qrBhYXFyMzZs3VzoPADoL4IiiiK+++qqmLtDh4uKCkJAQfPDBBwCk6YFEVL84YoqIzKZr164AgLi4OEycOBFOTk7o0KEDGjVqVG39Dz74AMOGDYNMJkO3bt20v+y99tpryM/PR//+/bWr8vX
"text/plain": [
"<Figure size 1200x600 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABKYAAAJOCAYAAACN2Q8zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADXKklEQVR4nOzdeVhU5dsH8O9hGDaRXQUBBc3cF3DJDYEMtxYTcclSLLXMStzKrFyo1BYXyJ9ZmkmLqaljq6VkoKS4i1ZavSqoIG6g4sbicN4/jnNkZJvBGWb7fq5rLmae88w599mG4eZZBFEURRAREREREREREdUyO1MHQEREREREREREtomJKSIiIiIiIiIiMgkmpoiIiIiIiIiIyCSYmCIiIiIiIiIiIpNgYoqIiIiIiIiIiEyCiSkiIiIiIiIiIjIJJqaIiIiIiIiIiMgkmJgiIiIiIiIiIiKTYGKKiIiIiIiIiIhMgokpItJJUlISBEGo8DFt2jRkZWVBEAQkJSXJ79m1axfmzJmDK1eu6LSNzZs3Y86cOQaPfc6cOVrxOjg4IDg4GHFxcTrHVta8efPw3XffGTzOilR1TIKCgjB69Ogarfd+3ktERET3rza+W937HUipVKJRo0YYN24czp07Z5wdAzB69GgEBQXpVFcQBKN8/6tpPERU++xNHQARWZZVq1ahRYsWWmUNGzZEgwYNkJ6ejqZNm8rlu3btQnx8PEaPHg0PD49q171582YsXbrUaF9Ofv31V7i7u+PatWvYvHkzEhMTsXfvXuzatQuCIOi8nnnz5iEmJgZPPvmkUeIsq6pjsmnTJri5uRk9BiIiIjIeY3630tB8B7p+/Tq2bt2KhQsXYteuXcjIyIBSqTTUrshmzpyJuLg4g6+XiKwTE1NEpJc2bdqgU6dOFS7r2rVrLUejn44dO8LHxwcAEBUVhby8PHz11VfYtWsXevToYeLo9BcSEmLqEIiIiOg+1cZ3q7LfgR555BFcunQJq1atwh9//IHIyEiDbKOsssk0IqLqsCsfERnEvc3N58yZg1dffRUAEBwcLDchT01NrfD9o0ePxtKlSwFAq8l5VlYWAKCwsBAzZsxAcHAwHBwc4O/vj5deeqlGXfE0NF/2Tp06BQDIz8/HhAkT4O/vDwcHBzRp0gRvvvkmioqK5PcIgoAbN27giy++kGOMiIiQl587dw4vvPACAgIC5C6D8fHxuH37drljtWDBAixatAjBwcFwdXVFt27dsHv3bp2Pyb3d8QoLCzF16lR06NAB7u7u8PLyQrdu3fD999/X+BgRERGRadzvd6uqaBJh58+f1yr/7bff0Lt3b7i5ucHFxQU9evTAtm3btOpcvHgRzz//PAIDA+Ho6Ih69eqhR48e+O233+Q6FXWdKygowLhx4+Dt7Q1XV1f069cP//33X7nYKut2p+mWWNbSpUvRq1cv1K9fH3Xq1EHbtm3xwQcfoKSkpNpjsH79ejz00ENwd3eHi4sLmjRpgueee67a9xGR4bHFFBHpRa1WayVZAMDevvxHydixY5Gfn48lS5ZApVLBz88PANCqVasK1ztz5kzcuHEDGzZsQHp6ulzu5+cHURTx5JNPYtu2bZgxYwbCwsJw5MgRzJ49G+np6UhPT4ejo6Pe+3L8+HEAQL169VBYWIjIyEicOHEC8fHxaNeuHdLS0jB//nxkZGTg559/BgCkp6fj4YcfRmRkJGbOnAkAcne6c+fOoUuXLrCzs8OsWbPQtGlTpKen491330VWVhZWrVqltf2lS5eiRYsWSEhIkI/BgAEDkJmZCXd39yqPSUWKioqQn5+PadOmwd/fH8XFxfjtt98QHR2NVatWYdSoUXofIyIiIjIuY323qkpmZiYA4MEHH5TLvv76a4waNQoDBw7EF198AaVSiU8//RR9+/bFli1b0Lt3bwDAyJEjcfDgQcydOxcPPvggrly5goMHDyIvL6/S7Wm+y+3atQuzZs1C586dsXPnTvTv31/v2Ms6ceIERowYIf/j8vDhw5g7dy7++ecffP7555W+Lz09HcOGDcOwYcMwZ84cODk54dSpU/j999/vKx4iqhkmpohILxU1Ka/ov1IBAQFo1KgRAKnLWXUDTjZt2hQNGjSocBtbtmzBli1b8MEHH8j/KYyKikJgYCCGDRuGL7/8EuPGjas2ds0Xv+vXr+Pnn3/GJ598gsDAQISFheGLL77AkSNH8O2332LIkCHyNlxdXTF9+nQkJycjKioKXbt2hZ2dHerVq1cuzjlz5uDy5cv4+++/5X3v3bs3nJ2dMW3aNLz66qtaXx7r1q2Ln376CQqFAoA0nkSXLl3wyy+/YPjw4VUek4q4u7trJb/UajV69+6Ny5cvIyEhgYkpIiIiM2Ss71Zllf0OlJycjGXLluGpp55CaGgoAODmzZuIi4vDY489hk2bNsnvGzBgAEJDQ/HGG29gz549AICdO3di7NixWt+9Bg4cWOX2t2zZgpSUFCQmJmLixIkApO9ZDg4OePPNN3Xej3stWrRIfl5aWoqwsDB4e3vj2WefxcKFC+Hp6Vnh+3bt2gVRFPHJJ5/A3d1dLufEMESmwa58RKSXL7/8Evv27dN6VPRfPUPS/Pfq3i8LQ4YMQZ06dco1Ma+Mr68vlEolPD098cwzzyA0NBS//vornJyc8Pvvv6NOnTqIiYnReo9mm7ps46effkJkZCQaNmyI27dvyw/NfwO3b9+uVf/RRx+Vk1IA0K5dOwB3uxbWxPr169GjRw+4urrC3t4eSqUSK1euxLFjx2q8TiIiIjKe2vhuVfY70NChQ9GxY0d88cUX8vJdu3YhPz8fsbGxWt9hSktL0a9fP+zbtw83btwAAHTp0gVJSUl49913sXv3bp26zaWkpAAAnn76aa3yESNG3Nd+HTp0CE888QS8vb2hUCigVCoxatQoqNXqCrsJanTu3BkAMHToUHz77bfIycm5rziI6P6wxRQR6aVly5aVDtBpLHl5ebC3t0e9evW0ygVBgK+vb5VNx8v67bff4O7uDqVSiYCAAHh7e2ttw9fXt9zYBfXr14e9vb1O2zh//jx+/PHHSme3uXTpktbrstsHIHdHvHXrlk77cy+VSoWhQ4diyJAhePXVV+Hr6wt7e3ssW7asyubsREREZDq18d1K8x0oPz8fy5cvx8aNG/HKK6/gk08+AXB3rKl7/0FXVn5+PurUqYN169bh3XffxWeffYaZM2fC1dUVgwYNwgcffABfX98K36v5Lnfvd5/K6uvi9OnTCAsLQ/PmzZGYmIigoCA4OTlh7969eOmll6r8PtWrVy989913+OijjzBq1CgUFRWhdevWePPNN/HUU0/VOCYiqhkmpojI7Hl7e+P27du4ePGiVnJKFEWcO3dO/q9Xddq3by/PSFPRNvbs2QNRFLWSUxcuXMDt27crfV9ZPj4+aNeuHebOnVvh8oYNG+oUZ019/fXXCA4Oxrp167T2oezg7URERGR7yn4HioqKQt++fbF8+XKMGTMGnTt3lpctWbKk0uEDNMML+Pj4ICEhAQkJCTh9+jR++OEHvP7667hw4QJ+/fXXCt+r+S6Xl5enlZw6d+5cubpOTk4Vfne59x983333HW7cuAGVSoXGjRvL5RkZGVUcibsGDhyIgQMHoqioCLt378b8+fMxYsQIBAUFoVu3bjqtg4gMg135iMho9G0BVFl9zWCbX3/9tVb5xo0bcePGDXn5/ejduzeuX7+O7777Tqv8yy+/1IpBE2dF+/TYY4/hr7/+QtOmTdGpU6dyj5okpvQ5hoIgwMHBQSspde7cOc7KR0REZCXut3U1IH1fWLp0KRQKBd566y0AQI8ePeDh4YGjR49W+B2mU6dOcHBwKLeuRo0a4eWXX0ZUVBQOHjxY6TYjIyMBAKtXr9Yq/+abb8rVDQoKwoULF7RmDCwuLsaWLVvK7QcArQlwRFHEihUrqjsEWhwdHREeHo73338fgNQ9kIhqF1tMEZHRtG3bFgCQmJiI2NhYKJVKNG/eHHXr1q2y/vvvv4/+/ftDoVCgXbt28n/2pk+fjoKCAvTo0UOelS8kJAQjR46
"text/plain": [
"<Figure size 1200x600 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"x_Positions = positions[0].value\n",
"z_Positions = positions[1].value\n",
"x_Potential = U[:, np.where(z_Positions==0)[0][0]].value\n",
"z_Potential = U[np.where(x_Positions==0)[0][0], :].value\n",
"poptx, pcovx = p[0], p[1]\n",
"poptz, pcovz = p[2], p[3]\n",
"plotGaussianFit(x_Positions, x_Potential, poptx, pcovx)\n",
"plotGaussianFit(z_Positions, z_Potential, poptz, pcovz)"
]
},
{
"cell_type": "markdown",
"id": "5e5b8123",
"metadata": {},
"source": [
"## Calculate relevant parameters for evaporative cooling"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "95ab43bd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Particle Density = 4.63E+13 1 / cm3\n",
"Elastic Collision Rate = 2813.75 1 / s\n",
"PSD = 9.00E-05 \n",
"v_x = 2588.17 Hz\n",
"v_y = 20.66 Hz\n",
"v_z = 2588.17 Hz\n",
"a_s = 111.31 \n"
]
}
],
"source": [
"Power = 40*u.W\n",
"Wavelength = 1.064*u.um\n",
"w_x, w_z = 30*u.um, 30*u.um # Beam Waists in the x and y directions\n",
"\n",
"AtomNumber = 1.00 * 1e7\n",
"BField = 2.5 * u.G\n",
"\n",
"modulation_depth = 0.0\n",
"Temperature = convert_modulation_depth_to_temperature(modulation_depth)[0] * u.uK\n",
"n = particleDensity(w_x, w_z, Power, N = AtomNumber, T = Temperature).decompose().to(u.cm**(-3))\n",
"Gamma_elastic = calculateElasticCollisionRate(w_x, w_z, Power, N = AtomNumber, T = Temperature, B = BField)\n",
"PSD = calculatePSD(w_x, w_z, Power, N = AtomNumber, T = Temperature).decompose()\n",
"\n",
"print('Particle Density = %.2E ' % (n.value) + str(n.unit))\n",
"print('Elastic Collision Rate = %.2f ' % (Gamma_elastic.value) + str(Gamma_elastic.unit))\n",
"print('PSD = %.2E ' % (PSD.value))\n",
"\n",
"v_x = calculateTrapFrequency(w_x, w_z, Power, dir = 'x')\n",
"v_y = calculateTrapFrequency(w_x, w_z, Power, dir = 'y')\n",
"v_z = calculateTrapFrequency(w_x, w_z, Power, dir = 'z')\n",
"\n",
"print('v_x = %.2f ' %(v_x.value) + str(v_x.unit))\n",
"print('v_y = %.2f ' %(v_y.value) + str(v_y.unit))\n",
"print('v_z = %.2f ' %(v_z.value) + str(v_z.unit))\n",
"\n",
"print('a_s = %.2f ' %(scatteringLength(BField)[0] / ac.a0))"
]
},
{
"cell_type": "markdown",
"id": "ff252fbe",
"metadata": {},
"source": [
"## Plot alphas"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "dd7fc03d",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABlR0lEQVR4nO3deVxU1f/H8dcMIJuAuKMiaGAupSaWpqbmVmm5pJZp5YLbzzbbs+WLVlbf+mq254LY4pZrplYuuaRm5VapLWriilsuoCwCc39/TIwgAwIyzDC8n4/HPJy5c+fOZ+YEvDvnnnNNhmEYiIiIiEipZ3Z2ASIiIiJSPBTsRERERNyEgp2IiIiIm1CwExEREXETCnYiIiIibkLBTkRERMRNKNiJiIiIuAkFOxERERE34ensAkqCxWLh6NGjBAQEYDKZnF2OiIiISIEZhkFSUhI1atTAbM6/T65MBLujR48SGhrq7DJEREREiuzQoUPUqlUr333KRLALCAgArF9IYGCgw94nPT2dFStW0KVLF7y8vBz2PlI4ahfXpHZxTWoX16R2cU0l1S6JiYmEhoba8kx+ykSwyxp+DQwMdHiw8/PzIzAwUD94LkTt4prULq5J7eKa1C6uqaTbpSCnk2nyhIiIiIibULATERERcRMKdiIiIiJuQsFORERExE2UickThZWenk5mZmaRXufp6UlqamqRXi+OUdbbxcvLCw8PD2eXISIiJUDBLpvExEROnTpFWlpakV5vGAbVq1fn0KFDWgjZhZT1djGZTAQFBVG9evUy+flFRMoSBbt/JSYmcuTIEcqXL0/lypXx8vIq9B9Bi8XC+fPnKV++/BVXhpaSU5bbxTAMLly4wMmTJ/H19aVChQrOLklERBxIwe5fp06donz58tSqVavIvRoWi4WLFy/i4+NT5gKEKyvr7eLr60taWhonTpwgKChIvXYiIm6s7P2VsyM9PZ20tDT90RO3FRgYSGZmZpk8x1BEpCxRjx3Y/thd7arRCQmwd68H/v5QmI6hkBDrTcRRPD2tP+oZGRm2+yIi4n70Gz6bq+2tmzLFxMsvX/k6bpeLiYGxY6/qrUXypZ5oEZGyQcGuGA0fbtChw3n8/f1t53KlpECbNtbnN2wAX9/cr1NvnYiIiBQHnWNXjEJCoEmTTJo1w3Zr2vTS802bkuO5rJujg93YsWMxmUx53krjTMkZM2bY6m/fvn2u5wcNGmR7fty4cSVf4BW0b98+3zbJfhv7b3dueHh4vvuNHj3aqZ9JREScT8FORERExE1oKNbB9u69dD8mBkaMgMhI59UzcOBAZsyYUejXpaSk4GtvHLmMSk5Oxs/Pr8ivX7t2bY7H7du3Z926dQDExcUxaNCgfF+/Zs0auz2VIiJS/BISrLfLZWTAvn1BbN8O9ualOWNypHrsHCguzjrUmmXSJKhfH4qQq0pE9uHNmJgY3nzzTSIiIvD09GTu3LmAdcHbadOm0bp1a4KCgihXrhxhYWEMGTKEvdlTLDmHQxcvXszQoUMJDg4mODiYYcOGkZSUxB9//MHtt99O+fLlCQ8P5/nnnyc9Pd2hn3Pv3r1ER0cTHh5OuXLlCAwMpFWrVkydOhXDMGz7xcfH5xjuXbp0Kc2bN8fHx4dRo0bl+L7s3a4UzkREpHSYPBmionLfWrTw4skn29OihZfd5ydPLvla1WPnIHv2wNChYLFc2pa1hFh0tHVCRUSEc2oriA8//JBTp07l2GYYBvfeey/z5s3Lsf3gwYPExcUxb948Vq1aRYsWLXIdb/jw4Zw8edL2eNq0aezfv58dO3bwzz//AHDhwgVef/11AgICGDNmjAM+FWzevJnOnTtz/vx527b09HR++OEHfvjhB1auXMncuXNzzSL99ddf6dGjB5bsDXoFmokqIuIeRoyA7t1zbss+OXLt2nQCAnIvmeaMyZHqsXOQ6dMhr7/rJhPExpZsPVk++eSTAvUsnTp1irfeeovTp0+TkJBA586dmT9/vi3UhYWFsXXrVs6ePcuzzz4LwPnz54mOjrb7vhUqVODPP/9kz549lC9fHoDVq1dTvXp14uPj2bhxoy0IffLJJ4X6TOvWrcv1mfI6RnR0tC3UjRkzhrNnz7J161ZCQ0MBmDdvHvPnz8/1ujNnztC3b18OHTpEYmIizz//PIMGDcIwDNttzZo1+Pj4AFCxYkWeeOKJQn2Owrj11ltzfebLh3dFRKR4hITknviYfXJkkybOmRxpj4Kdg8THQ7ZRvRwMw/q8K+vQoQNPPfUUwcHBVK9enZo1a/Lll1/ann/iiSdo1qwZQUFBvPrqq1SqVAmAXbt2sW/fvlzHe+KJJ6hXrx4RERE0bNjQtv2xxx4jLCyMVq1aUa1aNcA6BOoIe/fuZffu3QBUrlyZV155haCgIJo1a5YjhC1ZsiTXawMDA4mNjaVWrVoEBARQr169HM//9NNPdO/endTUVAIDA1mxYgXXX3+9Qz6HiIhIXjQU6yDh4fn32IWHl2Q1lxR08kRUVFSubcePH7fdDwsLs9339PSkVq1atiHV48ePc8011+R4bUS2cefskzDq1Klju+/t7Q1AWlraFevLrl27drl6qwYNGpSr1y57/bVq1cLDw8P2ODxbg2TfL8u1116Lv7+/3fffuXMnd9xxB0lJSfj7+7N8+XK7319x0uQJEXF1eU04uBJdjenqOL3Hbv369dx1113UqFHDdpJ9doZhMHbsWGrUqIGvry/t27dn165dzim2EIYMyb/HLo8RS5dhb8ZnVo8awIEDB2z3MzMzOXz4sN39suR1GauSvLxV9roOHz6c47qp2XsJ7dWf1wzYffv20blzZ06fPo2Pjw9ffvklrVu3Lr6iRURKqbwmHFzp5owJB0WRfb7guHFm9uxxXi3ZOT3YXbhwgSZNmvD+++/bff7NN99k4sSJvP/++/z8889Ur16dzp07k5SUVMKVFk5kpPU8uuzXjPXwsD6OjXXtiRN56Z7tzNG3336bHTt2kJiYyEsvvWTrrWvYsGGu3jpXERERQYMGDQDrOYQxMTGcO3eOHTt28Pbbb9v26375GbJ5OHz4MJ06deLYsWN4eXkxf/58Onbs6JDaRURKmxEjYOvWnLcNGy49v2FD7ue3brW+ztVdvurFe++ZXWbVC6cPxd5xxx3ccccddp8zDINJkybxwgsvcPfddwPWE+urVavGrFmzGOHirT9okLXhmzSxPh49GkaOLJ2hDqBv377MnTuXhQsXEh8fzw033JDjeT8/P6ZOneqk6gpm2rRpdO7cmeTkZMaPH8/48eNzPH/33XfTp0+fAh0rNjbW1tOXnp7OnXfemeP5oq4ZKCLiDuwNqV64cOl+06aQxxkuLs3+qhfWc69cYdULpwe7/Ozfv59jx47RpUsX2zZvb2/atWvHpk2b8gx2aWlpOc7TSkxMBKx/fO2tkZaeno5hGFgslkItZ3G5rDXQso4FYD2FzNptFxNjwd8/538MJSH72mzZa7tc9u157Td37lymTp3Kp59+yq5du0hJSSEkJIRbb72VMWPGUK9ePdvrsr9vXt9tftvzc/nzlz++/DNn/duyZUu2bt3KG2+8wXfffcexY8fw9vamUaNGPPjggwwfPtw2y/VK73GlGvP7rq/02Qry+QtzbIvFgmEYpKen5zi30JmyfhYdvW6hFI7axTW5S7tYy/f69346pfHjTJ1qxmQyA7lPpDeZDKZMsTB+fPH+oS9Mu5sMI68zwUqeyWRi0aJF9OzZE4BNmzbRunVrjhw5Qo0aNWz7DR8+nAMHDvDtt9/aPc7YsWPtXh901qxZds+V8vT0pHr16oSGhlKuXLni+TD/unABatWqAMDhw2dL5f+dSOl38eJFDh06xLFjx8jIyHB2OSJSRqWmetCvn3V0Y86cpfj4ZF7hFa5nwoQoNmyogWHkPpvNbLbQuvVRnnxya7G+Z3JyMv379+fcuXMEBgbmu69L99hluXyhV8Mw8l38dcyYMTmWr0hMTCQ0NJQuXbrY/UJSU1M5dOgQ5cuXt61DVhSGYZCUlERAQICtvuydI4GBgQp2TmCvXcqa1NRUfH1
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plotAlphas()"
]
},
{
"cell_type": "markdown",
"id": "c09cb260",
"metadata": {},
"source": [
"## Plot Temperatures"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "5c79840e",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACB7UlEQVR4nO3deVhU1RsH8O+dYUdWRRYFUcF9AXHXFEsp991SS1BcSjNJTStToFLT0ijL0lKx1KxMTX9aiRsuZK64ZLmCK+CGILINzP39MXFlZEAGZ2P4fp7nPszce+bed+Y48nLOPecIoiiKICIiIqJKT2bsAIiIiIhIN5jYEREREZkJJnZEREREZoKJHREREZGZYGJHREREZCaY2BERERGZCSZ2RERERGaCiR0RERGRmbAwdgCmQqlU4ubNm3BwcIAgCMYOh4iIiAgAIIoiHjx4AC8vL8hkZbfJMbH7z82bN+Ht7W3sMIiIiIg0unbtGmrXrl1mGSZ2/3FwcACg+tAcHR31cg2FQoEdO3YgJCQElpaWerkGaYd1YlpYH6aHdWJaWB+mxxB1kpmZCW9vbylXKQsTu/8Udb86OjrqNbGzs7ODo6Mjv5AmgnViWlgfpod1YlpYH6bHkHVSnlvFOHiCiIiIyEwwsSMiIiIyE0zsiIiIiMwEEzsiIiIiM8HBE0REZDIKCwuhUCiMHYbJUigUsLCwQG5uLgoLC40dDuHp6kQul+t8wAUTOyIiMjpRFJGamoqMjAyIomjscEyWKIrw8PDAtWvXOJm+iXjaOrG2tkaNGjV0NiMHEzsiIjK6jIwM3L9/H25ubrC3t2fSUgqlUomsrCxUq1btiSsQkGFUtE5EUYRCoUBGRgZu3LgBADpJ7pjYERGRUYmiiFu3bsHR0RE1atQwdjgmTalUIj8/HzY2NkzsTMTT1ImtrS0cHBxw/fp13LlzRyeJHf9VEBGRURUWFqKwsFBvk8MTmTJBEODk5IS8vDyd3F/KFjsiIjKqgoICAICFRcV/JaWkqDZteXqqNiJjKhpAUVhY+NSDKZjYERGRSXia++qWLQOio7V/XWQkEBVV4csS6YQu7yllYkdERJXehAlAv37q+3JygM6dVY8PHABsbUu+jq11ZG54jx0REVV6np5Aq1bqW0DAo+MBASWPt2ql/8QuKioKgiBAEASEhYWVOB4cHCwdj42N1W8wOhYbGyvFHlWs2bP4e0pOTjZafACQnJyMqKgoREVFYfPmzSWOh4WFSbHu3bvX4PHpA1vsDOTCBeCbb2Q4dCgIBw/KMG4c4O9v7KiIiIjMV3JyMqL/66MPDQ3FgAEDjBuQATCx04PHb+LdsgX44ANAEGRQKmshIQFYtAiYPVu964A38RIR6c7Fi48eR0aqumur2h/U2dnZsLOzM+g1tW35MkaMRWJjYytdS+mTsCtWD5YtA4KCHm3R0YBSCRQWChBFAYWFApRK1f7i5ZYtM3bkRETmYdUqVVdrkZgYoFEjoDL9Dj9+/Dheeukl1KpVC1ZWVnB1dUWPHj2wZcsWtXJ79+5V6+5dtWoVmjVrBisrKyxcuFCtO1jTFlWO0SObNm1CQEAAbGxs4Ovriw8//LDU5bM0dcUmJydL+4KDg/G///0PrVu3ho2NDSZOnCi9dt++fRg4cCA8PDxgZWWFmjVrYvDgwTh27FiJ66Snp2PWrFlo0aIF7O3tYWtrCz8/P7z66qtSHN26dZPKr169ukS3eFldsb/88gu6d+8OV1dXWFlZwcvLCy+++CKOHz+uVi46OhouLi6Qy+VYvnw55syZgzp16sDOzg5BQUGIi4t74uerS2yx04PiN/EuWQJ8/z2g6d+/XA688gowebLqOVvriIie3oULwNixqj+oixT9HxwerhpQ4ednnNjKa9OmTXjxxRfV5jVLT0/H7t27sXv3bpw6dQqffPJJiddt27YNq1ev1upaTxqR+csvv2Do0KHSUm9XrlzB7NmzUatWLa2uU+TUqVPo378/lMUrCMBXX32FSZMmqS0pd/v2bWzcuBFbt27Fxo0b0adPHwCqRLFLly64du2a2jkuXbqEO3fu4Ouvv65QbEWmT5+ORYsWqe1LSUnBTz/9hE2bNuGnn37S2K379ttvIz09XXp+/Phx9OnTB+fOnYOvr+9TxVRebLHTg+I38ebmAqUteyiKquOGuomXiKgqWLkSKC1XEQRgxQrDxlOkeItR0RYfH1+iXE5ODsaPHy8ldV9++SUyMzOxe/duaRLnRYsW4ciRIyVee+fOHURERCAtLQ13795FaGgooqKiIIqitK1du1ZaIaFu3boYO3ZsqTGLoohp06ZJyVZUVBQyMjKQkJCAvLy8Cn0O6enpGDp0KK5du4bMzEy8++67uHHjBt58802IoohWrVrhn3/+QV5eHo4ePQo3NzcoFAqMHz9emvPwjTfekJK69u3b4/jx43j48CHOnj2LadOmAVC1ZO7Zs0e6bmhoqPQZlNX9euTIESmpc3Z2xu7du5GZmYklS5YAABQKBcaNG4ecnJwSry0oKMCOHTtw//59jBgxAgCQn5+P9evXV+izqggmdnqQkgIcP67abGzK/g/GxuZR2YpMrklEROqSk8v+g9rIAzWf6ODBg7hz5w4AIDAwEBMnToSDgwO6deumNrL28S5ZAPDz88OiRYtQs2ZNuLq6om7dumrHt27ditDQUCiVStSuXRu7du0qs+Xt/PnzuHLlCgDAzc0Ns2fPhqOjIzp06IBx48ZV6P05OjpixYoVqF27NhwcHNCgQQP89ttvUqJ4/PhxNG7cGNbW1mjdujVu374NQNVidvLkSeTm5uK3336Tzrd+/XoEBgbCzs4OjRs3xuzZsysUV5Fff/1Vejx69Gh069YNDg4OeP3119GyZUsAqgQ6ISGhxGvHjh2LHj16wMnJCcOHD5f2G3J0MBM7PSh+j11srOZuWEC1PzaW99gREemSr2/Zf1AbqEeshOItRkVb165dS5RLS0uTHtepU0ftWPHuvOLligQGBpa6Xunu3bsxbNgwFBQUwN3dHTt37iyR+D2uKMEEgFq1aqmd+/HYyqthw4awt7dX26fpvZQWz927d6WWOwcHhwrHUZqn+fwbN24sPS7+HnNzc3UYYdmY2OnBhAnAsWOPtshIQCYD5HIRgiBCLhchk6n2Fy83YYKxIyciqvzGjCm7xS483LDxaMvd3V16XNRaVqR4y0/xckVKG136119/oX///sjNzYWrqyvi4uLQsGHDJ8ZSo0YN6fGNGzfU7ot7PLby0hRj8fcyYcKEEgmwKIpQKpV4/vnnUb16dWn5uQcPHuDq1aulXqsiKzo8zedffDkwXa4moQ0mdnrw+ESZUVHAuXPA1KlKdO58A1OnKnHunGq/ISfKJCKqCvz9VffRFW+4kstVz1esMP2BEx07dkT16tUBACdOnMDXX3+NrKwsxMfHqw2M6Nu3b7nOd/r0afTs2RNZWVlwdHTEH3/8gebNm5frtQ0aNJBarW7fvo0PPvgAmZmZOHToEL755hst31npevbsCWtrawDAqlWr8N133yEjIwM5OTlITEzEe++9h44dOwIAbGxs0KtXL+m1w4cPR2JiInJycnD+/Hl8+OGH0rGizxEALly4gIcPHz4xln7F5iGLjY1FfHw8srKysHTpUpw8eRKAKuEtisfUMLEzED8/YO5cJaZNO4a5c5Um/x8LEVFlFhYGnDjx6HlEhOoPbA2LP5gcOzs7LFu2TGqVeu211+Dg4IDg4GBkZGQAAKZMmYK2bduW63yLFy+WRmpmZmaiTZs25Z7uRBAEfPLJJ1LrU1RUFJycnNChQwedtkjVqlULMTExEAQB+fn5CA0NhbOzM+zs7BAYGIi5c+cipdiN6J9//jm8vb0BAAkJCdI9dg0bNlQbLezn5wc3NzepXLVq1Z64ykfbtm0REREBQDXQIzg4GA4ODpg0aRIAwMLCAl9//TVsNa1RZwKY2BERkVmqX//R4+ho02+pK27w4MH4888/MXToUHh4eMDCwgJOTk4IDg7GihUrsHjx4nKfSyytX7qchgwZgl9++QUtWrSAlZUVvL29MXv
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plotTemperatures(w_x, w_z, plot_against_mod_depth = True)"
]
},
{
"cell_type": "markdown",
"id": "063879ee",
"metadata": {},
"source": [
"## Calculate and Plot calculated trap frequencies"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "0ddff726",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAJNCAYAAABHt1gkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADDQ0lEQVR4nOzdd3RU1dfG8e+kEgIJNYRAaEoLKF1ApCNKrxaKFLEhIPaCBSzIz15elWIB6RaKSJMaioLSpYtI772Tet8/DkkIJJBJZnInyfNZ665M7ty5s4MBz55z9j4Oy7IsRERERERE0snL7gBERERERCRrU1IhIiIiIiIZoqRCREREREQyREmFiIiIiIhkiJIKERERERHJECUVIiIiIiKSIUoqREREREQkQ5RUiIiIiIhIhiipEBERERGRDFFSISIiIiIiGeJjdwAiIiIiIjnR8FXDGb56OLtP7wagUkgl3mjwBi3Ktkjx+sjdkTT+vvF157f220qFQhXcGepNKam4IjY2lnXr1lGkSBG8vDSBIyIiIiLOi4+P58iRI1SrVg0fnxsPtYsHFed/zf7HrQVuBeD79d/TbnI71j2+jkohlVJ93fb+2wnyD0r8vnDuwq4JPgOUVFyxbt067rjjDrvDEBEREZFs4K+//qJWrVo3vKZN+TbJvh/adCjDVw9n5f6VN0wqQgJDyJcrnyvCdBklFVcUKVIEgBUrVhAaGmpzNCIiIiKSFR0+fJi6deuSO3duzp49m3je398ff3//VF8XFx/HT1t+4kLMBeqG173he1QbWY3LsZeJKBzBa/Vfo3Hp65dEZTYlFVckLHnatWsXR44csTkaEREREcmKLl68CEDlypWTnR88eDBDhgy57vqNRzZS99u6XI69TB6/PEx7YBoRhSNSvHfRPEUZ1XoUNcJqEBUbxbi/x9F0bFMie0XSoGQDl/8sznBYlmXZGoGH2L9/P+Hh4ezatYtixYrZHY6IiIiIZEEHDhygdOnSbNmyJdmYMrWZiui4aPae2cvpy6eZsmUK36z7hiW9lqSaWFyrzaQ2OHAwo8sMl/0M6aGZimv4+Pjg6+trdxgiIiIikgUlFGfnzZuXoKCgm1wNft5+iYXaNcNqsurgKj5b+Rkj24xM0/vVKVaH8RvHpz9gF1GbIxERERERD2FhERUXlebr1x1eR9E8Rd0YUdpopkJERERExAaDFg6ixa0tCA8O51zUOSZvmkzk7kjmdpsLwCsLXuHAuQOM7TAWgE9XfkqpfKWoVLgS0XHRjP97PFO2TmHK/VPs/DEAJRUiIiIi2UpcXBwxMTF2h5Ht+Pr64u3t7dJ7Hjl/hIemPcSh84cI9g/m9iK3M7fbXO6+5W4ADp0/xN4zexOvj46L5vl5z3Pg3AECfAKoFFKJWV1n0bJsS5fGlR4q1L4ioVB73759FC9e3O5wRERERJxiWRaHDx/mzJkzaHjneg6Hg+DgYEJDQ3E4HKlel1PHlJqpEBEREckGzpw5w+nTpylcuDCBgYE3HPiKcyzL4sKFCxw7doyAgADy5ctnd0geR0mFiIiISBZnWRZHjx4lKCiIQoUK2R1OthQQEEBUVBRHjx4lODhYSds11P1JREREJIuLi4sjLi4uTS1MJf2CgoIS/6wlOSUVIiIiIllcbGwskLRHgrhHwp9vwp+3JFFSISIiIpJNaEmOe+nPN3VKKkREREREJEOUVIiIiIiISIZo4Z2IiIiIpCwuDpYtg0OHoGhRqF8fXLwBnGQPSipERERE5HpTp8LAgbB/f9K54sXhs8+gY0f74hKPpOVPIiIiIpLc1KnQuXPyhALgwAFzfupUe+ISj6Wkwk5xcRAZCZMmma/qeSwiIiKuZFlw4YJzx9mz8NRT5rUp3Q/MDMbZs87fO6V73sSzzz6Lw+HA4XAwceLEZM8NHTo08bkvvvjihvc5efIkJUqUwOFwkCdPHv79918AoqKiuO2223A4HPj5+bFy5UqnYxQlFfaZOhVKleLLbi8SOPdTvuz2IpQqpcxfREREXOfiRciTx7kjONjMSKTGsswMRnCw8/e+eNHpH+Gxxx5LfDxu3Lhkz40fPx4wu1137979hvcpUKAAP/zwAz4+Ply4cIGHHnqIuLg4XnrpJTZt2gTAsGHDqFOnjtMxipIKe1yZUrT27+etKqW5WOYv3rq9NNZ+TSmKiIiIXK1ChQrUr18fgPnz53P48GEAVq1axbZt2wC4//77yZcv303vVbduXYYOHQrAypUr6dSpE59//jkAbdq04dlnn3XDT5AzKKnIbHFx7Hm1H2tCLb4sWoejVWcDcLRyJF8Wrc2aohZ7XuuvpVAiIiKScblzw/nzzh2zZ6ft3rNnO3/v3LnT9WMkzFbExcUlLoEaO3bsdc+nxQsvvEDLli0B+OWXX7AsixIlSjBmzBhtbpcBDstKx+K2bGj//v2Eh4ezb98+ihcv7r43iozEsaTx9ect4Krf4/gGi3E0buS+OERERCTbuHz5Mrt27aJ06dLkypUrYzeLizNLsg8cSLkGwuEwXaB27cq09rKXL18mLCyMU6dOUbVqVf766y/CwsI4fvw4lStXZuPGjU7db+nSpTRs2DDx+zfffJM33ngjTXHc7M8508aUHkYzFZnt0CHGTwHvuGsy4YRv43xgynjKPFCT/v3NhwDpWH4oIiIikj7e3qZtLJgE4moJ33/6aabuV5ErVy4eeughANavX88HH3zA8ePHAedmKQAuXrxI3759k5373//+l1hXIemjpCKzFS1K141Q/psxKT6da+4wfDd2ZvexPHz5JbRqBQULQsuW8MUX8N9/mRuuiIiI5EAdO8LPP0OxYsnPFy9uztuwT8XVycPgwYMBU6CdkGyk1ZNPPsmWLVsAGDRoELly5eLSpUvcf//9XLhwwXUB5zBKKjJb/frMK9SNLVQ238df+U9wZXbxcvNXee2Wpsz4aj+PPw7h4XD5MsyZAwMGwC23QMWK8NxzsHAhREfb82OIiIhINtexI+zeDYsXw8SJ5uuuXbZtfFepUiXuvPNOAGJjYwG477770lSgnWD06NF8//33ADzwwAMMHTqUDz/8EICtW7fSr18/1wadgyipyGSWlzevB3+O40JBOBcKh2rAryPgYA2I9QffaN58cDV5vopgRNel7NkDGzfCe+9Bw4ZmpnHbNvj4Y2jWzMxidOgA33xz4+5vIiIiIk7z9oZGjaBLF/M1E5c8peTapU7OLH3asmUL/fv3ByA8PJwRI0YA0K9fP9q1awfA999/z5gxY1wTbA6jQu0rMquoJioKSpaEI0cA7yiI88MUVFjgdw46d4FyswmMhrmTvLnrjW+gV6/E158+DfPnm1qLOXOu3OcqVaqYpVItW0KdOuDj47YfRURERDyESwu1JVUq1E6dhpyZzN8fVq2CY8cwRdnr1sDx41CoEFSrRhRTeHltG5YeXkCLB+OY93pv6m7bBu++C15e5MsH991njvh4WLfOJBizZsFff8GGDeYYNgzy54d77jEJxr33QuHCdv/0IiIiIpIdaabiCk/KKi/FXKL1xNYs2r2IoMuwYCzUqt0Bxo2DwMBUX3fsGPz2m0ky5s6FU6eSnnM4oFYtU/jdsiVUrw5eWvwmIiKSLeT0mYrdu3dTunTpG16zePFiGjVqlKH30UxF6jSs9EABvgHM6DKDBiUbcDYXNH8I1q6cBvXr37BwonBh6N7d1FIdPQrLl8OgQVC1qmkz/ddfMHiwSS6KFjWrqn780SypEhERERFJLyUVHirQL5BZXWdRL7wepwPg7p4ONhxcB3fcAWvW3PT1Pj5Qrx4MHWqWSO3fb4q5O3SAPHlM0vH99/DAA2blVcOGphh848aU97kRERER8VSlSpXCsqwbHhmdpZAbU1LhwfL45WF2t9nULlabk7ksmvX2ZlPsQWjQAKZOdepexYpBnz7mZSdOmHa0zz1n2tPGxcHSpfDyy3D77VCiBDz+OMyYAefPu+mHExEREZFsQ0mFhwvyD2Ju97nUDKvJ8VxxNH3Ej625L0KnTvC//6VrWsHPD5o0gQ8/hC1bYOdOs7Fey5aQK5eZ1Rg1Ctq
"text/plain": [
"<Figure size 800x600 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"AtomNumber = 1.00 * 1e7\n",
"BField = 1.4 * u.G\n",
"Wavelength = 1.064*u.um\n",
"w_x, w_z = 30*u.um, 30*u.um # Beam Waists in the x and y directions\n",
"modulation_depth = np.arange(0, 1.0, 0.08)\n",
"\n",
"w_xs = w_x * convert_modulation_depth_to_alpha(modulation_depth)[0]\n",
"new_aspect_ratio = w_xs / w_z\n",
"\n",
"v_x = np.zeros(len(modulation_depth))\n",
"v_y = np.zeros(len(modulation_depth))\n",
"v_z = np.zeros(len(modulation_depth))\n",
"\n",
"for i in range(len(modulation_depth)):\n",
" v_x[i] = calculateTrapFrequency(w_xs[i], w_z, Power, dir = 'x').value\n",
" v_y[i] = calculateTrapFrequency(w_xs[i], w_z, Power, dir = 'y').value\n",
" v_z[i] = calculateTrapFrequency(w_xs[i], w_z, Power, dir = 'z').value\n",
"\n",
"plotTrapFrequencies(v_x, v_y, v_z, modulation_depth, new_aspect_ratio, plot_against_mod_depth = True)"
]
},
{
"cell_type": "markdown",
"id": "76ff8301",
"metadata": {},
"source": [
"## Plot measured trap frequencies"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "7a85ec41",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAxUAAAJOCAYAAADBIyqKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAByXUlEQVR4nO3deXgUVdr38V9nJYSERSAECAQVWUdRcAmC4KAwomwy4/IggiIGBUSRVw0Ok8QZBhdkAGUwOggioD6K4IYIjoRF0GHL4xJRVJYQOyAgkATIWu8fNWnSSSek01vS/f1cV13pOnWq+u5ul777nPuUxTAMQwAAAABQS0G+DgAAAABA/UZSAQAAAMAlJBUAAAAAXEJSAQAAAMAlJBUAAAAAXEJSAQAAAMAlJBUAAAAAXEJSAQAAAMAlIb4OwBeKi4u1e/duxcTEKCiIvAoAAADuUVpaqsOHD+vyyy9XSEjgfNUOnFdazu7du3XVVVf5OgwAAAD4qf/85z+68sorfR2G1wRkUhETEyPJ/LBjY2N9HA0AAAD8hdVq1VVXXWX7vhkoAjKpKJvyFBsbq7Zt2/o4GgAAAPibQJtiH1ivFgAAAIDbkVQAAAAAcAlJBQAAAACXkFQAAAAAcElAFmoDAAD4q5KSEhUVFfk6DL8TGhqq4OBgX4dRZ5FUAAAA+AHDMJSTk6OTJ0/KMAxfh+N3LBaLGjdurFatWslisfg6nDqHpAIAAMAPnDx5UidOnFCLFi0UGRnJF183MgxD+fn5+vXXXxUREaEmTZr4OqQ6h6QCAACgnjMMQ0eOHFF0dLSaN2/u63D8UkREhAoKCnTkyBE1btyYpK0CCrUBAADquZKSEpWUlCg6OtrXofi16Oho23sNe4xUAAAA1HPFxcWSpJAQF77aWa3m5qzYWHMLAGXvb3FxsWvvtR/i3QAAAPATLk3JSUuTUlOdPy85WUpJqf3z1iNMeaoaSQUAAACkxERp6FD7tjNnpD59zMdbtkgREZXPC5BRClSPpAIAAACOpzHl55973KOHFBnp1ZBQf1CoDQAAAMAlJBUAAABw7Mcfzz1OTpb27vVdLKjTSCoAAABQ2eLF0hVXnNufO1fq3FlassSrYUydOlUWi0UWi0UrVqywOzZz5kzbsRdffLHa6xw/flzt2rWTxWJRo0aN9ON/E6aCggL97ne/k8ViUVhYmL744guPvRZ/RlIBAAAAe3v3SvfdJ5WWnmsrKTH3x42zH8HwsPvvv9/2+PXXX7c7tmzZMknmjenuuuuuaq/TrFkzvfXWWwoJCVF+fr5Gjx6tkpISPf744/rmm28kSbNmzdI111zj5lcQGEgqAAAAYO/VV6Wqlk+1WKRFi7wWSufOndW3b19J0vr165WTkyNJ2r59u/bs2SNJuu2229SkSZPzXishIUEzZ86UJH3xxRcaOXKk5s+fL0kaMmSIpk6d6oFXEBhIKgAAAGBv/37JMBwfMwzzuBeVjVaUlJTYpkAtXbq00vGa+H//7/9p8ODBkqT33ntPhmGoXbt2WrJkCfehcAFJhTft3SslJUl33mn+pdgJAADURfHx1Y9UxMd7Mxr98Y9/VNOmTSWZU6CKior05ptvSpK6d++u3r171/haFotFjz/+uF3buHHj1KxZM/cFHIC4T4WnVLzV/fvvS3/9q/kvomGYf599Vpoxw/5GM/X0VvfWXKusedbzd6wgtlGsYqPq3+sFAMCv3Xuv+T3FEcMw6yq8qEGDBho9erTmz5+vjIwMPffcczp69Kgk50YpJOn06dN64IEH7Nqefvpp3XrrrerevbvbYg40FsOoamzLfx06dEhxcXHKyspS27ZtPfMkKSkBdav7lPQUpW50/vUm90tWSv8U9wcEAEAAOXv2rPbt26cOHTqoQYMG7rnokiVm8lBWrB0cbCYUixZJY8e65zmc8O2339q+9IeEhKi4uFgRERH65ZdfalRPUWbs2LF67bXXJEnTp0/XnDlzdPbsWXXp0kXbt29XZDU3+KvJ++yV75l1ECMVnlL+VvcvvCC9/rq5akJFwcHS6NHS5Mnmfj0cpZCkxJ6JGtppqF3bmaIz6rO4jyRpyz1bFBEaUem82Eb18/UCAOD3xo41l5S97DJz/+GHpQkTpIsv9kk43bp1U+/evbV161YVFxdLkv70pz85lVAsXrzYllDcfvvtmjlzplq3bq1Jkybpu+++08SJE7XEy0vm+guSCk8pP43p7Nnqi53OnrVfB7oeio2qPI0pvzDf9rhHqx6KDKs68wcAAHXQRRede5yaKlXzK7433H///dq6davdfk1lZmZq0qRJkqS4uDi99NJLkqSJEydq/fr1eu+99/Taa6+pf//+GuuDkZj6jqTCG+pYsRMAAEB9NGbMGI0ZM6ZW53bt2lX5+fkOj61evdqFqCCRVHhO+ULtq6+ufqTimmukXbvM/XpaqA0AAIDARVLhKWlpNSvULi2Vhg8/t19PC7UBAEA9V3HlSkk6c+bc44wMKaJyfWRd+EF0//796tChQ7V9NmzYoP79+3snoABEUuEp5Qu1y2RlSatXm//CxsaayURcnH0fRikAAIAvnO8H0T59HLfzgyhEUuE5jrL2K66Qhg3zTTwAAADVcfSDaE3UgR9E4+PjFYB3SahTSCoAAABQJ6Yxof4K8nUAAAAAAOo3kgoAAAAALiGpAAAAAOASaioAAADgcEXZmqAUAxJJBQAAAFTzW2xVxIqykEgqAAAAIMcryp45c+72FFu2VH3vO4CkAgAAAA6nMeXnn3vco4cUGenVkFCPUKgNAAAAwCUkFQAAAABcQlIBAACAOmvq1KmyWCyyWCxasWKF3bGZM2fajr344ovnvVZ8fLytv6Nt//79HnoV/s/nScXChdKll0rR0eaWkCB9/HH152zcKPXsKTVoIF14ofTSS96JFQAAIFBt2OCb573//vttj19//XW7Y8uWLZMkRURE6K677nL5uSwWi8vXCFQ+TyratpWeflrascPcfv97adgw6dtvHffft08aPFjq21favVuaPl166CFp5Urvxg0AAODvDOPc4+Rk+31v6dy5s/r27StJWr9+vXJyciRJ27dv1549eyRJt912m5o0aXLea+3fv1+GYcgwDBUVFemWW26xHbv//vvVvn1797+AAOHzpGLIEDNJuOQSc5s5U2rUSPriC8f9X3pJatdOmjtX6tJFuu8+6d57pdmzvRo2AACA3/v3v8893rVLWrfON3GUjVaUlJTYpkAtXbq00vGaKi0t1d13360PP/xQknTXXXdp4cKFboo2MPk8qSivpER6801z+bKEBMd9tm2TBg60bxs0yBzlKCryfIwAAACBwDCkp546tx8cLM2Y4ZvRij/+8Y9q2rSpJHMKVFFRkd58801JUvfu3dW7d2+nrvfAAw/ojTfekCSNHDlSS5YsUVBQnfpaXO/UiXfv66/N0YnwcGnCBGnVKqlrV8d9c3KkmBj7tpgYqbhYOnrU8TkFBQU6deqUbcvNzXXvCwAAAPAz69aZoxNlSkqk7dt9M1rRoEEDjR49WpKUkZGh5557Tkf/+8XP2VGKxx57TC+//LIkafDgwXrjjTcUHBzs3oADUJ1IKjp1kjIyzClPDzwgjRkjZWZW3b9iDU1ZxlxVbc2sWbPUuHFj29a1qowFAAAAMgxzVKLij/dBQb4brSifPCQnJ0syC7TLko2a+Nvf/qbnnntOkvT73/9eK1euVGhoqHsDDVB1IqkIC5Muvljq1UuaNUu67DJp3jzHfVu1MkcryjtyRAoJkS64wPE5SUlJOnnypG3LrC5jAQAACHCFhdLBg1JpqX17aamUlWUe97Zu3brZpjkVFxdLkv70pz/VqEC7zIwZM2yPP/vsM0VERLCkrJvUiaSiIsOQCgocH0tIkNavt29bt85MSKpKNMPDwxUdHW3boqKi3BswAACAHwkPN6c6bdlyrm3LFmnnTrM9PNw3cVWc6uTs1Cd4ToivA5g+XbrpJikuTsrNNQu109OltWvN40lJUna2VFbgP2GC9OKL0tSp0vjxZuH2okXSf2ttAAAA4AZxcVKzZuf2e/SQIiN
"text/plain": [
"<Figure size 800x600 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"modulation_depth_radial = [0, 0.5, 0.3, 0.7, 0.9, 0.8, 1.0, 0.6, 0.4, 0.2, 0.1]\n",
"fx = [3.135, 0.28, 0.690, 0.152, 0.102, 0.127, 0.099, 0.205, 0.404, 1.441, 2.813]\n",
"dfx = [0.016, 0.006, 0.005, 0.006, 0.003, 0.002, 0.002,0.002, 0.003, 0.006, 0.024]\n",
"fz = [2.746, 1.278, 1.719, 1.058, 0.923, 0.994, 0.911, 1.157, 1.446, 2.191, 2.643]\n",
"dfz = [0.014, 0.007, 0.009, 0.007, 0.005, 0.004, 0.004, 0.005, 0.007, 0.009, 0.033]\n",
"\n",
"modulation_depth_axial = [1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1]\n",
"fy = [3.08, 3.13, 3.27, 3.46, 3.61, 3.82, 3.51, 3.15, 3.11, 3.02]\n",
"dfy = [0.03, 0.04, 0.04, 0.05, 0.07, 0.06, 0.11, 0.07, 0.1, 1.31]\n",
"\n",
"plotMeasuredTrapFrequencies(fx, dfx, fy, dfy, fz, dfz, modulation_depth_radial, modulation_depth_axial, w_x, w_z, plot_against_mod_depth = True)"
]
},
{
"cell_type": "markdown",
"id": "4a4843d2",
"metadata": {},
"source": [
"## Plot ratio of measured to calculated trap frequencies"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "58cf3f64",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABXgklEQVR4nO3deXxTVf7/8Xe6L7RlhyBlEwQcZEdkEYoCjqg47o6gbCruIu6O2Hb064a4jKOI/hAYEXFcQAdBQFmkMCKrqIwKCAha0LK0pWva3N8fMZemSVfaprl5PR+PPMi9uUk+N6dp35xzz702wzAMAQAAIOCF+LsAAAAA1AyCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFhHm7wJOldPp1K+//qq4uDjZbDZ/lwMAAFCjDMNQdna2WrVqpZCQ8vvkAj7Y/frrr0pMTPR3GQAAALXqwIEDat26dbnbBHywi4uLk+Ta2fj4eD9XE/gcDodWrFihkSNHKjw83N/l4BTQltZBW1oL7WkdddWWWVlZSkxMNDNPeQI+2LmHX+Pj4wl2NcDhcCgmJkbx8fH8wglwtKV10JbWQntaR123ZWUOOWPyBAAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIsL8XUC9k57uulWV3e66AQAA+AnBrrRZs6TU1Ko/LzlZSkmp8XIAAAAqi2BX2uTJ0ujRJ5c//lh6/HHJ6XQth4ZKhiFNm+a5Hb11AADAzwh2pZUcUt21yzPUSVJxsevfxx+Xxo6VOnas+xoBAAB8YPJEed58U7LZfD9ms0mzZ9dtPQAAAOUg2JVn3z7XsKsvhuF6HAAAoJ4g2JWnXbvye+zatavLagAAAMrFMXallTzdSf/+5ffYnXOOtHWra5nTnQAAAD8j2JVW2dOdOJ3SX/5ycpnTnQAAAD8j2JVW+nQnknTggLR4sasnz253BbrERM9t6K0DAAB+RrArzdeQau/e0qWX+qceAACASmLyBAAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEVw5QkAgSE93XWrKl9XkwEAiyLY4aRduxTyxhvq8+WXClm/XrrpJqlTJ39XBbjMmiWlplb9ecnJUkpKjZeDU0BIB2oNwS5Ylf7F+vHH0uOPK8Rm02lOp7RhgzRjhjRtmjR69MntAv0X665d0ptvSvv2Se3aSRMnEl4DxeTJnj+LkpSXJw0e7LqfliZFR3s/L5B/Xq2KkA7UGr8Hu3bt2mn//v1e62+77Ta98sorfqgoSJTxi9XmvlNc7Po3NdVzu0D6xVpGeJXNJhmG699nn7VeeLUqX+2Sk3Pyfs+eUmxsnZaEaiKkWwe9r/WO34Pdpk2bVOwOEZK+/fZbjRgxQldddZUfqwoCJX+xvvyy9NZbJ8NcSaGh0vXXS3fe6VoOpC9iZXsFAjm8AoGIkG4d9L7WO34Pds2aNfNYfvrpp3X66adr6NChfqooSJT8xZqf7+rB8sUwXI/37l13tdWUYAivZQmW4yV37z55PznZ1eZW3E+gvgqW3teyeiaLipSwZ4+0bZsU5iNS+aFn0u/BrqTCwkLNnz9fU6dOlc1mq/gJqL6SP6RRUa5hSV9sNtfjW7e6lgOp+zwYwqsUvMdLzpkj3XjjyeUXX5ReeEGaPVsaP95fVQHBJVh6X8vomQyXlFTe8/zQM1mvgt3ixYt1/PhxjS/nl3JBQYEKCgrM5aysLEmSw+GQw+Go7RItI+TVVxX6xBMVb1hcLM2d67pJKn70UTkfe6xWa6sNIYmJCrHZ5Cu+GjabnImJcgboz09ZbVnR8ZKB2paSpF27FHbjjbI5nSfXFRfLkKRJk1TUv7/UsaO/qqu+9HTp0CHPdT//LH30kc759lvp/ffluPRSqU0bz21atgzskC5JDofCzbsOKUC/j5Xh/ltl2b9ZVmzLiROlUaM81+XlKTwpyXX3s88UFhfn/byWLWtk/6vys1Kvgt3s2bN14YUXqlWrVmVu89RTTynVR2pesWKFYmJiarM8S4ns0EFRM2aYyy2/+kqd//1vGTabbO6JBYahH66+WofOPtvcLr9RIxUsXeqPkqss8uhRRR07JkmKDg3V2U6nDMkj3BmS5HRqc1iY8l5+WdIf+9i4cV2XW20l27L9J58occ0ahZQMPH8wQkL0c1KS9l50kaTAasvSur71ljpKXkHdJskpae+0afrf9dfXfWGnqPM776jLu+/6fKyFJG3fLs2f7/XY99dcox/++tdara22hebn6+I/7i9fvlzFUVF+racurFy50t8l1IpgacuS+/l5RoaKT5zw3ig93TVMe4pyc3Mrva3NMMoan6pb+/fvV4cOHfThhx/q0ksvLXM7Xz12iYmJysjIUHx8fF2Ual27d0uzZ+vwV1+pxdlnS5MmBWavxx9C/v73yvVKlhLIPVmhY8fK9v77nj1ZfzBCQmRceaWKfQSDQGPZ/SzZY/fzzwq75hqvfTQkKSRERf/+t5SY6FpphR67nByFN2okSXIcO2aN4TtfPbCSihwObdy4Uf3791dYeLj38wK9Pa3Ylr7s2KHwvn0lSY677qrVY3yzsrLUtGlTZWZmVph16k2P3Zw5c9S8eXNd9EdvQlkiIyMVGRnptT48PFzhvr4gqLyuXeV46iltWbpUo0aNCvzP87bbpMsu81x34IC0eLHrF67dLv3lLyf/OP4h1G5XaKDue4cOZR4vabPZZOvQQSGBum8lWXU/27Q5Ocy6aJHPfbRJks2m8M2bpSuuqNPyalWJ9goPD/dYDlhvvhkwx2XVKCu2ZWmljvENe+UV2f75z1o7xrcqf4/rRbBzOp2aM2eOxo0bpzBfs0qA6vB1UG/v3lI5PcIBqeTkif79y58kcs45gTkRprSJE13nIPTFMFy9zYFu377y23LfvrqsBtXha8bojz9KfwybF193nUKvusr7mMlA/V66WX22+q5drlBXojfd5j6WedIk14xgP452hfjtnUv47LPP9PPPP2vixIn+LgUIPLNmSX36uG6XXebxy8aD0+nqoXRvO2tWnZZZozp1cv3POKTEr7DQUNfy7NkBfQiBqV278mert2tXl9XUvtJhYNcu/9VSU+x2138m3bevv5bGjDEfDnn3XVev644dntsFcrCbM8fzDAMvvih16WJOwLOEN98s/7s5e3bd1lO6hPpyjF11ZWVlKSEhoVLjzqiYw+HQUqsMxQYLX+dXOnBAxR9+qIwdO9S0e3eFXn6515BzQPfYue3YIfXo4bp/773SLbdYI9RJrmDTpYvvoB4SIv3wg3X21T2s5d7X0FBXr6SVTl0TDO0ZDPsouXpc//3vsvfz6quld96p0besStZh3BMIdGUMOTtHjdKXf4T0gD1msCKnn37yfmpq4B+kXTqkT5vmugzeH39AjJAQ1zF206ZJWVnWGFb3MaylejSsVWMq08vz1FN1W1NNC4Z9lOp9b3q9GIoFAMhzWL1PH1dYLXkcj9PpWk5N9dwukIfV6/mwVo0JhmMmg2EfJdcxvuXtp5+P8aXHDkBg8DXknJd38v727WVfuihQerN8HWwvyVFUpPVpaRo0eLDCy7psUaAKljBQz3t5akQw7KN08hjfSZNO9qaHhrrOAVsPjvEl2AEIDBVdbNx9bcrSAunUEWWFUIdDmenpUq9e1jt1RLCEgWCYyR0M++g2frxrksgfx/g677xTobff7vdQJxHsAASKMnqzKhTIvVnBIFjCQD3v5akRPvbRYyKMFfaxpBLH+DqTkxXasKH/aimBYAcgMATSkCoqL5jCQD3u5akxpfZRU6ZYY7Z6RYeCfP215OtasX74vUWwAwD4V5CGAedf/qLQkrOb3QL9PzFWm60uVXgoSHhSku8H/HAoCMEOAOB/hIGTAum40GARQBObCHYAgDrlqyNLeSHaqMmargd0/xth6j/E+3kB15EVQGE
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"modulation_depth = [0.5, 0.3, 0.7, 0.9, 0.8, 1.0, 0.6, 0.4, 0.2, 0.1]\n",
"w_xs = w_x * convert_modulation_depth_to_alpha(modulation_depth)[0]\n",
"\n",
"v_x = np.zeros(len(modulation_depth))\n",
"v_y = np.zeros(len(modulation_depth))\n",
"v_z = np.zeros(len(modulation_depth))\n",
"\n",
"for i in range(len(modulation_depth)):\n",
" v_x[i] = calculateTrapFrequency(w_xs[i], w_z, Power, dir = 'x').value / 1e3\n",
" v_y[i] = calculateTrapFrequency(w_xs[i], w_z, Power, dir = 'y').value\n",
" v_z[i] = calculateTrapFrequency(w_xs[i], w_z, Power, dir = 'z').value / 1e3\n",
"\n",
"fx = [0.28, 0.690, 0.152, 0.102, 0.127, 0.099, 0.205, 0.404, 1.441, 2.813]\n",
"dfx = [0.006, 0.005, 0.006, 0.003, 0.002, 0.002,0.002, 0.003, 0.006, 0.024]\n",
"fy = [3.08, 3.13, 3.27, 3.46, 3.61, 3.82, 3.51, 3.15, 3.11, 3.02]\n",
"dfy = [0.03, 0.04, 0.04, 0.05, 0.07, 0.06, 0.11, 0.07, 0.1, 1.31]\n",
"fz = [1.278, 1.719, 1.058, 0.923, 0.994, 0.911, 1.157, 1.446, 2.191, 2.643]\n",
"dfz = [0.007, 0.009, 0.007, 0.005, 0.004, 0.004, 0.005, 0.007, 0.009, 0.033]\n",
"\n",
"plotRatioOfTrapFrequencies(fx, fy, fz, dfx, dfy, dfz, v_x, v_y, v_z, modulation_depth, w_x, w_z, plot_against_mod_depth = True)\n"
]
},
{
"cell_type": "markdown",
"id": "44e92099",
"metadata": {},
"source": [
"## Plot Feshbach Resonances"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "d15205ff",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA3kAAAKyCAYAAABoqBcWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC3KklEQVR4nOzdd3gU1f4G8HdTCEkIJAQIBAIBpHdRRJQuoFGxYS8oXq+KekXEgl4B9acoKqBgb6BgwWvHiICCSFHpvRs6IZQUUkg2yfz+OEwKKWyZ2XNm5v08D89Mwmby3Wx2su9+z5zj0jRNAxEREREREdlCkOwCiIiIiIiIyDgMeURERERERDbCkEdERERERGQjDHlEREREREQ2wpBHRERERERkIwx5RERERERENsKQR0REREREZCMMeURERERERDYSIrsAVRQXF+PQoUOIioqCy+WSXQ4REREREVE5mqbh5MmTiI+PR1BQ1f06hrzTDh06hISEBNllEBERERERVWv//v1o0qRJlf/PkHdaVFQUACAlJQV169aVXA35wu12Y/78+Rg8eDBCQ0Nll0M+sNNj+OKLwMsvA3ffDUyeLLuawLHTY+hUqj6GEycCL70EjBgBTJkiuxpA04DoaLG/ezdQr57Ucsox4jG8/npg/nxg+nTg9tu9//r0dCAxUewfOQLUrOlTGeUMHQr8/jvwwQeivjPNmwfceCPQvTvw22/ic716AZs3A999B/Tv738NgaLq89Aoq1YBAwcCjRsDW7bIrsYcZj2GWVlZSEhIKMkuVWHIO00fohkVFYXatWtLroZ84Xa7ERERgdq1a9vyhOgEdnoMCwrENjYWcNIpxU6PoVOp+hiGhZVuVXhOFReX7teurUZNOiMew6IisY2J8e2+HT4strVrAw0a+FRCBSGnX7VGRFReU0SE2AYHl/5/cLDYRkaq9RidjarPQ6P4+/tlBWY/hme7vIwTrxARmeDkSbG16x8vokDTNNkVlFe2Hjteyn/qlNj62oE7ckRs4+KMqYfsJTNTbPVuOBmPIY+IyARZWWJ7ltEUROQhPVSpEqicEvLCw337+rQ0sTWqi0f2kpEhtnXqSC3D1hjyiIhMoHfyGPKIjKVKoLJ7yMvLE1tfO3kMeVQdvZPHkGcehjwiIhMw5BEZi8M1A8vf4ZoMeVQdhjzzMeQREZlAH67Ja/KIjMHhmoGld/J8Ha6pyjV5qr05QAKvyTMfQx4RkQnYySMyhyqByu4hT8VOnj+BzY6PkZXxmjzzMeQREZmAIY/IWKp1ZOwe8vzt5Jk5XNOOP2+n4XBN8zHkERGZgLNrEhmLwzUDR9O4hAKZiyHPfAx5REQGKygoXQyd1+QRGUuVQGXnkKefvwC1hmuSffCaPPMx5BERGUwfqgmwk0dkFA7XDBx9qCbg23DN/PzSF/EMeVQZXpNnPoY8IiKD6UM1a9YEQkLk1kJkFxyuGTj6UE2XCwgN9f7rjx4V25AQICbGuLrIPjhc03wMeUREBuPyCUTmUSVQ2TnklZ10xZf7pl+P16CB/J+Nah1gEo8JQ575GPKIiAzGaw2IjKfai3U7hzwVl0/wl90eIyvLzQWKisQ+/06ahyGPiMhg+rUG/ONFZBwO1wwcvZNnp5BH6tD/RgYHA5GRUkuxNYY8IiKDMeQRmUeVQGXnkKd38nxdI8+s5RNU6+aSb/TRLrVr2++5oxKGPCIig/FaAyLjqfYC3wkhT9VOnt1+3k7Dv5GBwZBHRGQwdvKIjMfhmoFTduIVX3C4JlWH160HBkMeEZHBGPKIzKNKoLJzyDOqk2f0cE2yB66RFxgMeUREBmPIIzKeasM1y7JbyPO3k1d2CQXZVP69cSoO1wwMhjwiIoPxDxiReVQJVHYOD3acXVOV3xvi38hAYcgjIjIYO3lExuM1eYGTkyO2vkxvr2kcrknV4zV5gcGQR0RkMIY8IuOp1jlTrR4j6SGvVi3vvzYjAygsFPv16xtWEtkIr8kLDIY8IiKD8V1KIvOo0jVTrbNopOxssfWlk6dfj1enDhAWZlxNZB/p6WIbEyO3DrtjyCMiMhjfpSQynmqhSrV6jORPJ8/M6/Hs3D11khMnxLZuXbl12B1DHhGRgTSNwzWJzKDaC3w7hzy9k+dPyDPzejw7/sydhJ28wGDIIyIyUG5u6fUoDHlExlPlBb6dQ54/E6+otHwCoN6bA8SQFygMeUREBtKvxwsO9u0FEhFVTrVQpVo9RjKik6dKyNPZ8XGyKj3kcbimuRjyiIgMVPZ6PL6oIDKOah0ZO4c8fzp5XD6BqqNp7OQFCkMeEZGBeD0ekblUCVV2Dnl27OSRGk6eBIqKxD5DnrkY8oiIDMSQR2QO1UKVavUYyU7X5JFa9C5eWBgQHi63FrtjyCMiMhDXyCMyB4drBo7qs2uSdenLJ8TE2PO5oxKGPCIiA7GTR2QuVV4Y2jnkcZ08MguvxwschjwiIgNxIXQic6gWqlSrx0h6J8/b4Zr5+aWjGcwcrunNz5zBUC0MeYHDkEdEZCB28ojModqLdbuGvIICwO0W+9528vQuXmioeudAuz1OVsXlEwKHIY+IyEDHj4ttbKzcOojsSpUX63YNefpQTcD7Tp4e8urXt9/PhYxR9po8MhdDHhGRgfQ/YHyXkshYqoUq1eoxij7cMjxcdOS8oc+syUlXqCocrhk4DHlERAbSQx47eUTG4nDNwNBDXu3a3n8tZ9aks+FwzcBhyCMiMpA+XJN/wIjMoUqosnvI82XyKK6RR2fDTl7gMOQRERmIwzWJzKFaqFKtHqP4E/LYyaOz4TV5gcOQR0RkIA7XJHIGhryKVOzkqTbM1+k4XDNwGPKIiAySmwucOiX2+QeMyFiqhirV6vGXESHPrE6eP4HNbo+TVXG4ZuAw5BERGUTv4oWEeL++FBFVT7WQZ9cOkRUmXlHld4C8x+GagcOQR0RkkLJDNfkihMjeVAudRrHbcE1SR3Fx6e8XQ575GPKIiAzCmTWJzKNaqFKtHqP4GvKKi4GjR8U+J16hymRmlj5vGPLMx5BHRGQQTrpCZB7VQpVq9RjF15B3/LgIegBQr56xNZE96NfjRUQAYWFya3EC6SFvyZIluPLKKxEfHw+Xy4Xvvvuu5P/cbjeeeOIJdOrUCZGRkYiPj8cdd9yBQ4cOlTtGfn4+HnroIdSrVw+RkZEYOnQoDhw4EOB7QkROx+UTiJzDriEvK0tsvQ15+vV4sbFAaKixNZE98Hq8wJIe8nJyctClSxdMnz69wv/l5uZizZo1eOaZZ7BmzRp888032LFjB4YOHVrudqNGjcK3336LL774AkuXLkV2djauuOIKFBUVBepuEBFxuCaRiVQLVarVYxS92+JtyFP1ejy7TpBjRVw+IbBCZBdw2WWX4bLLLqv0/+rUqYMFCxaU+9y0adPQo0cP7Nu3D02bNkVmZiY+/PBDfPrpp7jkkksAALNmzUJCQgIWLlyIIUOGmH4fiIgADtckMpNqoUq1eoyiv1nl7XlM9YXQ7fY4WRGXTwgs6SHPW5mZmXC5XIiOjgYArF69Gm63G4MHDy65TXx8PDp27Ijly5dXGfLy8/ORn59f8nHW6fEJbrcbbrfbvDtAptEfNz5+1mX1x/Do0WAAQahTpwhud7HscqSw+mNI6j6GxcXi+VVUpMbzq6AAAELhcmlwuwtll1OOP4/hiRMhAFyoXdsNb7780KEgAMGoV68Ybrc5I6k0TfwOFBYWwu2u2KIrLHQBCIGmldagaeL+VPU1qlL1eeiPo0fF70h0tHm/Iyox6zH09HiWCnmnTp3Ck08+iVtuuQW1Ty/gkpqaiho1aiDmjLcF4uLikJqaWuWxJk6ciGeffbbC5xctWoSIiAhjC6eAOrP7S9Zj1cdw69YeABrh0KFNSE7eI7scqaz6GFIp1R7DAwe6AWiK7du3ITl5l+xysHt3HQD9kJ9/CsnJ82WXUylvH8PiYuDECXFJzPr1v2H//lMef+3y5e0AtEZe3h4kJ2/06vt66vjxiwDUw9q1axAefrjC/69aFQegJzIyMpGcvAQAkJMzAEAUVqxYgaysE6bUZSb
"text/plain": [
"<Figure size 900x700 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plotScatteringLengths(B_range = [0, 3.6])"
]
},
{
"cell_type": "markdown",
"id": "1a2e113f",
"metadata": {},
"source": [
"## Calculate and Plot Collision Rates and PSD"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "86e9ba21",
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAJOCAYAAAAqFJGJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADF6klEQVR4nOzdd3gUZdcG8Hs2CaElkZqQUAIovfdA6E2KNAGlI8UGAiKgvH4IiooFsCEoRYo0C00UpfdeFQhVkpAghJ5QU+f742Sy2TR2N5vMlvt3XXvt7Oxk9gQImTPP85yjqKqqgoiIiIiIKBsMegdARERERESOj4kFERERERFlGxMLIiIiIiLKNiYWRERERESUbUwsiIiIiIgo25hYEBERERFRtjGxICIiIiKibGNiQURERERE2eaudwCOJCEhAcePH4evry8MBuZkRERERPYmKSkJUVFRqF27Ntzdeambm/inbYHjx4+jQYMGeodBRERERE9w6NAh1K9fX+8wXAoTCwv4+voCkH+oJUqU0DkaIiIiIkrr6tWraNCgQcp1G+UeJhYW0KY/lShRAiVLltQ5GiIiIiLKjEXT1nftAj7/HDh6FLh6FVizBujWLeuv2bkTGDsWOH0a8PcHJkwAXn01WzEDAC5fBkaMALZtA/LlA/r2BaZPB/LkSX/sxYtA7dqAmxtw9272PzubuFCAiIiIiFzbgwdAzZrArFnmHR8aCnTsCDRtChw/Dvzvf8CoUcCqVdmLIzER6NRJ4tmzB1i5Us751lvpj42PB/r0kRjsBBMLIiIiInJtHToAH34I9Ohh3vHffQeULg18+SVQuTIwbBgwZIiMLKS2cKG8nzcvUKkSMHt21ufdtAkICQGWLpWRiDZtgBkzgHnzgJgY02P/7//knL17m/1t5jQmFkRERERElti/H2jXznRf+/bAkSMykgBIMvDuu8BHHwFnzgAffwxMmgQsXpz1eatVk6lVqc8bGyvTtDTbtgG//AJ8+63tvicb4BoLKyQkJCBe+0dDRERERHYjISEBAHDv3j3EpLrL7+npCU9PT9t8yLVrQNrF4b6+QEICcPMmUKIEMHWqjDZooyBly8poxPffA4MGmX/eQoVkfcW1a/L61i1g8GAZ1fD2ts33YyNMLKywf/9+5M+fX+8wiIiIiCiNhw8fAgCqVKlisn/y5MmYMmWK7T5IUUxfq6px/40bQEQEMHQoMHy48ZiEBMDHR7Y7dAB275btMmVkEXhG59XOre0fPlwWdDdrZrvvxUaYWFghKCgIAQEBeodBRERERGlcuXIFABASEmJyvWaz0QoA8PMzjiBorl8H3N2BIkWA27dl37x5QMOGpse5ucnz/PnAo0ey7eFhPO/Bg6bH37kj06u0kYxt24DffjOu51BVIClJPnvuXFnroRMmFlZwd3eHh/YPgIiIiIjshtZt28vLC945NVUoKAhYv95036ZNQL16kiT4+gIBAcClS0C/fhmfI6Ob1EFBsibj6lWZTqWd19MTqFtXXu/fL9WjNOvWAZ9+Cuzbl/E5cxETCyIiIiJybffvS08ITWgocOIEULiwVH+aOBG4cgVYskTef/VVKU07dqxMTdq/H1iwAFixwniOKVOkBK23t0x7io2Vxd137sjXZaRdO6BKFWDAAOmrcfs2MG6cfIaWJFWubPo1R44ABoMs+tYZq0IRERERkWs7ckTKu9auLa/HjpXt996T11evSuM6TdmywIYNwI4dQK1aslD766+B5583HjNsmEx3WrQIqF4daN5ctsuWzTwONzfgjz+kPG2TJlJKtlu39GVs7ZSiqtpKE3qSyMhIlCpVChEREey8TURERGSHeL2mH45YEBERERFRtjGxICIiIiKibGNiQURERERE2cbEgoiIiIiIso2JBRERERERZRsTCyIiIiIiyjY2yLNTiYnA7t3GxotNmxo7wBMRERER2RvdRyx27QKeew7w9wcUBVi7Nv0xZ84AXboAPj6AlxfQqJFpj5LYWOCNN4CiRYECBeTYyEjTc9y5I00MfXzkMWAAcPduTn5n1lu9GggMBFq2BPr2lefAQNlPRHboyBGgVSt5JiIiclG6JxYPHgA1a0pX9Iz8+y8QHAxUqiTNDf/+G5g0SRoSasaMAdasAVauBPbska7snTvLXX9N377Smf2vv+Rx4oQkF/Zm9WqgZ8/0idGVK7KfyQWRHVqyBNi+HfjxR70jISIi0o1ddd5WFEkQunUz7nvxRcDDI/Pf19HRQLFi8v4LL8i+//4DSpWSTuvt28uIR5UqwIEDQMOGcsyBA0BQEHD2LFCxonnx5XQnx8REGZlIm1RoFAUoWRIIDeW0KCLdhYcDN2/KD+azzwI3bgDFiwN//gmoqgyhlimjd5RERC6Hnbf1o/uIRVaSkoA//gAqVJAEoXhxSQxST5c6ehSIjwfatTPu8/cHqlUD9u2T1/v3y/QnLakAZDqVj4/xmIzExsYiJiYm5XHv3j2bfn9p7d6deVIByLVKRIQcR0Q6CwwE6tUD6taVpAKQ57p1ZX9goJ7RERER5Tq7TiyuX5dpTZ98IjcEN20CuncHevQAdu6UY65dA/LkAQoVMv1aX195TzumePH05y9e3HhMRqZNmwYfH5+UR5UqVWzzjWXi6lXbHkdEOWjpUsA9Tf0LbQDY3V3eJyIiciF2nVgkJclz167Am28CtWoB77wj6ye++y7rr1VVmaGgSb2d2TFpTZw4EdHR0SmPkJAQi78HS5QoYdvjiCgH9esHHDyY8XsHD8r7RERELsSuE4uiReXGX9qBgsqVjVWh/PyAuDip+pTa9esyaqEdExWV/vw3bhiPyYinpye8vb1THl5eXtZ/M2Zo2lTWUGSW7CiKrB1p2jRHwyAiIiIisphdJxZ58gD16wPnzpnuP3/euCaybl1Z3L15s/H9q1eBU6eAxo3ldVCQLPI+dMh4zMGDsk87xh64uQFffSXbmY2wzJjBhdtEdsPb2/R1vnxyJyOjuZdEREROTvcGeffvAxcvGl+Hhkop2MKFgdKlgfHjpdpTs2bSz+Gvv4D166X0LCALsIcOBd56CyhSRL5u3DigenWgTRs5pnJlWaMxfDjw/fey7+WXZUqVuRWhckuPHsCvvwKjR5su5FYUSSxyeDYWEVkiLEye8+UDHj2SShIXLgAFC+oaFhERkR50H7E4cgSoXVseADB2rGy/95687t5d1lN89pkkC/PnA6tWSW8LzRdfSIna3r2BJk2A/Pkl+Uh9Z3/ZMvn6du3kUaOG/Zac79FDrle2bweWL5fnJUvkvalTpVQuEdmBv/6S5969ZfQiIUHujhAREbkgu+pjYe/0rovcty+wYgVQvryM6vCmKJHOqleXeZcrVgDffisdOpcu5cJtIiId6X295sp0H7Eg8337rSze/vdfqZJFRDqKjJSkQlGAtm1lGBQA/vlH37iIiIh0wsTCgRQqBCxeLNcx8+cD69bpHRGRC9u0SZ7r15cFXkwsiIjIxTGxcDAtW8pCdQAYNizrBn9ElIM2bpTnZ5+VZy2x+PtvfeIhIiLSGRMLB/Thh3INc/MmMGSIsdkvEeWSxERjjev27eW5enV5vnpVmuQQERG5GCYWDsjTU6pceXoCf/4JzJmjd0RELubwYenK6eMDNGgg+woWlMoKAHDypH6xERER6YSJhYOqVg349FPZHjcOOHtW33iIXIpWZrZtW8A9VTsgrrMgIiIXxsTCgb3xhlzXPHok1S3j4vSOiMhFaOsrtGlQmpo15ZnrLIiIyAUxsXBgBgOwcKFUizp2DHj/fb0jInIBt28Dhw7JdtrEgiMWRETkwphYOLiAAGDuXNmeNg3YvVvfeIic3pYtQFISUKWKNJZJTUssTp+WLtxEREQuhImFE+jZExg0SKpDDRgAxMToHRGRE8tsGhQAlC0ri7hjY4Hz53M3LiIiIp0xsXASX38NBAYC4eHAqFF6R0PkpFTVuHBb61+RmsFgLDvL6VBERORimFg4CW9v4Mcf5bpm8WLgl1/0jojICZ0+Dfz3H5A3L9C0acbHcJ0FERG5KCYWTiQ4GHjnHdl+5RXgyhV94yF
"text/plain": [
"<Figure size 800x600 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"AtomNumber = 1.00 * 1e7\n",
"BField = 1.4 * u.G\n",
"Power = 40*u.W\n",
"Wavelength = 1.064*u.um\n",
"w_x, w_z = 30*u.um, 30*u.um # Beam Waists in the x and y directions\n",
"modulation_depth = np.arange(0, 1.0, 0.08)\n",
"\n",
"w_xs = w_x * convert_modulation_depth_to_alpha(modulation_depth)[0]\n",
"new_aspect_ratio = w_xs / w_z\n",
"Temperatures = convert_modulation_depth_to_temperature(modulation_depth)[0] * u.uK\n",
"\n",
"# n = np.zeros(len(modulation_depth))\n",
"Gamma_elastic = np.zeros(len(modulation_depth))\n",
"PSD = np.zeros(len(modulation_depth))\n",
"\n",
"for i in range(len(modulation_depth)):\n",
" # n[i] = particleDensity(w_xs[i], w_z, Power, N = AtomNumber, T = Temperatures[i]).decompose().to(u.cm**(-3))\n",
" Gamma_elastic[i] = calculateElasticCollisionRate(w_xs[i], w_z, Power, N = AtomNumber, T = Temperatures[i], B = BField).value\n",
" PSD[i] = calculatePSD(w_xs[i], w_z, Power, N = AtomNumber, T = Temperatures[i]).decompose().value\n",
"\n",
"\n",
"plotCollisionRatesAndPSD(Gamma_elastic, PSD, modulation_depth, new_aspect_ratio, plot_against_mod_depth = True)"
]
},
{
"cell_type": "markdown",
"id": "74d353c9",
"metadata": {},
"source": [
"## Plot Collision Rates and PSD from only measured trap frequencies"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "6c81d9da",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAJOCAYAAAAqFJGJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACzxUlEQVR4nOzdd3gU1dcH8O9sEgKEIjUJNRRBkV5EepMmVVAQpIMiooKIKPLyo6hgoUkREZHeFAFBOlIk9CpVRKUESEKHJITUef84THY3je2zm/1+nmeenZ2dnTmBzWbO3HvPVVRVVUFERERERGQHg94BEBERERGR52NiQUREREREdmNiQUREREREdmNiQUREREREdmNiQUREREREdmNiQUREREREdmNiQUREREREdmNiQUREREREdvPVOwB3kZiYiOPHjyMwMBAGA/MtIiIiIk+UnJyMyMhIVKtWDb6+vNR1Jf5rP3b8+HE8//zzeodBRERERA5w6NAh1KpVS+8wvAoTi8cCAwMByIcwODhY52iIiIiIyBbh4eF4/vnnU67tyHWYWDymdX8KDg5GsWLFdI6GiIiIiOzBru2ux39xIiIiIiKyGxMLIiIiIiKyGxMLIiIiIiKyGxMLIiIiIiKyGxMLIiIiIiKyGxMLIiIiIiKyGxMLIiIiIiKyGxMLIiIiIiKyGxMLIiIiIiKyGxMLIiIiIiKyGxMLIiIiIiKyGxMLIiIiIiKyGxMLIiIiIiKyGxMLIiIiIiKyGxMLIiIiIiKyGxMLIiIiIiKyGxMLIiIiIiKyGxMLIiIiIiKyGxMLIiIiIiKyGxMLIiIiIiKym6/eAXiD8HBZrBUcLAsRkUfhlx4RkVdiYuECc+YA48ZZ/74xY4CxYx0eDhGRc/FLj4jIK7lVYjFxIvDJJ8CQIcC0abJNVeXv0/ffA3fvArVrA7NmAc89Z3xfXBwwfDiwfDkQGws0awZ8+y1QrJguP0YaAwcC7dubb4uNBerXl/XQUCBHjrTv4407IvJI/NIjIvJKbpNYHD4syUPlyubbv/oKmDIFWLAAKFcO+OwzoHlz4Px5IHdu2WfoUGD9emDFCqBAAeCDD4C2bYGjRwEfH1f/JGml17ofE2Ncr1oVCAhwaUhERM7DLz0iIq/kFoO3o6OB118H5s4F8uUzbldVabkYNQro1AmoWBFYuBB4+BBYtkz2uX8fmDcPmDwZePFFoFo1YMkS4NQpYPt2XX4cIiIiIiKv4xaJxeDBQJs2khiYungRiIgAWrQwbvP3Bxo1Avbtk+dHjwIJCeb7FCkiSYi2DxEREREROZfuXaFWrACOHZOuUKlFRMhjYKD59sBA4PJl4z7Zspm3dGj7aO9PT1xcHOLi4lKeR0VF2RA9EREREREBOrdYhIXJQO0lS4Ds2TPeT1HMn6tq2m2pPWmfiRMnIm/evClLhQoVLA+ciIiIiIjM6JpYHD0K3LgB1KgB+PrKsns3MH26rGstFalbHm7cML4WFATEx0vFqIz2Sc/IkSNx//79lOXs2bOO+8GIiIiIiLyMrolFs2YyyPrECeNSs6YM5D5xAihdWhKHbduM74mPl+Sjbl15XqMG4Odnvk94OHD6tHGf9Pj7+yNPnjwpS26txBQREREREVlN1zEWuXPLIGtTAQFSMlbbPnQoMGEC8PTTskyYAOTMCXTvLq/nzQv07y8lZgsUAPLnlzktKlVKOxiciIiIiIicQ/fB208yYoTMq/T228YJ8rZuNc5hAQBTp0rXqS5djBPkLVjgHnNYEBERERF5A0VVVVXvINzB1atXUbx4cYSFhaGYC6bsjokBcuWS9ehozhVFRFkcv/SIyEVcfU1HRm4xjwUREREREXk2JhZERERERGQ3JhZERERERGQ3JhZERERERGQ3JhZERERERGQ3JhZERERERGQ3JhZERERERGQ3JhZERERERGQ3JhZERERERGQ3JhZERERERGQ3JhZERERERGQ3JhZERERERGQ3JhZERERERGQ3JhZERERERGQ3JhZERERERGQ3JhZERERERGQ3JhZERERERGQ3X70DIKIsKjxcFmsFB8tCREREHoWJBRE5x5w5wLhx1r9vzBhg7FiHh0NERETOxcSCiJxj4ECgfXvzbbGxQP36sh4aCuTIkfZ9bK0gIiLySEwsiMg50uvSFBNjXK9aFQgIcGlIRERE5DwcvE1ERERERHZjYkFERERERHZjVygiIiIish+rAXo9JhZEREREZD9WA/R6TCyIiIiIyH6sBuj1mFgQERERkf1YDdDrcfA2ERERERHZjYkFERERERHZjYkFERERERHZjYkFERERERHZjYkFERERERHZjYkFERERERHZjYkFERERERHZjYkFERERERHZjYkFERERERHZjYkFERERERHZjYkFERERERHZjYkFERERERHZjYkFERERERHZjYkFEREREXm3a9eAHj2AAgWAnDmBqlWBo0czf8/u3UCNGkD27EDp0sB33zkmlitXgHbtgIAAoGBB4L33gPh44+uXLgGKknbZvNkx57eDr94BEBGRl9m5E2jbVu8oiIjE3btAvXpAkybApk1A4cLAv/8CTz2V8XsuXgReegl44w1gyRJg717g7beBQoWAzp1tjyUpCWjTRo4TGgrcvg307g2oKjBjhvm+27cDzz1nfJ4/v+3ndRAmFkRE5HyqalwfM0b+cCqKfvEQEWm+/BIoXhyYP9+4LSQk8/d89x1QogQwbZo8f/ZZ4MgRYNIk88Ri/nzgq68kEQkJkdaHt9/O+LhbtwJnzwJhYUCRIrJt8mSgTx/g88+BPHmM+xYoAAQFWf5zugC7QhERkfP9/rtx/dgx+eNJROQO1q0DatYEXn1VWiuqVQPmzs38Pfv3Ay1amG9r2VKSi4QEeT53LjBqlCQE584BEyYAo0cDCxdmftyKFY1JhXbcuLi0XbPat5d469UDVq2y/Od1IrZYpJKYmIgE7QPh1PMAOXIY111wSiL9JSTAL2U1gR98b6Gq8Pm//0u5k6UCUEeNQlKTJmy1IMrqdPjeT0xMBABERUXhwYMHKdv9/f3h7++f9g3//QfMng0MGwZ88glw6JC0LPj7A716pX+SiAggMNB8W2CgXNTdugUEBwOffiqtDZ06yeulSklrxJw50r3J0uPmywdkyyavAUCuXMCUKZJQGAySGHXtKglLjx5P+udxKiYWqezfvx85c+Z0ybmWL5fHXbtccjoi3fk8egStZ/2WLVuQlD27rvGQaxQ6fhx1T59Oea4AUI4exYEJE3CzWjX9AiMip9Pje//hw4cAgAoVKphtHzNmDMaOHZv2DcnJ0mIxYYI8r1YNOHNGko2MEgsg7Y0RrcunogA3b0p3pv79ZRyGJjERyJtX1lu3BvbskfWSJeWc6R1XO7a2vWBB4P33ja/VrCnjRL76iomFu6lTpw6KFi3q9PM8fCjJLACEh0sBAqIsLyYmZbVly5ZS8YKyNlWF78iRUCEJRcpmAC/89huSPvmErRZEWZkO3/vXrl0DAJw9e9bsmi7d1gpALshSJSF49lngl18yPklQkLEFQXPjBuDrK2Mf7tyRbXPnArVrm+/n4yOPP/wAxMbKup+f8bgHD5rvf/eutPSkbskw9cILcjydMbFIxdfXF37af65Tz2P8LPn6Gj9PRFmayQfdz8+PH3xv8OgR8M8/aTYrAJSrV2FQVWniJ6KsSYfvfV9fubzNnTs38pgOds5IvXrA+fPm2/7+W1oRMlKnDrB+vfm2rVul9cDPT5KAokWlm9Xrr6d/jPRuZNepI2MywsONd6C3bpVuWTVqZBzP8ePG/XXExIKIiJxn9Wq505Y9uyQZgPQPjo4Gpk+XP5ZERHp6/32gbl3pCtWli4yx+P57WTQjR8pcF4sWyfO33gJmzpRxGW+8IYOu580z9nMHgLFjZaxGnjzS7SkuTgZ3370r70tPixbSetKzJ/D119LyMXy4nENLkhYulOSlWjUZY7F+vXyffvmlU/55rMGqUERE5BwxMcCIEbL+0UfG7a++Ko+bNrk+JiKi1GrVAtaskaSgYkUZdD1tmnlLQ3i4TFynKVU
"text/plain": [
"<Figure size 800x600 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"AtomNumber = 1.00 * 1e7\n",
"BField = 1.4 * u.G\n",
"Wavelength = 1.064*u.um\n",
"w_x, w_z = 30*u.um, 30*u.um # Beam Waists in the x and y directions\n",
"\n",
"fin_mod_depth = [0.5, 0.3, 0.7, 0.9, 0.8, 1.0, 0.6, 0.4, 0.2, 0.1]\n",
"v_x = [0.28, 0.690, 0.152, 0.102, 0.127, 0.099, 0.205, 0.404, 1.441, 2.813] * u.kHz\n",
"dv_x = [0.006, 0.005, 0.006, 0.003, 0.002, 0.002,0.002, 0.003, 0.006, 0.024] * u.kHz\n",
"v_z = [1.278, 1.719, 1.058, 0.923, 0.994, 0.911, 1.157, 1.446, 2.191, 2.643] * u.kHz\n",
"dv_z = [0.007, 0.009, 0.007, 0.005, 0.004, 0.004, 0.005, 0.007, 0.009, 0.033] * u.kHz\n",
"sorted_modulation_depth, sorted_v_x = zip(*sorted(zip(fin_mod_depth, v_x)))\n",
"sorted_modulation_depth, sorted_dv_x = zip(*sorted(zip(fin_mod_depth, dv_x)))\n",
"sorted_modulation_depth, sorted_v_z = zip(*sorted(zip(fin_mod_depth, v_z)))\n",
"sorted_modulation_depth, sorted_dv_z = zip(*sorted(zip(fin_mod_depth, dv_z)))\n",
"\n",
"fin_mod_depth = [1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1] \n",
"v_y = [3.08, 3.13, 3.27, 3.46, 3.61, 3.82, 3.51, 3.15, 3.11, 3.02] * u.Hz\n",
"dv_y = [0.03, 0.04, 0.04, 0.05, 0.07, 0.06, 0.11, 0.07, 0.1, 1.31] * u.Hz\n",
"sorted_modulation_depth, sorted_v_y = zip(*sorted(zip(fin_mod_depth, v_y)))\n",
"sorted_modulation_depth, sorted_dv_y = zip(*sorted(zip(fin_mod_depth, dv_y)))\n",
"\n",
"fin_mod_depth = [1.0, 0.8, 0.6, 0.4, 0.2, 0.9, 0.7, 0.5, 0.3, 0.1]\n",
"T_x = [22.1, 27.9, 31.7, 42.2, 145.8, 27.9, 33.8, 42.4, 61.9, 136.1] * u.uK\n",
"dT_x = [1.7, 2.6, 2.4, 3.7, 1.1, 2.2, 3.2, 1.7, 2.2, 1.2] * u.uK\n",
"T_y = [13.13, 14.75, 18.44, 26.31, 52.55, 13.54, 16.11, 21.15, 35.81, 85.8] * u.uK\n",
"dT_y = [0.05, 0.05, 0.07, 0.16, 0.28, 0.04, 0.07, 0.10, 0.21, 0.8] * u.uK\n",
"\n",
"sorted_modulation_depth, sorted_T_x = zip(*sorted(zip(fin_mod_depth, T_x)))\n",
"sorted_modulation_depth, sorted_dT_x = zip(*sorted(zip(fin_mod_depth, dT_x)))\n",
"sorted_modulation_depth, sorted_T_y = zip(*sorted(zip(fin_mod_depth, T_y)))\n",
"sorted_modulation_depth, sorted_dT_y = zip(*sorted(zip(fin_mod_depth, dT_y)))\n",
"\n",
"modulation_depth = sorted_modulation_depth\n",
"\n",
"pd, dpd, T, dT, new_aspect_ratio = calculateParticleDensityFromMeasurements(sorted_v_x, sorted_dv_x, sorted_v_y, sorted_dv_y, sorted_v_z, sorted_dv_z, w_x, w_z, sorted_T_x, sorted_T_y, sorted_dT_x, sorted_dT_y, sorted_modulation_depth, AtomNumber, m = 164*u.u)\n",
"\n",
"Gamma_elastic = [(pd[i] * scatteringCrossSection(BField) * meanThermalVelocity(T[i]) / (2 * np.sqrt(2))).decompose() for i in range(len(pd))]\n",
"Gamma_elastic_values = [(Gamma_elastic[i]).value for i in range(len(Gamma_elastic))]\n",
"dGamma_elastic = [(Gamma_elastic[i] * ((dpd[i]/pd[i]) + (dT[i]/(2*T[i])))).decompose() for i in range(len(Gamma_elastic))]\n",
"dGamma_elastic_values = [(dGamma_elastic[i]).value for i in range(len(dGamma_elastic))]\n",
"\n",
"PSD = [((pd[i] * thermaldeBroglieWavelength(T[i])**3).decompose()).value for i in range(len(pd))]\n",
"dPSD = [((PSD[i] * ((dpd[i]/pd[i]) - (1.5 * dT[i]/T[i]))).decompose()).value for i in range(len(Gamma_elastic))]\n",
"\n",
"fig, ax1 = plt.subplots(figsize=(8, 6))\n",
"ax2 = ax1.twinx()\n",
"ax1.errorbar(modulation_depth, Gamma_elastic_values, yerr = dGamma_elastic_values, fmt = 'ob', markersize=5, capsize=5)\n",
"ax2.errorbar(modulation_depth, PSD, yerr = dPSD, fmt = '-^r', markersize=5, capsize=5)\n",
"ax2.yaxis.set_major_formatter(mtick.FormatStrFormatter('%.1e'))\n",
"ax1.set_xlabel('Modulation depth', fontsize= 12, fontweight='bold')\n",
"ax1.set_ylabel('Elastic Collision Rate (' + str(Gamma_elastic[0].unit) + ')', fontsize= 12, fontweight='bold')\n",
"ax1.tick_params(axis=\"y\", labelcolor='b')\n",
"ax2.set_ylabel('Phase Space Density', fontsize= 12, fontweight='bold')\n",
"ax2.tick_params(axis=\"y\", labelcolor='r')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "9329ee37",
"metadata": {},
"source": [
"## Investigate deviation in alpha"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "7b8191f2",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\Karthik\\anaconda3\\envs\\Py39VEnv\\lib\\site-packages\\scipy\\optimize\\_minpack_py.py:1010: OptimizeWarning: Covariance of the parameters could not be estimated\n",
" warnings.warn('Covariance of the parameters could not be estimated',\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABiaklEQVR4nO3deZyNdePG8c99zpnVbLYxlomxJWQpqZC00F6iDWWthEJUaDN6irRIu7YHJS0IaRHK1mop2aIwsg2DYVYzc5bv7w+P8yNDtpn7zJnr/XrNq5n7vs8515yvmbn63ptljDGIiIiISInmsDuAiIiIiJw+lToRERGRIKBSJyIiIhIEVOpEREREgoBKnYiIiEgQUKkTERERCQIqdSIiIiJBQKVOREREJAi47A5QHHw+Hzt27CA6OhrLsuyOIyIiInLCjDFkZWVRpUoVHI5jz8eVilK3Y8cOEhMT7Y4hIiIicsq2bt1KtWrVjrm+VJS66Oho4OCbERMTY3Oaks/tdjNnzhzatWtHSEiI3XHkNGk8g4vGM7hoPIPLqY5nZmYmiYmJ/j5zLKWi1B3a5RoTE6NSdwa43W4iIyOJiYnRL5kgoPEMLhrP4KLxDC6nO57/dgiZTpQQERERCQIqdSIiIiJBQKVOREREJAjYXuoWLVrEDTfcQJUqVbAsixkzZhyx3hhDcnIyVapUISIigjZt2rBmzRp7woqIiIgEKNtPlMjJyaFx48b06NGDjh07HrX+ueeeY8yYMUyYMIG6devy9NNP07ZtW9avX/+vZ4GcKrfbjdfrLZLnDgZutxuXy0VeXp7epwAWEhKC0+m0O4aIiBQT20vdNddcwzXXXFPoOmMMY8eO5bHHHqNDhw4ATJw4kUqVKjF58mR69+59RrNkZmayZ88e8vPzz+jzBhtjDAkJCWzdulUXcw5glmURGxtLQkKCxklEpBSwvdQdT0pKCjt37qRdu3b+ZWFhYVx66aX8+OOPxyx1+fn5RxSzzMxM4OAMk9vtLvQxWVlZ7Ny5k6ioKMqXL4/L5dIfwmMwxpCTk0OZMmX0HgUoYwy5ubns3r2bkJAQYmNjj7ntoZ+JY/1sSMmi8QwuGs/gcqrjeaLbB3Sp27lzJwCVKlU6YnmlSpX4+++/j/m4UaNGMWLEiKOWz5kzh8jIyEIfU6FCBeLj44mOjsYYox+gfxEaGqr3KMCFhIQQFhbGhg0b2LVr179uP3fu3GJIJcVF4xlcNJ7B5WTHMzc394S2C+hSd8g/Z4OMMcedIRo2bBiDBg3yf33oSszt2rUr9OLDHo+HlJQUf6mT4zt0DzrdSzfwWZZFfn4+jRs3xuUq/Mfd7XYzd+5c2rZtq4ubBgGNZ3DReAaXUx3PQ3sc/01Al7qEhATg4Ixd5cqV/cvT0tKOmr07XFhYGGFhYUctDwkJKfRN9Hq9WJZFaGjocW+UKwf5fD7gYGHQ+xXYQkNDsSwLy7L+9RfIsX4+pGTSeAYXjWdwOdnxPNFtA/ovclJSEgkJCUdMUxYUFLBw4UJatGhxxl9Ps04SbPRvWkSk9LC91GVnZ7NixQpWrFgBHDw5YsWKFWzZsgXLshg4cCAjR45k+vTprF69mu7duxMZGUnnzp3tDS4iIiKl28b58Frzg/8NALaXumXLltG0aVOaNm0KwKBBg2jatClPPvkkAI888ggDBw6kb9++NGvWjO3btzNnzhwd+3YSkpOT/bvgCvuIi4uzO+JJO/x7mjBhgt1xTliNGjWOOxaHfxz6vv5tu7Fjx9r6PYmIlEZer4/sr56EPevJ/upJvF6f3ZHsP6auTZs2GGOOud6yLJKTk0lOTi6+UGeQ12dYkpJOWlYe8dHhNE8qh9OhXWIiIiIl1ezVqcye+SFj3SsBiNq7koHPjuHqm7pwdcPK//LoomN7qQtms1enMmLWWlIz8vzLKseGM/yG+rYNerdu3U5pZuvAgQNERESc+UAlTG5u7jEvi3MiNm/efMTXNWrU8F+eZ/78+bRp0+a4j09JSaFGjRqn/PoiInJ6Zq9Opc+k5cwI/RCvZeG0DF5j0SP/Q9pPqsebd55v299423e/BquDg/7rEYUOYGdGHn0m/crs1ak2JTu2CRMm+HfpDR8+nOeee47atWvjcrn45JNPgIOXM3n33Xe56qqrKFu2LKGhoVSvXp2ePXuyYcOGI56ve/fu/uebMWMGd999N2XLlqVs2bLcc889ZGVlsW7dOq6++mqioqKoUaMGjz766Elf/87r9fLss89Ss2ZNIiMjOf/88wu9BtCvv/7KHXfcQdWqVQkNDaVcuXJcccUVTJs27YjtFixY4M/dvXt3xo8fT8OGDQkNDeW55577193ZJXVWWUREjs/rM4yYtZZLHCtp7NiE0zq4p9FpGRo7NtHasZIRs9bi9R17D2RR0kzdcRhjOOA++Xuben2G4Z+vobAhNYAFJH++lpa1K5zUrtiIEGexnc34xhtvsGfPniOWGWO4/fbbmTJlyhHLt2zZwvjx45kyZQrz5s3jwgsvPOr57r33Xnbv3u3/+t133/WfFLN3717g4H2AR40aRXR0NMOGDTvhrI8//rj/QtVwsLxdf/31rF+/3j+rNX36dG6//fYjCuO+ffv47rvv+O6773jooYd4/vnnj3ruL7/8kokTJ55wFtAZpyIiwWpJSjoFGTt5LeyVo9Z5jINBrinclNGIJSnpXFyrfLHnU6k7jgNuL/Wf/OaMP68BdmbmcW7ynJN63NqnriIy9PSGbOLEiUeVlMJ2ye7Zs4fnn3+eXr16kZ+fj9frZerUqf5Cl5iYyGeffUadOnUYNWoUo0ePJjs7m169erF69eqjXjcuLo7vv/8eh8NB06ZNyc7O5ttvv6VBgwYsX76c7du306pVK4wxTJw48aRKXU5ODnPmzKF58+b07duXyZMnU1BQwMcff8zQoUM5cOAA9957r7/Qvf7669x1110sW7aM9u3bk5mZyQsvvMBtt93GBRdccNT7MHDgQIYNG4bL5SIjI4OkpKQjZuMmT57MXXfdhc/nIykpibvvvvuEs5+spKSko5Zpl6yISPEwG7/l27CHiLEOHLXOZflobB2crUvLampDOu1+lWO4/PLLeeihhyhbtiwJCQlUrVqVmTNn+tf369eP8847j9jYWJ5++mnKlz/4fyRr1qxh48aNRz3foEGDqFu3LrVr16Z+/fr+5QMGDKB69eq0aNHCf0Hpfx539m/uvvtu2rZtS2xsLJ06dfIvP/Q8P/zwg3/WsWnTpvTt25fo6Gguu+wyevTo4d/+888/P+q5a9euzYsvvkh8fDzlypU7qlTNmjWLbt264fP5qFatGt9++y1Vq1Y9qfwiIhLgPAXwzWO0+PEe4qxcjnV+p89YDHZNIT7q6BsgFAfN1B1HRIiTtU9dddKPW5KSTvfxS/91uwk9LqB5UrmTynO6TvREifPPP/+oZYffPzQxMdH/ucvlolq1av7dqLt27aJWrVpHPLZ27dr+zw8/4eLwknToLiD5+fn/mu9w55xzjv/zMmXK+D/Py8s7Knf16tWPeOzhM1yF3R+1adOmx7xrxnfffcdtt92Gx+OhUqVKzJs3r9CZtDNJs3IiIsVszwbMtJ5Yqb8DcMCEEmEVFLqpwzJUs9KJOyuqOBP6qdQdh2VZp7S785I6FakcG87OjLxCj6uzgITYcC6pUzFgL29S2Bmeh9+abevWrf7PvV4v27ZtK3S7Q45139FjLT8Zh98+pbDj2Q7Pc+hM00MOnxUsLPexznT95ZdfuOmmm8jLy6NcuXLMnTuXs88++2Sji4hIoDIGVnyI+ephLHcu6SaKR9y9ya/YgPS0VCw44m/8ob8+g29uyWWh4TYE1u7XIuF0WAy/4eAuxn9WjENfD7+hfsAWumO58cYb/Z+/8cYbrFixgszMTJ544gn/LF39+vWPmqWzW4sWLfy7h3/77TfGjRtHdnY2CxcuPGLW8oYbbjih51u1ahXXXHMN2dnZxMTE8M0333DuuecWRXQREbHDgf0wtQfM7IflzuUHbwNu9IzmwqvvZOKADjzQpSN7Y85hjUnyf+yNOYf7u3Tksub
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHWCAYAAAARl3+JAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABpzElEQVR4nO3dd3zT1f7H8Vealg6gZVN2iyKggAiogCKgUhWUqYB4WaJXLsh0AKICXn9w0SviQBRFUEFFkKUXgapMAQUERcGBgKwyitDB6Ei/vz+OTVualrS0TZO+n49HHk1OTpJP8u1493y/33NslmVZiIiIiIhX8/N0ASIiIiJy+RTqRERERHyAQp2IiIiID1CoExEREfEBCnUiIiIiPkChTkRERMQHKNSJiIiI+ACFOhEREREfoFAnIiIi4gMU6kRERER8gFeGuvXr13PPPfdQvXp1bDYbS5cuveRj1q1bR/PmzQkKCqJu3bq8+eabhV+oiIiISBHxylB39uxZrr32Wl5//XW3+u/fv5+OHTvSpk0bduzYwVNPPcXw4cP59NNPC7lSERERkaJhsyzL8nQRl8Nms7FkyRK6du2aY58xY8awfPly9uzZ42wbPHgwP/zwA5s3by6CKkVEREQKl7+nCygKmzdvJioqKkvbHXfcwezZs0lJSSEgICDbY5KSkkhKSnLeTktL46+//qJixYrYbLZCr1lEREQEwLIsEhISqF69On5+Oe9kLRGh7tixY1StWjVLW9WqVUlNTSU2NpZq1aple8yUKVOYNGlSUZUoIiIikqtDhw5Rs2bNHO8vEaEOyDa6lr7XOadRt3HjxjF69Gjn7bi4OGrXrs3+/fspW7Zs4RXqw1JSUlizZg3t27d3OToqxZ+2oXfT9vN+2obeLb/bLyEhgcjIyEvmjxIR6sLDwzl27FiWthMnTuDv70/FihVdPiYwMJDAwMBs7RUqVCA0NLRQ6vR1KSkphISEULFiRf0y8lLaht5N28/7aRt6t/xuv/S+lzr8yyvPfs2rVq1aER0dnaVt9erVtGjRQj8UIiIi4hO8MtQlJiayc+dOdu7cCZgpS3bu3MnBgwcBs+u0X79+zv6DBw/mzz//ZPTo0ezZs4d3332X2bNn8/jjj3uifBEREZEC55W7X7dt20b79u2dt9OPfevfvz9z584lJibGGfAAIiMjWbFiBaNGjWLGjBlUr16dV199lR49ehR57SIiIiKFwStDXbt27chter25c+dma2vbti3ff/99IVYlIiIixYLDARs2QEwMVKsGbdqA3e7pqgqdV4Y6EREREZcWL4YRI+Dw4Yy2mjXhlVege3fP1VUEFOoKgWVZOBwOUlNTPV1KsZKSkoK/vz8XLlzA4XB4uhyv4e/vj91u16TXIiKXsngx3HsvXLw378gR075okU8HO4W6AmRZFmfOnOHkyZMKLS5YlkV4eDiHDh1SQMkju91OlSpVCAsL02cnIuKKw2FG6FwdnmVZYLPByJHQpYvP7opVqCtAx44d48yZM4SGhhIaGoq/v7/+AGeSlpZGYmIiZcqUyXWZE8lgWRapqanEx8cTExPD+fPnXa6AIiJS4m3YkHWX68UsCw4dMv3atSuysoqSQl0BcTgcxMXFUblyZSpVquTpcoqltLQ0kpOTCQoKUqjLo7JlyxIYGEhsbCxVqlTB7qP/ZYqI5EtyMnz6qXt9Y2IKtxYPUqgrICkpKViWRenSpT1divio0qVLc/LkSVJSUhTqREQAjh2Dt96CN980193hw3s7FOoKmHa3SmHR95aICGY36rffwmuvwcKFkJJi2sPD4dw5SEhwfVwdQOnScOONRVdrEdM+MBERESn+kpLggw/ghhugVSv48EMT6Fq3ho8+gj//hDlzTN+c/gk+exbuuANOniy6uouQQp24ZeLEidhsthwv5cqVy/NznjlzhokTJzJx4kSXE0Z7yty5c511nTlzplBeI/PnWZzeu4hIsXPkCDzzDNSuDf36wbZtEBgI/fub6998A717Q6lSZrqSRYugRo2sz1GrFjz1FISGmhMlrr8efvzRM++nEGn3q3jMmTNnmDRpEmBW/BgwYIBnC/rb3LlzWbduHQADBgzIV2AVEZHLYFkmrL32mpl7Ln3e15o14V//gocfhsqVXT+2e3czbYmrFSX+8Q/o3Bn27jUjfB98AN26+cwKFAp1XqC4fa+lr7HrKWlpaaSkpBAYGOixGkREpBCcP292pb72GuzcmdF+yy0wbBh07Qr+bkQXu931tCUNG5rj8Xr1gi+/NAGwd2/YuNEnVqDQ7tdibvFiiIiA9u2hTx/zNSLCtBc3SUlJNG/eHJvNht1u55tvvgHMXGt33HEHdrud8uXLs2jRIgYMGEBkZKTzsevWrXPujmz39w9i5l2Ub731FmPHjqVWrVoEBASwefNmLly4wMCBA2natCmVK1emVKlSlC5dmiZNmvDss89y9uzZbDWuWrWKzp07Ex4eTqlSpahUqRJt27Zl3bp1rF27FpvN5hylA4iMjHTWcODAAef7mTt3LrfccgvlypWjVKlSREREMHToUI65OPtq1qxZ1K9fn8DAQOrXr8+bb75ZgJ+6iIgPOHgQxo41u0kHDTKBLigIHnrIXF+3zqwI4U6gu5QKFeCLL0xIBPj44+zz26WvQFEc/9jmxhK3xMXFWYAVFxfn8v7z589bu3fvts6fP19gr/npp5Zls1mWGYfOuNhs5vLppwX2Upc0YcIEC7AAq3///jn227t3rxUaGmoBVmRkpBUfH2+9/PLLzsc+/PDDlsPhsPr37+9su/jStm3bbK9ZqVKlLH3WrFljnT59OsfnAKyoqKgstT399NM59n355ZetNWvW5Pp8+/fvt9LS0qzevXvn2KdatWrW/v37na/50ksvuexXo0YN5/U5c+a4tQ0K43ssr5KTk62lS5daycnJHqtB8k/bz/v51DZMS7OsNWssq3t3y/Lzy/gjV6eOZU2dalmxsYX7+qmpllW+fPY/spn/2NaqZfoVkPxuv0tlkHQaqSsiZ8/mfLlwIXvf+HgYPjzn1U7ArHYSH5/z854/Xzjv5b333st2okT68XBXXHEFb7/9NgD79++nV69ejB07FoDmzZvz/PPPA+a4tf379zufs23btliWhWVZrF27NttrxsXFMXfuXOLj4zlw4ACNGzcmODiY+fPn88cff5CQkEBycjJ79+6ladOmAKxevZpdu3YBsH37dudr+/n58eqrrxIbG0tsbCyLFy+mYcOGtGvXDsuyaNu2rfN19+/f76wrIiKCxYsX8/HHHwPmeLuYmBguXLjAhx9+CEBMTAxPPPEEAAkJCUyYMMH5XO+88w4JCQn873//IzY29rK2gYiI1zp7FmbNgiZNzO6nxYshLQ1uvRWWLIE//oAnn4SKFQu3jg0b4PTpnO/PvAKFl9AxdUWkTJmc7+vYEf73v4zbVaqYqXZyk/69VquWCXautGgBW7fmvdbL1bNnT9asWcObb77JF198AUBYWBgff/wxpUqVytdz9u3bl/79+wNmdYV0Fy5coH///vz888/ExcWRlpaW5XG7d++mcePGLF261NnWr18/hqUPuwPdunVzu44lS5Y4r8+dO9flsYUrV64EYNOmTSQmJgIm0A4aNAiAjh070r17dz766CO3X1dExOvt3w8zZsDs2ZA+s0BIiDmj9dFH4ZprirYed1eW8KIVKBTqvFxO8ysWJndOlBgzZgyzZs1yhqzu3btTt25d4nNKoJfQvHnzbG0vvfQSjz/+eK6PO//3cGXmY90aN26crxoAjh8/fsk+iYmJJCUlZRmNq1WrVpY+derUyXcNIiJew7LMCQmvvQaff57xR6tuXRPkBg4ET80w4O7KEl60AoV2vxaRxMScLxcvV3fiBKxY4d7zLliQ8/OuX1/w78MdaWlpDBo0KMuo2XvvvceXX36ZpV9eVkgICQnJ1jZv3jzn9VdeeYVz585hWRbdXZytFB4e7rz+008/5fpaudVVtWpV5/WPPvrIuWs28yUtLY3AwMAsawAfOnQoy/P8+eefudYgIuLVEhLMqNzVV0NUFHz2mQl
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"Power = 40*u.W\n",
"Wavelength = 1.064*u.um\n",
"w_x, w_z = 30*u.um, 30*u.um\n",
"\n",
"options = {\n",
" 'axis': 0, # axis referenced to the beam along which you want the dipole trap potential\n",
" 'extent': 3e2, # range of spatial coordinates in one direction to calculate trap potential over\n",
" 'crossed': False,\n",
" 'delta': 70, # angle between arms in degrees\n",
" 'modulation': False,\n",
" 'aspect_ratio': 5, # required aspect ratio of modulated arm\n",
" 'gravity': True,\n",
" 'tilt_gravity': False,\n",
" 'theta': 0.75, # gravity tilt angle in degrees\n",
" 'tilt_axis': [1, 0, 0], # lab space coordinates are rotated about x-axis in reference frame of beam\n",
" 'astigmatism': True,\n",
" 'foci_disp_single': 2.5*u.mm, #0.9 * z_R(w_0 = np.asarray([30]), lamb = 1.064)[0]*u.um, # difference in position of the foci along the propagation direction\n",
" 'foci_disp_crossed': [2.5*u.mm, 1.5*u.mm], # astigmatism of each of the two beams in the cODT\n",
" 'foci_shift': [0.0*u.mm, 0.0*u.mm],\n",
" 'beam_disp': [[0.0, 0.0, 0.0]*u.mm, [0, 0, 0.03]*u.mm],\n",
" 'extract_trap_frequencies': False # Flag to extract trap frequencies by fitting the computed potential\n",
"}\n",
"\n",
"modulation_depth = np.arange(0, 1.1, 0.1)\n",
"Alphas, fin_mod_dep, meas_alpha_x, meas_alpha_z, dalpha_x, dalpha_z = convert_modulation_depth_to_alpha(modulation_depth) \n",
"meas_alpha_deviation = [(g - h) for g, h in zip(meas_alpha_x, meas_alpha_z)]\n",
"sorted_fin_mod_dep, sorted_meas_alpha_deviation = zip(*sorted(zip(fin_mod_dep, meas_alpha_deviation)))\n",
"avg_alpha = [(g + h) / 2 for g, h in zip(meas_alpha_x, meas_alpha_z)]\n",
"sorted_fin_mod_dep, new_aspect_ratio = zip(*sorted(zip(fin_mod_dep, (w_x * avg_alpha) / w_z)))\n",
"\n",
"current_ar = w_x/w_z\n",
"aspect_ratio = np.arange(current_ar, 10*current_ar, 0.8)\n",
"w_x = w_x * (aspect_ratio / current_ar)\n",
"\n",
"v_x = np.zeros(len(w_x))\n",
"#v_y = np.zeros(len(w_x))\n",
"v_z = np.zeros(len(w_x))\n",
"\n",
"for i in range(len(w_x)):\n",
" \n",
" options['axis'] = 0\n",
" ExtractedTrapFrequencies = computeTrapPotential(w_x[i], w_z, Power, options)[5]\n",
" tmp = ExtractedTrapFrequencies[0][0]\n",
" v_x[i] = tmp if not np.isinf(tmp) else np.nan\n",
" \n",
" # options['axis'] = 1\n",
" # ExtractedTrapFrequencies = computeTrapPotential(w_x[i], w_z, Power, options)[5]\n",
" # tmp = ExtractedTrapFrequencies[1][0]\n",
" # v_y[i] = tmp if not np.isinf(tmp) else np.nan\n",
" \n",
" options['axis'] = 2\n",
" ExtractedTrapFrequencies = computeTrapPotential(w_x[i], w_z, Power, options)[5]\n",
" tmp = ExtractedTrapFrequencies[0][0]\n",
" v_z[i] = tmp if not np.isinf(tmp) else np.nan\n",
"\n",
" #v_x[i] = calculateTrapFrequency(w_x[i], w_z, Power, dir = 'x').value\n",
" #v_y[i] = calculateTrapFrequency(w_x[i], w_z, Power, dir = 'y').value\n",
" #v_z[i] = calculateTrapFrequency(w_x[i], w_z, Power, dir = 'z').value\n",
"\n",
"alpha_x = [(v_x[0]/v)**(2/3) for v in v_x]\n",
"alpha_z = [(v_z[0]/v)**2 for v in v_z]\n",
"\n",
"calc_alpha_deviation = [(g - h) for g, h in zip(alpha_x, alpha_z)]\n",
"\n",
"plt.figure()\n",
"plt.plot(aspect_ratio, alpha_x, '-o', label = 'From horz TF')\n",
"plt.plot(aspect_ratio, alpha_z, '-^', label = 'From vert TF')\n",
"plt.xlabel('Aspect Ratio', fontsize= 12, fontweight='bold')\n",
"plt.ylabel('$\\\\alpha$', fontsize= 12, fontweight='bold')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.legend(prop={'size': 12, 'weight': 'bold'})\n",
"plt.show()\n",
"\n",
"plt.figure()\n",
"plt.plot(aspect_ratio, calc_alpha_deviation, '--ob', label = 'Extracted')\n",
"plt.plot(new_aspect_ratio, sorted_meas_alpha_deviation, '-or', label = 'Measured')\n",
"plt.xlabel('Aspect Ratio', fontsize= 12, fontweight='bold')\n",
"plt.ylabel('$\\\\Delta \\\\alpha$', fontsize= 12, fontweight='bold')\n",
"plt.ylim([-0.5, 1])\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.legend(prop={'size': 12, 'weight': 'bold'})\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "29a1cf87",
"metadata": {},
"source": [
"## Quick calculation of PSD and elastic collision rate"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "3950f1b5",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Particle Density = 1.87E+12 1 / cm3\n",
"Elastic Collision Rate = 37.24 1 / s\n",
"PSD = 2.50E-05 \n"
]
}
],
"source": [
"Power = 9.5*u.W\n",
"Wavelength = 1.064*u.um\n",
"w_x, w_z = 50*u.um, 45*u.um # Beam Waists in the x and y directions\n",
"\n",
"NCount = 11000\n",
"AtomNumber = calculateAtomNumber(NCount, pixel_size = 3.45 * u.um, magnification = 0.5, eta = 0.5)\n",
"#AtomNumber = calculateAtomNumber(NCount, pixel_size = 5.86 * u.um, magnification = 0.5, eta = 0.5)\n",
"\n",
"BField = 3.75 * u.G\n",
"modulation_depth = 0.00\n",
"\n",
"w_x = w_x * convert_modulation_depth_to_alpha(modulation_depth)[0]\n",
"new_aspect_ratio = w_x / w_z\n",
"Temperature = 33 * u.uK\n",
"\n",
"n = particleDensity(w_x, w_z, Power, N = AtomNumber, T = Temperature).decompose().to(u.cm**(-3))\n",
"Gamma_elastic = calculateElasticCollisionRate(w_x, w_z, Power, N = AtomNumber, T = Temperature, B = BField)\n",
"PSD = calculatePSD(w_x, w_z, Power, N = AtomNumber, T = Temperature).decompose()\n",
"\n",
"print('Particle Density = %.2E ' % (n.value) + str(n.unit))\n",
"print('Elastic Collision Rate = %.2f ' % (Gamma_elastic.value) + str(Gamma_elastic.unit))\n",
"print('PSD = %.2E ' % (PSD.value))"
]
},
{
"cell_type": "markdown",
"id": "d975586b",
"metadata": {},
"source": [
"## Plot measured PSDs and collision rates"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "b11b6aae",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAJOCAYAAAAqFJGJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAAC+LklEQVR4nOzdd3gUVRcG8HdSSAiE0BMIHaSG3gwgSJEmTVCQ3gUB6VVFQEWKNKWDSJGuoIKCIi1+QOhBqiASIERCL6El2WS+Pw6TTUISdje7mc3u+3uePDuZzM6ewCaZM/fecxRVVVUQERERERGlgYveARARERERUcbHxIKIiIiIiNKMiQUREREREaUZEwsiIiIiIkozJhZERERERJRmTCyIiIiIiCjNmFgQEREREVGaMbEgIiIiIqI0c9M7AHthMBgQEhICX19fuLgw3yIiIiLKiOLi4nDjxg1UrlwZbm681E1P/Nd+LiQkBDVq1NA7DCIiIiKygsOHD6N69ep6h+FUmFg85+vrC0DehPny5dM5GiIiIiKyxPXr11GjRo34aztKP0wsntOmP+XLlw8FChTQORoiIiIiSgtObU9//BcnIiIiIqI0Y2JBRERERERpxsSCiIiIiIjSjIkFERERERGlGRMLIiIiIiJKMyYWRERERESUZkwsiIiIiIgozZhYEBERERFRmjGxICIiIiKiNGNiQUREREREacbEgoiIiIiI0oyJBRERERERpRkTCyIiIiIiSjMmFkRERERElGZMLIiIiIiIKM2YWBARERGRc4uMBIYOBQoXBjJnBmrVAo4cSf05QUFA1aqApydQrBiwaJF1Yrl6FWjZEsiSBcidGxg8GIiOTv7YixcBb28ge3brvHYaMbEgIiIiIpuIjQX27gXWrZPH2Fi9I0pBnz7AH38A330HnDoFNG4MNGoEhIcnf3xoKNC8OfDaa0BICPDhh5IAbNqUtjhiY4E33wQePwb27QPWr5dzjhjx4rExMUDHjhKDnWBiQURElB6OHgUaNJBHIieweTNQpAhQvz7QqZM8Fiki++3K06dy8T59OlC3LlCiBDBxIlC0KLBwYfLPWbQIKFQImDMHKFNGEpNevYAZMxIft3y5fN3TEyhdGliwIPVYduwAzp4FVq8GKleW5GbmTGDpUuDhw8THfvyxnLN9e0u/c6tjYkFERJQeVq0C9uyRO6JEDm7zZuDtt4Fr1xLvDw+X/XaVXBgMMlLg6Zl4f+bMMmqQnOBgGdVIqEkTuXEQEyOfL10KfPQRMHkycO4c8MUXwPjxwMqVKccSHAwEBAD58yc+b1QUcOyYcd/u3cD33wPz55v+faYDN70DsDcGgwEx2huCiIgoLa5cAe7cARQFbuvXQwGgrlsHQ+fOgKoCuXLJnG4iBxIbC4wZ8+J1ukZRgLFjZSaRq6v1X99gMAAAIiMj8TDBXX4PDw94eHi8+ARvbyAwEPjsMxld8PWVuVuHDgGvvJL8i0REyHEJ+fpKknL7NpAvn5xv5kygbVv5etGiMhqxeDHQvbvp582RA8iUSb4GyO+UHj1kVCNbtpf8a6QvJhZJBAcHw8vLS+8wiIjIAbRu0yZ+W9U2bt2Ce82a8ft//umn9AyJKF0knRGUnN9/t81rP3nyBABQtmzZRPsnTJiAiRMnJv+k776TqUz+/pLtVKki87eOH0/5hRQl8eeqatx/6xYQFgb07g307Ws8xmAAfHxku1kz4H//k+3ChYEzZ5I/r3ZubX/fvhJb3bopx6YTJhZJBAYGwt/fX+8wiIjIARhWrIBrnz5QDAZolwrao+rmhthvvkHz5s31Co/IJn74Qa6nX2bZMpkWZW3hzxdcnz17NtE1XbKjFZrixaXK0+PHspYhXz6gQwcZZUiOn59xBEFz8ybg5iYjkXfvyr6lS4EENxIAGIdpvvlG1ncAgLu78byHDiU+/t49mV6ljWTs3g1s2WLM3lQViIuT116yRBIknTCxSMLNzQ3u2n8uERFRWnTvDpQvLyUpk1AOHYJblSo6BEVkW/nyGa+XX3acLS653Nzk8tbb2xvZzJ0qlCWLfNy7J0Mq06cnf1xgILB1a+J9O3YA1arJN+XrK6Mfly4BnTsnf47kbmQHBsqajOvX5R9IO6+Hh/H3SHBw4vJaP/8MTJsGHDiQ/DnTERMLIiIiIrKa114DChR4ceG2RlHk63ZUJVWSCFUFSpWS3hCjRsl2z57y9XHjZOX5qlXyef/+wLx5wPDhMjUpOFiGYNatM55z4kQpQZstm0x7ioqSxd337snzktO4MVC2LNC1K/DllzLyMXKkvIaWJJUpk/g5R48CLi6y6FtnrApFRERkS3nzGqc+VKwojy4udtPQisjaXF2Br75K/mvaMoE5c2yzcNtiDx4AAwdK+dZu3YA6dWSkQBtSuX5dGtdpihYFtm2T5hyVKslC7a+/Btq1Mx7Tp49Md1qxQkYu69WT7ZSmVwHyj/Lrr7LyvXZtKSXbpo1pi1bsgKKqqvrywxzftWvXULBgQYSFhaFAgQJ6h0NERI4iIsI4pSEiQpKLGzfkAiOlyjBEGdyjR9I0Oioq8f6CBSWp0Aol2QKv6fTDEQsiIiJb2r9fHitUkHnX2hSI6dNlwSWRA/rhB0kqSpSQtcZr10obl9BQ2yYVpC8mFkRERLaklZOsU0ce+/WTudJnzwK//KJfXEQ2tHy5PPbsKR23O3YEXn/dzqY/kdUxsSAiIrIlLbHQVqr6+ADvvy/b06bpExORDf37L/Dnn7Keols3vaOh9MTEgoiIyFYiI4ETJ2RbG7EAgCFDpHzkgQPAvn26hEZkKytXyuMbb0j1J3IeTCyIiIhsJThY1lEUKZL4CitfPuPC7alTdQmNyBbi4oyJhVaplZwHEwsiIiJbSToNKqFRo6Ts7K+/AqdOpW9cRDayZ49UZfXxkSqp5FyYWBAREdmKNs0pucSiRAljzfuUuvsSZTDaou2OHaUVAzkXJhZERES2EB0NHDwo2wnXVyQ0Zow8rlsHXLmSPnER2ciDB8DmzbLNaVDOiYkFERGRLRw7Bjx7Jl3CSpdO/piqVYFGjYDYWGDWrPSNj8jKNm4Enj4FypQBqlfXOxrSAxMLIiIiW9CmQdWpI3U3U6KNWixdCty+bfu4iGwkYe+K1N7y5LiYWBAREdlC0sZ4KWnYUEYunj4F5s2zfVxENnD+vBRBc3UFunTROxrSCxMLIiIia4uLS33hdkKKYhy1mDsXePzYtrER2cCKFfLYtKlUUybnxMSCiIjI2s6dA+7dA7y8gMqVX35827ZSJeruXeCbb2wfH5EVxcYCq1bJNhdtOzcmFkRERNamTYN69VXA3f3lx7u6Sl8LAJg5E4iJsV1sRFb2xx/Af/8BuXIBLVvqHQ3piYkFERGRtaXWGC8l3boBvr5AWJiUnyXKILRF2506AZky6RsL6YuJBRERkbWZur4iIU9PYNgw2Z4+XdZpENm5u3eBn36SbU6DIiYWRERE1nT1qny4ugI1a5r33P79gWzZgDNngF9/tU18RFa0fr30gqxY0bTlROTYmFgQERFZkzYNqkoVIGtW857r4yPJBQBMm2bduIhsQJsG1aOHrmGQnWBiQUREZE2WTINKaOhQmai+f7/xXER26PRp4OhRwM0N6NxZ72jIHjCxICIisiZTG+OlJF8+oHt32eaoBdkxrXdFixZAnjy6hkJ2gokFERGRtdy5I+sjAMsTC0BKzyoK8MsvcluYyM7ExADffSfbXLRNGiYWRERE1nLggDyWLp22W7ivvAK0ayfb06enPS4iK/vtN+DmTSBvXqBZM72jIXvBxIKIiMha0joNKqExY+Rx3TqpMkVkR7RF2126mNYDkpwDEwsiIiJrSevC7YSqVQMaNgQMBmDWrLSfj8hKbt0Ctm6VbU6DooSYWBAREVnD06dSIgewTmIBGEctli6V9RtEdmDtWsl3q1UDAgL0jobsCRMLIiIiazh0SFa05s8PFClinXM2aiT9MJ48AebNs845idKIvSsoJUwsiIiIrCHhNChFsc45FcU4avH118Djx9Y5L5GFQkKAv/6SVisdO+odDdkbJhZ
"text/plain": [
"<Figure size 800x600 with 2 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"Gamma_elastic = [96.01, 82.53, 102.95, 143.5, 110.92, 471.77, 908.46]\n",
"PSD = [8.95e-05, 4.19e-04, 2.94e-04, 2.17e-04, 8.98e-04, 5.52e-04, 6.10e-04]\n",
"\n",
"fig, ax1 = plt.subplots(figsize=(8, 6))\n",
"ax2 = ax1.twinx()\n",
"\n",
"ax1.plot(Gamma_elastic, '-ob')\n",
"ax2.plot(PSD, '-*r')\n",
"ax2.yaxis.set_major_formatter(mtick.FormatStrFormatter('%.1e'))\n",
"\n",
"ax1.set_xlabel('Optimization Steps', fontsize= 12, fontweight='bold')\n",
"ax1.set_ylabel('Elastic Collision Rate', fontsize= 12, fontweight='bold')\n",
"ax1.tick_params(axis=\"y\", labelcolor='b')\n",
"ax2.set_ylabel('Phase Space Density', fontsize= 12, fontweight='bold')\n",
"ax2.tick_params(axis=\"y\", labelcolor='r')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "da1a3346",
"metadata": {},
"source": [
"## Plot crossed beam trap potential resulting for given parameters only"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "f17a4d01",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.legend.Legend at 0x11ebf064970>"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA3kAAAKyCAYAAABoqBcWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAACZ4ElEQVR4nOzdeXiU1d3/8c/MZDLZN7KyhCAqiriCyqICLqBSFFttfbQItdVa61KXp+rjr49Qi9aKbZ/aarWLVmvrWq11qeAuAooUFEFQlpBACGTfMzOZuX9/TGZIIAkzMJN7lvfrunJBZu5MvsnJ9plzzvdYDMMwBAAAAACIC1azCwAAAAAAhA8hDwAAAADiCCEPAAAAAOIIIQ8AAAAA4gghDwAAAADiCCEPAAAAAOIIIQ8AAAAA4gghDwAAAADiCCEPAAAAAOIIIQ8AAAAA4kjchryHHnpIo0aNUkpKisaPH68PPvjA7JIAAAAAIOLiMuQ988wz+tGPfqQ777xTa9as0emnn67zzjtPFRUVZpcGAAAAABFlMQzDMLuIcDv11FN10kkn6eGHHw7cdvTRR2vOnDm69957TawMAAAAACIr7mbyXC6XVq9erRkzZvS6fcaMGVq+fLlJVQEAAADA4Egyu4Bwq62tlcfjUVFRUa/bi4qKVF1d3efbOJ1OOZ3OwOter1f19fUaMmSILBZLROsFAAAAgGAYhqGWlhYNHTpUVmv/83VxF/L89g1nhmH0G9juvfdeLVy4cDDKAgAAAIBDUllZqeHDh/d7f9yFvPz8fNlstv1m7fbs2bPf7J7fHXfcoZtvvjnwelNTk0pLS7Vt2zZlZmZGtN5guN1uvfPOO5o+fbrsdrvZ5SCCGOvB4fUa6uzyqMPlUZvLo3aX7//Nzi41tLtU3+pWQ7tLDW0u1be7taelUzsaO+V0e/t8PJvVorElmTq5LFcTRubqpBHZcthtA9bAWCcOxjpxBDPWLZ1dWr29QZ9UNGr9zmZ9sbul358tFouUn56swkyHCrMcKsx0KCfVrqzUJGWnJis7NUlZKXZlpSQp1WFTapJNKXab7DYLK5EiiO/pxBGNY93S0qJRo0YdMKPEXchLTk7W+PHjtXTpUl100UWB25cuXaoLL7ywz7dxOBxyOBz73Z6Xl6esrKyI1Rost9uttLQ0DRkyJGq+wBAZjHX0MgxDNa1OVdZ3aHtdmzZVt2jDrmatr2pWfZtL62u7tL62Ro9/UqMMR5LOPrpQ5x9bomljCpWctP9yCsY6cTDWiaO/sd5a06pXP9uld7+s0drKRnm8PXreWVOUnZWksUOzdERRhkYXZOiwggwdlp+u4uwU2W1x1z4h5vE9nTiicaz9dRzoiZy4C3mSdPPNN2vu3LmaMGGCJk2apEcffVQVFRW65pprzC4NQIyyWCwqzExRYWaKxo/MDdxuGIZ2NHRo5dY6rdhapw8312p3s1Mvra3SS2urVJDp0OWnluqyU0tVmJli4kcAYDDVtTr13OodenltlTbsau5136j8dE05fIhOKs3V8SNyNGpIuqxWZt4AhE9chrxvfetbqqur009/+lPt2rVL48aN02uvvaaRI0eaXRqAOGOxWDQiL00j8tJ0yYQR8noNrals1Kuf7dK/PqtSTYtTv37zKz307hbNn1yma6eNVk5astllA4iQ7S3Src+v0+uf75bL41uGabNaNOXwfJ17TLFOPyJfI/LSTK4SQLyLy5AnSddee62uvfZas8sAkGCsVovGj8zV+JG5uv28o/Tv9dV67MNtWlPRqEff36q/f1yh2887ShefUGJ2qQDC6D8VDfrlkk1atjlJ0i5J0vHDs/XNk0fovHElykvnyR0AgyduQx4AmC05yaoLjh+q2ceV6N1NNbrv3xu1sbpFd774uV5eu1Pn5h74MQBEt/LaNt39yga9tXGPJMlqMXTh8UM1f8phOn5EjrnFAUhYhDwACcHj8cjtdpv2/ieVZemFq0/WS2t26k/LtmlHbbOeakjW6K+qdcphBabVhchzu91KSkpSZ2enPB6P2eUgTDpdHv3t4wo9u6pSbq9XI7KTdM7RhRrtrdIF5xwhu92uzs5Os8tEBPA9nTgGc6yTkpJks9nC1hmXkAcgrhmGoerqajU2NppdiiTppDzpuFlDVd/mkstjyNVYo883NirdwY/jeGUYhoqLi1VZWUlb+zjh6vKqod2lI9IM3Tk1Xyl2q7JT7UqyWtTRwVjHO76nE8dgj7XNZlNhYaGys7MP+f3xVwWAuOYPeIWFhUpLS4uaX8gej1c761vV0f3EYHZmCnt24pTX61Vra6syMjJktdIOP5YZhqH6NpfqWl3KzTSUZLWqMMuhDEeSLBYLY50gGOfEMVhjbRiGurq61NzcrF27dqmjo0MlJYe2d5+QByBueTyeQMAbMmSI2eX04vV6VZDhUofFodpWp2o7vHI4LBqSsf+ZnYhtXq9XLpdLKSkp/EEYwzxeQ5X17WruNKQku3JS7RqWk6qkHufYMdaJgXFOHIM91pmZmXI4HKqtrVVhYaFsNttBPxZfmQDiln8PXlpadLYrt1ik4ixH4Py8qsYONXWYt28QQN9cXR5tqWlVc6dbFotFw3PTVJqX1ivgAUA4pKenyzCMQ+4jwE8nAHEvWpZo9qcoy6G89GQZkirr29XpZiM/EC063R5tqWlTp9sju82q0QXpyktPjvqfKwBiU7h+thDyAMBkFotFw3JSleFIktcwtL2uXR6vYXZZQMJrd3ZpS02r3B6vUuw2HV6YobRkdroAiH6EPACIAhaLRSPy0mS3WeXs8mhXU4fZJQEJrd3VpW21bfJ4DaUlJ+mw/HTZWZ4JIEbw0woAooTdZtWIPN/+wfo2l1o7+1+Pv2DBAlksln5fcnJyel3f3t6u6667TqWlpbLb7bJYLDrhhBMC9//mN7/R2LFjAx1ILRZLxI6daGxs1IIFC7RgwQI9/vjjA35sfd0faeXl5QN+bvd9KS8vH/QaD6RnfVarVSkpKSosLNSECRN0/fXX67PPPhv0ml566aXAuPf1OfPXW1ZWNui17avT7VF5bbt++8C9On5Ero4oypQ9ybbf2L/77ruBt1mwYIFsNptyc3MDZ13t+zJ//vyg3v/VV1+t8ePHq6CgQHa7Xenp6Ro7dqxuuukmVVdX73f9l19+qblz52ro0KFKTk5WSUmJ5s6dq82bN4fpM9Lb448/HviYpk2b1uu+119/XampqYGvvT/84Q8RqcEM5eXluuOOOzR16lQdc8wxSktLU3FxsU477TT99a9/ldfr7XV9z89TXy89f751dnbqvvvu09e+9jUddthhysjIUE5Ojk444QT97Gc/U0tLS9B1NjY26o477tC4ceOUnp4uu92u4uJizZkzR8uXLw/XpyNk7733ns477zzl5eUpJSVFY8aM0U9+8hO1trYG/RhLly7Vt7/9bR155JGyWq19fi/uq6KiQtddd50OP/xwpaSkKDs7W2PHjtU111wT1Pvs+T2978+ud999N6p+dvViYD9NTU2GJKOpqcnsUgzDMAyXy2W89NJLhsvlMrsURBhjHV4dHR3Ghg0bjI6ODrNL2Y/H4zEaGhoMj8ez33076tuNTysbjC92NRkej7fPt7/rrrsMSf2+ZGdn97r+9ttv3++a448/3jAMw/j3v//d52M0NDSE+aP22bZtW+B9TJ06dcCP7bHHHotIDcHWF8zLtm3bBny8gcY6Ug5Us9VqNf73f/930OoxDMOYN29e4P2/8847/dY8cuTIQa1rX063x9hQ1WR8WtlgXHfr/t83PV96fhwH+p6UZFx33XVB1WCz2fp9jJEjRxotLS2Baz/55BMjIyOjz2tzcnKMNWvWhPkzZBiPPfZYn9/DL730kpGcnBz4Gnv88cfD/r7N9Pe//33A8b388st7Xd/z89TXS8+fb7t27Rrw2qOOOspobm4+YI1dXV3GiSee2O/jJCUl9fn9F2l//etfDavV2mdNEyZMMNrb24N6nBtvvPGA34s9LVu2zMjJyenzbWw22wHfn8fjGfDn/TvvvBP2n10H+tsl2JzCTB4ARJnibIf
"text/plain": [
"<Figure size 900x700 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"Powers = [1, 11] * u.W\n",
"Wavelength = 1.064*u.um\n",
"w_x = [27, 67]*u.um # Beam Waists in the x direction\n",
"w_z = [31, 67]*u.um # Beam Waists in the y direction\n",
"\n",
"options = {\n",
" 'axis':2, # axis referenced to the beam along which you want the dipole trap potential\n",
" 'extent': 3e2, # range of spatial coordinates in one direction to calculate trap potential over\n",
" 'crossed': True, # Flag for either a crossed beam configuration or a single focussed beam\n",
" 'delta': 70, # angle between arms in degrees\n",
" 'modulation': False, # Flag for spatial modulation of a single beam\n",
" 'aspect_ratio': 5, # required aspect ratio of modulated arm\n",
" 'gravity': False, # Flag for adding levitation/gravitation potential\n",
" 'tilt_gravity': False, # Flag for tilt of the beam wrt to gravity axis\n",
" 'theta': 0.75, # gravity tilt angle in degrees\n",
" 'tilt_axis': [1, 0, 0], # lab space coordinates are rotated about x-axis in reference frame of beam\n",
" 'astigmatism': False, # Flag for astigmatism of beam\n",
" 'foci_disp_single': 2.5*u.mm, #0.9 * z_R(w_0 = np.asarray([30]), lamb = 1.064)[0]*u.um, # difference in position of the foci along the propagation direction\n",
" 'foci_disp_crossed': [2.5*u.mm, 2.8*u.mm], # astigmatism of each of the two beams in the cODT\n",
" 'foci_shift': [0.0*u.mm, 0.0*u.mm],\n",
" 'beam_disp': [[0.0, 0.0, 0.05]*u.mm, [0.0, 0.0, 0.0]*u.mm], # shift arm 1 along x, z; shift arm 2 along y, z\n",
" 'extract_trap_frequencies': True # Flag to extract trap frequencies by fitting the computed potential\n",
"}\n",
"\n",
"Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies = computeTrapPotential(w_x, w_z, Powers, options)\n",
"\n",
"EffectiveTrapDepthInKelvin = TrapDepthsInKelvin[1]\n",
"v = ExtractedTrapFrequencies[1][0]\n",
"dv = ExtractedTrapFrequencies[1][1]\n",
"\n",
"plt.figure(figsize=(9, 7))\n",
"plt.plot(Positions[options['axis']], TrappingPotential[options['axis']], label = 'Effective Trap Depth = ' + str(round(EffectiveTrapDepthInKelvin.value, 2)) + ' ' + str(EffectiveTrapDepthInKelvin.unit) + '; ' + generate_label(v, dv)) \n",
"#plt.plot(Positions[options['axis']], TrappingPotential[options['axis']]) \n",
"axis = options['axis']\n",
"if axis == 0:\n",
" dir = 'X - Horizontal'\n",
"elif axis == 1:\n",
" dir = 'Y - Propagation'\n",
"else:\n",
" dir = 'Z - Vertical'\n",
" \n",
"plt.ylim(top = 0)\n",
"plt.xlabel(dir + ' Direction (um)', fontsize= 12, fontweight='bold')\n",
"plt.ylabel('Trap Potential (uK)', fontsize= 12, fontweight='bold')\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.legend(loc=1, prop={'size': 12, 'weight': 'bold'})"
]
},
{
"cell_type": "markdown",
"id": "1a28b820",
"metadata": {},
"source": [
"## Calculate trap frequencies in a crossed beam trap for given parameters"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "09149423",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"v_x = 480.60 Hz\n",
"v_y = 255.73 Hz\n",
"v_z = 492.63 Hz\n"
]
}
],
"source": [
"Powers = [1, 11] * u.W\n",
"w_x = [27, 67]*u.um # Beam Waists in the x direction\n",
"w_z = [31, 67]*u.um # Beam Waists in the y direction\n",
"\n",
"options = {\n",
" 'axis': 1, # axis referenced to the beam along which you want the dipole trap potential\n",
" 'extent': 1e3, # range of spatial coordinates in one direction to calculate trap potential over\n",
" 'crossed': True, # Flag for either a crossed beam configuration or a single focussed beam\n",
" 'delta': 70, # angle between arms in degrees\n",
" 'modulation': False, # Flag for spatial modulation of a single beam\n",
" 'aspect_ratio': 5, # required aspect ratio of modulated arm\n",
" 'gravity': False, # Flag for adding levitation/gravitation potential\n",
" 'tilt_gravity': False, # Flag for tilt of the beam wrt to gravity axis\n",
" 'theta': 0.75, # gravity tilt angle in degrees\n",
" 'tilt_axis': [1, 0, 0], # lab space coordinates are rotated about x-axis in reference frame of beam\n",
" 'astigmatism': False, # Flag for astigmatism of beam\n",
" 'foci_disp_single': 2.5*u.mm, #0.9 * z_R(w_0 = np.asarray([30]), lamb = 1.064)[0]*u.um, # difference in position of the foci along the propagation direction\n",
" 'foci_disp_crossed': [2.5*u.mm, 1.5*u.mm], # astigmatism of each of the two beams in the cODT\n",
" 'foci_shift': [0.01*u.mm, 0.20*u.mm],\n",
" 'beam_disp': [[0, 0, 0.0]*u.mm, [0, 0, 0.0]*u.mm],\n",
" 'extract_trap_frequencies': False # Flag to extract trap frequencies by fitting the computed potential\n",
"}\n",
"\n",
"v_x = calculateCrossedBeamTrapFrequency(options['delta'], [w_x, w_z], Powers, dir = 'x')\n",
"v_y = calculateCrossedBeamTrapFrequency(options['delta'], [w_x, w_z], Powers, dir = 'y')\n",
"v_z = calculateCrossedBeamTrapFrequency(options['delta'], [w_x, w_z], Powers, dir = 'z')\n",
"\n",
"print('v_x = %.2f ' %(v_x.value) + str(v_x.unit))\n",
"print('v_y = %.2f ' %(v_y.value) + str(v_y.unit))\n",
"print('v_z = %.2f ' %(v_z.value) + str(v_z.unit))"
]
},
{
"cell_type": "markdown",
"id": "3cf7eb64",
"metadata": {},
"source": [
"## Calculate trap frequencies, trap depths in a crossed beam trap for different shifts of Arm 2 along Y and Z"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fc585c24",
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"Powers = [1, 11] * u.W\n",
"Wavelength = 1.064*u.um\n",
"w_x = [27, 67]*u.um # Beam Waists in the x direction\n",
"w_z = [31, 67]*u.um # Beam Waists in the y direction\n",
"\n",
"options = {\n",
" 'axis':1, # axis referenced to the beam along which you want the dipole trap potential\n",
" 'extent': 2e3, # range of spatial coordinates in one direction to calculate trap potential over\n",
" 'crossed': True, # Flag for either a crossed beam configuration or a single focussed beam\n",
" 'delta': 70, # angle between arms in degrees\n",
" 'modulation': False, # Flag for spatial modulation of a single beam\n",
" 'aspect_ratio': 5, # required aspect ratio of modulated arm\n",
" 'gravity': False, # Flag for adding levitation/gravitation potential\n",
" 'tilt_gravity': False, # Flag for tilt of the beam wrt to gravity axis\n",
" 'theta': 0.75, # gravity tilt angle in degrees\n",
" 'tilt_axis': [1, 0, 0], # lab space coordinates are rotated about x-axis in reference frame of beam\n",
" 'astigmatism': False, # Flag for astigmatism of beam\n",
" 'foci_disp_single': 2.5*u.mm, #0.9 * z_R(w_0 = np.asarray([30]), lamb = 1.064)[0]*u.um, # difference in position of the foci along the propagation direction\n",
" 'foci_disp_crossed': [2.5*u.mm, 2.8*u.mm], # astigmatism of each of the two beams in the cODT\n",
" 'foci_shift': [0.0*u.mm, 0.0*u.mm],\n",
" 'beam_disp': [[0.0, 0.0, 0.0]*u.mm, [0.0, 0.0, 0.0]*u.mm],\n",
" 'extract_trap_frequencies': True # Flag to extract trap frequencies by fitting the computed potential\n",
"}\n",
"\n",
"disp_range = 100\n",
"yvals = np.arange(-disp_range, disp_range, 5) \n",
"zvals = np.arange(-disp_range, disp_range, 5)\n",
"\n",
"TrapDepths = np.zeros((len(yvals), len(zvals))) * u.uK\n",
"TrapFrequencies = np.zeros((len(yvals), len(zvals)))\n",
"\n",
"idx = 0\n",
"if options['extract_trap_frequencies']:\n",
" idx = 1\n",
" \n",
"for i in range(len(yvals)):\n",
" options['beam_disp'][1][1] = yvals[i] * u.um\n",
" for j in range(len(zvals)):\n",
" options['beam_disp'][1][2] = zvals[j] * u.um\n",
" Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies = computeTrapPotential(w_x, w_z, Powers, options)\n",
" TrapDepths[i][j] = TrapDepthsInKelvin[1] \n",
" try:\n",
" if np.isnan(ExtractedTrapFrequencies[idx][0].value):\n",
" TrapFrequencies[i][j] = np.nan\n",
" else:\n",
" TrapFrequencies[i][j] = ExtractedTrapFrequencies[idx][0] \n",
" except:\n",
" TrapFrequencies[i][j] = ExtractedTrapFrequencies[idx][0] "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e060601f",
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"fig, ax = plt.subplots()\n",
"axis = options['axis']\n",
"if axis == 0:\n",
" dir = 'X'\n",
"elif axis == 1:\n",
" dir = 'Y'\n",
"else:\n",
" dir = 'Z'\n",
"plt.title('Trap Frequency along ' + dir)\n",
"c = ax.matshow(np.asarray(TrapFrequencies), origin='lower', cmap = 'coolwarm', aspect = 1)\n",
"x_pos = np.arange(len(zvals))\n",
"plt.xticks(x_pos, zvals)\n",
"#plt.xticks(np.arange(min(zvals.value), max(zvals.value), 30))\n",
"ax.xaxis.set_ticks_position('bottom')\n",
"y_pos = np.arange(len(yvals))\n",
"plt.yticks(y_pos, yvals)\n",
"#plt.yticks(np.arange(min(yvals.value), max(yvals.value), 30))\n",
"plt.xlabel('Z - shift (um)', fontsize= 12, fontweight='bold')\n",
"plt.ylabel('Y - shift (um)', fontsize= 12, fontweight='bold')\n",
"plt.setp(ax.get_xticklabels(), rotation=45, horizontalalignment='right')\n",
"fig.colorbar(c, ax = ax)\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "1fe6e6de",
"metadata": {},
"source": [
"## Calculate trap frequencies, trap depths in a crossed beam trap for different shifts of Arm 1 along X and Z"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "faf6d746",
"metadata": {},
"outputs": [],
"source": [
"Powers = [1, 11] * u.W\n",
"Wavelength = 1.064*u.um\n",
"w_x = [27, 67]*u.um # Beam Waists in the x direction\n",
"w_z = [31, 67]*u.um # Beam Waists in the y direction\n",
"\n",
"options = {\n",
" 'axis':2, # axis referenced to the beam along which you want the dipole trap potential\n",
" 'extent': 3e3, # range of spatial coordinates in one direction to calculate trap potential over\n",
" 'crossed': True, # Flag for either a crossed beam configuration or a single focussed beam\n",
" 'delta': 70, # angle between arms in degrees\n",
" 'modulation': False, # Flag for spatial modulation of a single beam\n",
" 'aspect_ratio': 5, # required aspect ratio of modulated arm\n",
" 'gravity': False, # Flag for adding levitation/gravitation potential\n",
" 'tilt_gravity': False, # Flag for tilt of the beam wrt to gravity axis\n",
" 'theta': 0.75, # gravity tilt angle in degrees\n",
" 'tilt_axis': [1, 0, 0], # lab space coordinates are rotated about x-axis in reference frame of beam\n",
" 'astigmatism': False, # Flag for astigmatism of beam\n",
" 'foci_disp_single': 2.5*u.mm, #0.9 * z_R(w_0 = np.asarray([30]), lamb = 1.064)[0]*u.um, # difference in position of the foci along the propagation direction\n",
" 'foci_disp_crossed': [2.5*u.mm, 2.8*u.mm], # astigmatism of each of the two beams in the cODT\n",
" 'foci_shift': [0.0*u.mm, 0.0*u.mm],\n",
" 'beam_disp': [[0.0, 0.0, 0.0]*u.mm, [0.0, 0.0, 0.0]*u.mm],\n",
" 'extract_trap_frequencies': True # Flag to extract trap frequencies by fitting the computed potential\n",
"}\n",
"\n",
"disp_range = 100\n",
"xvals = np.arange(-disp_range, disp_range, 5) \n",
"zvals = np.arange(-disp_range, disp_range, 5)\n",
"\n",
"TrapDepths = np.zeros((len(xvals), len(zvals))) * u.uK\n",
"TrapFrequencies = np.zeros((len(xvals), len(zvals)))\n",
"\n",
"idx = 0\n",
"if options['extract_trap_frequencies']:\n",
" idx = 1\n",
" \n",
"for i in range(len(xvals)):\n",
" options['beam_disp'][0][0] = xvals[i] * u.um\n",
" for j in range(len(zvals)):\n",
" options['beam_disp'][0][2] = zvals[j] * u.um\n",
" Positions, IdealTrappingPotential, TrappingPotential, TrapDepthsInKelvin, CalculatedTrapFrequencies, ExtractedTrapFrequencies = computeTrapPotential(w_x, w_z, Powers, options)\n",
" TrapDepths[i][j] = TrapDepthsInKelvin[1] \n",
" try:\n",
" if np.isnan(ExtractedTrapFrequencies[idx][0].value):\n",
" TrapFrequencies[i][j] = np.nan\n",
" else:\n",
" TrapFrequencies[i][j] = ExtractedTrapFrequencies[idx][0] \n",
" except:\n",
" TrapFrequencies[i][j] = ExtractedTrapFrequencies[idx][0] "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "387ec0a1",
"metadata": {},
"outputs": [],
"source": [
"fig, ax = plt.subplots()\n",
"axis = options['axis']\n",
"if axis == 0:\n",
" dir = 'X'\n",
"elif axis == 1:\n",
" dir = 'Y'\n",
"else:\n",
" dir = 'Z'\n",
"plt.title('Trap Frequency along ' + dir)\n",
"\n",
"c = ax.matshow(np.asarray(TrapFrequencies), origin='lower', cmap = 'coolwarm', aspect = 1)\n",
"\n",
"x_pos = np.arange(len(zvals))\n",
"plt.xticks(x_pos, zvals)\n",
"#plt.xticks(np.arange(min(zvals.value), max(zvals.value), 30))\n",
"ax.xaxis.set_ticks_position('bottom')\n",
"x_pos = np.arange(len(xvals))\n",
"plt.yticks(x_pos, xvals)\n",
"#plt.yticks(np.arange(min(yvals.value), max(yvals.value), 30))\n",
"plt.xlabel('Z - shift (um)', fontsize= 12, fontweight='bold')\n",
"plt.ylabel('X - shift (um)', fontsize= 12, fontweight='bold')\n",
"plt.setp(ax.get_xticklabels(), rotation=45, horizontalalignment='right')\n",
"fig.colorbar(c, ax = ax)\n",
"plt.tight_layout()\n",
"plt.grid(visible=1)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "bc9b993e",
"metadata": {},
"source": [
"# Heating Rate in ODT Arm 1"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8cc8af09",
"metadata": {},
"outputs": [],
"source": [
"w_x = 27 * u.um\n",
"w_y = 31 * u.um\n",
"P = 2.29 * u.W\n",
"linewidth = 32.2 * u.MHz\n",
"detuning = 4.3e+14 * u.Hz \n",
"\n",
"HeatingRate, T_recoil, Gamma_sr, U = calculateHeatingRate(w_x, w_y, P, linewidth, detuning, wavelength = 1.064*u.um)\n",
"\n",
"print((U/ac.k_B).to(u.uK))\n",
"print(Gamma_sr)\n",
"print(HeatingRate.to(u.nK/u.s))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "56bef045",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.12"
}
},
"nbformat": 4,
"nbformat_minor": 5
}