2024-10-30 20:48:59 +01:00
|
|
|
%% Physical constants
|
|
|
|
PlanckConstant = 6.62607015E-34;
|
|
|
|
PlanckConstantReduced = 6.62607015E-34/(2*pi);
|
|
|
|
FineStructureConstant = 7.2973525698E-3;
|
|
|
|
ElectronMass = 9.10938291E-31;
|
|
|
|
GravitationalConstant = 6.67384E-11;
|
|
|
|
ProtonMass = 1.672621777E-27;
|
|
|
|
AtomicMassUnit = 1.660539066E-27;
|
|
|
|
BohrRadius = 5.2917721067E-11;
|
|
|
|
BohrMagneton = 9.274009994E-24;
|
|
|
|
BoltzmannConstant = 1.38064852E-23;
|
|
|
|
StandardGravityAcceleration = 9.80665;
|
|
|
|
SpeedOfLight = 299792458;
|
|
|
|
StefanBoltzmannConstant = 5.670373E-8;
|
|
|
|
ElectronCharge = 1.602176634E-19;
|
|
|
|
VacuumPermeability = 1.25663706212E-6;
|
|
|
|
DielectricConstant = 8.8541878128E-12;
|
|
|
|
ElectronGyromagneticFactor = -2.00231930436153;
|
|
|
|
AvogadroConstant = 6.02214076E23;
|
|
|
|
ZeroKelvin = 273.15;
|
|
|
|
GravitationalAcceleration = 9.80553;
|
|
|
|
VacuumPermittivity = 1 / (SpeedOfLight^2 * VacuumPermeability);
|
|
|
|
HartreeEnergy = ElectronCharge^2 / (4 * pi * VacuumPermittivity * BohrRadius);
|
|
|
|
AtomicUnitOfPolarizability = (ElectronCharge^2 * BohrRadius^2) / HartreeEnergy; % Or simply 4*pi*VacuumPermittivity*BohrRadius^3
|
|
|
|
|
|
|
|
% Dy specific constants
|
2024-11-05 20:52:59 +01:00
|
|
|
Dy164Mass = 163.929174751*AtomicMassUnit;
|
2024-10-30 20:48:59 +01:00
|
|
|
Dy164IsotopicAbundance = 0.2826;
|
2024-11-05 20:52:59 +01:00
|
|
|
DyMagneticMoment = 9.93*BohrMagneton;
|
2024-10-30 20:48:59 +01:00
|
|
|
|
2024-11-01 14:36:04 +01:00
|
|
|
%% Bogoliubov excitation spectrum for quasi-2D dipolar gas with QF correction
|
|
|
|
AtomNumber = 1E5; % Total atom number in the system
|
2024-11-01 14:41:23 +01:00
|
|
|
wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction
|
|
|
|
lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length
|
|
|
|
as = 102.515 * BohrRadius; % Scattering length
|
|
|
|
Trapsize = 7.5815 * lz; % Trap is assumed to be a box of finite extent , given here in units of the harmonic oscillator length
|
2024-11-01 14:36:04 +01:00
|
|
|
alpha = 0; % Polar angle of dipole moment
|
|
|
|
phi = 0; % Azimuthal angle of momentum vector
|
2024-11-01 14:41:23 +01:00
|
|
|
MeanWidth = 5.7304888515 * lz; % Mean width of Gaussian ansatz
|
2024-11-05 20:52:59 +01:00
|
|
|
k = linspace(0, 2e6, 1000); % Vector of magnitudes of k vector
|
|
|
|
|
|
|
|
% no = 2.0429e+15, eps_dd = 1.2755, as = 5.4249e-09
|
2024-10-30 20:48:59 +01:00
|
|
|
|
2024-11-01 14:41:23 +01:00
|
|
|
AtomNumberDensity = AtomNumber / Trapsize^2; % Areal density of atoms
|
2024-10-30 20:48:59 +01:00
|
|
|
add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length
|
2024-11-01 14:36:04 +01:00
|
|
|
eps_dd = add/as; % Relative interaction strength
|
2024-10-30 20:48:59 +01:00
|
|
|
gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength
|
2024-11-01 14:36:04 +01:00
|
|
|
gdd = VacuumPermeability*DyMagneticMoment^2/3;
|
2024-10-30 20:48:59 +01:00
|
|
|
|
2024-11-01 14:36:04 +01:00
|
|
|
[Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, alpha, phi); % DDI potential in k-space
|
2024-10-30 20:48:59 +01:00
|
|
|
|
|
|
|
% == Quantum Fluctuations term == %
|
2024-11-01 14:36:04 +01:00
|
|
|
gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2));
|
|
|
|
gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2);
|
|
|
|
gQF = gamma5 * gammaQF;
|
2024-10-30 20:48:59 +01:00
|
|
|
|
2024-11-01 14:36:04 +01:00
|
|
|
% == Dispersion relation == %
|
2024-10-30 20:48:59 +01:00
|
|
|
DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2));
|
|
|
|
EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK);
|
|
|
|
|
|
|
|
figure(1)
|
2024-11-01 14:36:04 +01:00
|
|
|
set(gcf,'Position',[50 50 950 750])
|
2024-10-30 20:48:59 +01:00
|
|
|
xvals = (k .* add);
|
2024-11-01 14:36:04 +01:00
|
|
|
yvals = EpsilonK ./ PlanckConstant;
|
2024-10-30 20:48:59 +01:00
|
|
|
plot(xvals, yvals,LineWidth=2.0)
|
2024-11-01 14:36:04 +01:00
|
|
|
title(horzcat(['$a_s = ',num2str(round(1/eps_dd,3)),'a_{dd}, '], ['na_{dd}^2 = ',num2str(round(AtomNumberDensity * add^2,4)),'$']),'fontsize',16,'interpreter','latex')
|
|
|
|
xlabel('$k_{\rho}a_{dd}$','fontsize',16,'interpreter','latex')
|
|
|
|
ylabel('$\epsilon(k_{\rho})/h$ (Hz)','fontsize',16,'interpreter','latex')
|
2024-10-30 20:48:59 +01:00
|
|
|
grid on
|
|
|
|
|
2024-11-06 00:03:06 +01:00
|
|
|
%% For different interaction strengths
|
|
|
|
|
2024-11-05 12:07:15 +01:00
|
|
|
AtomNumber = 1E5; % Total atom number in the system
|
|
|
|
wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction
|
|
|
|
lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length
|
|
|
|
Trapsize = 7.5815 * lz; % Trap is assumed to be a box of finite extent , given here in units of the harmonic oscillator length
|
|
|
|
alpha = 0; % Polar angle of dipole moment
|
|
|
|
phi = 0; % Azimuthal angle of momentum vector
|
|
|
|
MeanWidth = 5.7304888515 * lz; % Mean width of Gaussian ansatz
|
2024-11-05 20:52:59 +01:00
|
|
|
k = linspace(0, 2e6, 1000); % Vector of magnitudes of k vector
|
2024-11-05 12:07:15 +01:00
|
|
|
|
|
|
|
AtomNumberDensity = AtomNumber / Trapsize^2; % Areal density of atoms
|
|
|
|
add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length
|
|
|
|
|
2024-11-05 20:52:59 +01:00
|
|
|
ScatteringLengths = [108.5, 105.9, 103.3, 102.5150];
|
|
|
|
eps_dds = zeros(1, length(ScatteringLengths));
|
|
|
|
EpsilonKs = zeros(length(k), length(ScatteringLengths));
|
|
|
|
for idx = 1:length(ScatteringLengths)
|
2024-11-01 14:36:04 +01:00
|
|
|
|
2024-11-05 20:52:59 +01:00
|
|
|
as = ScatteringLengths(idx) * BohrRadius; % Scattering length
|
2024-11-05 12:07:15 +01:00
|
|
|
eps_dd = add/as; % Relative interaction strength
|
|
|
|
gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength
|
|
|
|
gdd = VacuumPermeability*DyMagneticMoment^2/3;
|
|
|
|
|
|
|
|
[Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, alpha, phi); % DDI potential in k-space
|
|
|
|
|
|
|
|
% == Quantum Fluctuations term == %
|
|
|
|
gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2));
|
|
|
|
gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2);
|
|
|
|
gQF = gamma5 * gammaQF;
|
|
|
|
|
|
|
|
% == Dispersion relation == %
|
|
|
|
DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2));
|
|
|
|
EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK);
|
|
|
|
|
2024-11-05 20:52:59 +01:00
|
|
|
eps_dds(idx) = eps_dd;
|
|
|
|
EpsilonKs(:,idx) = EpsilonK;
|
2024-11-05 12:07:15 +01:00
|
|
|
end
|
|
|
|
|
|
|
|
figure(2)
|
2024-11-05 20:52:59 +01:00
|
|
|
clf
|
2024-11-05 12:07:15 +01:00
|
|
|
set(gcf,'Position',[50 50 950 750])
|
|
|
|
xvals = (k .* add);
|
2024-11-05 20:52:59 +01:00
|
|
|
yvals = EpsilonKs(:, 1) ./ PlanckConstant;
|
2024-11-05 12:07:15 +01:00
|
|
|
plot(xvals, yvals,LineWidth=2.0, DisplayName=['$a_s = ',num2str(round(1/eps_dds(1),3)),'a_{dd}$'])
|
|
|
|
hold on
|
|
|
|
for idx = 2:length(ScatteringLengths)
|
2024-11-05 20:52:59 +01:00
|
|
|
yvals = EpsilonKs(:, idx) ./ PlanckConstant;
|
2024-11-05 12:07:15 +01:00
|
|
|
plot(xvals, yvals,LineWidth=2.0, DisplayName=['$a_s = ',num2str(round(1/eps_dds(idx),3)),'a_{dd}$'])
|
|
|
|
end
|
|
|
|
title(['$na_{dd}^2 = ',num2str(round(AtomNumberDensity * add^2,4)),'$'],'fontsize',16,'interpreter','latex')
|
|
|
|
xlabel('$k_{\rho}a_{dd}$','fontsize',16,'interpreter','latex')
|
|
|
|
ylabel('$\epsilon(k_{\rho})/h$ (Hz)','fontsize',16,'interpreter','latex')
|
|
|
|
grid on
|
|
|
|
legend('location', 'northwest','fontsize',16, 'Interpreter','latex')
|
|
|
|
|
2024-11-06 00:03:06 +01:00
|
|
|
%% For 3 points on the roton instability boundary
|
|
|
|
|
2024-11-05 20:52:59 +01:00
|
|
|
wz = 2 * pi * 72.4; % Trap frequency in the tight confinement direction
|
|
|
|
lz = sqrt(PlanckConstantReduced/(Dy164Mass * wz)); % Defining a harmonic oscillator length
|
|
|
|
alpha = 0; % Polar angle of dipole moment
|
|
|
|
phi = 0; % Azimuthal angle of momentum vector
|
|
|
|
k = linspace(0, 2.25e6, 1000); % Vector of magnitudes of k vector
|
|
|
|
|
|
|
|
nadd2s = [0.0844, 0.0978, 0.123];
|
|
|
|
as_to_add = [0.7730, 0.7840, 0.7819];
|
|
|
|
var_widths = [4.97165, 5.72960, 5.93178];
|
|
|
|
|
|
|
|
add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length
|
|
|
|
EpsilonKs = zeros(length(k), length(nadd2s));
|
|
|
|
|
|
|
|
for idx = 1:length(nadd2s)
|
|
|
|
|
|
|
|
AtomNumberDensity = nadd2s(idx) / add^2; % Areal density of atoms
|
|
|
|
as = (as_to_add(idx) * add); % Scattering length
|
|
|
|
eps_dd = add/as; % Relative interaction strength
|
|
|
|
gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength
|
|
|
|
gdd = VacuumPermeability*DyMagneticMoment^2/3;
|
|
|
|
MeanWidth = var_widths(idx) * lz; % Mean width of Gaussian ansatz
|
|
|
|
|
|
|
|
[Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, alpha, phi); % DDI potential in k-space
|
|
|
|
|
|
|
|
% == Quantum Fluctuations term == %
|
|
|
|
gammaQF = (32/3) * gs * (as^3/pi)^(1/2) * (1 + ((3/2) * eps_dd^2));
|
|
|
|
gamma5 = sqrt(2/5) / (sqrt(pi) * MeanWidth)^(3/2);
|
|
|
|
gQF = gamma5 * gammaQF;
|
|
|
|
|
|
|
|
% == Dispersion relation == %
|
|
|
|
DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2));
|
|
|
|
EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK);
|
|
|
|
EpsilonKs(:,idx) = EpsilonK;
|
|
|
|
end
|
|
|
|
|
|
|
|
figure(3)
|
|
|
|
clf
|
|
|
|
set(gcf,'Position',[50 50 950 750])
|
|
|
|
xvals = (k .* add);
|
|
|
|
yvals = EpsilonKs(:, 1) ./ PlanckConstant;
|
|
|
|
plot(xvals, yvals,LineWidth=2.0, DisplayName=['$a_s = ',num2str(round(as_to_add(1),4)),'a_{dd}, na_{dd}^2 = ',num2str(round(nadd2s(1),4)),'$'])
|
|
|
|
hold on
|
|
|
|
for idx = 2:length(nadd2s)
|
|
|
|
yvals = EpsilonKs(:, idx) ./ PlanckConstant;
|
|
|
|
plot(xvals, yvals,LineWidth=2.0, DisplayName=['$a_s = ',num2str(round(as_to_add(idx),4)),'a_{dd}, na_{dd}^2 = ',num2str(round(nadd2s(idx),4)),'$'])
|
|
|
|
end
|
|
|
|
xlabel('$k_{\rho}a_{dd}$','fontsize',16,'interpreter','latex')
|
|
|
|
ylabel('$\epsilon(k_{\rho})/h$ (Hz)','fontsize',16,'interpreter','latex')
|
|
|
|
grid on
|
|
|
|
legend('location', 'northwest','fontsize',16, 'Interpreter','latex')
|
|
|
|
|
2024-11-06 00:03:06 +01:00
|
|
|
%% Mean widths of the variational Gaussian ansatz - extremize the total mean field energy per particle wrt to the variational parameter
|
|
|
|
|
|
|
|
|
2024-11-05 12:07:15 +01:00
|
|
|
%%
|
2024-11-01 14:36:04 +01:00
|
|
|
function [Go,gamma4,Fka,Ukk] = computePotentialInMomentumSpace(k, gs, gdd, MeanWidth, alpha, phi)
|
|
|
|
Go = sqrt(pi) * (k * MeanWidth/sqrt(2)) .* exp((k * MeanWidth/sqrt(2)).^2) .* erfc((k * MeanWidth/sqrt(2)));
|
|
|
|
gamma4 = 1/(sqrt(2*pi) * MeanWidth);
|
|
|
|
Fka = (3 * cos(deg2rad(alpha))^2 - 1) + ((3 * Go) .* ((sin(deg2rad(alpha))^2 .* sin(deg2rad(phi))^2) - cos(deg2rad(alpha))^2));
|
|
|
|
Ukk = (gs + (gdd * Fka)) * gamma4;
|
2024-10-30 20:48:59 +01:00
|
|
|
end
|