75 lines
3.6 KiB
Mathematica
75 lines
3.6 KiB
Mathematica
|
%% Physical constants
|
||
|
PlanckConstant = 6.62607015E-34;
|
||
|
PlanckConstantReduced = 6.62607015E-34/(2*pi);
|
||
|
FineStructureConstant = 7.2973525698E-3;
|
||
|
ElectronMass = 9.10938291E-31;
|
||
|
GravitationalConstant = 6.67384E-11;
|
||
|
ProtonMass = 1.672621777E-27;
|
||
|
AtomicMassUnit = 1.660539066E-27;
|
||
|
BohrRadius = 5.2917721067E-11;
|
||
|
BohrMagneton = 9.274009994E-24;
|
||
|
BoltzmannConstant = 1.38064852E-23;
|
||
|
StandardGravityAcceleration = 9.80665;
|
||
|
SpeedOfLight = 299792458;
|
||
|
StefanBoltzmannConstant = 5.670373E-8;
|
||
|
ElectronCharge = 1.602176634E-19;
|
||
|
VacuumPermeability = 1.25663706212E-6;
|
||
|
DielectricConstant = 8.8541878128E-12;
|
||
|
ElectronGyromagneticFactor = -2.00231930436153;
|
||
|
AvogadroConstant = 6.02214076E23;
|
||
|
ZeroKelvin = 273.15;
|
||
|
GravitationalAcceleration = 9.80553;
|
||
|
VacuumPermittivity = 1 / (SpeedOfLight^2 * VacuumPermeability);
|
||
|
HartreeEnergy = ElectronCharge^2 / (4 * pi * VacuumPermittivity * BohrRadius);
|
||
|
AtomicUnitOfPolarizability = (ElectronCharge^2 * BohrRadius^2) / HartreeEnergy; % Or simply 4*pi*VacuumPermittivity*BohrRadius^3
|
||
|
|
||
|
% Dy specific constants
|
||
|
Dy164Mass = 163.929174751*1.660539066E-27;
|
||
|
Dy164IsotopicAbundance = 0.2826;
|
||
|
DyMagneticMoment = 9.93*9.274009994E-24;
|
||
|
|
||
|
%% Dispersion relation of the quasiparticle excitations
|
||
|
AtomNumber = 1E5;
|
||
|
wz = 2*pi*72.4;
|
||
|
lz = sqrt(PlanckConstantReduced/(Dy164Mass*wz)); % Defining a harmonic oscillator length
|
||
|
as = 102.4*BohrRadius; % Scattering length
|
||
|
Trapsize = 7.6;
|
||
|
alpha = 0;
|
||
|
phi = 0;
|
||
|
MeanWidth = 2.8215042184E3*lz;
|
||
|
k = linspace(0, 1e7, 1000);
|
||
|
|
||
|
|
||
|
AtomNumberDensity = AtomNumber / (Trapsize * lz)^2;
|
||
|
add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length
|
||
|
eps_dd = add/as;
|
||
|
gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength
|
||
|
|
||
|
[fk,Fka,Ukk] = computePotentialInMomentumSpace(k, lz, alpha, phi, gs, eps_dd);
|
||
|
|
||
|
% == Quantum Fluctuations term == %
|
||
|
gQF = ((256 * PlanckConstantReduced^2) / (15*Dy164Mass*MeanWidth^3)) * as^(5/2) * (1 + ((3/2) * eps_dd^2));
|
||
|
|
||
|
|
||
|
DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2));
|
||
|
EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK);
|
||
|
|
||
|
figure(1)
|
||
|
set(gcf,'Position',[100 100 950 750])
|
||
|
% xvals = (k .* lz/sqrt(2));
|
||
|
xvals = (k .* add);
|
||
|
yvals = EpsilonK ./ (PlanckConstantReduced * wz);
|
||
|
plot(xvals, yvals,LineWidth=2.0)
|
||
|
% xlim([3.45, 3.65])
|
||
|
% ylim([0, 0.001])
|
||
|
title(horzcat(['$a_s = ',num2str(1/eps_dd),'a_{dd}, '], ['na_{dd}^2 = ',num2str(AtomNumberDensity * add^2),'$']),'fontsize',16,'interpreter','latex')
|
||
|
xlabel('$ka_{dd}$','fontsize',16,'interpreter','latex')
|
||
|
ylabel('$\epsilon(k)/\hbar \omega_z$','fontsize',16,'interpreter','latex')
|
||
|
grid on
|
||
|
|
||
|
%%
|
||
|
function [fk,Fka,Ukk] = computePotentialInMomentumSpace(k, lz, alpha, phi, gs, eps_dd)
|
||
|
fk = (3 * sqrt(pi)) * (k .* lz/sqrt(2)) .* exp((k .* lz/sqrt(2)).^2) .* erfc((k .* lz/sqrt(2))) ;
|
||
|
Fka = (fk .* sin(deg2rad(phi))^2 - 1) + (cos(deg2rad(alpha))^2 .* (3 - (fk .* (sin(deg2rad(phi))^2 + 1))));
|
||
|
Ukk = (gs/ (sqrt(2 * pi) * lz)) .* (1 + (eps_dd .* Fka));
|
||
|
end
|