%% Physical constants PlanckConstant = 6.62607015E-34; PlanckConstantReduced = 6.62607015E-34/(2*pi); FineStructureConstant = 7.2973525698E-3; ElectronMass = 9.10938291E-31; GravitationalConstant = 6.67384E-11; ProtonMass = 1.672621777E-27; AtomicMassUnit = 1.660539066E-27; BohrRadius = 5.2917721067E-11; BohrMagneton = 9.274009994E-24; BoltzmannConstant = 1.38064852E-23; StandardGravityAcceleration = 9.80665; SpeedOfLight = 299792458; StefanBoltzmannConstant = 5.670373E-8; ElectronCharge = 1.602176634E-19; VacuumPermeability = 1.25663706212E-6; DielectricConstant = 8.8541878128E-12; ElectronGyromagneticFactor = -2.00231930436153; AvogadroConstant = 6.02214076E23; ZeroKelvin = 273.15; GravitationalAcceleration = 9.80553; VacuumPermittivity = 1 / (SpeedOfLight^2 * VacuumPermeability); HartreeEnergy = ElectronCharge^2 / (4 * pi * VacuumPermittivity * BohrRadius); AtomicUnitOfPolarizability = (ElectronCharge^2 * BohrRadius^2) / HartreeEnergy; % Or simply 4*pi*VacuumPermittivity*BohrRadius^3 % Dy specific constants Dy164Mass = 163.929174751*1.660539066E-27; Dy164IsotopicAbundance = 0.2826; DyMagneticMoment = 9.93*9.274009994E-24; %% Dispersion relation of the quasiparticle excitations AtomNumber = 1E5; wz = 2*pi*72.4; lz = sqrt(PlanckConstantReduced/(Dy164Mass*wz)); % Defining a harmonic oscillator length as = 102.4*BohrRadius; % Scattering length Trapsize = 7.6; alpha = 0; phi = 0; MeanWidth = 2.8215042184E3*lz; k = linspace(0, 1e7, 1000); AtomNumberDensity = AtomNumber / (Trapsize * lz)^2; add = VacuumPermeability*DyMagneticMoment^2*Dy164Mass/(12*pi*PlanckConstantReduced^2); % Dipole length eps_dd = add/as; gs = 4 * pi * PlanckConstantReduced^2/Dy164Mass * as; % Contact interaction strength [fk,Fka,Ukk] = computePotentialInMomentumSpace(k, lz, alpha, phi, gs, eps_dd); % == Quantum Fluctuations term == % gQF = ((256 * PlanckConstantReduced^2) / (15*Dy164Mass*MeanWidth^3)) * as^(5/2) * (1 + ((3/2) * eps_dd^2)); DeltaK = ((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) + ((2 * AtomNumberDensity) .* Ukk) + (3 * gQF * AtomNumberDensity^(3/2)); EpsilonK = sqrt(((PlanckConstantReduced^2 .* k.^2) ./ (2 * Dy164Mass)) .* DeltaK); figure(1) set(gcf,'Position',[100 100 950 750]) % xvals = (k .* lz/sqrt(2)); xvals = (k .* add); yvals = EpsilonK ./ (PlanckConstantReduced * wz); plot(xvals, yvals,LineWidth=2.0) % xlim([3.45, 3.65]) % ylim([0, 0.001]) title(horzcat(['$a_s = ',num2str(1/eps_dd),'a_{dd}, '], ['na_{dd}^2 = ',num2str(AtomNumberDensity * add^2),'$']),'fontsize',16,'interpreter','latex') xlabel('$ka_{dd}$','fontsize',16,'interpreter','latex') ylabel('$\epsilon(k)/\hbar \omega_z$','fontsize',16,'interpreter','latex') grid on %% function [fk,Fka,Ukk] = computePotentialInMomentumSpace(k, lz, alpha, phi, gs, eps_dd) fk = (3 * sqrt(pi)) * (k .* lz/sqrt(2)) .* exp((k .* lz/sqrt(2)).^2) .* erfc((k .* lz/sqrt(2))) ; Fka = (fk .* sin(deg2rad(phi))^2 - 1) + (cos(deg2rad(alpha))^2 .* (3 - (fk .* (sin(deg2rad(phi))^2 + 1)))); Ukk = (gs/ (sqrt(2 * pi) * lz)) .* (1 + (eps_dd .* Fka)); end