Calculations/Dipolar-Gas-Simulator/+BdGSolver2D/solveBogoliubovdeGennesIn2D.m

68 lines
2.3 KiB
Mathematica
Raw Normal View History

function [evals, modes] = solveBogoliubovdeGennesIn2D(psi, Params, VDk, VParams, Transf, muchem)
2024-11-12 18:50:42 +01:00
gs = Params.gs;
gdd = Params.gdd;
gammaQF = Params.gammaQF;
KEop = 0.5*(Transf.KX.^2+Transf.KY.^2);
g_pf_2D = 1/(sqrt(2*pi)*VParams.ell);
gQF_pf_2D = sqrt(2/5)/(pi^(3/4)*VParams.ell^(3/2));
Ez = (0.25/VParams.ell^2) + (0.25*Params.gz*VParams.ell^2);
muchem_tilde = muchem - Ez;
% eigs only works with column vectors
psi = psi.';
KEop = KEop.';
VDk = VDk.';
% Interaction Potential
frho = fftn(abs(psi).^2);
Phi = real(ifftn(frho.*VDk));
% Operators
H = @(w) real(ifft(KEop.*fft(w)));
C = @(w) (((g_pf_2D*gs*abs(psi).^2) + (g_pf_2D*gdd*Phi)).*w) + (gQF_pf_2D*gammaQF*abs(psi).^3.*w);
muHC = @(w) (-muchem_tilde * w) + H(w) + C(w);
X = @(w) (psi.*real(ifft(VDk.*fft(psi.*w)))) + (3/2)*(gQF_pf_2D*gammaQF*abs(psi).^3).*w;
2024-11-12 18:50:42 +01:00
% 2-D matrix will be unravelled to a single column vector and the corresponding BdG matrix of (N^2)^2 elements solved for.
Size = length(psi(:));
Neigs = length(psi(:));
opts.tol = 1e-16;
opts.disp = 1;
opts.issym = 0;
opts.isreal = 1;
opts.maxit = 1e4;
BdGVec = @(g) BdGSolver2D.BdGMatrix(g, psi, Params, VDk, VParams, Transf, muchem); % This function takes a column vector as input and returns a
% matrix-vector product which is also a column vector
[g,D] = eigs(BdGVec,Size,Neigs,'sr',opts);
evals = diag(D);
clear D;
% Eigenvalues
evals = sqrt(evals);
% Obtain f from g
for ii = 1:Neigs
gres = reshape(g(:,ii), size(psi));
f(:,ii) = reshape((1/evals(ii)) * (muHC(gres) + (2.*X(gres))), [], 1);
end
% Obtain u and v from f and g
u = (f + g)/2;
v = (f - g)/2;
% Renormalize to \int |u|^2 - |v|^2 = 1
for ii=1:Neigs
normalization = sum(abs(u(:,ii)).^2 - abs(v(:,ii)).^2);
u(:,ii) = u(:,ii)/sqrt(normalization);
v(:,ii) = v(:,ii)/sqrt(normalization);
end
modes.u = u'; modes.v = v';
modes.g = g'; modes.f = f';
2024-11-12 18:50:42 +01:00
end