dylab/HelperClasses/FittingFunction.py

47 lines
1.5 KiB
Python
Raw Permalink Normal View History

import numpy as np
import lmfit
def oneD_Gaussian(x, x0, x_sigma, A, offset):
return A * np.exp(-(x - x0) ** 2 / (2 * x_sigma ** 2)) + offset
def oneD_Gaussian_normalized(x, x0, x_sigma):
return np.exp(-(x - x0) ** 2 / (2 * x_sigma ** 2))
def twoD_Gaussian(x, y, x0, y0, x_sigma, y_sigma, A, offset):
return A * np.exp(-(x - x0) ** 2 / (2 * x_sigma ** 2)) * np.exp(-(y - y0) ** 2 / (2 * y_sigma ** 2)) + offset
class Fitting:
def __init__(self, data, parameters, fitting_function, independent_vars, independent_vars_value):
self.data = data
self.parameters = parameters
self.fitting_function = fitting_function
self.fit_function_kws = independent_vars_value
self.independent_vars = independent_vars
self.fitting_model = None
self.result = None
self.data_fit = None
def __enter__(self):
self.run_fitting()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
pass
def set_parameters(self, parameters):
self.parameters = parameters
def run_fitting(self):
self.fitting_model = lmfit.Model(self.fitting_function, independent_vars=self.independent_vars)
self.result = self.fitting_model.fit(self.data, params=self.parameters, **self.fit_function_kws)
def get_fitting_data(self, data_shape):
self.data_fit = self.fitting_function(**self.fit_function_kws, **self.result.best_values)
self.data_fit = self.data_fit.reshape(data_shape)
return self.data_fit