First working version. Need introductions
This commit is contained in:
commit
5b80d7d87f
0
.idea/.gitignore
generated
vendored
Normal file
0
.idea/.gitignore
generated
vendored
Normal file
10
.idea/dylab.iml
generated
Normal file
10
.idea/dylab.iml
generated
Normal file
@ -0,0 +1,10 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<module type="PYTHON_MODULE" version="4">
|
||||
<component name="NewModuleRootManager">
|
||||
<content url="file://$MODULE_DIR$">
|
||||
<excludeFolder url="file://$MODULE_DIR$/venv" />
|
||||
</content>
|
||||
<orderEntry type="inheritedJdk" />
|
||||
<orderEntry type="sourceFolder" forTests="false" />
|
||||
</component>
|
||||
</module>
|
13
.idea/inspectionProfiles/Project_Default.xml
generated
Normal file
13
.idea/inspectionProfiles/Project_Default.xml
generated
Normal file
@ -0,0 +1,13 @@
|
||||
<component name="InspectionProjectProfileManager">
|
||||
<profile version="1.0">
|
||||
<option name="myName" value="Project Default" />
|
||||
<inspection_tool class="PyPep8NamingInspection" enabled="true" level="WEAK WARNING" enabled_by_default="true">
|
||||
<option name="ignoredErrors">
|
||||
<list>
|
||||
<option value="N803" />
|
||||
<option value="N802" />
|
||||
</list>
|
||||
</option>
|
||||
</inspection_tool>
|
||||
</profile>
|
||||
</component>
|
6
.idea/inspectionProfiles/profiles_settings.xml
generated
Normal file
6
.idea/inspectionProfiles/profiles_settings.xml
generated
Normal file
@ -0,0 +1,6 @@
|
||||
<component name="InspectionProjectProfileManager">
|
||||
<settings>
|
||||
<option name="USE_PROJECT_PROFILE" value="false" />
|
||||
<version value="1.0" />
|
||||
</settings>
|
||||
</component>
|
4
.idea/misc.xml
generated
Normal file
4
.idea/misc.xml
generated
Normal file
@ -0,0 +1,4 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.8 (dylab) (3)" project-jdk-type="Python SDK" />
|
||||
</project>
|
8
.idea/modules.xml
generated
Normal file
8
.idea/modules.xml
generated
Normal file
@ -0,0 +1,8 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ProjectModuleManager">
|
||||
<modules>
|
||||
<module fileurl="file://$PROJECT_DIR$/.idea/dylab.iml" filepath="$PROJECT_DIR$/.idea/dylab.iml" />
|
||||
</modules>
|
||||
</component>
|
||||
</project>
|
105
.idea/workspace.xml
generated
Normal file
105
.idea/workspace.xml
generated
Normal file
@ -0,0 +1,105 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project version="4">
|
||||
<component name="ChangeListManager">
|
||||
<list default="true" id="68ddce6f-baaa-4bac-af24-443b9be545bf" name="Changes" comment="" />
|
||||
<option name="SHOW_DIALOG" value="false" />
|
||||
<option name="HIGHLIGHT_CONFLICTS" value="true" />
|
||||
<option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" />
|
||||
<option name="LAST_RESOLUTION" value="IGNORE" />
|
||||
</component>
|
||||
<component name="FileTemplateManagerImpl">
|
||||
<option name="RECENT_TEMPLATES">
|
||||
<list>
|
||||
<option value="Python Script" />
|
||||
</list>
|
||||
</option>
|
||||
</component>
|
||||
<component name="ProjectId" id="2CCrwoItH5rBCZFtzaw6hxgrIjy" />
|
||||
<component name="ProjectViewState">
|
||||
<option name="hideEmptyMiddlePackages" value="true" />
|
||||
<option name="showLibraryContents" value="true" />
|
||||
</component>
|
||||
<component name="PropertiesComponent">
|
||||
<property name="RunOnceActivity.OpenProjectViewOnStart" value="true" />
|
||||
<property name="RunOnceActivity.ShowReadmeOnStart" value="true" />
|
||||
<property name="WebServerToolWindowFactoryState" value="false" />
|
||||
<property name="last_opened_file_path" value="$PROJECT_DIR$/../dylab_test" />
|
||||
<property name="settings.editor.selected.configurable" value="preferences.keymap" />
|
||||
</component>
|
||||
<component name="RunManager">
|
||||
<configuration name="test_fitting" type="PythonConfigurationType" factoryName="Python" temporary="true" nameIsGenerated="true">
|
||||
<module name="dylab" />
|
||||
<option name="INTERPRETER_OPTIONS" value="" />
|
||||
<option name="PARENT_ENVS" value="true" />
|
||||
<envs>
|
||||
<env name="PYTHONUNBUFFERED" value="1" />
|
||||
</envs>
|
||||
<option name="SDK_HOME" value="" />
|
||||
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
|
||||
<option name="IS_MODULE_SDK" value="true" />
|
||||
<option name="ADD_CONTENT_ROOTS" value="true" />
|
||||
<option name="ADD_SOURCE_ROOTS" value="true" />
|
||||
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
|
||||
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/test_fitting.py" />
|
||||
<option name="PARAMETERS" value="" />
|
||||
<option name="SHOW_COMMAND_LINE" value="false" />
|
||||
<option name="EMULATE_TERMINAL" value="false" />
|
||||
<option name="MODULE_MODE" value="false" />
|
||||
<option name="REDIRECT_INPUT" value="false" />
|
||||
<option name="INPUT_FILE" value="" />
|
||||
<method v="2" />
|
||||
</configuration>
|
||||
<recent_temporary>
|
||||
<list>
|
||||
<item itemvalue="Python.test_fitting" />
|
||||
</list>
|
||||
</recent_temporary>
|
||||
</component>
|
||||
<component name="SpellCheckerSettings" RuntimeDictionaries="0" Folders="0" CustomDictionaries="0" DefaultDictionary="application-level" UseSingleDictionary="true" transferred="true" />
|
||||
<component name="TaskManager">
|
||||
<task active="true" id="Default" summary="Default task">
|
||||
<changelist id="68ddce6f-baaa-4bac-af24-443b9be545bf" name="Changes" comment="" />
|
||||
<created>1658317648754</created>
|
||||
<option name="number" value="Default" />
|
||||
<option name="presentableId" value="Default" />
|
||||
<updated>1658317648754</updated>
|
||||
<workItem from="1658317653047" duration="53940000" />
|
||||
<workItem from="1658490102584" duration="2917000" />
|
||||
</task>
|
||||
<servers />
|
||||
</component>
|
||||
<component name="TypeScriptGeneratedFilesManager">
|
||||
<option name="version" value="3" />
|
||||
</component>
|
||||
<component name="XDebuggerManager">
|
||||
<breakpoint-manager>
|
||||
<breakpoints>
|
||||
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
||||
<url>file://$USER_HOME$/labscript-suite/userlib/analysislib/example_apparatus/analysis_plot_panel/src/analysis_plot_panel/__init__.py</url>
|
||||
<line>7</line>
|
||||
<option name="timeStamp" value="53" />
|
||||
</line-breakpoint>
|
||||
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
||||
<url>file://$USER_HOME$/labscript-suite/userlib/analysislib/example_apparatus/analysis_plot_panel/src/analysis_scipts/absorption_imaging.py</url>
|
||||
<line>1</line>
|
||||
<option name="timeStamp" value="54" />
|
||||
</line-breakpoint>
|
||||
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
||||
<url>file://$USER_HOME$/labscript-suite/userlib/analysislib/example_apparatus/analysis_plot_panel/src/analysis_plot_panel/user_data_extractors.py</url>
|
||||
<line>7</line>
|
||||
<option name="timeStamp" value="55" />
|
||||
</line-breakpoint>
|
||||
</breakpoints>
|
||||
<default-breakpoints>
|
||||
<breakpoint type="python-exception">
|
||||
<properties notifyOnTerminate="true" exception="BaseException">
|
||||
<option name="notifyOnTerminate" value="true" />
|
||||
</properties>
|
||||
</breakpoint>
|
||||
</default-breakpoints>
|
||||
</breakpoint-manager>
|
||||
</component>
|
||||
<component name="com.intellij.coverage.CoverageDataManagerImpl">
|
||||
<SUITE FILE_PATH="coverage/dylab$test_fitting.coverage" NAME="test_fitting Coverage Results" MODIFIED="1658416885056" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
|
||||
</component>
|
||||
</project>
|
674
LICENSE
Normal file
674
LICENSE
Normal file
@ -0,0 +1,674 @@
|
||||
GNU GENERAL PUBLIC LICENSE
|
||||
Version 3, 29 June 2007
|
||||
|
||||
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
|
||||
Everyone is permitted to copy and distribute verbatim copies
|
||||
of this license document, but changing it is not allowed.
|
||||
|
||||
Preamble
|
||||
|
||||
The GNU General Public License is a free, copyleft license for
|
||||
software and other kinds of works.
|
||||
|
||||
The licenses for most software and other practical works are designed
|
||||
to take away your freedom to share and change the works. By contrast,
|
||||
the GNU General Public License is intended to guarantee your freedom to
|
||||
share and change all versions of a program--to make sure it remains free
|
||||
software for all its users. We, the Free Software Foundation, use the
|
||||
GNU General Public License for most of our software; it applies also to
|
||||
any other work released this way by its authors. You can apply it to
|
||||
your programs, too.
|
||||
|
||||
When we speak of free software, we are referring to freedom, not
|
||||
price. Our General Public Licenses are designed to make sure that you
|
||||
have the freedom to distribute copies of free software (and charge for
|
||||
them if you wish), that you receive source code or can get it if you
|
||||
want it, that you can change the software or use pieces of it in new
|
||||
free programs, and that you know you can do these things.
|
||||
|
||||
To protect your rights, we need to prevent others from denying you
|
||||
these rights or asking you to surrender the rights. Therefore, you have
|
||||
certain responsibilities if you distribute copies of the software, or if
|
||||
you modify it: responsibilities to respect the freedom of others.
|
||||
|
||||
For example, if you distribute copies of such a program, whether
|
||||
gratis or for a fee, you must pass on to the recipients the same
|
||||
freedoms that you received. You must make sure that they, too, receive
|
||||
or can get the source code. And you must show them these terms so they
|
||||
know their rights.
|
||||
|
||||
Developers that use the GNU GPL protect your rights with two steps:
|
||||
(1) assert copyright on the software, and (2) offer you this License
|
||||
giving you legal permission to copy, distribute and/or modify it.
|
||||
|
||||
For the developers' and authors' protection, the GPL clearly explains
|
||||
that there is no warranty for this free software. For both users' and
|
||||
authors' sake, the GPL requires that modified versions be marked as
|
||||
changed, so that their problems will not be attributed erroneously to
|
||||
authors of previous versions.
|
||||
|
||||
Some devices are designed to deny users access to install or run
|
||||
modified versions of the software inside them, although the manufacturer
|
||||
can do so. This is fundamentally incompatible with the aim of
|
||||
protecting users' freedom to change the software. The systematic
|
||||
pattern of such abuse occurs in the area of products for individuals to
|
||||
use, which is precisely where it is most unacceptable. Therefore, we
|
||||
have designed this version of the GPL to prohibit the practice for those
|
||||
products. If such problems arise substantially in other domains, we
|
||||
stand ready to extend this provision to those domains in future versions
|
||||
of the GPL, as needed to protect the freedom of users.
|
||||
|
||||
Finally, every program is threatened constantly by software patents.
|
||||
States should not allow patents to restrict development and use of
|
||||
software on general-purpose computers, but in those that do, we wish to
|
||||
avoid the special danger that patents applied to a free program could
|
||||
make it effectively proprietary. To prevent this, the GPL assures that
|
||||
patents cannot be used to render the program non-free.
|
||||
|
||||
The precise terms and conditions for copying, distribution and
|
||||
modification follow.
|
||||
|
||||
TERMS AND CONDITIONS
|
||||
|
||||
0. Definitions.
|
||||
|
||||
"This License" refers to version 3 of the GNU General Public License.
|
||||
|
||||
"Copyright" also means copyright-like laws that apply to other kinds of
|
||||
works, such as semiconductor masks.
|
||||
|
||||
"The Program" refers to any copyrightable work licensed under this
|
||||
License. Each licensee is addressed as "you". "Licensees" and
|
||||
"recipients" may be individuals or organizations.
|
||||
|
||||
To "modify" a work means to copy from or adapt all or part of the work
|
||||
in a fashion requiring copyright permission, other than the making of an
|
||||
exact copy. The resulting work is called a "modified version" of the
|
||||
earlier work or a work "based on" the earlier work.
|
||||
|
||||
A "covered work" means either the unmodified Program or a work based
|
||||
on the Program.
|
||||
|
||||
To "propagate" a work means to do anything with it that, without
|
||||
permission, would make you directly or secondarily liable for
|
||||
infringement under applicable copyright law, except executing it on a
|
||||
computer or modifying a private copy. Propagation includes copying,
|
||||
distribution (with or without modification), making available to the
|
||||
public, and in some countries other activities as well.
|
||||
|
||||
To "convey" a work means any kind of propagation that enables other
|
||||
parties to make or receive copies. Mere interaction with a user through
|
||||
a computer network, with no transfer of a copy, is not conveying.
|
||||
|
||||
An interactive user interface displays "Appropriate Legal Notices"
|
||||
to the extent that it includes a convenient and prominently visible
|
||||
feature that (1) displays an appropriate copyright notice, and (2)
|
||||
tells the user that there is no warranty for the work (except to the
|
||||
extent that warranties are provided), that licensees may convey the
|
||||
work under this License, and how to view a copy of this License. If
|
||||
the interface presents a list of user commands or options, such as a
|
||||
menu, a prominent item in the list meets this criterion.
|
||||
|
||||
1. Source Code.
|
||||
|
||||
The "source code" for a work means the preferred form of the work
|
||||
for making modifications to it. "Object code" means any non-source
|
||||
form of a work.
|
||||
|
||||
A "Standard Interface" means an interface that either is an official
|
||||
standard defined by a recognized standards body, or, in the case of
|
||||
interfaces specified for a particular programming language, one that
|
||||
is widely used among developers working in that language.
|
||||
|
||||
The "System Libraries" of an executable work include anything, other
|
||||
than the work as a whole, that (a) is included in the normal form of
|
||||
packaging a Major Component, but which is not part of that Major
|
||||
Component, and (b) serves only to enable use of the work with that
|
||||
Major Component, or to implement a Standard Interface for which an
|
||||
implementation is available to the public in source code form. A
|
||||
"Major Component", in this context, means a major essential component
|
||||
(kernel, window system, and so on) of the specific operating system
|
||||
(if any) on which the executable work runs, or a compiler used to
|
||||
produce the work, or an object code interpreter used to run it.
|
||||
|
||||
The "Corresponding Source" for a work in object code form means all
|
||||
the source code needed to generate, install, and (for an executable
|
||||
work) run the object code and to modify the work, including scripts to
|
||||
control those activities. However, it does not include the work's
|
||||
System Libraries, or general-purpose tools or generally available free
|
||||
programs which are used unmodified in performing those activities but
|
||||
which are not part of the work. For example, Corresponding Source
|
||||
includes interface definition files associated with source files for
|
||||
the work, and the source code for shared libraries and dynamically
|
||||
linked subprograms that the work is specifically designed to require,
|
||||
such as by intimate data communication or control flow between those
|
||||
subprograms and other parts of the work.
|
||||
|
||||
The Corresponding Source need not include anything that users
|
||||
can regenerate automatically from other parts of the Corresponding
|
||||
Source.
|
||||
|
||||
The Corresponding Source for a work in source code form is that
|
||||
same work.
|
||||
|
||||
2. Basic Permissions.
|
||||
|
||||
All rights granted under this License are granted for the term of
|
||||
copyright on the Program, and are irrevocable provided the stated
|
||||
conditions are met. This License explicitly affirms your unlimited
|
||||
permission to run the unmodified Program. The output from running a
|
||||
covered work is covered by this License only if the output, given its
|
||||
content, constitutes a covered work. This License acknowledges your
|
||||
rights of fair use or other equivalent, as provided by copyright law.
|
||||
|
||||
You may make, run and propagate covered works that you do not
|
||||
convey, without conditions so long as your license otherwise remains
|
||||
in force. You may convey covered works to others for the sole purpose
|
||||
of having them make modifications exclusively for you, or provide you
|
||||
with facilities for running those works, provided that you comply with
|
||||
the terms of this License in conveying all material for which you do
|
||||
not control copyright. Those thus making or running the covered works
|
||||
for you must do so exclusively on your behalf, under your direction
|
||||
and control, on terms that prohibit them from making any copies of
|
||||
your copyrighted material outside their relationship with you.
|
||||
|
||||
Conveying under any other circumstances is permitted solely under
|
||||
the conditions stated below. Sublicensing is not allowed; section 10
|
||||
makes it unnecessary.
|
||||
|
||||
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
|
||||
|
||||
No covered work shall be deemed part of an effective technological
|
||||
measure under any applicable law fulfilling obligations under article
|
||||
11 of the WIPO copyright treaty adopted on 20 December 1996, or
|
||||
similar laws prohibiting or restricting circumvention of such
|
||||
measures.
|
||||
|
||||
When you convey a covered work, you waive any legal power to forbid
|
||||
circumvention of technological measures to the extent such circumvention
|
||||
is effected by exercising rights under this License with respect to
|
||||
the covered work, and you disclaim any intention to limit operation or
|
||||
modification of the work as a means of enforcing, against the work's
|
||||
users, your or third parties' legal rights to forbid circumvention of
|
||||
technological measures.
|
||||
|
||||
4. Conveying Verbatim Copies.
|
||||
|
||||
You may convey verbatim copies of the Program's source code as you
|
||||
receive it, in any medium, provided that you conspicuously and
|
||||
appropriately publish on each copy an appropriate copyright notice;
|
||||
keep intact all notices stating that this License and any
|
||||
non-permissive terms added in accord with section 7 apply to the code;
|
||||
keep intact all notices of the absence of any warranty; and give all
|
||||
recipients a copy of this License along with the Program.
|
||||
|
||||
You may charge any price or no price for each copy that you convey,
|
||||
and you may offer support or warranty protection for a fee.
|
||||
|
||||
5. Conveying Modified Source Versions.
|
||||
|
||||
You may convey a work based on the Program, or the modifications to
|
||||
produce it from the Program, in the form of source code under the
|
||||
terms of section 4, provided that you also meet all of these conditions:
|
||||
|
||||
a) The work must carry prominent notices stating that you modified
|
||||
it, and giving a relevant date.
|
||||
|
||||
b) The work must carry prominent notices stating that it is
|
||||
released under this License and any conditions added under section
|
||||
7. This requirement modifies the requirement in section 4 to
|
||||
"keep intact all notices".
|
||||
|
||||
c) You must license the entire work, as a whole, under this
|
||||
License to anyone who comes into possession of a copy. This
|
||||
License will therefore apply, along with any applicable section 7
|
||||
additional terms, to the whole of the work, and all its parts,
|
||||
regardless of how they are packaged. This License gives no
|
||||
permission to license the work in any other way, but it does not
|
||||
invalidate such permission if you have separately received it.
|
||||
|
||||
d) If the work has interactive user interfaces, each must display
|
||||
Appropriate Legal Notices; however, if the Program has interactive
|
||||
interfaces that do not display Appropriate Legal Notices, your
|
||||
work need not make them do so.
|
||||
|
||||
A compilation of a covered work with other separate and independent
|
||||
works, which are not by their nature extensions of the covered work,
|
||||
and which are not combined with it such as to form a larger program,
|
||||
in or on a volume of a storage or distribution medium, is called an
|
||||
"aggregate" if the compilation and its resulting copyright are not
|
||||
used to limit the access or legal rights of the compilation's users
|
||||
beyond what the individual works permit. Inclusion of a covered work
|
||||
in an aggregate does not cause this License to apply to the other
|
||||
parts of the aggregate.
|
||||
|
||||
6. Conveying Non-Source Forms.
|
||||
|
||||
You may convey a covered work in object code form under the terms
|
||||
of sections 4 and 5, provided that you also convey the
|
||||
machine-readable Corresponding Source under the terms of this License,
|
||||
in one of these ways:
|
||||
|
||||
a) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by the
|
||||
Corresponding Source fixed on a durable physical medium
|
||||
customarily used for software interchange.
|
||||
|
||||
b) Convey the object code in, or embodied in, a physical product
|
||||
(including a physical distribution medium), accompanied by a
|
||||
written offer, valid for at least three years and valid for as
|
||||
long as you offer spare parts or customer support for that product
|
||||
model, to give anyone who possesses the object code either (1) a
|
||||
copy of the Corresponding Source for all the software in the
|
||||
product that is covered by this License, on a durable physical
|
||||
medium customarily used for software interchange, for a price no
|
||||
more than your reasonable cost of physically performing this
|
||||
conveying of source, or (2) access to copy the
|
||||
Corresponding Source from a network server at no charge.
|
||||
|
||||
c) Convey individual copies of the object code with a copy of the
|
||||
written offer to provide the Corresponding Source. This
|
||||
alternative is allowed only occasionally and noncommercially, and
|
||||
only if you received the object code with such an offer, in accord
|
||||
with subsection 6b.
|
||||
|
||||
d) Convey the object code by offering access from a designated
|
||||
place (gratis or for a charge), and offer equivalent access to the
|
||||
Corresponding Source in the same way through the same place at no
|
||||
further charge. You need not require recipients to copy the
|
||||
Corresponding Source along with the object code. If the place to
|
||||
copy the object code is a network server, the Corresponding Source
|
||||
may be on a different server (operated by you or a third party)
|
||||
that supports equivalent copying facilities, provided you maintain
|
||||
clear directions next to the object code saying where to find the
|
||||
Corresponding Source. Regardless of what server hosts the
|
||||
Corresponding Source, you remain obligated to ensure that it is
|
||||
available for as long as needed to satisfy these requirements.
|
||||
|
||||
e) Convey the object code using peer-to-peer transmission, provided
|
||||
you inform other peers where the object code and Corresponding
|
||||
Source of the work are being offered to the general public at no
|
||||
charge under subsection 6d.
|
||||
|
||||
A separable portion of the object code, whose source code is excluded
|
||||
from the Corresponding Source as a System Library, need not be
|
||||
included in conveying the object code work.
|
||||
|
||||
A "User Product" is either (1) a "consumer product", which means any
|
||||
tangible personal property which is normally used for personal, family,
|
||||
or household purposes, or (2) anything designed or sold for incorporation
|
||||
into a dwelling. In determining whether a product is a consumer product,
|
||||
doubtful cases shall be resolved in favor of coverage. For a particular
|
||||
product received by a particular user, "normally used" refers to a
|
||||
typical or common use of that class of product, regardless of the status
|
||||
of the particular user or of the way in which the particular user
|
||||
actually uses, or expects or is expected to use, the product. A product
|
||||
is a consumer product regardless of whether the product has substantial
|
||||
commercial, industrial or non-consumer uses, unless such uses represent
|
||||
the only significant mode of use of the product.
|
||||
|
||||
"Installation Information" for a User Product means any methods,
|
||||
procedures, authorization keys, or other information required to install
|
||||
and execute modified versions of a covered work in that User Product from
|
||||
a modified version of its Corresponding Source. The information must
|
||||
suffice to ensure that the continued functioning of the modified object
|
||||
code is in no case prevented or interfered with solely because
|
||||
modification has been made.
|
||||
|
||||
If you convey an object code work under this section in, or with, or
|
||||
specifically for use in, a User Product, and the conveying occurs as
|
||||
part of a transaction in which the right of possession and use of the
|
||||
User Product is transferred to the recipient in perpetuity or for a
|
||||
fixed term (regardless of how the transaction is characterized), the
|
||||
Corresponding Source conveyed under this section must be accompanied
|
||||
by the Installation Information. But this requirement does not apply
|
||||
if neither you nor any third party retains the ability to install
|
||||
modified object code on the User Product (for example, the work has
|
||||
been installed in ROM).
|
||||
|
||||
The requirement to provide Installation Information does not include a
|
||||
requirement to continue to provide support service, warranty, or updates
|
||||
for a work that has been modified or installed by the recipient, or for
|
||||
the User Product in which it has been modified or installed. Access to a
|
||||
network may be denied when the modification itself materially and
|
||||
adversely affects the operation of the network or violates the rules and
|
||||
protocols for communication across the network.
|
||||
|
||||
Corresponding Source conveyed, and Installation Information provided,
|
||||
in accord with this section must be in a format that is publicly
|
||||
documented (and with an implementation available to the public in
|
||||
source code form), and must require no special password or key for
|
||||
unpacking, reading or copying.
|
||||
|
||||
7. Additional Terms.
|
||||
|
||||
"Additional permissions" are terms that supplement the terms of this
|
||||
License by making exceptions from one or more of its conditions.
|
||||
Additional permissions that are applicable to the entire Program shall
|
||||
be treated as though they were included in this License, to the extent
|
||||
that they are valid under applicable law. If additional permissions
|
||||
apply only to part of the Program, that part may be used separately
|
||||
under those permissions, but the entire Program remains governed by
|
||||
this License without regard to the additional permissions.
|
||||
|
||||
When you convey a copy of a covered work, you may at your option
|
||||
remove any additional permissions from that copy, or from any part of
|
||||
it. (Additional permissions may be written to require their own
|
||||
removal in certain cases when you modify the work.) You may place
|
||||
additional permissions on material, added by you to a covered work,
|
||||
for which you have or can give appropriate copyright permission.
|
||||
|
||||
Notwithstanding any other provision of this License, for material you
|
||||
add to a covered work, you may (if authorized by the copyright holders of
|
||||
that material) supplement the terms of this License with terms:
|
||||
|
||||
a) Disclaiming warranty or limiting liability differently from the
|
||||
terms of sections 15 and 16 of this License; or
|
||||
|
||||
b) Requiring preservation of specified reasonable legal notices or
|
||||
author attributions in that material or in the Appropriate Legal
|
||||
Notices displayed by works containing it; or
|
||||
|
||||
c) Prohibiting misrepresentation of the origin of that material, or
|
||||
requiring that modified versions of such material be marked in
|
||||
reasonable ways as different from the original version; or
|
||||
|
||||
d) Limiting the use for publicity purposes of names of licensors or
|
||||
authors of the material; or
|
||||
|
||||
e) Declining to grant rights under trademark law for use of some
|
||||
trade names, trademarks, or service marks; or
|
||||
|
||||
f) Requiring indemnification of licensors and authors of that
|
||||
material by anyone who conveys the material (or modified versions of
|
||||
it) with contractual assumptions of liability to the recipient, for
|
||||
any liability that these contractual assumptions directly impose on
|
||||
those licensors and authors.
|
||||
|
||||
All other non-permissive additional terms are considered "further
|
||||
restrictions" within the meaning of section 10. If the Program as you
|
||||
received it, or any part of it, contains a notice stating that it is
|
||||
governed by this License along with a term that is a further
|
||||
restriction, you may remove that term. If a license document contains
|
||||
a further restriction but permits relicensing or conveying under this
|
||||
License, you may add to a covered work material governed by the terms
|
||||
of that license document, provided that the further restriction does
|
||||
not survive such relicensing or conveying.
|
||||
|
||||
If you add terms to a covered work in accord with this section, you
|
||||
must place, in the relevant source files, a statement of the
|
||||
additional terms that apply to those files, or a notice indicating
|
||||
where to find the applicable terms.
|
||||
|
||||
Additional terms, permissive or non-permissive, may be stated in the
|
||||
form of a separately written license, or stated as exceptions;
|
||||
the above requirements apply either way.
|
||||
|
||||
8. Termination.
|
||||
|
||||
You may not propagate or modify a covered work except as expressly
|
||||
provided under this License. Any attempt otherwise to propagate or
|
||||
modify it is void, and will automatically terminate your rights under
|
||||
this License (including any patent licenses granted under the third
|
||||
paragraph of section 11).
|
||||
|
||||
However, if you cease all violation of this License, then your
|
||||
license from a particular copyright holder is reinstated (a)
|
||||
provisionally, unless and until the copyright holder explicitly and
|
||||
finally terminates your license, and (b) permanently, if the copyright
|
||||
holder fails to notify you of the violation by some reasonable means
|
||||
prior to 60 days after the cessation.
|
||||
|
||||
Moreover, your license from a particular copyright holder is
|
||||
reinstated permanently if the copyright holder notifies you of the
|
||||
violation by some reasonable means, this is the first time you have
|
||||
received notice of violation of this License (for any work) from that
|
||||
copyright holder, and you cure the violation prior to 30 days after
|
||||
your receipt of the notice.
|
||||
|
||||
Termination of your rights under this section does not terminate the
|
||||
licenses of parties who have received copies or rights from you under
|
||||
this License. If your rights have been terminated and not permanently
|
||||
reinstated, you do not qualify to receive new licenses for the same
|
||||
material under section 10.
|
||||
|
||||
9. Acceptance Not Required for Having Copies.
|
||||
|
||||
You are not required to accept this License in order to receive or
|
||||
run a copy of the Program. Ancillary propagation of a covered work
|
||||
occurring solely as a consequence of using peer-to-peer transmission
|
||||
to receive a copy likewise does not require acceptance. However,
|
||||
nothing other than this License grants you permission to propagate or
|
||||
modify any covered work. These actions infringe copyright if you do
|
||||
not accept this License. Therefore, by modifying or propagating a
|
||||
covered work, you indicate your acceptance of this License to do so.
|
||||
|
||||
10. Automatic Licensing of Downstream Recipients.
|
||||
|
||||
Each time you convey a covered work, the recipient automatically
|
||||
receives a license from the original licensors, to run, modify and
|
||||
propagate that work, subject to this License. You are not responsible
|
||||
for enforcing compliance by third parties with this License.
|
||||
|
||||
An "entity transaction" is a transaction transferring control of an
|
||||
organization, or substantially all assets of one, or subdividing an
|
||||
organization, or merging organizations. If propagation of a covered
|
||||
work results from an entity transaction, each party to that
|
||||
transaction who receives a copy of the work also receives whatever
|
||||
licenses to the work the party's predecessor in interest had or could
|
||||
give under the previous paragraph, plus a right to possession of the
|
||||
Corresponding Source of the work from the predecessor in interest, if
|
||||
the predecessor has it or can get it with reasonable efforts.
|
||||
|
||||
You may not impose any further restrictions on the exercise of the
|
||||
rights granted or affirmed under this License. For example, you may
|
||||
not impose a license fee, royalty, or other charge for exercise of
|
||||
rights granted under this License, and you may not initiate litigation
|
||||
(including a cross-claim or counterclaim in a lawsuit) alleging that
|
||||
any patent claim is infringed by making, using, selling, offering for
|
||||
sale, or importing the Program or any portion of it.
|
||||
|
||||
11. Patents.
|
||||
|
||||
A "contributor" is a copyright holder who authorizes use under this
|
||||
License of the Program or a work on which the Program is based. The
|
||||
work thus licensed is called the contributor's "contributor version".
|
||||
|
||||
A contributor's "essential patent claims" are all patent claims
|
||||
owned or controlled by the contributor, whether already acquired or
|
||||
hereafter acquired, that would be infringed by some manner, permitted
|
||||
by this License, of making, using, or selling its contributor version,
|
||||
but do not include claims that would be infringed only as a
|
||||
consequence of further modification of the contributor version. For
|
||||
purposes of this definition, "control" includes the right to grant
|
||||
patent sublicenses in a manner consistent with the requirements of
|
||||
this License.
|
||||
|
||||
Each contributor grants you a non-exclusive, worldwide, royalty-free
|
||||
patent license under the contributor's essential patent claims, to
|
||||
make, use, sell, offer for sale, import and otherwise run, modify and
|
||||
propagate the contents of its contributor version.
|
||||
|
||||
In the following three paragraphs, a "patent license" is any express
|
||||
agreement or commitment, however denominated, not to enforce a patent
|
||||
(such as an express permission to practice a patent or covenant not to
|
||||
sue for patent infringement). To "grant" such a patent license to a
|
||||
party means to make such an agreement or commitment not to enforce a
|
||||
patent against the party.
|
||||
|
||||
If you convey a covered work, knowingly relying on a patent license,
|
||||
and the Corresponding Source of the work is not available for anyone
|
||||
to copy, free of charge and under the terms of this License, through a
|
||||
publicly available network server or other readily accessible means,
|
||||
then you must either (1) cause the Corresponding Source to be so
|
||||
available, or (2) arrange to deprive yourself of the benefit of the
|
||||
patent license for this particular work, or (3) arrange, in a manner
|
||||
consistent with the requirements of this License, to extend the patent
|
||||
license to downstream recipients. "Knowingly relying" means you have
|
||||
actual knowledge that, but for the patent license, your conveying the
|
||||
covered work in a country, or your recipient's use of the covered work
|
||||
in a country, would infringe one or more identifiable patents in that
|
||||
country that you have reason to believe are valid.
|
||||
|
||||
If, pursuant to or in connection with a single transaction or
|
||||
arrangement, you convey, or propagate by procuring conveyance of, a
|
||||
covered work, and grant a patent license to some of the parties
|
||||
receiving the covered work authorizing them to use, propagate, modify
|
||||
or convey a specific copy of the covered work, then the patent license
|
||||
you grant is automatically extended to all recipients of the covered
|
||||
work and works based on it.
|
||||
|
||||
A patent license is "discriminatory" if it does not include within
|
||||
the scope of its coverage, prohibits the exercise of, or is
|
||||
conditioned on the non-exercise of one or more of the rights that are
|
||||
specifically granted under this License. You may not convey a covered
|
||||
work if you are a party to an arrangement with a third party that is
|
||||
in the business of distributing software, under which you make payment
|
||||
to the third party based on the extent of your activity of conveying
|
||||
the work, and under which the third party grants, to any of the
|
||||
parties who would receive the covered work from you, a discriminatory
|
||||
patent license (a) in connection with copies of the covered work
|
||||
conveyed by you (or copies made from those copies), or (b) primarily
|
||||
for and in connection with specific products or compilations that
|
||||
contain the covered work, unless you entered into that arrangement,
|
||||
or that patent license was granted, prior to 28 March 2007.
|
||||
|
||||
Nothing in this License shall be construed as excluding or limiting
|
||||
any implied license or other defenses to infringement that may
|
||||
otherwise be available to you under applicable patent law.
|
||||
|
||||
12. No Surrender of Others' Freedom.
|
||||
|
||||
If conditions are imposed on you (whether by court order, agreement or
|
||||
otherwise) that contradict the conditions of this License, they do not
|
||||
excuse you from the conditions of this License. If you cannot convey a
|
||||
covered work so as to satisfy simultaneously your obligations under this
|
||||
License and any other pertinent obligations, then as a consequence you may
|
||||
not convey it at all. For example, if you agree to terms that obligate you
|
||||
to collect a royalty for further conveying from those to whom you convey
|
||||
the Program, the only way you could satisfy both those terms and this
|
||||
License would be to refrain entirely from conveying the Program.
|
||||
|
||||
13. Use with the GNU Affero General Public License.
|
||||
|
||||
Notwithstanding any other provision of this License, you have
|
||||
permission to link or combine any covered work with a work licensed
|
||||
under version 3 of the GNU Affero General Public License into a single
|
||||
combined work, and to convey the resulting work. The terms of this
|
||||
License will continue to apply to the part which is the covered work,
|
||||
but the special requirements of the GNU Affero General Public License,
|
||||
section 13, concerning interaction through a network will apply to the
|
||||
combination as such.
|
||||
|
||||
14. Revised Versions of this License.
|
||||
|
||||
The Free Software Foundation may publish revised and/or new versions of
|
||||
the GNU General Public License from time to time. Such new versions will
|
||||
be similar in spirit to the present version, but may differ in detail to
|
||||
address new problems or concerns.
|
||||
|
||||
Each version is given a distinguishing version number. If the
|
||||
Program specifies that a certain numbered version of the GNU General
|
||||
Public License "or any later version" applies to it, you have the
|
||||
option of following the terms and conditions either of that numbered
|
||||
version or of any later version published by the Free Software
|
||||
Foundation. If the Program does not specify a version number of the
|
||||
GNU General Public License, you may choose any version ever published
|
||||
by the Free Software Foundation.
|
||||
|
||||
If the Program specifies that a proxy can decide which future
|
||||
versions of the GNU General Public License can be used, that proxy's
|
||||
public statement of acceptance of a version permanently authorizes you
|
||||
to choose that version for the Program.
|
||||
|
||||
Later license versions may give you additional or different
|
||||
permissions. However, no additional obligations are imposed on any
|
||||
author or copyright holder as a result of your choosing to follow a
|
||||
later version.
|
||||
|
||||
15. Disclaimer of Warranty.
|
||||
|
||||
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
|
||||
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
|
||||
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
|
||||
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
|
||||
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||||
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
|
||||
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
|
||||
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
|
||||
|
||||
16. Limitation of Liability.
|
||||
|
||||
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
|
||||
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
|
||||
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
|
||||
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
|
||||
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
|
||||
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
|
||||
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
|
||||
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
|
||||
SUCH DAMAGES.
|
||||
|
||||
17. Interpretation of Sections 15 and 16.
|
||||
|
||||
If the disclaimer of warranty and limitation of liability provided
|
||||
above cannot be given local legal effect according to their terms,
|
||||
reviewing courts shall apply local law that most closely approximates
|
||||
an absolute waiver of all civil liability in connection with the
|
||||
Program, unless a warranty or assumption of liability accompanies a
|
||||
copy of the Program in return for a fee.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
How to Apply These Terms to Your New Programs
|
||||
|
||||
If you develop a new program, and you want it to be of the greatest
|
||||
possible use to the public, the best way to achieve this is to make it
|
||||
free software which everyone can redistribute and change under these terms.
|
||||
|
||||
To do so, attach the following notices to the program. It is safest
|
||||
to attach them to the start of each source file to most effectively
|
||||
state the exclusion of warranty; and each file should have at least
|
||||
the "copyright" line and a pointer to where the full notice is found.
|
||||
|
||||
<one line to give the program's name and a brief idea of what it does.>
|
||||
Copyright (C) <year> <name of author>
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
||||
|
||||
Also add information on how to contact you by electronic and paper mail.
|
||||
|
||||
If the program does terminal interaction, make it output a short
|
||||
notice like this when it starts in an interactive mode:
|
||||
|
||||
<program> Copyright (C) <year> <name of author>
|
||||
This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
|
||||
This is free software, and you are welcome to redistribute it
|
||||
under certain conditions; type `show c' for details.
|
||||
|
||||
The hypothetical commands `show w' and `show c' should show the appropriate
|
||||
parts of the General Public License. Of course, your program's commands
|
||||
might be different; for a GUI interface, you would use an "about box".
|
||||
|
||||
You should also get your employer (if you work as a programmer) or school,
|
||||
if any, to sign a "copyright disclaimer" for the program, if necessary.
|
||||
For more information on this, and how to apply and follow the GNU GPL, see
|
||||
<https://www.gnu.org/licenses/>.
|
||||
|
||||
The GNU General Public License does not permit incorporating your program
|
||||
into proprietary programs. If your program is a subroutine library, you
|
||||
may consider it more useful to permit linking proprietary applications with
|
||||
the library. If this is what you want to do, use the GNU Lesser General
|
||||
Public License instead of this License. But first, please read
|
||||
<https://www.gnu.org/licenses/why-not-lgpl.html>.
|
1
__init__.py
Normal file
1
__init__.py
Normal file
@ -0,0 +1 @@
|
||||
name = "dylab"
|
196
build/lib/dylab/AbsorptionImaging.py
Normal file
196
build/lib/dylab/AbsorptionImaging.py
Normal file
@ -0,0 +1,196 @@
|
||||
from lyse import *
|
||||
from pylab import *
|
||||
import numpy as np
|
||||
import scipy.constants as constant
|
||||
from dylab import DyTransition, Camera
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import colors as mcolors
|
||||
import colorsys
|
||||
|
||||
|
||||
# Produce the jet colormap
|
||||
def man_cmap(cmap, value=1.):
|
||||
colors = cmap(np.arange(cmap.N))
|
||||
hls = np.array([colorsys.rgb_to_hls(*c) for c in colors[:, :3]])
|
||||
hls[:, 1] *= value
|
||||
rgb = np.clip(np.array([colorsys.hls_to_rgb(*c) for c in hls]), 0, 1)
|
||||
return mcolors.LinearSegmentedColormap.from_list("", rgb)
|
||||
|
||||
|
||||
class absorption_imaging:
|
||||
image_name = {
|
||||
'atoms': 'atoms',
|
||||
'background': 'background',
|
||||
'dark': 'dark'
|
||||
}
|
||||
|
||||
class CameraError(TypeError):
|
||||
pass
|
||||
|
||||
class TransitionError(TypeError):
|
||||
pass
|
||||
|
||||
class IntensityError(TypeError):
|
||||
pass
|
||||
|
||||
def __init__(self, data_path, camera_orientation, camera_label, transition=None, camera=None, detuning=None,
|
||||
intensity=None):
|
||||
self.path = data_path
|
||||
|
||||
# Ideally, we should be able to access all the data by function data(path).
|
||||
# However it is still under development. Now we can not read a picture by using function data(path).
|
||||
# We have to change to use function Run(path), which creat a class with the saved hdf5 file.
|
||||
self.data_handle = Run(data_path)
|
||||
|
||||
# Path of the saving images
|
||||
self.camera_orientation = camera_orientation
|
||||
self.camera_label = camera_label
|
||||
|
||||
# Two dimensional array storing the images
|
||||
self.image_atoms = None
|
||||
self.image_background = None
|
||||
self.image_dark = None
|
||||
self.image_absorption = None
|
||||
|
||||
# import the data of transition
|
||||
# The transition should be an object of TransitionClass.py in module TransitionConstant
|
||||
# self.transition = transition
|
||||
|
||||
self.detuning = detuning
|
||||
|
||||
# Camera information
|
||||
# The Camera should be an object of Camera class in module Camera
|
||||
# self.camera = camera
|
||||
self.intensity = intensity
|
||||
|
||||
self.beam_energy = None
|
||||
self.atom_number = None
|
||||
|
||||
# For debuging
|
||||
self.transition = DyTransition.creat_Dy421()
|
||||
self.camera = Camera.c11440_36u(self.transition['wavelength'])
|
||||
|
||||
def __enter__(self):
|
||||
self.get_image_absorption()
|
||||
self.get_atom_number()
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
self.close()
|
||||
|
||||
def set_image_name(self, image, name):
|
||||
self.image_name[image] = name
|
||||
|
||||
def open(self):
|
||||
self.image_atoms = self.data_handle.get_image(self.camera_orientation, self.camera_label,
|
||||
self.image_name['atoms'])
|
||||
self.image_background = self.data_handle.get_image(self.camera_orientation, self.camera_label,
|
||||
self.image_name['background'])
|
||||
self.image_dark = self.data_handle.get_image(self.camera_orientation, self.camera_label,
|
||||
self.image_name['dark'])
|
||||
|
||||
self.image_atoms = self.image_atoms.astype(float)
|
||||
self.image_background = self.image_background.astype(float)
|
||||
self.image_dark = self.image_dark.astype(float)
|
||||
|
||||
if not (self.intensity is None):
|
||||
intensity = np.ones(self.image_atoms.shape)
|
||||
self.intensity = intensity * self.intensity
|
||||
|
||||
def close(self):
|
||||
self.save()
|
||||
|
||||
def save(self):
|
||||
if self.image_absorption is not None:
|
||||
self.data_handle.save_result_array('absorption_imaging', self.image_absorption,
|
||||
'results/absorption_imaging/')
|
||||
if self.atom_number is not None:
|
||||
self.data_handle.save_result('atom_number', self.atom_number, 'results/absorption_imaging/')
|
||||
|
||||
# The function do the analyzation for absorption imaging
|
||||
# It will return a two-dimensional array, which stores the absorption imaging
|
||||
def get_image_absorption(self):
|
||||
# import three pictures from hfd5 data file
|
||||
self.open()
|
||||
|
||||
self.image_absorption = np.ones(shape(self.image_atoms))
|
||||
|
||||
numerator = self.image_background - self.image_dark
|
||||
denominator = self.image_atoms - self.image_dark
|
||||
|
||||
numerator[numerator <= 0] = 1
|
||||
denominator[denominator <= 0] = 1
|
||||
self.image_absorption = numerator / denominator
|
||||
self.image_absorption = np.log(self.image_absorption)
|
||||
|
||||
# OD_means = np.log(imagine_absorption)
|
||||
# OD_sat = 0
|
||||
# OD_mod = np.log((1 - constant.e**-OD_sat) / (constant.e**-OD_means - constant.e**-OD_sat))
|
||||
# OD_act = OD_mod + (1 - constant.e**OD_mod) * self.intensity / self.transition['saturation_intensity']
|
||||
# self._imagine_absorption = constant.e**OD_act
|
||||
|
||||
return self.image_absorption
|
||||
|
||||
def get_beam_power(self, laser_pulse_duration):
|
||||
if self.beam_energy is None:
|
||||
self.beam_energy = self.image_background-self.image_dark
|
||||
self.beam_energy[self.beam_energy < 0] = 0
|
||||
self.beam_energy = self.camera.reading2photon(self.image_background-self.image_dark)
|
||||
self.beam_energy = self.beam_energy * constant.h * self.transition['frequency']
|
||||
self.beam_energy = np.sum(self.beam_energy)
|
||||
|
||||
return self.beam_energy / laser_pulse_duration
|
||||
|
||||
def get_atom_number(self, force_to_run=False):
|
||||
|
||||
if self.camera is None:
|
||||
raise self.CameraError("No camera information")
|
||||
|
||||
if self.transition is None:
|
||||
raise self.TransitionError("No transition information")
|
||||
|
||||
if self.intensity is None:
|
||||
raise self.IntensityError("No beam intensity information")
|
||||
|
||||
if self.atom_number is not None and not force_to_run:
|
||||
return self.atom_number
|
||||
|
||||
if self.image_absorption is None and not force_to_run:
|
||||
self.image_absorption = self.get_image_absorption()
|
||||
|
||||
OD_act = self.image_absorption
|
||||
|
||||
cross_section = self.transition.get_cross_section(self.detuning, self.intensity)
|
||||
|
||||
self.atom_number = np.sum(cross_section * OD_act) * self.camera['pixel_size_V'] * self.camera['pixel_size_H']
|
||||
|
||||
return self.atom_number
|
||||
|
||||
# Plot the result
|
||||
def plot_result(self):
|
||||
|
||||
cmap = plt.cm.get_cmap("jet")
|
||||
|
||||
grid = plt.GridSpec(3, 3, wspace=0.2, hspace=0.2)
|
||||
|
||||
ax1 = plt.subplot(grid[0, 0])
|
||||
pos = ax1.imshow(self.image_atoms, cmap=cmap)
|
||||
ax1.set_title('With atoms')
|
||||
plt.colorbar(pos, ax=ax1)
|
||||
|
||||
ax2 = plt.subplot(grid[1, 0])
|
||||
pos = ax2.imshow(self.image_background, cmap=cmap)
|
||||
ax2.set_title('Without atoms')
|
||||
plt.colorbar(pos, ax=ax2)
|
||||
|
||||
ax3 = plt.subplot(grid[2, 0])
|
||||
pos = ax3.imshow(self.image_dark, cmap=cmap)
|
||||
ax3.set_title('Dark')
|
||||
plt.colorbar(pos, ax=ax3)
|
||||
|
||||
ax4 = plt.subplot(grid[0:3, 1:3])
|
||||
pos = ax4.imshow(self.image_absorption, cmap=cmap)
|
||||
ax4.set_title('Absorption Imaging')
|
||||
plt.colorbar(pos, ax=ax4)
|
||||
|
||||
plt.show()
|
69
build/lib/dylab/Camera.py
Normal file
69
build/lib/dylab/Camera.py
Normal file
@ -0,0 +1,69 @@
|
||||
class c11440_36u(dict):
|
||||
class ConstError(TypeError):
|
||||
pass
|
||||
|
||||
class DataError(TypeError):
|
||||
pass
|
||||
|
||||
def __setitem__(self, name, value):
|
||||
if name in self.__dict__:
|
||||
raise self.ConstError("Can't change const %s" % name)
|
||||
super().__setitem__(name, value)
|
||||
self.__dict__[name] = value
|
||||
|
||||
def __getattr__(self, name):
|
||||
return self[name]
|
||||
|
||||
def __dir__(self):
|
||||
return sorted(self)
|
||||
|
||||
def __init__(self, wavelength):
|
||||
super().__init__()
|
||||
self['pixel_size_V'] = 5.8e-6
|
||||
self['pixel_size_H'] = 5.8e-6
|
||||
self['pixel_num_H'] = 1920
|
||||
self['pixel_num_v'] = 1200
|
||||
|
||||
# Measured quantum efficiency @ 421nm
|
||||
# original measurement data is in our shared folder for data
|
||||
# Data\Measurements\2022\05\23\camera\qe\
|
||||
if 420e-9 < wavelength < 422e-9:
|
||||
self['quantum_efficiency'] = 0.639714338817604
|
||||
self['quantum_efficiency_std'] = 0.021405684133816
|
||||
|
||||
# Measured quantum efficiency @ 626nm
|
||||
# original measurement data is in our shared folder for data
|
||||
# Data\Measurements\2022\05\24\camera\qe_626\
|
||||
if 625e-9 < wavelength < 627e-9:
|
||||
self['quantum_efficiency'] = 0.516529105247143
|
||||
self['quantum_efficiency_std'] = 0.023114728382457
|
||||
|
||||
if self['quantum_efficiency'] is None:
|
||||
raise self.DataError("Lack for quantum efficiency data at specified wavelength")
|
||||
|
||||
self['full_well_capacity'] = 33000
|
||||
self['reading_to_electron'] = self['full_well_capacity'] / 4095
|
||||
self['electron_to_reading'] = 4095 / self['full_well_capacity']
|
||||
self['reading_to_photon'] = self['quantum_efficiency'] * self['reading_to_electron']
|
||||
self['photon_to_reading'] = self['electron_to_reading'] / self['quantum_efficiency']
|
||||
self['noise_RMS'] = 6.6
|
||||
self['noise_RMS_measure'] = 6.458
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
pass
|
||||
|
||||
# A function convert the setting value of analog gain to amplification factor in times
|
||||
def analog_gain_factor(self, setting_value):
|
||||
return 10**(setting_value * 0.1 / 20)
|
||||
|
||||
def reading2electron(self, reading_value):
|
||||
return reading_value * self['reading_to_electron']
|
||||
|
||||
def electron2reading(self, electron_num):
|
||||
return electron_num * self['electron_to_reading']
|
||||
|
||||
def reading2photon(self, reading_value):
|
||||
return reading_value * self['reading_to_photon']
|
29
build/lib/dylab/DyTransition.py
Normal file
29
build/lib/dylab/DyTransition.py
Normal file
@ -0,0 +1,29 @@
|
||||
# Functions create constant dictionary storing transition information of Dy.
|
||||
|
||||
import scipy.constants as constant
|
||||
from dylab import TransitionClass
|
||||
|
||||
|
||||
def creat_Dy421():
|
||||
wavelength = 421.291e-9
|
||||
|
||||
lifetime = 4.94e-9
|
||||
natural_linewidth = 1 / lifetime
|
||||
linewidth = natural_linewidth / 2 / constant.pi
|
||||
landau_factor = 1.22
|
||||
|
||||
Dy421 = TransitionClass.Transition(wavelength, linewidth, landau_factor)
|
||||
|
||||
return Dy421
|
||||
|
||||
|
||||
def creat_Dy626():
|
||||
wavelength = 626.086e-9
|
||||
lifetime = 1200e-9
|
||||
natural_linewidth = 1 / lifetime
|
||||
linewidth = natural_linewidth / 2 / constant.pi
|
||||
landau_factor = 1.29
|
||||
|
||||
Dy626 = TransitionClass.Transition(wavelength, linewidth, landau_factor)
|
||||
|
||||
return Dy626
|
199
build/lib/dylab/Fitting.py
Normal file
199
build/lib/dylab/Fitting.py
Normal file
@ -0,0 +1,199 @@
|
||||
import numpy as np
|
||||
from dylab import FittingFunction
|
||||
import laserbeamsize as lbs
|
||||
import lmfit
|
||||
from lmfit.minimizer import MinimizerResult
|
||||
|
||||
|
||||
class OneD_Gaussian_fitting(FittingFunction.Fitting):
|
||||
|
||||
def __init__(self, data, x, fitting_function=None):
|
||||
self.data = data
|
||||
self.x = x
|
||||
self.x0 = None
|
||||
self.x_sigma = None
|
||||
self.amplitude = None
|
||||
self.offset = None
|
||||
self.x0_arg = None
|
||||
self.x_sigma_arg = None
|
||||
|
||||
# Use d4sigma method estimating the start point
|
||||
self.find_start_point()
|
||||
|
||||
# Initialize the fitting parameters
|
||||
self.parameters = lmfit.Parameters()
|
||||
self.independent_vars = ['x']
|
||||
if fitting_function is None:
|
||||
self.fitting_function = FittingFunction.oneD_Gaussian
|
||||
self.parameters.add_many(('x0', self.x0, True),
|
||||
('x_sigma', self.x_sigma, True, 0),
|
||||
('A', np.max(self.data) / 2, True),
|
||||
('offset', 0, True))
|
||||
else:
|
||||
self.fitting_function = fitting_function
|
||||
self.parameters.add_many(('x0', self.x0, True),
|
||||
('x_sigma', self.x_sigma, True, 0))
|
||||
|
||||
# Flat the data into 1D array for fitting
|
||||
self.independent_vars_value = {
|
||||
'x': self.x,
|
||||
}
|
||||
|
||||
# Initialize the fitting model
|
||||
super(OneD_Gaussian_fitting, self).__init__(self.data, self.parameters,
|
||||
self.fitting_function, self.independent_vars,
|
||||
self.independent_vars_value)
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
pass
|
||||
|
||||
def find_start_point(self):
|
||||
self.x0_arg = np.argmax(self.data)
|
||||
self.x0 = self.x[int(self.x0_arg)]
|
||||
|
||||
data_max = np.max(self.data)
|
||||
data_sigma = data_max * np.e ** (-0.5)
|
||||
self.x_sigma_arg = self.x0_arg - np.argmax(self.data > data_sigma)
|
||||
self.x_sigma = self.x[int(self.x_sigma_arg)]
|
||||
|
||||
|
||||
class TwoD_Gaussian_fitting(FittingFunction.Fitting):
|
||||
|
||||
def __init__(self, data, x, y):
|
||||
self.data_origin = data
|
||||
self.x_origin = x
|
||||
self.y_origin = y
|
||||
self.x0 = None
|
||||
self.y0 = None
|
||||
self.x_sigma = None
|
||||
self.y_sigma = None
|
||||
self.amplitude = None
|
||||
self.offset = None
|
||||
self.x0_arg = None
|
||||
self.y0_arg = None
|
||||
self.x_sigma_arg = None
|
||||
self.y_sigma_arg = None
|
||||
|
||||
# Use d4sigma method estimating the start point
|
||||
self.find_start_point()
|
||||
|
||||
# Initialize the fitting parameters
|
||||
self.parameters = lmfit.Parameters()
|
||||
self.independent_vars = ['x', 'y']
|
||||
self.fitting_function = FittingFunction.twoD_Gaussian
|
||||
self.parameters.add_many(('x0', self.x0, True),
|
||||
('y0', self.y0, True),
|
||||
('x_sigma', self.x_sigma, True, 0),
|
||||
('y_sigma', self.y_sigma, True, 0),
|
||||
('A', np.max(self.data_origin) / 2, True),
|
||||
('offset', 0, True))
|
||||
|
||||
# Flat the data into 1D array for fitting
|
||||
self.data = self.data_origin.flatten()
|
||||
self.x, self.y = np.meshgrid(x, y)
|
||||
self.x = self.x.flatten()
|
||||
self.y = self.y.flatten()
|
||||
self.independent_vars_value = {
|
||||
'x': self.x,
|
||||
'y': self.y,
|
||||
}
|
||||
|
||||
# Initialize the fitting model
|
||||
super(TwoD_Gaussian_fitting, self).__init__(self.data, self.parameters,
|
||||
self.fitting_function, self.independent_vars,
|
||||
self.independent_vars_value)
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
pass
|
||||
|
||||
def find_start_point(self):
|
||||
self.x0_arg, self.y0_arg, self.x_sigma_arg, self.y_sigma_arg, phi = lbs.beam_size(self.data_origin, max_iter=3)
|
||||
self.x_sigma_arg = self.x_sigma_arg / 4
|
||||
self.y_sigma_arg = self.y_sigma_arg / 4
|
||||
self.x0 = self.x_origin[int(self.x0_arg)]
|
||||
self.y0 = self.y_origin[int(self.y0_arg)]
|
||||
self.x_sigma = self.x_origin[int(self.x_sigma_arg)]
|
||||
self.y_sigma = self.x_origin[int(self.y_sigma_arg)]
|
||||
|
||||
|
||||
class Two_OneD_Gaussian_fitting:
|
||||
|
||||
def __init__(self, data, x, y):
|
||||
self.data = data
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.x0 = None
|
||||
self.y0 = None
|
||||
self.x_sigma = None
|
||||
self.y_sigma = None
|
||||
self.amplitude = None
|
||||
self.offset = None
|
||||
self.x0_arg = None
|
||||
self.y0_arg = None
|
||||
self.x_sigma_arg = None
|
||||
self.y_sigma_arg = None
|
||||
self.x_max_arg = None
|
||||
self.y_max_arg = None
|
||||
|
||||
# Use d4sigma method estimating the start point
|
||||
self.find_start_point()
|
||||
|
||||
# Initialize the fitting parameters
|
||||
self.fitting_function = FittingFunction.twoD_Gaussian
|
||||
self.fitting_x_data = self.data[self.x_max_arg:self.x_max_arg + 1]
|
||||
self.fitting_x_data = self.fitting_x_data.flatten()
|
||||
self.fitting_y_data = self.data[:, self.y_max_arg:self.y_max_arg + 1]
|
||||
self.fitting_y_data = self.fitting_y_data.flatten()
|
||||
self.fitting_x = None
|
||||
self.fitting_y = None
|
||||
|
||||
# Initialize the fitting result
|
||||
self.result = MinimizerResult()
|
||||
self.data_fit = None
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
pass
|
||||
|
||||
def find_start_point(self):
|
||||
# find the position of maximal value in data
|
||||
self.x_max_arg, self.y_max_arg = np.unravel_index(np.argmax(self.data), self.data.shape)
|
||||
|
||||
def run_fitting(self):
|
||||
self.fitting_x = OneD_Gaussian_fitting(self.fitting_x_data, self.x)
|
||||
self.fitting_x.run_fitting()
|
||||
self.fitting_y_data = self.fitting_y_data - self.fitting_x.result.best_values['offset']
|
||||
self.fitting_y_data = self.fitting_y_data / self.fitting_x.result.best_values['A']
|
||||
self.fitting_y = OneD_Gaussian_fitting(self.fitting_y_data, self.y, FittingFunction.oneD_Gaussian_normalized)
|
||||
self.fitting_y.run_fitting()
|
||||
|
||||
self.result.best_values = {
|
||||
'x0': self.fitting_x.result.best_values['x0'],
|
||||
'y0': self.fitting_y.result.best_values['x0'],
|
||||
'x_sigma': self.fitting_x.result.best_values['x_sigma'],
|
||||
'y_sigma': self.fitting_y.result.best_values['x_sigma'],
|
||||
'A': self.fitting_x.result.best_values['A'],
|
||||
'offset': self.fitting_x.result.best_values['offset']
|
||||
}
|
||||
|
||||
def get_fitting_data(self, data_shape):
|
||||
data = self.data.flatten()
|
||||
x, y = np.meshgrid(self.x, self.y)
|
||||
x = x.flatten()
|
||||
y = y.flatten()
|
||||
fit_function_kws = {
|
||||
'x': x,
|
||||
'y': y,
|
||||
}
|
||||
self.data_fit = self.fitting_function(**fit_function_kws, **self.result.best_values)
|
||||
self.data_fit = self.data_fit.reshape(data_shape)
|
||||
|
||||
return self.data_fit
|
46
build/lib/dylab/FittingFunction.py
Normal file
46
build/lib/dylab/FittingFunction.py
Normal file
@ -0,0 +1,46 @@
|
||||
import numpy as np
|
||||
import lmfit
|
||||
|
||||
|
||||
def oneD_Gaussian(x, x0, x_sigma, A, offset):
|
||||
return A * np.exp(-(x - x0) ** 2 / (2 * x_sigma ** 2)) + offset
|
||||
|
||||
|
||||
def oneD_Gaussian_normalized(x, x0, x_sigma):
|
||||
return np.exp(-(x - x0) ** 2 / (2 * x_sigma ** 2))
|
||||
|
||||
|
||||
def twoD_Gaussian(x, y, x0, y0, x_sigma, y_sigma, A, offset):
|
||||
return A * np.exp(-(x - x0) ** 2 / (2 * x_sigma ** 2)) * np.exp(-(y - y0) ** 2 / (2 * y_sigma ** 2)) + offset
|
||||
|
||||
|
||||
class Fitting:
|
||||
|
||||
def __init__(self, data, parameters, fitting_function, independent_vars, independent_vars_value):
|
||||
self.data = data
|
||||
self.parameters = parameters
|
||||
self.fitting_function = fitting_function
|
||||
self.fit_function_kws = independent_vars_value
|
||||
self.independent_vars = independent_vars
|
||||
self.fitting_model = None
|
||||
self.result = None
|
||||
self.data_fit = None
|
||||
|
||||
def __enter__(self):
|
||||
self.run_fitting()
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
pass
|
||||
|
||||
def set_parameters(self, parameters):
|
||||
self.parameters = parameters
|
||||
|
||||
def run_fitting(self):
|
||||
self.fitting_model = lmfit.Model(self.fitting_function, independent_vars=self.independent_vars)
|
||||
self.result = self.fitting_model.fit(self.data, params=self.parameters, **self.fit_function_kws)
|
||||
|
||||
def get_fitting_data(self, data_shape):
|
||||
self.data_fit = self.fitting_function(**self.fit_function_kws, **self.result.best_values)
|
||||
self.data_fit = self.data_fit.reshape(data_shape)
|
||||
return self.data_fit
|
57
build/lib/dylab/TransitionClass.py
Normal file
57
build/lib/dylab/TransitionClass.py
Normal file
@ -0,0 +1,57 @@
|
||||
# A self defined constant dictionary class
|
||||
# It is used for storing the physical constant related to transition
|
||||
import numpy as np
|
||||
import scipy.constants as constant
|
||||
|
||||
|
||||
class Transition(dict):
|
||||
class ConstError(TypeError):
|
||||
pass
|
||||
|
||||
def __setitem__(self, name, value):
|
||||
if name in self.__dict__:
|
||||
raise self.ConstError("Can't change const %s" % name)
|
||||
super().__setitem__(name, value)
|
||||
self.__dict__[name] = value
|
||||
|
||||
def __getattr__(self, name):
|
||||
return self[name]
|
||||
|
||||
def __dir__(self):
|
||||
return sorted(self)
|
||||
|
||||
def __init__(self, wavelength, linewidth, landauFactor):
|
||||
super().__init__()
|
||||
|
||||
wavevector = 2 * constant.pi / wavelength
|
||||
frequency = constant.speed_of_light / wavelength
|
||||
circular_frequency = 2 * constant.pi * frequency
|
||||
natural_linewidth = 2 * constant.pi * linewidth
|
||||
lifetime = 1 / natural_linewidth
|
||||
saturation_intensity = 2 * constant.pi ** 2 / 3 * \
|
||||
constant.hbar * constant.c * natural_linewidth / wavelength ** 3
|
||||
|
||||
resonance_cross_section = constant.hbar * circular_frequency * \
|
||||
natural_linewidth / 2 / saturation_intensity
|
||||
|
||||
self['wavelength'] = wavelength
|
||||
self['wavevector'] = wavevector
|
||||
self['frequency'] = frequency
|
||||
self['circular_frequency'] = circular_frequency
|
||||
self['linewidth'] = linewidth
|
||||
self['natural_linewidth'] = natural_linewidth
|
||||
self['landauFactor'] = landauFactor
|
||||
self['lifetime'] = lifetime
|
||||
self['saturation_intensity'] = saturation_intensity
|
||||
self['resonance_cross_section'] = resonance_cross_section
|
||||
|
||||
def get_rabi_frequency(self, intensity):
|
||||
rabi_frequency = np.sqrt(intensity / self['saturation_intensity'] / 2) * self['natural_linewidth']
|
||||
|
||||
return rabi_frequency
|
||||
|
||||
def get_cross_section(self, detuning, intensity):
|
||||
|
||||
cross_section = self['resonance_cross_section'] / (
|
||||
1 + 4 * (detuning / self['natural_linewidth']) ** 2 + intensity / self['saturation_intensity'])
|
||||
return cross_section
|
1
build/lib/dylab/__init__.py
Normal file
1
build/lib/dylab/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
|
BIN
dist/dylab-0.0.1-py3-none-any.whl
vendored
Normal file
BIN
dist/dylab-0.0.1-py3-none-any.whl
vendored
Normal file
Binary file not shown.
BIN
dist/dylab-0.0.1.tar.gz
vendored
Normal file
BIN
dist/dylab-0.0.1.tar.gz
vendored
Normal file
Binary file not shown.
17
dylab.egg-info/PKG-INFO
Normal file
17
dylab.egg-info/PKG-INFO
Normal file
@ -0,0 +1,17 @@
|
||||
Metadata-Version: 2.1
|
||||
Name: dylab
|
||||
Version: 0.0.1
|
||||
Summary: An internal toolbox package used for analyzation data of an ultracold atom experiment.
|
||||
Home-page: UNKNOWN
|
||||
Author: QF-group (AG Chomaz), Heidelberg university
|
||||
Author-email: gao@physi.uni-heidelberg.de
|
||||
License: UNKNOWN
|
||||
Platform: UNKNOWN
|
||||
Classifier: Programming Language :: Python :: 3
|
||||
Classifier: License :: OSI Approved :: GNU General Public License v3 (GPLv3)
|
||||
Classifier: Operating System :: OS Independent
|
||||
Description-Content-Type: text/markdown
|
||||
License-File: LICENSE
|
||||
|
||||
UNKNOWN
|
||||
|
14
dylab.egg-info/SOURCES.txt
Normal file
14
dylab.egg-info/SOURCES.txt
Normal file
@ -0,0 +1,14 @@
|
||||
LICENSE
|
||||
README.md
|
||||
setup.py
|
||||
dylab/AbsorptionImaging.py
|
||||
dylab/Camera.py
|
||||
dylab/DyTransition.py
|
||||
dylab/Fitting.py
|
||||
dylab/FittingFunction.py
|
||||
dylab/TransitionClass.py
|
||||
dylab/__init__.py
|
||||
dylab.egg-info/PKG-INFO
|
||||
dylab.egg-info/SOURCES.txt
|
||||
dylab.egg-info/dependency_links.txt
|
||||
dylab.egg-info/top_level.txt
|
1
dylab.egg-info/dependency_links.txt
Normal file
1
dylab.egg-info/dependency_links.txt
Normal file
@ -0,0 +1 @@
|
||||
|
1
dylab.egg-info/top_level.txt
Normal file
1
dylab.egg-info/top_level.txt
Normal file
@ -0,0 +1 @@
|
||||
dylab
|
196
dylab/AbsorptionImaging.py
Normal file
196
dylab/AbsorptionImaging.py
Normal file
@ -0,0 +1,196 @@
|
||||
from lyse import *
|
||||
from pylab import *
|
||||
import numpy as np
|
||||
import scipy.constants as constant
|
||||
from dylab import DyTransition, Camera
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib import colors as mcolors
|
||||
import colorsys
|
||||
|
||||
|
||||
# Produce the jet colormap
|
||||
def man_cmap(cmap, value=1.):
|
||||
colors = cmap(np.arange(cmap.N))
|
||||
hls = np.array([colorsys.rgb_to_hls(*c) for c in colors[:, :3]])
|
||||
hls[:, 1] *= value
|
||||
rgb = np.clip(np.array([colorsys.hls_to_rgb(*c) for c in hls]), 0, 1)
|
||||
return mcolors.LinearSegmentedColormap.from_list("", rgb)
|
||||
|
||||
|
||||
class absorption_imaging:
|
||||
image_name = {
|
||||
'atoms': 'atoms',
|
||||
'background': 'background',
|
||||
'dark': 'dark'
|
||||
}
|
||||
|
||||
class CameraError(TypeError):
|
||||
pass
|
||||
|
||||
class TransitionError(TypeError):
|
||||
pass
|
||||
|
||||
class IntensityError(TypeError):
|
||||
pass
|
||||
|
||||
def __init__(self, data_path, camera_orientation, camera_label, transition=None, camera=None, detuning=None,
|
||||
intensity=None):
|
||||
self.path = data_path
|
||||
|
||||
# Ideally, we should be able to access all the data by function data(path).
|
||||
# However it is still under development. Now we can not read a picture by using function data(path).
|
||||
# We have to change to use function Run(path), which creat a class with the saved hdf5 file.
|
||||
self.data_handle = Run(data_path)
|
||||
|
||||
# Path of the saving images
|
||||
self.camera_orientation = camera_orientation
|
||||
self.camera_label = camera_label
|
||||
|
||||
# Two dimensional array storing the images
|
||||
self.image_atoms = None
|
||||
self.image_background = None
|
||||
self.image_dark = None
|
||||
self.image_absorption = None
|
||||
|
||||
# import the data of transition
|
||||
# The transition should be an object of TransitionClass.py in module TransitionConstant
|
||||
# self.transition = transition
|
||||
|
||||
self.detuning = detuning
|
||||
|
||||
# Camera information
|
||||
# The Camera should be an object of Camera class in module Camera
|
||||
# self.camera = camera
|
||||
self.intensity = intensity
|
||||
|
||||
self.beam_energy = None
|
||||
self.atom_number = None
|
||||
|
||||
# For debuging
|
||||
self.transition = DyTransition.creat_Dy421()
|
||||
self.camera = Camera.c11440_36u(self.transition['wavelength'])
|
||||
|
||||
def __enter__(self):
|
||||
self.get_image_absorption()
|
||||
self.get_atom_number()
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
self.close()
|
||||
|
||||
def set_image_name(self, image, name):
|
||||
self.image_name[image] = name
|
||||
|
||||
def open(self):
|
||||
self.image_atoms = self.data_handle.get_image(self.camera_orientation, self.camera_label,
|
||||
self.image_name['atoms'])
|
||||
self.image_background = self.data_handle.get_image(self.camera_orientation, self.camera_label,
|
||||
self.image_name['background'])
|
||||
self.image_dark = self.data_handle.get_image(self.camera_orientation, self.camera_label,
|
||||
self.image_name['dark'])
|
||||
|
||||
self.image_atoms = self.image_atoms.astype(float)
|
||||
self.image_background = self.image_background.astype(float)
|
||||
self.image_dark = self.image_dark.astype(float)
|
||||
|
||||
if not (self.intensity is None):
|
||||
intensity = np.ones(self.image_atoms.shape)
|
||||
self.intensity = intensity * self.intensity
|
||||
|
||||
def close(self):
|
||||
self.save()
|
||||
|
||||
def save(self):
|
||||
if self.image_absorption is not None:
|
||||
self.data_handle.save_result_array('absorption_imaging', self.image_absorption,
|
||||
'results/absorption_imaging/')
|
||||
if self.atom_number is not None:
|
||||
self.data_handle.save_result('atom_number', self.atom_number, 'results/absorption_imaging/')
|
||||
|
||||
# The function do the analyzation for absorption imaging
|
||||
# It will return a two-dimensional array, which stores the absorption imaging
|
||||
def get_image_absorption(self):
|
||||
# import three pictures from hfd5 data file
|
||||
self.open()
|
||||
|
||||
self.image_absorption = np.ones(shape(self.image_atoms))
|
||||
|
||||
numerator = self.image_background - self.image_dark
|
||||
denominator = self.image_atoms - self.image_dark
|
||||
|
||||
numerator[numerator <= 0] = 1
|
||||
denominator[denominator <= 0] = 1
|
||||
self.image_absorption = numerator / denominator
|
||||
self.image_absorption = np.log(self.image_absorption)
|
||||
|
||||
# OD_means = np.log(imagine_absorption)
|
||||
# OD_sat = 0
|
||||
# OD_mod = np.log((1 - constant.e**-OD_sat) / (constant.e**-OD_means - constant.e**-OD_sat))
|
||||
# OD_act = OD_mod + (1 - constant.e**OD_mod) * self.intensity / self.transition['saturation_intensity']
|
||||
# self._imagine_absorption = constant.e**OD_act
|
||||
|
||||
return self.image_absorption
|
||||
|
||||
def get_beam_power(self, laser_pulse_duration):
|
||||
if self.beam_energy is None:
|
||||
self.beam_energy = self.image_background - self.image_dark
|
||||
self.beam_energy[self.beam_energy < 0] = 0
|
||||
self.beam_energy = self.camera.reading2photon(self.image_background - self.image_dark)
|
||||
self.beam_energy = self.beam_energy * constant.h * self.transition['frequency']
|
||||
self.beam_energy = np.sum(self.beam_energy)
|
||||
|
||||
return self.beam_energy / laser_pulse_duration
|
||||
|
||||
def get_atom_number(self, force_to_run=False):
|
||||
|
||||
if self.camera is None:
|
||||
raise self.CameraError("No camera information")
|
||||
|
||||
if self.transition is None:
|
||||
raise self.TransitionError("No transition information")
|
||||
|
||||
if self.intensity is None:
|
||||
raise self.IntensityError("No beam intensity information")
|
||||
|
||||
if self.atom_number is not None and not force_to_run:
|
||||
return self.atom_number
|
||||
|
||||
if self.image_absorption is None and not force_to_run:
|
||||
self.image_absorption = self.get_image_absorption()
|
||||
|
||||
OD_act = self.image_absorption
|
||||
|
||||
cross_section = self.transition.get_cross_section(self.detuning, self.intensity)
|
||||
|
||||
self.atom_number = np.sum(cross_section * OD_act) * self.camera['pixel_size_V'] * self.camera['pixel_size_H']
|
||||
|
||||
return self.atom_number
|
||||
|
||||
# Plot the result
|
||||
def plot_result(self, vmin=None, vmax=None):
|
||||
|
||||
cmap = plt.cm.get_cmap("jet")
|
||||
|
||||
grid = plt.GridSpec(3, 3, wspace=0.2, hspace=0.2)
|
||||
|
||||
ax1 = plt.subplot(grid[0, 0])
|
||||
pos = ax1.imshow(self.image_atoms, cmap=cmap)
|
||||
ax1.set_title('With atoms')
|
||||
plt.colorbar(pos, ax=ax1)
|
||||
|
||||
ax2 = plt.subplot(grid[1, 0])
|
||||
pos = ax2.imshow(self.image_background, cmap=cmap)
|
||||
ax2.set_title('Without atoms')
|
||||
plt.colorbar(pos, ax=ax2)
|
||||
|
||||
ax3 = plt.subplot(grid[2, 0])
|
||||
pos = ax3.imshow(self.image_dark, cmap=cmap)
|
||||
ax3.set_title('Dark')
|
||||
plt.colorbar(pos, ax=ax3)
|
||||
|
||||
ax4 = plt.subplot(grid[0:3, 1:3])
|
||||
pos = ax4.imshow(self.image_absorption, cmap=cmap, vmin=vmin, vmax=vmax)
|
||||
ax4.set_title('Absorption Imaging')
|
||||
plt.colorbar(pos, ax=ax4)
|
||||
|
||||
plt.show()
|
69
dylab/Camera.py
Normal file
69
dylab/Camera.py
Normal file
@ -0,0 +1,69 @@
|
||||
class c11440_36u(dict):
|
||||
class ConstError(TypeError):
|
||||
pass
|
||||
|
||||
class DataError(TypeError):
|
||||
pass
|
||||
|
||||
def __setitem__(self, name, value):
|
||||
if name in self.__dict__:
|
||||
raise self.ConstError("Can't change const %s" % name)
|
||||
super().__setitem__(name, value)
|
||||
self.__dict__[name] = value
|
||||
|
||||
def __getattr__(self, name):
|
||||
return self[name]
|
||||
|
||||
def __dir__(self):
|
||||
return sorted(self)
|
||||
|
||||
def __init__(self, wavelength):
|
||||
super().__init__()
|
||||
self['pixel_size_V'] = 5.8e-6
|
||||
self['pixel_size_H'] = 5.8e-6
|
||||
self['pixel_num_H'] = 1920
|
||||
self['pixel_num_v'] = 1200
|
||||
|
||||
# Measured quantum efficiency @ 421nm
|
||||
# original measurement data is in our shared folder for data
|
||||
# Data\Measurements\2022\05\23\camera\qe\
|
||||
if 420e-9 < wavelength < 422e-9:
|
||||
self['quantum_efficiency'] = 0.639714338817604
|
||||
self['quantum_efficiency_std'] = 0.021405684133816
|
||||
|
||||
# Measured quantum efficiency @ 626nm
|
||||
# original measurement data is in our shared folder for data
|
||||
# Data\Measurements\2022\05\24\camera\qe_626\
|
||||
if 625e-9 < wavelength < 627e-9:
|
||||
self['quantum_efficiency'] = 0.516529105247143
|
||||
self['quantum_efficiency_std'] = 0.023114728382457
|
||||
|
||||
if self['quantum_efficiency'] is None:
|
||||
raise self.DataError("Lack for quantum efficiency data at specified wavelength")
|
||||
|
||||
self['full_well_capacity'] = 33000
|
||||
self['reading_to_electron'] = self['full_well_capacity'] / 4095
|
||||
self['electron_to_reading'] = 4095 / self['full_well_capacity']
|
||||
self['reading_to_photon'] = self['quantum_efficiency'] * self['reading_to_electron']
|
||||
self['photon_to_reading'] = self['electron_to_reading'] / self['quantum_efficiency']
|
||||
self['noise_RMS'] = 6.6
|
||||
self['noise_RMS_measure'] = 6.458
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
pass
|
||||
|
||||
# A function convert the setting value of analog gain to amplification factor in times
|
||||
def analog_gain_factor(self, setting_value):
|
||||
return 10**(setting_value * 0.1 / 20)
|
||||
|
||||
def reading2electron(self, reading_value):
|
||||
return reading_value * self['reading_to_electron']
|
||||
|
||||
def electron2reading(self, electron_num):
|
||||
return electron_num * self['electron_to_reading']
|
||||
|
||||
def reading2photon(self, reading_value):
|
||||
return reading_value * self['reading_to_photon']
|
29
dylab/DyTransition.py
Normal file
29
dylab/DyTransition.py
Normal file
@ -0,0 +1,29 @@
|
||||
# Functions create constant dictionary storing transition information of Dy.
|
||||
|
||||
import scipy.constants as constant
|
||||
from dylab import TransitionClass
|
||||
|
||||
|
||||
def creat_Dy421():
|
||||
wavelength = 421.291e-9
|
||||
|
||||
lifetime = 4.94e-9
|
||||
natural_linewidth = 1 / lifetime
|
||||
linewidth = natural_linewidth / 2 / constant.pi
|
||||
landau_factor = 1.22
|
||||
|
||||
Dy421 = TransitionClass.Transition(wavelength, linewidth, landau_factor)
|
||||
|
||||
return Dy421
|
||||
|
||||
|
||||
def creat_Dy626():
|
||||
wavelength = 626.086e-9
|
||||
lifetime = 1200e-9
|
||||
natural_linewidth = 1 / lifetime
|
||||
linewidth = natural_linewidth / 2 / constant.pi
|
||||
landau_factor = 1.29
|
||||
|
||||
Dy626 = TransitionClass.Transition(wavelength, linewidth, landau_factor)
|
||||
|
||||
return Dy626
|
199
dylab/Fitting.py
Normal file
199
dylab/Fitting.py
Normal file
@ -0,0 +1,199 @@
|
||||
import numpy as np
|
||||
from dylab import FittingFunction
|
||||
import laserbeamsize as lbs
|
||||
import lmfit
|
||||
from lmfit.minimizer import MinimizerResult
|
||||
|
||||
|
||||
class OneD_Gaussian_fitting(FittingFunction.Fitting):
|
||||
|
||||
def __init__(self, data, x, fitting_function=None):
|
||||
self.data = data
|
||||
self.x = x
|
||||
self.x0 = None
|
||||
self.x_sigma = None
|
||||
self.amplitude = None
|
||||
self.offset = None
|
||||
self.x0_arg = None
|
||||
self.x_sigma_arg = None
|
||||
|
||||
# Use d4sigma method estimating the start point
|
||||
self.find_start_point()
|
||||
|
||||
# Initialize the fitting parameters
|
||||
self.parameters = lmfit.Parameters()
|
||||
self.independent_vars = ['x']
|
||||
if fitting_function is None:
|
||||
self.fitting_function = FittingFunction.oneD_Gaussian
|
||||
self.parameters.add_many(('x0', self.x0, True),
|
||||
('x_sigma', self.x_sigma, True, 0),
|
||||
('A', np.max(self.data) / 2, True),
|
||||
('offset', 0, True))
|
||||
else:
|
||||
self.fitting_function = fitting_function
|
||||
self.parameters.add_many(('x0', self.x0, True),
|
||||
('x_sigma', self.x_sigma, True, 0))
|
||||
|
||||
# Flat the data into 1D array for fitting
|
||||
self.independent_vars_value = {
|
||||
'x': self.x,
|
||||
}
|
||||
|
||||
# Initialize the fitting model
|
||||
super(OneD_Gaussian_fitting, self).__init__(self.data, self.parameters,
|
||||
self.fitting_function, self.independent_vars,
|
||||
self.independent_vars_value)
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
pass
|
||||
|
||||
def find_start_point(self):
|
||||
self.x0_arg = np.argmax(self.data)
|
||||
self.x0 = self.x[int(self.x0_arg)]
|
||||
|
||||
data_max = np.max(self.data)
|
||||
data_sigma = data_max * np.e ** (-0.5)
|
||||
self.x_sigma_arg = self.x0_arg - np.argmax(self.data > data_sigma)
|
||||
self.x_sigma = self.x[int(self.x_sigma_arg)]
|
||||
|
||||
|
||||
class TwoD_Gaussian_fitting(FittingFunction.Fitting):
|
||||
|
||||
def __init__(self, data, x, y):
|
||||
self.data_origin = data
|
||||
self.x_origin = x
|
||||
self.y_origin = y
|
||||
self.x0 = None
|
||||
self.y0 = None
|
||||
self.x_sigma = None
|
||||
self.y_sigma = None
|
||||
self.amplitude = None
|
||||
self.offset = None
|
||||
self.x0_arg = None
|
||||
self.y0_arg = None
|
||||
self.x_sigma_arg = None
|
||||
self.y_sigma_arg = None
|
||||
|
||||
# Use d4sigma method estimating the start point
|
||||
self.find_start_point()
|
||||
|
||||
# Initialize the fitting parameters
|
||||
self.parameters = lmfit.Parameters()
|
||||
self.independent_vars = ['x', 'y']
|
||||
self.fitting_function = FittingFunction.twoD_Gaussian
|
||||
self.parameters.add_many(('x0', self.x0, True),
|
||||
('y0', self.y0, True),
|
||||
('x_sigma', self.x_sigma, True, 0),
|
||||
('y_sigma', self.y_sigma, True, 0),
|
||||
('A', np.max(self.data_origin) / 2, True),
|
||||
('offset', 0, True))
|
||||
|
||||
# Flat the data into 1D array for fitting
|
||||
self.data = self.data_origin.flatten()
|
||||
self.x, self.y = np.meshgrid(x, y)
|
||||
self.x = self.x.flatten()
|
||||
self.y = self.y.flatten()
|
||||
self.independent_vars_value = {
|
||||
'x': self.x,
|
||||
'y': self.y,
|
||||
}
|
||||
|
||||
# Initialize the fitting model
|
||||
super(TwoD_Gaussian_fitting, self).__init__(self.data, self.parameters,
|
||||
self.fitting_function, self.independent_vars,
|
||||
self.independent_vars_value)
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
pass
|
||||
|
||||
def find_start_point(self):
|
||||
self.x0_arg, self.y0_arg, self.x_sigma_arg, self.y_sigma_arg, phi = lbs.beam_size(self.data_origin, max_iter=3)
|
||||
self.x_sigma_arg = self.x_sigma_arg / 4
|
||||
self.y_sigma_arg = self.y_sigma_arg / 4
|
||||
self.x0 = self.x_origin[int(self.x0_arg)]
|
||||
self.y0 = self.y_origin[int(self.y0_arg)]
|
||||
self.x_sigma = self.x_origin[int(self.x_sigma_arg)]
|
||||
self.y_sigma = self.x_origin[int(self.y_sigma_arg)]
|
||||
|
||||
|
||||
class Two_OneD_Gaussian_fitting:
|
||||
|
||||
def __init__(self, data, x, y):
|
||||
self.data = data
|
||||
self.x = x
|
||||
self.y = y
|
||||
self.x0 = None
|
||||
self.y0 = None
|
||||
self.x_sigma = None
|
||||
self.y_sigma = None
|
||||
self.amplitude = None
|
||||
self.offset = None
|
||||
self.x0_arg = None
|
||||
self.y0_arg = None
|
||||
self.x_sigma_arg = None
|
||||
self.y_sigma_arg = None
|
||||
self.x_max_arg = None
|
||||
self.y_max_arg = None
|
||||
|
||||
# Use d4sigma method estimating the start point
|
||||
self.find_start_point()
|
||||
|
||||
# Initialize the fitting parameters
|
||||
self.fitting_function = FittingFunction.twoD_Gaussian
|
||||
self.fitting_x_data = self.data[self.x_max_arg:self.x_max_arg + 1]
|
||||
self.fitting_x_data = self.fitting_x_data.flatten()
|
||||
self.fitting_y_data = self.data[:, self.y_max_arg:self.y_max_arg + 1]
|
||||
self.fitting_y_data = self.fitting_y_data.flatten()
|
||||
self.fitting_x = None
|
||||
self.fitting_y = None
|
||||
|
||||
# Initialize the fitting result
|
||||
self.result = MinimizerResult()
|
||||
self.data_fit = None
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
pass
|
||||
|
||||
def find_start_point(self):
|
||||
# find the position of maximal value in data
|
||||
self.x_max_arg, self.y_max_arg = np.unravel_index(np.argmax(self.data), self.data.shape)
|
||||
|
||||
def run_fitting(self):
|
||||
self.fitting_x = OneD_Gaussian_fitting(self.fitting_x_data, self.x)
|
||||
self.fitting_x.run_fitting()
|
||||
self.fitting_y_data = self.fitting_y_data - self.fitting_x.result.best_values['offset']
|
||||
self.fitting_y_data = self.fitting_y_data / self.fitting_x.result.best_values['A']
|
||||
self.fitting_y = OneD_Gaussian_fitting(self.fitting_y_data, self.y, FittingFunction.oneD_Gaussian_normalized)
|
||||
self.fitting_y.run_fitting()
|
||||
|
||||
self.result.best_values = {
|
||||
'x0': self.fitting_x.result.best_values['x0'],
|
||||
'y0': self.fitting_y.result.best_values['x0'],
|
||||
'x_sigma': self.fitting_x.result.best_values['x_sigma'],
|
||||
'y_sigma': self.fitting_y.result.best_values['x_sigma'],
|
||||
'A': self.fitting_x.result.best_values['A'],
|
||||
'offset': self.fitting_x.result.best_values['offset']
|
||||
}
|
||||
|
||||
def get_fitting_data(self, data_shape):
|
||||
data = self.data.flatten()
|
||||
x, y = np.meshgrid(self.x, self.y)
|
||||
x = x.flatten()
|
||||
y = y.flatten()
|
||||
fit_function_kws = {
|
||||
'x': x,
|
||||
'y': y,
|
||||
}
|
||||
self.data_fit = self.fitting_function(**fit_function_kws, **self.result.best_values)
|
||||
self.data_fit = self.data_fit.reshape(data_shape)
|
||||
|
||||
return self.data_fit
|
46
dylab/FittingFunction.py
Normal file
46
dylab/FittingFunction.py
Normal file
@ -0,0 +1,46 @@
|
||||
import numpy as np
|
||||
import lmfit
|
||||
|
||||
|
||||
def oneD_Gaussian(x, x0, x_sigma, A, offset):
|
||||
return A * np.exp(-(x - x0) ** 2 / (2 * x_sigma ** 2)) + offset
|
||||
|
||||
|
||||
def oneD_Gaussian_normalized(x, x0, x_sigma):
|
||||
return np.exp(-(x - x0) ** 2 / (2 * x_sigma ** 2))
|
||||
|
||||
|
||||
def twoD_Gaussian(x, y, x0, y0, x_sigma, y_sigma, A, offset):
|
||||
return A * np.exp(-(x - x0) ** 2 / (2 * x_sigma ** 2)) * np.exp(-(y - y0) ** 2 / (2 * y_sigma ** 2)) + offset
|
||||
|
||||
|
||||
class Fitting:
|
||||
|
||||
def __init__(self, data, parameters, fitting_function, independent_vars, independent_vars_value):
|
||||
self.data = data
|
||||
self.parameters = parameters
|
||||
self.fitting_function = fitting_function
|
||||
self.fit_function_kws = independent_vars_value
|
||||
self.independent_vars = independent_vars
|
||||
self.fitting_model = None
|
||||
self.result = None
|
||||
self.data_fit = None
|
||||
|
||||
def __enter__(self):
|
||||
self.run_fitting()
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
pass
|
||||
|
||||
def set_parameters(self, parameters):
|
||||
self.parameters = parameters
|
||||
|
||||
def run_fitting(self):
|
||||
self.fitting_model = lmfit.Model(self.fitting_function, independent_vars=self.independent_vars)
|
||||
self.result = self.fitting_model.fit(self.data, params=self.parameters, **self.fit_function_kws)
|
||||
|
||||
def get_fitting_data(self, data_shape):
|
||||
self.data_fit = self.fitting_function(**self.fit_function_kws, **self.result.best_values)
|
||||
self.data_fit = self.data_fit.reshape(data_shape)
|
||||
return self.data_fit
|
57
dylab/TransitionClass.py
Normal file
57
dylab/TransitionClass.py
Normal file
@ -0,0 +1,57 @@
|
||||
# A self defined constant dictionary class
|
||||
# It is used for storing the physical constant related to transition
|
||||
import numpy as np
|
||||
import scipy.constants as constant
|
||||
|
||||
|
||||
class Transition(dict):
|
||||
class ConstError(TypeError):
|
||||
pass
|
||||
|
||||
def __setitem__(self, name, value):
|
||||
if name in self.__dict__:
|
||||
raise self.ConstError("Can't change const %s" % name)
|
||||
super().__setitem__(name, value)
|
||||
self.__dict__[name] = value
|
||||
|
||||
def __getattr__(self, name):
|
||||
return self[name]
|
||||
|
||||
def __dir__(self):
|
||||
return sorted(self)
|
||||
|
||||
def __init__(self, wavelength, linewidth, landauFactor):
|
||||
super().__init__()
|
||||
|
||||
wavevector = 2 * constant.pi / wavelength
|
||||
frequency = constant.speed_of_light / wavelength
|
||||
circular_frequency = 2 * constant.pi * frequency
|
||||
natural_linewidth = 2 * constant.pi * linewidth
|
||||
lifetime = 1 / natural_linewidth
|
||||
saturation_intensity = 2 * constant.pi ** 2 / 3 * \
|
||||
constant.hbar * constant.c * natural_linewidth / wavelength ** 3
|
||||
|
||||
resonance_cross_section = constant.hbar * circular_frequency * \
|
||||
natural_linewidth / 2 / saturation_intensity
|
||||
|
||||
self['wavelength'] = wavelength
|
||||
self['wavevector'] = wavevector
|
||||
self['frequency'] = frequency
|
||||
self['circular_frequency'] = circular_frequency
|
||||
self['linewidth'] = linewidth
|
||||
self['natural_linewidth'] = natural_linewidth
|
||||
self['landauFactor'] = landauFactor
|
||||
self['lifetime'] = lifetime
|
||||
self['saturation_intensity'] = saturation_intensity
|
||||
self['resonance_cross_section'] = resonance_cross_section
|
||||
|
||||
def get_rabi_frequency(self, intensity):
|
||||
rabi_frequency = np.sqrt(intensity / self['saturation_intensity'] / 2) * self['natural_linewidth']
|
||||
|
||||
return rabi_frequency
|
||||
|
||||
def get_cross_section(self, detuning, intensity):
|
||||
|
||||
cross_section = self['resonance_cross_section'] / (
|
||||
1 + 4 * (detuning / self['natural_linewidth']) ** 2 + intensity / self['saturation_intensity'])
|
||||
return cross_section
|
1
dylab/__init__.py
Normal file
1
dylab/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
|
21
setup.py
Normal file
21
setup.py
Normal file
@ -0,0 +1,21 @@
|
||||
import setuptools
|
||||
|
||||
with open("README.md", "r") as fh:
|
||||
long_description = fh.read()
|
||||
|
||||
setuptools.setup(
|
||||
name="dylab",
|
||||
version="0.0.1",
|
||||
author="QF-group (AG Chomaz), Heidelberg university",
|
||||
author_email="gao@physi.uni-heidelberg.de",
|
||||
description="An internal toolbox package used for analyzation data of an ultracold atom experiment.",
|
||||
# long_description=long_description,
|
||||
long_description_content_type="text/markdown",
|
||||
# url="https://github.com/pypa/sampleproject",
|
||||
packages=setuptools.find_packages(),
|
||||
classifiers=[
|
||||
"Programming Language :: Python :: 3",
|
||||
"License :: OSI Approved :: GNU General Public License v3 (GPLv3)",
|
||||
"Operating System :: OS Independent",
|
||||
],
|
||||
)
|
13
test.py
Normal file
13
test.py
Normal file
@ -0,0 +1,13 @@
|
||||
import lyse
|
||||
from pylab import *
|
||||
from lyse import *
|
||||
|
||||
run = Run(path)
|
||||
|
||||
imaging = 'absorption_imaging'
|
||||
cam = 'absorption_imaging'
|
||||
h5_paths = lyse.h5_paths()
|
||||
|
||||
print(run.globals_groups())
|
||||
|
||||
print(run.get_result_arrays(imaging, cam))
|
13
test_absorption_imaging.py
Normal file
13
test_absorption_imaging.py
Normal file
@ -0,0 +1,13 @@
|
||||
from lyse import *
|
||||
from dylab import DyTransition, Camera, AbsorptionImaging
|
||||
|
||||
|
||||
absorption_imaging_transition = DyTransition.creat_Dy421()
|
||||
mot_3D_camera = Camera.c11440_36u(absorption_imaging_transition['wavelength'])
|
||||
|
||||
with AbsorptionImaging.absorption_imaging(path, 'MOT_3D_Camera', 'in_situ_absorption',
|
||||
absorption_imaging_transition, mot_3D_camera, 0, 0) as absorption_image:
|
||||
|
||||
absorption_image.plot_result(-0.05, 0.03)
|
||||
|
||||
print(absorption_image.atom_number)
|
82
test_fitting.py
Normal file
82
test_fitting.py
Normal file
@ -0,0 +1,82 @@
|
||||
import laserbeamsize as lbs
|
||||
from dylab import Fitting
|
||||
import numpy as np
|
||||
import lmfit
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from dylab.FittingFunction import twoD_Gaussian
|
||||
|
||||
xc = 300
|
||||
yc = 200
|
||||
dx = 100
|
||||
dy = 50
|
||||
phi = np.radians(0)
|
||||
h = 600
|
||||
v = 400
|
||||
max_value = 1023
|
||||
noise = 25
|
||||
x = np.linspace(0, h - 1, h)
|
||||
y = np.linspace(0, v - 1, v)
|
||||
# generate test image
|
||||
test = lbs.beam_test_image(h, v, xc, yc, dx, dy, phi, noise=noise)
|
||||
|
||||
# a = Fitting.TwoD_Gaussian_fitting(test, x, y)
|
||||
#
|
||||
# a.run_fitting()
|
||||
#
|
||||
# lmfit.report_fit(a.result)
|
||||
# print(a.result.best_values)
|
||||
#
|
||||
# plt.subplots(2, 1, figsize=(12, 12))
|
||||
# plt.subplot(2, 1, 1)
|
||||
# plt.imshow(test)
|
||||
# plt.colorbar()
|
||||
# plt.xticks([])
|
||||
# plt.yticks([])
|
||||
# plt.title('Original')
|
||||
#
|
||||
# plt.subplot(2, 1, 2)
|
||||
# # aaa = twoD_Gaussian(a.x, a.y, **a.result.best_values)
|
||||
# # aaa = aaa.reshape(np.shape(a.data_origin))
|
||||
# aaa = a.get_fitting_data(test.shape)
|
||||
# plt.imshow(aaa)
|
||||
# plt.colorbar()
|
||||
# plt.xticks([])
|
||||
# plt.yticks([])
|
||||
# plt.title('Original')
|
||||
# plt.show()
|
||||
|
||||
# test_b = test[199:200][:]
|
||||
# b = Fitting.OneD_Gaussian_fitting(test_b, x)
|
||||
# b.run_fitting()
|
||||
# bbb = b.get_fitting_data(np.shape(test_b))
|
||||
# bbb = bbb.flatten()
|
||||
# lmfit.report_fit(b.result)
|
||||
# plt.plot(x, bbb)
|
||||
#
|
||||
# plt.show()
|
||||
|
||||
a = Fitting.Two_OneD_Gaussian_fitting(test, x, y)
|
||||
|
||||
a.run_fitting()
|
||||
|
||||
plt.subplots(2, 1, figsize=(12, 12))
|
||||
plt.subplot(2, 1, 1)
|
||||
plt.imshow(test)
|
||||
plt.colorbar()
|
||||
plt.xticks([])
|
||||
plt.yticks([])
|
||||
plt.title('Original')
|
||||
|
||||
plt.subplot(2, 1, 2)
|
||||
# aaa = twoD_Gaussian(a.x, a.y, **a.result.best_values)
|
||||
# aaa = aaa.reshape(np.shape(a.data_origin))
|
||||
aaa = a.get_fitting_data(test.shape)
|
||||
print(a.result.best_values)
|
||||
|
||||
plt.imshow(aaa)
|
||||
plt.colorbar()
|
||||
plt.xticks([])
|
||||
plt.yticks([])
|
||||
plt.title('Original')
|
||||
plt.show()
|
6
test_mutil.py
Normal file
6
test_mutil.py
Normal file
@ -0,0 +1,6 @@
|
||||
from lyse import *
|
||||
from pylab import *
|
||||
|
||||
data_container = data()
|
||||
|
||||
print(data_container['mot_3d_freq'])
|
Loading…
Reference in New Issue
Block a user